ExecutionEngine.cpp revision e330ae5b32fa5f798894cec207fd9e4fcc578382
1//===-- ExecutionEngine.cpp - Common Implementation shared by EEs ---------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the common interface used by the various execution engine
11// subclasses.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "jit"
16#include "llvm/Constants.h"
17#include "llvm/DerivedTypes.h"
18#include "llvm/Module.h"
19#include "llvm/ModuleProvider.h"
20#include "llvm/ADT/Statistic.h"
21#include "llvm/Config/alloca.h"
22#include "llvm/ExecutionEngine/ExecutionEngine.h"
23#include "llvm/ExecutionEngine/GenericValue.h"
24#include "llvm/Support/Debug.h"
25#include "llvm/Support/MutexGuard.h"
26#include "llvm/System/DynamicLibrary.h"
27#include "llvm/System/Host.h"
28#include "llvm/Target/TargetData.h"
29#include <cmath>
30#include <cstring>
31using namespace llvm;
32
33STATISTIC(NumInitBytes, "Number of bytes of global vars initialized");
34STATISTIC(NumGlobals  , "Number of global vars initialized");
35
36ExecutionEngine::EECtorFn ExecutionEngine::JITCtor = 0;
37ExecutionEngine::EECtorFn ExecutionEngine::InterpCtor = 0;
38ExecutionEngine::EERegisterFn ExecutionEngine::ExceptionTableRegister = 0;
39
40
41ExecutionEngine::ExecutionEngine(ModuleProvider *P) : LazyFunctionCreator(0) {
42  LazyCompilationDisabled = false;
43  GVCompilationDisabled   = false;
44  SymbolSearchingDisabled = false;
45  DlsymStubsEnabled       = false;
46  Modules.push_back(P);
47  assert(P && "ModuleProvider is null?");
48}
49
50ExecutionEngine::~ExecutionEngine() {
51  clearAllGlobalMappings();
52  for (unsigned i = 0, e = Modules.size(); i != e; ++i)
53    delete Modules[i];
54}
55
56char* ExecutionEngine::getMemoryForGV(const GlobalVariable* GV) {
57  const Type *ElTy = GV->getType()->getElementType();
58  size_t GVSize = (size_t)getTargetData()->getTypePaddedSize(ElTy);
59  return new char[GVSize];
60}
61
62/// removeModuleProvider - Remove a ModuleProvider from the list of modules.
63/// Relases the Module from the ModuleProvider, materializing it in the
64/// process, and returns the materialized Module.
65Module* ExecutionEngine::removeModuleProvider(ModuleProvider *P,
66                                              std::string *ErrInfo) {
67  for(SmallVector<ModuleProvider *, 1>::iterator I = Modules.begin(),
68        E = Modules.end(); I != E; ++I) {
69    ModuleProvider *MP = *I;
70    if (MP == P) {
71      Modules.erase(I);
72      clearGlobalMappingsFromModule(MP->getModule());
73      return MP->releaseModule(ErrInfo);
74    }
75  }
76  return NULL;
77}
78
79/// deleteModuleProvider - Remove a ModuleProvider from the list of modules,
80/// and deletes the ModuleProvider and owned Module.  Avoids materializing
81/// the underlying module.
82void ExecutionEngine::deleteModuleProvider(ModuleProvider *P,
83                                           std::string *ErrInfo) {
84  for(SmallVector<ModuleProvider *, 1>::iterator I = Modules.begin(),
85      E = Modules.end(); I != E; ++I) {
86    ModuleProvider *MP = *I;
87    if (MP == P) {
88      Modules.erase(I);
89      clearGlobalMappingsFromModule(MP->getModule());
90      delete MP;
91      return;
92    }
93  }
94}
95
96/// FindFunctionNamed - Search all of the active modules to find the one that
97/// defines FnName.  This is very slow operation and shouldn't be used for
98/// general code.
99Function *ExecutionEngine::FindFunctionNamed(const char *FnName) {
100  for (unsigned i = 0, e = Modules.size(); i != e; ++i) {
101    if (Function *F = Modules[i]->getModule()->getFunction(FnName))
102      return F;
103  }
104  return 0;
105}
106
107
108/// addGlobalMapping - Tell the execution engine that the specified global is
109/// at the specified location.  This is used internally as functions are JIT'd
110/// and as global variables are laid out in memory.  It can and should also be
111/// used by clients of the EE that want to have an LLVM global overlay
112/// existing data in memory.
113void ExecutionEngine::addGlobalMapping(const GlobalValue *GV, void *Addr) {
114  MutexGuard locked(lock);
115
116  DOUT << "JIT: Map \'" << GV->getNameStart() << "\' to [" << Addr << "]\n";
117  void *&CurVal = state.getGlobalAddressMap(locked)[GV];
118  assert((CurVal == 0 || Addr == 0) && "GlobalMapping already established!");
119  CurVal = Addr;
120
121  // If we are using the reverse mapping, add it too
122  if (!state.getGlobalAddressReverseMap(locked).empty()) {
123    const GlobalValue *&V = state.getGlobalAddressReverseMap(locked)[Addr];
124    assert((V == 0 || GV == 0) && "GlobalMapping already established!");
125    V = GV;
126  }
127}
128
129/// clearAllGlobalMappings - Clear all global mappings and start over again
130/// use in dynamic compilation scenarios when you want to move globals
131void ExecutionEngine::clearAllGlobalMappings() {
132  MutexGuard locked(lock);
133
134  state.getGlobalAddressMap(locked).clear();
135  state.getGlobalAddressReverseMap(locked).clear();
136}
137
138/// clearGlobalMappingsFromModule - Clear all global mappings that came from a
139/// particular module, because it has been removed from the JIT.
