ExecutionEngine.cpp revision e2947531280503a4e73e8d94a6161f68bea857a7
1//===-- ExecutionEngine.cpp - Common Implementation shared by EEs ---------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file was developed by the LLVM research group and is distributed under 6// the University of Illinois Open Source License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file defines the common interface used by the various execution engine 11// subclasses. 12// 13//===----------------------------------------------------------------------===// 14 15#define DEBUG_TYPE "jit" 16#include "Interpreter/Interpreter.h" 17#include "JIT/JIT.h" 18#include "llvm/Constants.h" 19#include "llvm/DerivedTypes.h" 20#include "llvm/Module.h" 21#include "llvm/ModuleProvider.h" 22#include "llvm/CodeGen/IntrinsicLowering.h" 23#include "llvm/ExecutionEngine/ExecutionEngine.h" 24#include "llvm/ExecutionEngine/GenericValue.h" 25#include "llvm/Target/TargetData.h" 26#include "Support/Debug.h" 27#include "Support/Statistic.h" 28#include "Support/DynamicLinker.h" 29using namespace llvm; 30 31namespace { 32 Statistic<> NumInitBytes("lli", "Number of bytes of global vars initialized"); 33 Statistic<> NumGlobals ("lli", "Number of global vars initialized"); 34} 35 36ExecutionEngine::ExecutionEngine(ModuleProvider *P) : 37 CurMod(*P->getModule()), MP(P) { 38 assert(P && "ModuleProvider is null?"); 39} 40 41ExecutionEngine::ExecutionEngine(Module *M) : CurMod(*M), MP(0) { 42 assert(M && "Module is null?"); 43} 44 45ExecutionEngine::~ExecutionEngine() { 46 delete MP; 47} 48 49/// getGlobalValueAtAddress - Return the LLVM global value object that starts 50/// at the specified address. 51/// 52const GlobalValue *ExecutionEngine::getGlobalValueAtAddress(void *Addr) { 53 // If we haven't computed the reverse mapping yet, do so first. 54 if (GlobalAddressReverseMap.empty()) { 55 for (std::map<const GlobalValue*, void *>::iterator I = 56 GlobalAddressMap.begin(), E = GlobalAddressMap.end(); I != E; ++I) 57 GlobalAddressReverseMap.insert(std::make_pair(I->second, I->first)); 58 } 59 60 std::map<void *, const GlobalValue*>::iterator I = 61 GlobalAddressReverseMap.find(Addr); 62 return I != GlobalAddressReverseMap.end() ? I->second : 0; 63} 64 65// CreateArgv - Turn a vector of strings into a nice argv style array of 66// pointers to null terminated strings. 67// 68static void *CreateArgv(ExecutionEngine *EE, 69 const std::vector<std::string> &InputArgv) { 70 unsigned PtrSize = EE->getTargetData().getPointerSize(); 71 char *Result = new char[(InputArgv.size()+1)*PtrSize]; 72 73 DEBUG(std::cerr << "ARGV = " << (void*)Result << "\n"); 74 const Type *SBytePtr = PointerType::get(Type::SByteTy); 75 76 for (unsigned i = 0; i != InputArgv.size(); ++i) { 77 unsigned Size = InputArgv[i].size()+1; 78 char *Dest = new char[Size]; 79 DEBUG(std::cerr << "ARGV[" << i << "] = " << (void*)Dest << "\n"); 80 81 std::copy(InputArgv[i].begin(), InputArgv[i].end(), Dest); 82 Dest[Size-1] = 0; 83 84 // Endian safe: Result[i] = (PointerTy)Dest; 85 EE->StoreValueToMemory(PTOGV(Dest), (GenericValue*)(Result+i*PtrSize), 86 SBytePtr); 87 } 88 89 // Null terminate it 90 EE->StoreValueToMemory(PTOGV(0), 91 (GenericValue*)(Result+InputArgv.size()*PtrSize), 92 SBytePtr); 93 return Result; 94} 95 96/// runFunctionAsMain - This is a helper function which wraps runFunction to 97/// handle the common task of starting up main with the specified argc, argv, 98/// and envp parameters. 