ExecutionEngine.cpp revision e4d19c9eb22899c9a555395d446a9ceef3bea7eb
10832f82f763185767d63ae4bf05021c5630c155fJordan Rose//===-- ExecutionEngine.cpp - Common Implementation shared by EEs ---------===//
20832f82f763185767d63ae4bf05021c5630c155fJordan Rose//
30832f82f763185767d63ae4bf05021c5630c155fJordan Rose//                     The LLVM Compiler Infrastructure
40832f82f763185767d63ae4bf05021c5630c155fJordan Rose//
50832f82f763185767d63ae4bf05021c5630c155fJordan Rose// This file is distributed under the University of Illinois Open Source
60832f82f763185767d63ae4bf05021c5630c155fJordan Rose// License. See LICENSE.TXT for details.
70832f82f763185767d63ae4bf05021c5630c155fJordan Rose//
80832f82f763185767d63ae4bf05021c5630c155fJordan Rose//===----------------------------------------------------------------------===//
90832f82f763185767d63ae4bf05021c5630c155fJordan Rose//
100832f82f763185767d63ae4bf05021c5630c155fJordan Rose// This file defines the common interface used by the various execution engine
110832f82f763185767d63ae4bf05021c5630c155fJordan Rose// subclasses.
120832f82f763185767d63ae4bf05021c5630c155fJordan Rose//
130832f82f763185767d63ae4bf05021c5630c155fJordan Rose//===----------------------------------------------------------------------===//
140832f82f763185767d63ae4bf05021c5630c155fJordan Rose
150832f82f763185767d63ae4bf05021c5630c155fJordan Rose#define DEBUG_TYPE "jit"
160832f82f763185767d63ae4bf05021c5630c155fJordan Rose#include "llvm/ExecutionEngine/ExecutionEngine.h"
170832f82f763185767d63ae4bf05021c5630c155fJordan Rose
180832f82f763185767d63ae4bf05021c5630c155fJordan Rose#include "llvm/Constants.h"
190832f82f763185767d63ae4bf05021c5630c155fJordan Rose#include "llvm/DerivedTypes.h"
200832f82f763185767d63ae4bf05021c5630c155fJordan Rose#include "llvm/Module.h"
210832f82f763185767d63ae4bf05021c5630c155fJordan Rose#include "llvm/ExecutionEngine/GenericValue.h"
220832f82f763185767d63ae4bf05021c5630c155fJordan Rose#include "llvm/ADT/SmallString.h"
230832f82f763185767d63ae4bf05021c5630c155fJordan Rose#include "llvm/ADT/Statistic.h"
24e7427636767501903cfa51ccecafa7a4795a23c2Jordan Rose#include "llvm/Support/Debug.h"
250832f82f763185767d63ae4bf05021c5630c155fJordan Rose#include "llvm/Support/ErrorHandling.h"
260832f82f763185767d63ae4bf05021c5630c155fJordan Rose#include "llvm/Support/MutexGuard.h"
270832f82f763185767d63ae4bf05021c5630c155fJordan Rose#include "llvm/Support/ValueHandle.h"
280832f82f763185767d63ae4bf05021c5630c155fJordan Rose#include "llvm/Support/raw_ostream.h"
290832f82f763185767d63ae4bf05021c5630c155fJordan Rose#include "llvm/System/DynamicLibrary.h"
300832f82f763185767d63ae4bf05021c5630c155fJordan Rose#include "llvm/System/Host.h"
310832f82f763185767d63ae4bf05021c5630c155fJordan Rose#include "llvm/Target/TargetData.h"