140void ExecutionEngine::clearGlobalMappingsFromModule(Module *M) {
141  MutexGuard locked(lock);
142
143  for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ++FI) {
144    state.getGlobalAddressMap(locked).erase(FI);
145    state.getGlobalAddressReverseMap(locked).erase(FI);
146  }
147  for (Module::global_iterator GI = M->global_begin(), GE = M->global_end();
148       GI != GE; ++GI) {
149    state.getGlobalAddressMap(locked).erase(GI);
150    state.getGlobalAddressReverseMap(locked).erase(GI);
151  }
152}
153
154/// updateGlobalMapping - Replace an existing mapping for GV with a new
155/// address.  This updates both maps as required.  If "Addr" is null, the
156/// entry for the global is removed from the mappings.
157void *ExecutionEngine::updateGlobalMapping(const GlobalValue *GV, void *Addr) {
158  MutexGuard locked(lock);
159
160  std::map<const GlobalValue*, void *> &Map = state.getGlobalAddressMap(locked);
161
162  // Deleting from the mapping?
163  if (Addr == 0) {
164    std::map<const GlobalValue*, void *>::iterator I = Map.find(GV);
165    void *OldVal;
166    if (I == Map.end())
167      OldVal = 0;
168    else {
169      OldVal = I->second;
170      Map.erase(I);
171    }
172
173    if (!state.getGlobalAddressReverseMap(locked).empty())
174      state.getGlobalAddressReverseMap(locked).erase(Addr);
175    return OldVal;
176  }
177
178  void *&CurVal = Map[GV];
179  void *OldVal = CurVal;
180
181  if (CurVal && !state.getGlobalAddressReverseMap(locked).empty())
182    state.getGlobalAddressReverseMap(locked).erase(CurVal);
183  CurVal = Addr;
184
185  // If we are using the reverse mapping, add it too
186  if (!state.getGlobalAddressReverseMap(locked).empty()) {
187    const GlobalValue *&V = state.getGlobalAddressReverseMap(locked)[Addr];
188    assert((V == 0 || GV == 0) && "GlobalMapping already established!");
189    V = GV;
190  }
191  return OldVal;
192}
193
194/// getPointerToGlobalIfAvailable - This returns the address of the specified
195/// global value if it is has already been codegen'd, otherwise it returns null.
196///
197void *ExecutionEngine::getPointerToGlobalIfAvailable(const GlobalValue *GV) {
198  MutexGuard locked(lock);
199
200  std::map<const GlobalValue*, void*>::iterator I =
201  state.getGlobalAddressMap(locked).find(GV);
202  return I != state.getGlobalAddressMap(locked).end() ? I->second : 0;
203}
204
205/// getGlobalValueAtAddress - Return the LLVM global value object that starts
206/// at the specified address.
207///
208const GlobalValue *ExecutionEngine::getGlobalValueAtAddress(void *Addr) {
209  MutexGuard locked(lock);
210
211  // If we haven't computed the reverse mapping yet, do so first.
212  if (state.getGlobalAddressReverseMap(locked).empty()) {
213    for (std::map<const GlobalValue*, void *>::iterator
214         I = state.getGlobalAddressMap(locked).begin(),
215         E = state.getGlobalAddressMap(locked).end(); I != E; ++I)
216      state.getGlobalAddressReverseMap(locked).insert(std::make_pair(I->second,
217                                                                     I->first));
218  }
219
220  std::map<void *, const GlobalValue*>::iterator I =
221    state.getGlobalAddressReverseMap(locked).find(Addr);
222  return I != state.getGlobalAddressReverseMap(locked).end() ? I->second : 0;
223}
224
225// CreateArgv - Turn a vector of strings into a nice argv style array of
226// pointers to null terminated strings.
227//
228static void *CreateArgv(ExecutionEngine *EE,
229                        const std::vector<std::string> &InputArgv) {
230  unsigned PtrSize = EE->getTargetData()->getPointerSize();
231  char *Result = new char[(InputArgv.size()+1)*PtrSize];
232
233  DOUT << "JIT: ARGV = " << (void*)Result << "\n";
234  const Type *SBytePtr = PointerType::getUnqual(Type::Int8Ty);
235
236  for (unsigned i = 0; i != InputArgv.size(); ++i) {
237    unsigned Size = InputArgv[i].size()+1;
238    char *Dest = new char[Size];
239    DOUT << "JIT: ARGV[" << i << "] = " << (void*)Dest << "\n";
240
241    std::copy(InputArgv[i].begin(), InputArgv[i].end(), Dest);
242    Dest[Size-1] = 0;
243
244    // Endian safe: Result[i] = (PointerTy)Dest;
245    EE->StoreValueToMemory(PTOGV(Dest), (GenericValue*)(Result+i*PtrSize),
246                           SBytePtr);
247  }
248
249  // Null terminate it
250  EE->StoreValueToMemory(PTOGV(0),
251                         (GenericValue*)(Result+InputArgv.size()*PtrSize),
252                         SBytePtr);
253  return Result;
254}
255
256
257/// runStaticConstructorsDestructors - This method is used to execute all of
258/// the static constructors or destructors for a module, depending on the
259/// value of isDtors.
260void ExecutionEngine::runStaticConstructorsDestructors(Module *module, bool isDtors) {
261  const char *Name = isDtors ? "llvm.global_dtors" : "llvm.global_ctors";
262
263  // Execute global ctors/dtors for each module in the program.