99int ExecutionEngine::runFunctionAsMain(Function *Fn, 100 const std::vector<std::string> &argv, 101 const char * const * envp) { 102 std::vector<GenericValue> GVArgs; 103 GenericValue GVArgc; 104 GVArgc.IntVal = argv.size(); 105 GVArgs.push_back(GVArgc); // Arg #0 = argc. 106 GVArgs.push_back(PTOGV(CreateArgv(this, argv))); // Arg #1 = argv. 107 assert(((char **)GVTOP(GVArgs[1]))[0] && "argv[0] was null after CreateArgv"); 108 109 std::vector<std::string> EnvVars; 110 for (unsigned i = 0; envp[i]; ++i) 111 EnvVars.push_back(envp[i]); 112 GVArgs.push_back(PTOGV(CreateArgv(this, EnvVars))); // Arg #2 = envp. 113 return runFunction(Fn, GVArgs).IntVal; 114} 115 116 117 118/// If possible, create a JIT, unless the caller specifically requests an 119/// Interpreter or there's an error. If even an Interpreter cannot be created, 120/// NULL is returned. 121/// 122ExecutionEngine *ExecutionEngine::create(ModuleProvider *MP, 123 bool ForceInterpreter, 124 IntrinsicLowering *IL) { 125 ExecutionEngine *EE = 0; 126 127 // Unless the interpreter was explicitly selected, try making a JIT. 128 if (!ForceInterpreter) 129 EE = JIT::create(MP, IL); 130 131 // If we can't make a JIT, make an interpreter instead. 132 if (EE == 0) { 133 try { 134 Module *M = MP->materializeModule(); 135 try { 136 EE = Interpreter::create(M, IL); 137 } catch (...) { 138 std::cerr << "Error creating the interpreter!\n"; 139 } 140 } catch (std::string& errmsg) { 141 std::cerr << "Error reading the bytecode file: " << errmsg << "\n"; 142 } catch (...) { 143 std::cerr << "Error reading the bytecode file!\n"; 144 } 145 } 146 147 if (EE == 0) delete IL; 148 return EE; 149} 150 151/// getPointerToGlobal - This returns the address of the specified global 152/// value. This may involve code generation if it's a function. 153/// 154void *ExecutionEngine::getPointerToGlobal(const GlobalValue *GV) { 155 if (Function *F = const_cast<Function*>(dyn_cast<Function>(GV))) 156 return getPointerToFunction(F); 157 158 assert(GlobalAddressMap[GV] && "Global hasn't had an address allocated yet?"); 159 return GlobalAddressMap[GV]; 160} 161 162/// FIXME: document 163/// 164GenericValue ExecutionEngine::getConstantValue(const Constant *C) { 165 GenericValue Result; 166 167 if (ConstantExpr *CE = const_cast<ConstantExpr*>(dyn_cast<ConstantExpr>(C))) { 168 switch (CE->getOpcode()) { 169 case Instruction::GetElementPtr: { 170 Result = getConstantValue(CE->getOperand(0)); 171 std::vector<Value*> Indexes(CE->op_begin()+1, CE->op_end()); 172 uint64_t Offset = 173 TD->getIndexedOffset(CE->getOperand(0)->getType(), Indexes); 174 175 Result.LongVal += Offset; 176 return Result; 177 } 178 case Instruction::Cast: { 179 // We only need to handle a few cases here. Almost all casts will 180 // automatically fold, just the ones involving pointers won't. 181 // 182 Constant *Op = CE->getOperand(0); 183 GenericValue GV = getConstantValue(Op); 184 185 // Handle cast of pointer to pointer... 