320832f82f763185767d63ae4bf05021c5630c155fJordan Rose#include <cmath>
330832f82f763185767d63ae4bf05021c5630c155fJordan Rose#include <cstring>
340832f82f763185767d63ae4bf05021c5630c155fJordan Roseusing namespace llvm;
350832f82f763185767d63ae4bf05021c5630c155fJordan Rose
360832f82f763185767d63ae4bf05021c5630c155fJordan RoseSTATISTIC(NumInitBytes, "Number of bytes of global vars initialized");
370832f82f763185767d63ae4bf05021c5630c155fJordan RoseSTATISTIC(NumGlobals  , "Number of global vars initialized");
380832f82f763185767d63ae4bf05021c5630c155fJordan Rose
390832f82f763185767d63ae4bf05021c5630c155fJordan RoseExecutionEngine *(*ExecutionEngine::JITCtor)(
400832f82f763185767d63ae4bf05021c5630c155fJordan Rose  Module *M,
410832f82f763185767d63ae4bf05021c5630c155fJordan Rose  std::string *ErrorStr,
420832f82f763185767d63ae4bf05021c5630c155fJordan Rose  JITMemoryManager *JMM,
430832f82f763185767d63ae4bf05021c5630c155fJordan Rose  CodeGenOpt::Level OptLevel,
440832f82f763185767d63ae4bf05021c5630c155fJordan Rose  bool GVsWithCode,
450832f82f763185767d63ae4bf05021c5630c155fJordan Rose  CodeModel::Model CMM,
460832f82f763185767d63ae4bf05021c5630c155fJordan Rose  StringRef MArch,
47651f13cea278ec967336033dd032faef0e9fc2ecStephen Hines  StringRef MCPU,
480832f82f763185767d63ae4bf05021c5630c155fJordan Rose  const SmallVectorImpl<std::string>& MAttrs) = 0;
490832f82f763185767d63ae4bf05021c5630c155fJordan RoseExecutionEngine *(*ExecutionEngine::MCJITCtor)(
500832f82f763185767d63ae4bf05021c5630c155fJordan Rose  Module *M,
510832f82f763185767d63ae4bf05021c5630c155fJordan Rose  std::string *ErrorStr,
520832f82f763185767d63ae4bf05021c5630c155fJordan Rose  JITMemoryManager *JMM,
530832f82f763185767d63ae4bf05021c5630c155fJordan Rose  CodeGenOpt::Level OptLevel,
540832f82f763185767d63ae4bf05021c5630c155fJordan Rose  bool GVsWithCode,
550832f82f763185767d63ae4bf05021c5630c155fJordan Rose  CodeModel::Model CMM,
560832f82f763185767d63ae4bf05021c5630c155fJordan Rose  StringRef MArch,
570832f82f763185767d63ae4bf05021c5630c155fJordan Rose  StringRef MCPU,
580832f82f763185767d63ae4bf05021c5630c155fJordan Rose  const SmallVectorImpl<std::string>& MAttrs) = 0;
590832f82f763185767d63ae4bf05021c5630c155fJordan RoseExecutionEngine *(*ExecutionEngine::InterpCtor)(Module *M,
600832f82f763185767d63ae4bf05021c5630c155fJordan Rose                                                std::string *ErrorStr) = 0;
610832f82f763185767d63ae4bf05021c5630c155fJordan Rose
620832f82f763185767d63ae4bf05021c5630c155fJordan RoseExecutionEngine::ExecutionEngine(Module *M)
630832f82f763185767d63ae4bf05021c5630c155fJordan Rose  : EEState(*this),
6402c23ebf41ae2f70da0ba7337e05c51fbfe35f7fDouglas Gregor    LazyFunctionCreator(0),
650832f82f763185767d63ae4bf05021c5630c155fJordan Rose    ExceptionTableRegister(0),