264
265 GlobalVariable *GV = module->getNamedGlobal(Name);
266
267 // If this global has internal linkage, or if it has a use, then it must be
268 // an old-style (llvmgcc3) static ctor with __main linked in and in use.  If
269 // this is the case, don't execute any of the global ctors, __main will do
270 // it.
271 if (!GV || GV->isDeclaration() || GV->hasLocalLinkage()) return;
272
273 // Should be an array of '{ int, void ()* }' structs.  The first value is
274 // the init priority, which we ignore.
275 ConstantArray *InitList = dyn_cast<ConstantArray>(GV->getInitializer());
276 if (!InitList) return;
277 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i)
278   if (ConstantStruct *CS =
279       dyn_cast<ConstantStruct>(InitList->getOperand(i))) {
280     if (CS->getNumOperands() != 2) return; // Not array of 2-element structs.
281
282     Constant *FP = CS->getOperand(1);
283     if (FP->isNullValue())
284       break;  // Found a null terminator, exit.
285
286     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(FP))
287       if (CE->isCast())
288         FP = CE->getOperand(0);
289     if (Function *F = dyn_cast<Function>(FP)) {
290       // Execute the ctor/dtor function!
291       runFunction(F, std::vector<GenericValue>());
292     }
293   }
294}
295
296/// runStaticConstructorsDestructors - This method is used to execute all of
297/// the static constructors or destructors for a program, depending on the
298/// value of isDtors.
299void ExecutionEngine::runStaticConstructorsDestructors(bool isDtors) {
300  // Execute global ctors/dtors for each module in the program.
301  for (unsigned m = 0, e = Modules.size(); m != e; ++m)
302    runStaticConstructorsDestructors(Modules[m]->getModule(), isDtors);
303}
304
305#ifndef NDEBUG
306/// isTargetNullPtr - Return whether the target pointer stored at Loc is null.
307static bool isTargetNullPtr(ExecutionEngine *EE, void *Loc) {
308  unsigned PtrSize = EE->getTargetData()->getPointerSize();
309  for (unsigned i = 0; i < PtrSize; ++i)
310    if (*(i + (uint8_t*)Loc))
311      return false;
312  return true;
313}
314#endif
315
316/// runFunctionAsMain - This is a helper function which wraps runFunction to
317/// handle the common task of starting up main with the specified argc, argv,
318/// and envp parameters.
319int ExecutionEngine::runFunctionAsMain(Function *Fn,
320                                       const std::vector<std::string> &argv,
321                                       const char * const * envp) {
322  std::vector<GenericValue> GVArgs;
323  GenericValue GVArgc;
324  GVArgc.IntVal = APInt(32, argv.size());
325
326  // Check main() type
327  unsigned NumArgs = Fn->getFunctionType()->getNumParams();
328  const FunctionType *FTy = Fn->getFunctionType();
329  const Type* PPInt8Ty =
330    PointerType::getUnqual(PointerType::getUnqual(Type::Int8Ty));
331  switch (NumArgs) {
332  case 3:
333   if (FTy->getParamType(2) != PPInt8Ty) {
334     cerr << "Invalid type for third argument of main() supplied\n";
335     abort();
336   }
337   // FALLS THROUGH
338  case 2:
339   if (FTy->getParamType(1) != PPInt8Ty) {
340     cerr << "Invalid type for second argument of main() supplied\n";
341     abort();
342   }
343   // FALLS THROUGH
344  case 1:
345   if (FTy->getParamType(0) != Type::Int32Ty) {
346     cerr << "Invalid type for first argument of main() supplied\n";
347     abort();
348   }
349   // FALLS THROUGH
350  case 0:
351   if (!isa<IntegerType>(FTy->getReturnType()) &&
352       FTy->getReturnType() != Type::VoidTy) {
353     cerr << "Invalid return type of main() supplied\n";
354     abort();
355   }
356   break;
357  default:
358   cerr << "Invalid number of arguments of main() supplied\n";
359   abort();
360  }
361
362  if (NumArgs) {
363    GVArgs.push_back(GVArgc); // Arg #0 = argc.
364    if (NumArgs > 1) {
365      GVArgs.push_back(PTOGV(CreateArgv(this, argv))); // Arg #1 = argv.
366      assert(!isTargetNullPtr(this, GVTOP(GVArgs[1])) &&
367             "argv[0] was null after CreateArgv");
368      if (NumArgs > 2) {
369        std::vector<std::string> EnvVars;
370        for (unsigned i = 0; envp[i]; ++i)
371          EnvVars.push_back(envp[i]);
372        GVArgs.push_back(PTOGV(CreateArgv(this, EnvVars))); // Arg #2 = envp.
373      }
374    }
375  }
376  return runFunction(Fn, GVArgs).IntVal.getZExtValue();
377}
378
379/// If possible, create a JIT, unless the caller specifically requests an
380/// Interpreter or there's an error. If even an Interpreter cannot be created,
381/// NULL is returned.
382///
383ExecutionEngine *ExecutionEngine::create(ModuleProvider *MP,
384                                         bool ForceInterpreter,
385                                         std::string *ErrorStr,
386                                         bool Fast) {
387  ExecutionEngine *EE = 0;
388
389  // Make sure we can resolve symbols in the program as well. The zero arg
390  // to the function tells DynamicLibrary to load the program, not a library.
391  if (sys::DynamicLibrary::LoadLibraryPermanently(0, ErrorStr))
392    return 0;
393
394  // Unless the interpreter was explicitly selected, try making a JIT.
395  if (!ForceInterpreter && JITCtor)
396    EE = JITCtor(MP, ErrorStr, Fast);
397
398  // If we can't make a JIT, make an interpreter instead.