186 if (Op->getType()->getTypeID() == C->getType()->getTypeID()) 187 return GV; 188 189 // Handle a cast of pointer to any integral type... 190 if (isa<PointerType>(Op->getType()) && C->getType()->isIntegral()) 191 return GV; 192 193 // Handle cast of integer to a pointer... 194 if (isa<PointerType>(C->getType()) && Op->getType()->isIntegral()) 195 switch (Op->getType()->getTypeID()) { 196 case Type::BoolTyID: return PTOGV((void*)(uintptr_t)GV.BoolVal); 197 case Type::SByteTyID: return PTOGV((void*)( intptr_t)GV.SByteVal); 198 case Type::UByteTyID: return PTOGV((void*)(uintptr_t)GV.UByteVal); 199 case Type::ShortTyID: return PTOGV((void*)( intptr_t)GV.ShortVal); 200 case Type::UShortTyID: return PTOGV((void*)(uintptr_t)GV.UShortVal); 201 case Type::IntTyID: return PTOGV((void*)( intptr_t)GV.IntVal); 202 case Type::UIntTyID: return PTOGV((void*)(uintptr_t)GV.UIntVal); 203 case Type::LongTyID: return PTOGV((void*)( intptr_t)GV.LongVal); 204 case Type::ULongTyID: return PTOGV((void*)(uintptr_t)GV.ULongVal); 205 default: assert(0 && "Unknown integral type!"); 206 } 207 break; 208 } 209 210 case Instruction::Add: 211 if (CE->getOperand(0)->getType() == Type::LongTy || 212 CE->getOperand(0)->getType() == Type::ULongTy) 213 Result.LongVal = getConstantValue(CE->getOperand(0)).LongVal + 214 getConstantValue(CE->getOperand(1)).LongVal; 215 else 216 break; 217 return Result; 218 219 default: 220 break; 221 } 222 std::cerr << "ConstantExpr not handled as global var init: " << *CE << "\n"; 223 abort(); 224 } 225 226 switch (C->getType()->getTypeID()) { 227#define GET_CONST_VAL(TY, CLASS) \ 228 case Type::TY##TyID: Result.TY##Val = cast<CLASS>(C)->getValue(); break 229 GET_CONST_VAL(Bool , ConstantBool); 230 GET_CONST_VAL(UByte , ConstantUInt); 231 GET_CONST_VAL(SByte , ConstantSInt); 232 GET_CONST_VAL(UShort , ConstantUInt); 233 GET_CONST_VAL(Short , ConstantSInt); 234 GET_CONST_VAL(UInt , ConstantUInt); 235 GET_CONST_VAL(Int , ConstantSInt); 236 GET_CONST_VAL(ULong , ConstantUInt); 237 GET_CONST_VAL(Long , ConstantSInt); 238 GET_CONST_VAL(Float , ConstantFP); 239 GET_CONST_VAL(Double , ConstantFP); 240#undef GET_CONST_VAL 241 case Type::PointerTyID: 242 if (isa<ConstantPointerNull>(C)) { 243 Result.PointerVal = 0; 244 } else if (const ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(C)){ 245 if (Function *F = 246 const_cast<Function*>(dyn_cast<Function>(CPR->getValue()))) 247 Result = PTOGV(getPointerToFunctionOrStub(F)); 248 else 249 Result = PTOGV(getOrEmitGlobalVariable( 250 cast<GlobalVariable>(CPR->getValue()))); 251 252 } else { 253 assert(0 && "Unknown constant pointer type!"); 254 } 255 break; 256 default: 257 