660832f82f763185767d63ae4bf05021c5630c155fJordan Rose    ExceptionTableDeregister(0) {
67651f13cea278ec967336033dd032faef0e9fc2ecStephen Hines  CompilingLazily         = false;
68651f13cea278ec967336033dd032faef0e9fc2ecStephen Hines  GVCompilationDisabled   = false;
69651f13cea278ec967336033dd032faef0e9fc2ecStephen Hines  SymbolSearchingDisabled = false;
700832f82f763185767d63ae4bf05021c5630c155fJordan Rose  Modules.push_back(M);
710832f82f763185767d63ae4bf05021c5630c155fJordan Rose  assert(M && "Module is null?");
720832f82f763185767d63ae4bf05021c5630c155fJordan Rose}
730832f82f763185767d63ae4bf05021c5630c155fJordan Rose
740832f82f763185767d63ae4bf05021c5630c155fJordan RoseExecutionEngine::~ExecutionEngine() {
75d47afb96a3f988e6d21a92fe4dfe875ab227c7c0Sean Silva  clearAllGlobalMappings();
760832f82f763185767d63ae4bf05021c5630c155fJordan Rose  for (unsigned i = 0, e = Modules.size(); i != e; ++i)
770832f82f763185767d63ae4bf05021c5630c155fJordan Rose    delete Modules[i];
780832f82f763185767d63ae4bf05021c5630c155fJordan Rose}
790832f82f763185767d63ae4bf05021c5630c155fJordan Rose
800832f82f763185767d63ae4bf05021c5630c155fJordan Rosevoid ExecutionEngine::DeregisterAllTables() {
810832f82f763185767d63ae4bf05021c5630c155fJordan Rose  if (ExceptionTableDeregister) {
820832f82f763185767d63ae4bf05021c5630c155fJordan Rose    for (std::vector<void*>::iterator it = AllExceptionTables.begin(),
830832f82f763185767d63ae4bf05021c5630c155fJordan Rose           ie = AllExceptionTables.end(); it != ie; ++it)
840832f82f763185767d63ae4bf05021c5630c155fJordan Rose      ExceptionTableDeregister(*it);
850832f82f763185767d63ae4bf05021c5630c155fJordan Rose    AllExceptionTables.clear();
860832f82f763185767d63ae4bf05021c5630c155fJordan Rose  }
870832f82f763185767d63ae4bf05021c5630c155fJordan Rose}
880832f82f763185767d63ae4bf05021c5630c155fJordan Rose
890832f82f763185767d63ae4bf05021c5630c155fJordan Rosenamespace {
900832f82f763185767d63ae4bf05021c5630c155fJordan Rose/// \brief Helper class which uses a value handler to automatically deletes the
910832f82f763185767d63ae4bf05021c5630c155fJordan Rose/// memory block when the GlobalVariable is destroyed.
920832f82f763185767d63ae4bf05021c5630c155fJordan Roseclass GVMemoryBlock : public CallbackVH {
930832f82f763185767d63ae4bf05021c5630c155fJordan Rose  GVMemoryBlock(const GlobalVariable *GV)
940832f82f763185767d63ae4bf05021c5630c155fJordan Rose    : CallbackVH(const_cast<GlobalVariable*>(GV)) {}
950832f82f763185767d63ae4bf05021c5630c155fJordan Rose
960832f82f763185767d63ae4bf05021c5630c155fJordan Rosepublic:
970832f82f763185767d63ae4bf05021c5630c155fJordan Rose  /// \brief Returns the address the GlobalVariable should be written into.  The
980832f82f763185767d63ae4bf05021c5630c155fJordan Rose  /// GVMemoryBlock object prefixes that.