399  if (EE == 0 && InterpCtor)
400    EE = InterpCtor(MP, ErrorStr, Fast);
401
402  return EE;
403}
404
405ExecutionEngine *ExecutionEngine::create(Module *M) {
406  return create(new ExistingModuleProvider(M));
407}
408
409/// getPointerToGlobal - This returns the address of the specified global
410/// value.  This may involve code generation if it's a function.
411///
412void *ExecutionEngine::getPointerToGlobal(const GlobalValue *GV) {
413  if (Function *F = const_cast<Function*>(dyn_cast<Function>(GV)))
414    return getPointerToFunction(F);
415
416  MutexGuard locked(lock);
417  void *p = state.getGlobalAddressMap(locked)[GV];
418  if (p)
419    return p;
420
421  // Global variable might have been added since interpreter started.
422  if (GlobalVariable *GVar =
423          const_cast<GlobalVariable *>(dyn_cast<GlobalVariable>(GV)))
424    EmitGlobalVariable(GVar);
425  else
426    assert(0 && "Global hasn't had an address allocated yet!");
427  return state.getGlobalAddressMap(locked)[GV];
428}
429
430/// This function converts a Constant* into a GenericValue. The interesting
431/// part is if C is a ConstantExpr.
432/// @brief Get a GenericValue for a Constant*
433GenericValue ExecutionEngine::getConstantValue(const Constant *C) {
434  // If its undefined, return the garbage.
435  if (isa<UndefValue>(C))
436    return GenericValue();
437
438  // If the value is a ConstantExpr
439  if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
440    Constant *Op0 = CE->getOperand(0);
441    switch (CE->getOpcode()) {
442    case Instruction::GetElementPtr: {
443      // Compute the index
444      GenericValue Result = getConstantValue(Op0);
445      SmallVector<Value*, 8> Indices(CE->op_begin()+1, CE->op_end());
446      uint64_t Offset =
447        TD->getIndexedOffset(Op0->getType(), &Indices[0], Indices.size());
448
449      char* tmp = (char*) Result.PointerVal;
450      Result = PTOGV(tmp + Offset);
451      return Result;
452    }
453    case Instruction::Trunc: {
454      GenericValue GV = getConstantValue(Op0);
455      uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth();
456      GV.IntVal = GV.IntVal.trunc(BitWidth);
457      return GV;
458    }
459    case Instruction::ZExt: {
460      GenericValue GV = getConstantValue(Op0);
461      uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth();
462      GV.IntVal = GV.IntVal.zext(BitWidth);
463      return GV;
464    }
465    case Instruction::SExt: {
466      GenericValue GV = getConstantValue(Op0);
467      uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth();
468      GV.IntVal = GV.IntVal.sext(BitWidth);
469      return GV;
470    }
471    case Instruction::FPTrunc: {
472      // FIXME long double
473      GenericValue GV = getConstantValue(Op0);
474      GV.FloatVal = float(GV.DoubleVal);
475      return GV;
476    }
477    case Instruction::FPExt:{
478      // FIXME long double
479      GenericValue GV = getConstantValue(Op0);
480      GV.DoubleVal = double(GV.FloatVal);
481      return GV;
482    }
483    case Instruction::UIToFP: {
484      GenericValue GV = getConstantValue(Op0);
485      if (CE->getType() == Type::FloatTy)
486        GV.FloatVal = float(GV.IntVal.roundToDouble());
487      else if (CE->getType() == Type::DoubleTy)
488        GV.DoubleVal = GV.IntVal.roundToDouble();
489      else if (CE->getType() == Type::X86_FP80Ty) {
490        const uint64_t zero[] = {0, 0};
491        APFloat apf = APFloat(APInt(80, 2, zero));
492        (void)apf.convertFromAPInt(GV.IntVal,
493                                   false,
494                                   APFloat::rmNearestTiesToEven);
495        GV.IntVal = apf.bitcastToAPInt();
496      }
497      return GV;
498    }
499    case Instruction::SIToFP: {
500      GenericValue GV = getConstantValue(Op0);
501      if (CE->getType() == Type::FloatTy)
502        GV.FloatVal = float(GV.IntVal.signedRoundToDouble());
503      else if (CE->getType() == Type::DoubleTy)
504        GV.DoubleVal = GV.IntVal.signedRoundToDouble();
505      else if (CE->getType() == Type::X86_FP80Ty) {
506        const uint64_t zero[] = { 0, 0};
507        APFloat apf = APFloat(APInt(80, 2, zero));
508        (void)apf.convertFromAPInt(GV.IntVal,
509                                   true,
510                                   APFloat::rmNearestTiesToEven);
511        GV.IntVal = apf.bitcastToAPInt();
512      }
513      return GV;
514    }
515    case Instruction::FPToUI: // double->APInt conversion handles sign
516    case Instruction::FPToSI: {
517      GenericValue GV = getConstantValue(Op0);
518      uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth();
519      if (Op0->getType() == Type::FloatTy)
520        GV.IntVal = APIntOps::RoundFloatToAPInt(GV.FloatVal, BitWidth);
521      else if (Op0->getType() == Type::DoubleTy)
522        GV.IntVal = APIntOps::RoundDoubleToAPInt(GV.DoubleVal, BitWidth);
523      else if (Op0->getType() == Type::X86_FP80Ty) {
524        APFloat apf = APFloat(GV.IntVal);
525        uint64_t v;
526        bool ignored;