std::cout << "ERROR: Constant unimp for type: " << C->getType() << "\n"; 258 abort(); 259 } 260 return Result; 261} 262 263/// FIXME: document 264/// 265void ExecutionEngine::StoreValueToMemory(GenericValue Val, GenericValue *Ptr, 266 const Type *Ty) { 267 if (getTargetData().isLittleEndian()) { 268 switch (Ty->getTypeID()) { 269 case Type::BoolTyID: 270 case Type::UByteTyID: 271 case Type::SByteTyID: Ptr->Untyped[0] = Val.UByteVal; break; 272 case Type::UShortTyID: 273 case Type::ShortTyID: Ptr->Untyped[0] = Val.UShortVal & 255; 274 Ptr->Untyped[1] = (Val.UShortVal >> 8) & 255; 275 break; 276 Store4BytesLittleEndian: 277 case Type::FloatTyID: 278 case Type::UIntTyID: 279 case Type::IntTyID: Ptr->Untyped[0] = Val.UIntVal & 255; 280 Ptr->Untyped[1] = (Val.UIntVal >> 8) & 255; 281 Ptr->Untyped[2] = (Val.UIntVal >> 16) & 255; 282 Ptr->Untyped[3] = (Val.UIntVal >> 24) & 255; 283 break; 284 case Type::PointerTyID: if (getTargetData().getPointerSize() == 4) 285 goto Store4BytesLittleEndian; 286 case Type::DoubleTyID: 287 case Type::ULongTyID: 288 case Type::LongTyID: Ptr->Untyped[0] = Val.ULongVal & 255; 289 Ptr->Untyped[1] = (Val.ULongVal >> 8) & 255; 290 Ptr->Untyped[2] = (Val.ULongVal >> 16) & 255; 291 Ptr->Untyped[3] = (Val.ULongVal >> 24) & 255; 292 Ptr->Untyped[4] = (Val.ULongVal >> 32) & 255; 293 Ptr->Untyped[5] = (Val.ULongVal >> 40) & 255; 294 Ptr->Untyped[6] = (Val.ULongVal >> 48) & 255; 295 Ptr->Untyped[7] = (Val.ULongVal >> 56) & 255; 296 break; 297 default: 298 std::cout << "Cannot store value of type " << Ty << "!\n"; 299 } 300 } else { 301 switch (Ty->getTypeID()) { 302 case Type::BoolTyID: 303 case Type::UByteTyID: 304 case Type::SByteTyID: Ptr->Untyped[0] = Val.UByteVal; break; 305 case Type::UShortTyID: 306 case Type::ShortTyID: Ptr->Untyped[1] = Val.UShortVal & 255; 307 Ptr->Untyped[0] = (Val.UShortVal >> 8) & 255; 308 break; 309 Store4BytesBigEndian: 310 case Type::FloatTyID: 311 case Type::UIntTyID: 312 case Type::IntTyID: Ptr->Untyped[3] = Val.UIntVal & 255; 313 Ptr->Untyped[2] = (Val.UIntVal >> 8) & 255; 314 Ptr->Untyped[1] = (Val.UIntVal >> 16) & 255; 315 Ptr->Untyped[0] = (Val.UIntVal >> 24) & 255; 316 break; 317 case Type::PointerTyID: if (getTargetData().getPointerSize() == 4) 318 goto Store4BytesBigEndian; 319 case Type::DoubleTyID: 320 case Type::ULongTyID: 321 case Type::LongTyID: Ptr->Untyped[7] = Val.ULongVal & 255; 322 Ptr->Untyped[6] = (Val.ULongVal >> 8) & 255; 323 Ptr->Untyped[5] = (Val.ULongVal >> 16) & 255; 324 Ptr->Untyped[4] = (Val.ULongVal >> 24) & 255; 325 Ptr->Untyped[3] = (Val.ULongVal >> 32) & 255; 326 Ptr->Untyped[2] = (Val.ULongVal >> 40) & 255; 327 Ptr->Untyped[1] = (Val.ULongVal >> 48) & 255; 328 Ptr->Untyped[0] = (Val.ULongVal >> 56) & 255; 329 break; 330 default: 331 std::cout << "Cannot store value of type " << Ty << "!\n"; 332 } 333 } 334} 335 336/// FIXME: document 337/// 338GenericValue ExecutionEngine::LoadValueFromMemory(GenericValue *Ptr, 339 const Type *Ty) { 340 GenericValue Result; 341 if (getTargetData().isLittleEndian()) { 342 switch (Ty->getTypeID()) { 343 case Type::BoolTyID: 344 case Type::UByteTyID: 345 case Type::SByteTyID: Result.UByteVal = Ptr->Untyped[0]; break; 346 case Type::UShortTyID: 347 case Type::ShortTyID: Result.UShortVal = (unsigned)Ptr->Untyped[0] | 348 ((unsigned)Ptr->Untyped[1] << 8); 349 break; 350 Load4BytesLittleEndian: 351 case Type::FloatTyID: 352 case Type::UIntTyID: 353 case Type::IntTyID: Result.UIntVal = (unsigned)Ptr->Untyped[0] | 354 ((unsigned)Ptr->Untyped[1] << 8) | 355 ((unsigned)Ptr->Untyped[2] << 16) | 356 ((unsigned)Ptr->Untyped[3] << 24); 357 break; 358 case Type::PointerTyID: if (getTargetData().getPointerSize() == 4) 359 goto Load4BytesLittleEndian; 360 case Type::DoubleTyID: 361 case Type::ULongTyID: 362 case Type::LongTyID: Result.ULongVal = (uint64_t)Ptr->Untyped[0] | 363 ((uint64_t)Ptr->Untyped[1] << 8) | 364 ((uint64_t)Ptr->Untyped[2] << 16) | 365 ((uint64_t)Ptr->Untyped[3] << 24) | 366 ((uint64_t)Ptr->Untyped[4] << 32) | 367 ((uint64_t)Ptr->Untyped[5] << 40) | 368 ((uint64_t)Ptr->Untyped[6] << 48) | 369 ((uint64_t)Ptr->Untyped[7] << 56); 370 break; 371 default: 372 std::cout << "Cannot load value of type " << *Ty << "!\n"; 373 abort(); 374 } 375 } else { 376 switch (Ty->getTypeID()) { 377 case Type::BoolTyID: 378 case Type::UByteTyID: 379 case Type::SByteTyID: Result.UByteVal = Ptr->Untyped[0]; break; 380 case Type::UShortTyID: 381 case Type::ShortTyID: Result.UShortVal = (unsigned)Ptr->Untyped[1] | 382 ((unsigned)Ptr->Untyped[0] << 8); 383 break; 384 Load4BytesBigEndian: 385 case Type::FloatTyID: 386 case Type::UIntTyID: 387 case Type::IntTyID: Result.UIntVal = (unsigned)Ptr->Untyped[3] | 388 ((unsigned)Ptr->Untyped[2] << 8) | 389 ((unsigned)Ptr->Untyped[1] << 16) | 390 ((unsigned)Ptr->Untyped[0] << 24); 391 break; 392 case Type::PointerTyID: if (getTargetData().getPointerSize() == 4) 393 goto Load4BytesBigEndian; 394 case Type::DoubleTyID: 395 case Type::ULongTyID: 396 case Type::LongTyID: Result.ULongVal = (uint64_t)Ptr->Untyped[7] | 397 ((uint64_t)Ptr->Untyped[6] << 8) | 398 ((uint64_t)Ptr->Untyped[5] << 16) | 399 ((uint64_t)Ptr->Untyped[4] << 24) | 400 ((uint64_t)Ptr->Untyped[3] << 32) | 401 ((uint64_t)Ptr->Untyped[2] << 40) | 402 ((uint64_t)Ptr->Untyped[1] << 48) | 403 ((uint64_t)Ptr->Untyped[0] << 56); 404 break; 405 default: 406 std::cout << "Cannot load value of type " << *Ty << "!\n"; 407 abort(); 408 } 409 } 410 return Result; 411} 412 413// InitializeMemory - Recursive function to apply a Constant value into the 414// specified memory location... 415// 416void ExecutionEngine::InitializeMemory(const Constant *Init, void *Addr) { 417 if (Init->getType()->isFirstClassType()) { 418 GenericValue Val = getConstantValue(Init); 419 StoreValueToMemory(Val, (GenericValue*)Addr, Init->getType()); 420 return; 421 } else if (isa<ConstantAggregateZero>(Init)) { 422 unsigned Size = getTargetData().getTypeSize(Init->getType()); 423 memset(Addr, 0, Size); 424 return; 425 } 426 427 switch (Init->getType()->getTypeID()) { 428 case Type::ArrayTyID: { 429 