527        (void)apf.convertToInteger(&v, BitWidth,
528                                   CE->getOpcode()==Instruction::FPToSI,
529                                   APFloat::rmTowardZero, &ignored);
530        GV.IntVal = v; // endian?
531      }
532      return GV;
533    }
534    case Instruction::PtrToInt: {
535      GenericValue GV = getConstantValue(Op0);
536      uint32_t PtrWidth = TD->getPointerSizeInBits();
537      GV.IntVal = APInt(PtrWidth, uintptr_t(GV.PointerVal));
538      return GV;
539    }
540    case Instruction::IntToPtr: {
541      GenericValue GV = getConstantValue(Op0);
542      uint32_t PtrWidth = TD->getPointerSizeInBits();
543      if (PtrWidth != GV.IntVal.getBitWidth())
544        GV.IntVal = GV.IntVal.zextOrTrunc(PtrWidth);
545      assert(GV.IntVal.getBitWidth() <= 64 && "Bad pointer width");
546      GV.PointerVal = PointerTy(uintptr_t(GV.IntVal.getZExtValue()));
547      return GV;
548    }
549    case Instruction::BitCast: {
550      GenericValue GV = getConstantValue(Op0);
551      const Type* DestTy = CE->getType();
552      switch (Op0->getType()->getTypeID()) {
553        default: assert(0 && "Invalid bitcast operand");
554        case Type::IntegerTyID:
555          assert(DestTy->isFloatingPoint() && "invalid bitcast");
556          if (DestTy == Type::FloatTy)
557            GV.FloatVal = GV.IntVal.bitsToFloat();
558          else if (DestTy == Type::DoubleTy)
559            GV.DoubleVal = GV.IntVal.bitsToDouble();
560          break;
561        case Type::FloatTyID:
562          assert(DestTy == Type::Int32Ty && "Invalid bitcast");
563          GV.IntVal.floatToBits(GV.FloatVal);
564          break;
565        case Type::DoubleTyID:
566          assert(DestTy == Type::Int64Ty && "Invalid bitcast");
567          GV.IntVal.doubleToBits(GV.DoubleVal);
568          break;
569        case Type::PointerTyID:
570          assert(isa<PointerType>(DestTy) && "Invalid bitcast");
571          break; // getConstantValue(Op0)  above already converted it
572      }
573      return GV;
574    }
575    case Instruction::Add:
576    case Instruction::Sub:
577    case Instruction::Mul:
578    case Instruction::UDiv:
579    case Instruction::SDiv:
580    case Instruction::URem:
581    case Instruction::SRem:
582    case Instruction::And:
583    case Instruction::Or:
584    case Instruction::Xor: {
585      GenericValue LHS = getConstantValue(Op0);
586      GenericValue RHS = getConstantValue(CE->getOperand(1));
587      GenericValue GV;
588      switch (CE->getOperand(0)->getType()->getTypeID()) {
589      default: assert(0 && "Bad add type!"); abort();
590      case Type::IntegerTyID:
591        switch (CE->getOpcode()) {
592          default: assert(0 && "Invalid integer opcode");
593          case Instruction::Add: GV.IntVal = LHS.IntVal + RHS.IntVal; break;
594          case Instruction::Sub: GV.IntVal = LHS.IntVal - RHS.IntVal; break;
595          case Instruction::Mul: GV.IntVal = LHS.IntVal * RHS.IntVal; break;
596          case Instruction::UDiv:GV.IntVal = LHS.IntVal.udiv(RHS.IntVal); break;
597          case Instruction::SDiv:GV.IntVal = LHS.IntVal.sdiv(RHS.IntVal); break;
598          case Instruction::URem:GV.IntVal = LHS.IntVal.urem(RHS.IntVal); break;
599          case Instruction::SRem:GV.IntVal = LHS.IntVal.srem(RHS.IntVal); break;
600          case Instruction::And: GV.IntVal = LHS.IntVal & RHS.IntVal; break;
601          case Instruction::Or:  GV.IntVal = LHS.IntVal | RHS.IntVal; break;
602          case Instruction::Xor: GV.IntVal = LHS.IntVal ^ RHS.IntVal; break;
603        }
604        break;
605      case Type::FloatTyID:
606        switch (CE->getOpcode()) {
607          default: assert(0 && "Invalid float opcode"); abort();
608          case Instruction::Add:
609            GV.FloatVal = LHS.FloatVal + RHS.FloatVal; break;
610          case Instruction::Sub:
611            GV.FloatVal = LHS.FloatVal - RHS.FloatVal; break;
612          case Instruction::Mul:
613            GV.FloatVal = LHS.FloatVal * RHS.FloatVal; break;
614          case Instruction::FDiv:
615            GV.FloatVal = LHS.FloatVal / RHS.FloatVal; break;
616          case Instruction::FRem:
617            GV.FloatVal = ::fmodf(LHS.FloatVal,RHS.FloatVal); break;
618        }
619        break;
620      case Type::DoubleTyID:
621        switch (CE->getOpcode()) {
622          default: assert(0 && "Invalid double opcode"); abort();
623          case Instruction::Add:
624            GV.DoubleVal = LHS.DoubleVal + RHS.DoubleVal; break;
625          case Instruction::Sub:
626            GV.DoubleVal = LHS.DoubleVal - RHS.DoubleVal; break;
627          case Instruction::Mul:
628            GV.DoubleVal = LHS.DoubleVal * RHS.DoubleVal; break;
629          case Instruction::FDiv:
630            GV.DoubleVal = LHS.DoubleVal / RHS.DoubleVal; break;
631          case Instruction::FRem:
632            GV.DoubleVal = ::fmod(LHS.DoubleVal,RHS.DoubleVal); break;
633        }
634        break;
635      case Type::X86_FP80TyID:
636      case Type::PPC_FP128TyID:
637      case Type::FP128TyID: {
638        APFloat apfLHS = APFloat(LHS.IntVal);
639        switch (CE->getOpcode()) {
640          default: assert(0 && "Invalid long double opcode"); abort();
641          case Instruction::Add:
642            apfLHS.add(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven);
643            GV.IntVal = apfLHS.bitcastToAPInt();
644            break;
645          case Instruction::Sub:
646            apfLHS.subtract(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven);
647            GV.IntVal = apfLHS.bitcastToAPInt();
648            break;
649          case Instruction::Mul:
650            apfLHS.multiply(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven);
651            GV.IntVal = apfLHS.bitcastToAPInt();
652            break;
653          case Instruction::FDiv:
654            apfLHS.divide(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven);
655            GV.IntVal = apfLHS.bitcastToAPInt();
656            break;
657          case Instruction::FRem:
658            apfLHS.mod(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven);
659            GV.IntVal = apfLHS.bitcastToAPInt();
660            break;
661          }
662        }
663        break;
664      }
665      return GV;
666    }
667    default:
668      break;
669    }
670    cerr << "ConstantExpr not handled: " << *CE << "\n";
671    abort();
672  }
673
674  GenericValue Result;
675  switch (C->getType()->getTypeID()) {
676  case Type::FloatTyID:
677    Result.FloatVal = cast<ConstantFP>(C)->getValueAPF().convertToFloat();
678    break;
679  case Type::DoubleTyID:
680    Result.DoubleVal = cast<ConstantFP>(C)->getValueAPF().convertToDouble();
681    break;
682  case Type::X86_FP80TyID:
683  case Type::FP128TyID:
684  case Type::PPC_FP128TyID:
685    Result.IntVal = cast <ConstantFP>(C)->getValueAPF().bitcastToAPInt();
686    break;
687  case Type::IntegerTyID:
688    Result.IntVal = cast<ConstantInt>(C)->getValue();
689    break;
690  case Type::PointerTyID:
691    if (isa<ConstantPointerNull>(C))
692      Result.PointerVal = 0;
693    else if (const Function *F = dyn_cast<Function>(C))
694      Result = PTOGV(getPointerToFunctionOrStub(const_cast<Function*>(F)));
695    else if (const GlobalVariable* GV = dyn_cast<GlobalVariable>(C))
696      Result = PTOGV(getOrEmitGlobalVariable(const_cast<GlobalVariable*>(GV)));
697    else
698      assert(0 && "Unknown constant pointer type!");
699    break;
700  default:
701    cerr << "ERROR: Constant unimplemented for type: " << *C->getType() << "\n";
702    abort();
703  }
704  return Result;
705}
706
707/// StoreIntToMemory - Fills the StoreBytes bytes of memory starting from Dst
708/// with the integer held in IntVal.
709static void StoreIntToMemory(const APInt &IntVal, uint8_t *Dst,
710                             unsigned StoreBytes) {
711  assert((IntVal.getBitWidth()+7)/8 >= StoreBytes && "Integer too small!");
712  uint8_t *Src = (uint8_t *)IntVal.getRawData();
713
714  if (sys::isLittleEndianHost())
715    // Little-endian host - the source is ordered from LSB to MSB.  Order the
716    // destination from LSB to MSB: Do a straight copy.
717    memcpy(Dst, Src, StoreBytes);
718  else {
719    // Big-endian host - the source is an array of 64 bit words ordered from
720    // LSW to MSW.  Each word is ordered from MSB to LSB.  Order the destination
721    // from MSB to LSB: Reverse the word order, but not the bytes in a word.
722    while (StoreBytes > sizeof(uint64_t)) {
723      StoreBytes -= sizeof(uint64_t);
724      // May not be aligned so use memcpy.
725      memcpy(Dst + StoreBytes, Src, sizeof(uint64_t));
726      Src += sizeof(uint64_t);
727    }
728
729    memcpy(Dst, Src + sizeof(uint64_t) - StoreBytes, StoreBytes);
730  }
731}
732
733/// StoreValueToMemory - Stores the data in Val of type Ty at address Ptr.  Ptr
734/// is the address of the memory at which to store Val, cast to GenericValue *.
735/// It is not a pointer to a GenericValue containing the address at which to
736/// store Val.
737void ExecutionEngine::StoreValueToMemory(const GenericValue &Val,
738                                         GenericValue *Ptr, const Type *Ty) {
739  const unsigned StoreBytes = getTargetData()->getTypeStoreSize(Ty);
740
741  switch (Ty->getTypeID()) {
742  case Type::IntegerTyID:
743    StoreIntToMemory(Val.IntVal, (uint8_t*)Ptr, StoreBytes);
744    break;
745  case Type::FloatTyID:
746    *((float*)Ptr) = Val.FloatVal;
747    break;
748  case Type::DoubleTyID:
749    *((double*)Ptr) = Val.DoubleVal;
750    break;
751  case Type::X86_FP80TyID: {
752      uint16_t *Dest = (uint16_t*)Ptr;
753      const uint16_t *Src = (uint16_t*)Val.IntVal.getRawData();
754      // This is endian dependent, but it will only work on x86 anyway.
755      Dest[0] = Src[0];
756      Dest[1] = Src[1];
757      Dest[2] = Src[2];
758      Dest[3] = Src[3];
759      Dest[4] = Src[4];
760      break;
761    }
762  case Type::PointerTyID:
763    // Ensure 64 bit target pointers are fully initialized on 32 bit hosts.