const ConstantArray *CPA = cast<ConstantArray>(Init); 430 const std::vector<Use> &Val = CPA->getValues(); 431 unsigned ElementSize = 432 getTargetData().getTypeSize(cast<ArrayType>(CPA->getType())->getElementType()); 433 for (unsigned i = 0; i < Val.size(); ++i) 434 InitializeMemory(cast<Constant>(Val[i].get()), (char*)Addr+i*ElementSize); 435 return; 436 } 437 438 case Type::StructTyID: { 439 const ConstantStruct *CPS = cast<ConstantStruct>(Init); 440 const StructLayout *SL = 441 getTargetData().getStructLayout(cast<StructType>(CPS->getType())); 442 const std::vector<Use> &Val = CPS->getValues(); 443 for (unsigned i = 0; i < Val.size(); ++i) 444 InitializeMemory(cast<Constant>(Val[i].get()), 445 (char*)Addr+SL->MemberOffsets[i]); 446 return; 447 } 448 449 default: 450 std::cerr << "Bad Type: " << Init->getType() << "\n"; 451 assert(0 && "Unknown constant type to initialize memory with!"); 452 } 453} 454 455/// EmitGlobals - Emit all of the global variables to memory, storing their 456/// addresses into GlobalAddress. This must make sure to copy the contents of 457/// their initializers into the memory. 458/// 459void ExecutionEngine::emitGlobals() { 460 const TargetData &TD = getTargetData(); 461 462 // Loop over all of the global variables in the program, allocating the memory 463 // to hold them. 464 for (Module::giterator I = getModule().gbegin(), E = getModule().gend(); 465 I != E; ++I) 466 if (!I->isExternal()) { 467 // Get the type of the global... 468 const Type *Ty = I->getType()->getElementType(); 469 470 // Allocate some memory for it! 471 unsigned Size = TD.getTypeSize(Ty); 472 addGlobalMapping(I, new char[Size]); 473 } else { 474 // External variable reference. Try to use the dynamic loader to 475 // get a pointer to it. 476 if (void *SymAddr = GetAddressOfSymbol(I->getName().c_str())) 477 addGlobalMapping(I, SymAddr); 478 else { 479 std::cerr << "Could not resolve external global address: " 480 << I->getName() << "\n"; 481 abort(); 482 } 483 } 484 485 // Now that all of the globals are set up in memory, loop through them all and 486 // initialize their contents. 487 for (Module::giterator I = getModule().gbegin(), E = getModule().gend(); 488 I != E; ++I) 489 if (!I->isExternal()) 490 EmitGlobalVariable(I); 491} 492 493// EmitGlobalVariable - This method emits the specified global variable to the 494// address specified in GlobalAddresses, or allocates new memory if it's not 495// already in the map. 496void ExecutionEngine::EmitGlobalVariable(const GlobalVariable *GV) { 497 void *GA = getPointerToGlobalIfAvailable(GV); 498 DEBUG(std::cerr << "Global '" << GV->getName() << "' -> " << GA << "\n"); 499 500 const Type *ElTy = GV->getType()->getElementType(); 501 if (GA == 0) { 502 // If it's not already specified, allocate memory for the global. 503 GA = new char[getTargetData().getTypeSize(ElTy)]; 504 addGlobalMapping(GV, GA); 505 } 506 507 InitializeMemory(GV->getInitializer(), GA); 508 NumInitBytes += getTargetData().getTypeSize(ElTy); 509 ++NumGlobals; 510} 511