764    if (StoreBytes != sizeof(PointerTy))
765      memset(Ptr, 0, StoreBytes);
766
767    *((PointerTy*)Ptr) = Val.PointerVal;
768    break;
769  default:
770    cerr << "Cannot store value of type " << *Ty << "!\n";
771  }
772
773  if (sys::isLittleEndianHost() != getTargetData()->isLittleEndian())
774    // Host and target are different endian - reverse the stored bytes.
775    std::reverse((uint8_t*)Ptr, StoreBytes + (uint8_t*)Ptr);
776}
777
778/// LoadIntFromMemory - Loads the integer stored in the LoadBytes bytes starting
779/// from Src into IntVal, which is assumed to be wide enough and to hold zero.
780static void LoadIntFromMemory(APInt &IntVal, uint8_t *Src, unsigned LoadBytes) {
781  assert((IntVal.getBitWidth()+7)/8 >= LoadBytes && "Integer too small!");
782  uint8_t *Dst = (uint8_t *)IntVal.getRawData();
783
784  if (sys::isLittleEndianHost())
785    // Little-endian host - the destination must be ordered from LSB to MSB.
786    // The source is ordered from LSB to MSB: Do a straight copy.
787    memcpy(Dst, Src, LoadBytes);
788  else {
789    // Big-endian - the destination is an array of 64 bit words ordered from
790    // LSW to MSW.  Each word must be ordered from MSB to LSB.  The source is
791    // ordered from MSB to LSB: Reverse the word order, but not the bytes in
792    // a word.
793    while (LoadBytes > sizeof(uint64_t)) {
794      LoadBytes -= sizeof(uint64_t);
795      // May not be aligned so use memcpy.
796      memcpy(Dst, Src + LoadBytes, sizeof(uint64_t));
797      Dst += sizeof(uint64_t);
798    }
799
800    memcpy(Dst + sizeof(uint64_t) - LoadBytes, Src, LoadBytes);
801  }
802}
803
804/// FIXME: document
805///
806void ExecutionEngine::LoadValueFromMemory(GenericValue &Result,
807                                          GenericValue *Ptr,
808                                          const Type *Ty) {
809  const unsigned LoadBytes = getTargetData()->getTypeStoreSize(Ty);
810
811  if (sys::isLittleEndianHost() != getTargetData()->isLittleEndian()) {
812    // Host and target are different endian - reverse copy the stored
813    // bytes into a buffer, and load from that.
814    uint8_t *Src = (uint8_t*)Ptr;
815    uint8_t *Buf = (uint8_t*)alloca(LoadBytes);
816    std::reverse_copy(Src, Src + LoadBytes, Buf);
817    Ptr = (GenericValue*)Buf;
818  }
819
820  switch (Ty->getTypeID()) {
821  case Type::IntegerTyID:
822    // An APInt with all words initially zero.
823    Result.IntVal = APInt(cast<IntegerType>(Ty)->getBitWidth(), 0);
824    LoadIntFromMemory(Result.IntVal, (uint8_t*)Ptr, LoadBytes);
825    break;
826  case Type::FloatTyID:
827    Result.FloatVal = *((float*)Ptr);
828    break;
829  case Type::DoubleTyID:
830    Result.DoubleVal = *((double*)Ptr);
831    break;
832  case Type::PointerTyID:
833    Result.PointerVal = *((PointerTy*)Ptr);
834    break;
835  case Type::X86_FP80TyID: {
836    // This is endian dependent, but it will only work on x86 anyway.
837    // FIXME: Will not trap if loading a signaling NaN.
838    uint16_t *p = (uint16_t*)Ptr;
839    union {
840      uint16_t x[8];
841      uint64_t y[2];
842    };
843    x[0] = p[1];
844    x[1] = p[2];
845    x[2] = p[3];
846    x[3] = p[4];
847    x[4] = p[0];
848    Result.IntVal = APInt(80, 2, y);
849    break;
850  }
851  default:
852    cerr << "Cannot load value of type " << *Ty << "!\n";
853    abort();
854  }
855}
856
857// InitializeMemory - Recursive function to apply a Constant value into the
858// specified memory location...
859//
860void ExecutionEngine::InitializeMemory(const Constant *Init, void *Addr) {
861  DOUT << "JIT: Initializing " << Addr << " ";
862  DEBUG(Init->dump());
863  if (isa<UndefValue>(Init)) {
864    return;
865  } else if (const ConstantVector *CP = dyn_cast<ConstantVector>(Init)) {
866    unsigned ElementSize =
867      getTargetData()->getTypePaddedSize(CP->getType()->getElementType());
868    for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i)
869      InitializeMemory(CP->getOperand(i), (char*)Addr+i*ElementSize);
870    return;
871  } else if (isa<ConstantAggregateZero>(Init)) {
872    memset(Addr, 0, (size_t)getTargetData()->getTypePaddedSize(Init->getType()));
873    return;
874  } else if (const ConstantArray *CPA = dyn_cast<ConstantArray>(Init)) {
875    unsigned ElementSize =
876      getTargetData()->getTypePaddedSize(CPA->getType()->getElementType());
877    for (unsigned i = 0, e = CPA->getNumOperands(); i != e; ++i)
878      InitializeMemory(CPA->getOperand(i), (char*)Addr+i*ElementSize);
879    return;
880  } else if (const ConstantStruct *CPS = dyn_cast<ConstantStruct>(Init)) {
881    const StructLayout *SL =
882      getTargetData()->getStructLayout(cast<StructType>(CPS->getType()));
883    for (unsigned i = 0, e = CPS->getNumOperands(); i != e; ++i)
884      InitializeMemory(CPS->getOperand(i), (char*)Addr+SL->getElementOffset(i));
885    return;
886  } else if (Init->getType()->isFirstClassType()) {
887    GenericValue Val = getConstantValue(Init);
888    StoreValueToMemory(Val, (GenericValue*)Addr, Init->getType());
889    return;
890  }
891
892  cerr << "Bad Type: " << *Init->getType() << "\n";
893  assert(0 && "Unknown constant type to initialize memory with!");
894}
895
896/// EmitGlobals - Emit all of the global variables to memory, storing their
897/// addresses into GlobalAddress.  This must make sure to copy the contents of
898/// their initializers into the memory.
899///
900void ExecutionEngine::emitGlobals() {
901
902  // Loop over all of the global variables in the program, allocating the memory
903  // to hold them.  If there is more than one module, do a prepass over globals
904  // to figure out how the different modules should link together.
905  //
906  std::map<std::pair<std::string, const Type*>,
907           const GlobalValue*> LinkedGlobalsMap;
908
909  if (Modules.size() != 1) {
910    for (unsigned m = 0, e = Modules.size(); m != e; ++m) {
911      Module &M = *Modules[m]->getModule();
912      for (Module::const_global_iterator I = M.global_begin(),
913           E = M.global_end(); I != E; ++I) {
914        const GlobalValue *GV = I;
915        if (GV->hasLocalLinkage() || GV->isDeclaration() ||
916            GV->hasAppendingLinkage() || !GV->hasName())
917          continue;// Ignore external globals and globals with internal linkage.
918
919        const GlobalValue *&GVEntry =
920          LinkedGlobalsMap[std::make_pair(GV->getName(), GV->getType())];
921
922        // If this is the first time we've seen this global, it is the canonical
923        // version.
924        if (!GVEntry) {
925          GVEntry = GV;
926          continue;
927        }
928
929        // If the existing global is strong, never replace it.
930        if (GVEntry->hasExternalLinkage() ||
931            GVEntry->hasDLLImportLinkage() ||
932            GVEntry->hasDLLExportLinkage())
933          continue;
934
935        // Otherwise, we know it's linkonce/weak, replace it if this is a strong
936        // symbol.  FIXME is this right for common?
937        if (GV->hasExternalLinkage() || GVEntry->hasExternalWeakLinkage())
938          GVEntry = GV;
939      }
940    }
941  }
942
943  std::vector<const GlobalValue*> NonCanonicalGlobals;
944  for (unsigned m = 0, e = Modules.size(); m != e; ++m) {
945    Module &M = *Modules[m]->getModule();
946    for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
947         I != E; ++I) {
948      // In the multi-module case, see what this global maps to.
949      if (!LinkedGlobalsMap.empty()) {
950        if (const GlobalValue *GVEntry =
951              LinkedGlobalsMap[std::make_pair(I->getName(), I->getType())]) {
952          // If something else is the canonical global, ignore this one.
953          if (GVEntry != &*I) {
954            NonCanonicalGlobals.push_back(I);
955            continue;
956          }
957        }
958      }
959
960      if (!I->isDeclaration()) {
961        addGlobalMapping(I, getMemoryForGV(I));
962      } else {
963        // External variable reference. Try to use the dynamic loader to
964        // get a pointer to it.
965        if (void *SymAddr =
966            sys::DynamicLibrary::SearchForAddressOfSymbol(I->getName().c_str()))
967          addGlobalMapping(I, SymAddr);
968        else {
969          cerr << "Could not resolve external global address: "
970               << I->getName() << "\n";
971          abort();
972        }
973      }
974    }
975
976    // If there are multiple modules, map the non-canonical globals to their
977    // canonical location.
978    if (!NonCanonicalGlobals.empty()) {
979      for (unsigned i = 0, e = NonCanonicalGlobals.size(); i != e; ++i) {
980        const GlobalValue *GV = NonCanonicalGlobals[i];
981        const GlobalValue *CGV =
982          LinkedGlobalsMap[std::make_pair(GV->getName(), GV->getType())];
983        void *Ptr = getPointerToGlobalIfAvailable(CGV);
984        assert(Ptr && "Canonical global wasn't codegen'd!");
985        addGlobalMapping(GV, Ptr);
986      }
987    }
988
989    // Now that all of the globals are set up in memory, loop through them all
990    // and initialize their contents.
991    for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
992         I != E; ++I) {
993      if (!I->isDeclaration()) {
994        if (!LinkedGlobalsMap.empty()) {
995          if (const GlobalValue *GVEntry =
996                LinkedGlobalsMap[std::make_pair(I->getName(), I->getType())])
997            if (GVEntry != &*I)  // Not the canonical variable.
998              continue;
999        }
1000        EmitGlobalVariable(I);
1001      }
1002    }
1003  }
1004}
1005
1006// EmitGlobalVariable - This method emits the specified global variable to the
1007// address specified in GlobalAddresses, or allocates new memory if it's not
1008// already in the map.
1009void ExecutionEngine::EmitGlobalVariable(const GlobalVariable *GV) {
1010  void *GA = getPointerToGlobalIfAvailable(GV);
1011
1012  if (GA == 0) {
1013    // If it's not already specified, allocate memory for the global.
1014    GA = getMemoryForGV(GV);
1015    addGlobalMapping(GV, GA);
1016  }
1017
1018  // Don't initialize if it's thread local, let the client do it.
1019  if (!GV->isThreadLocal())
1020    InitializeMemory(GV->getInitializer(), GA);
1021
1022  const Type *ElTy = GV->getType()->getElementType();
1023  size_t GVSize = (size_t)getTargetData()->getTypePaddedSize(ElTy);
1024  NumInitBytes += (unsigned)GVSize;
1025  ++NumGlobals;
1026}
1027