990832f82f763185767d63ae4bf05021c5630c155fJordan Rose  static char *Create(const GlobalVariable *GV, const TargetData& TD) {
1000832f82f763185767d63ae4bf05021c5630c155fJordan Rose    const Type *ElTy = GV->getType()->getElementType();
1010832f82f763185767d63ae4bf05021c5630c155fJordan Rose    size_t GVSize = (size_t)TD.getTypeAllocSize(ElTy);
1020832f82f763185767d63ae4bf05021c5630c155fJordan Rose    void *RawMemory = ::operator new(
1030832f82f763185767d63ae4bf05021c5630c155fJordan Rose      TargetData::RoundUpAlignment(sizeof(GVMemoryBlock),
1040832f82f763185767d63ae4bf05021c5630c155fJordan Rose                                   TD.getPreferredAlignment(GV))
1050832f82f763185767d63ae4bf05021c5630c155fJordan Rose      + GVSize);
1060832f82f763185767d63ae4bf05021c5630c155fJordan Rose    new(RawMemory) GVMemoryBlock(GV);
1070832f82f763185767d63ae4bf05021c5630c155fJordan Rose    return static_cast<char*>(RawMemory) + sizeof(GVMemoryBlock);
1080832f82f763185767d63ae4bf05021c5630c155fJordan Rose  }
1090832f82f763185767d63ae4bf05021c5630c155fJordan Rose
1100832f82f763185767d63ae4bf05021c5630c155fJordan Rose  virtual void deleted() {
1110832f82f763185767d63ae4bf05021c5630c155fJordan Rose    // We allocated with operator new and with some extra memory hanging off the
1120832f82f763185767d63ae4bf05021c5630c155fJordan Rose    // end, so don't just delete this.  I'm not sure if this is actually
113e7427636767501903cfa51ccecafa7a4795a23c2Jordan Rose    // required.
1140832f82f763185767d63ae4bf05021c5630c155fJordan Rose    this->~GVMemoryBlock();
1150832f82f763185767d63ae4bf05021c5630c155fJordan Rose    ::operator delete(this);
116e7427636767501903cfa51ccecafa7a4795a23c2Jordan Rose  }
117e7427636767501903cfa51ccecafa7a4795a23c2Jordan Rose};
118e7427636767501903cfa51ccecafa7a4795a23c2Jordan Rose}  // anonymous namespace
1190832f82f763185767d63ae4bf05021c5630c155fJordan Rose
1200832f82f763185767d63ae4bf05021c5630c155fJordan Rosechar *ExecutionEngine::getMemoryForGV(const GlobalVariable *GV) {
1210832f82f763185767d63ae4bf05021c5630c155fJordan Rose  return GVMemoryBlock::Create(GV, *getTargetData());
1220832f82f763185767d63ae4bf05021c5630c155fJordan Rose}
1230832f82f763185767d63ae4bf05021c5630c155fJordan Rose
1240832f82f763185767d63ae4bf05021c5630c155fJordan Rosebool ExecutionEngine::removeModule(Module *M) {
1250832f82f763185767d63ae4bf05021c5630c155fJordan Rose  for(SmallVector<Module *, 1>::iterator I = Modules.begin(),
1260832f82f763185767d63ae4bf05021c5630c155fJordan Rose        E = Modules.end(); I != E; ++I) {
1270832f82f763185767d63ae4bf05021c5630c155fJordan Rose    Module *Found = *I;
1280832f82f763185767d63ae4bf05021c5630c155fJordan Rose    if (Found == M) {
1290832f82f763185767d63ae4bf05021c5630c155fJordan Rose      Modules.erase(I);
1300832f82f763185767d63ae4bf05021c5630c155fJordan Rose      clearGlobalMappingsFromModule(M);
1310832f82f763185767d63ae4bf05021c5630c155fJordan Rose      return true;
1320832f82f763185767d63ae4bf05021c5630c155fJordan Rose    }
1330832f82f763185767d63ae4bf05021c5630c155fJordan Rose  }
1340832f82f763185767d63ae4bf05021c5630c155fJordan Rose  return false;
1350832f82f763185767d63ae4bf05021c5630c155fJordan Rose}
1360832f82f763185767d63ae4bf05021c5630c155fJordan Rose
1370832f82f763185767d63ae4bf05021c5630c155fJordan RoseFunction *ExecutionEngine::FindFunctionNamed(const char *FnName) {
1380832f82f763185767d63ae4bf05021c5630c155fJordan Rose  for (unsigned i = 0, e = Modules.size(); i != e; ++i) {
1390832f82f763185767d63ae4bf05021c5630c155fJordan Rose    if (Function *F = Modules[i]->getFunction(FnName))
1400832f82f763185767d63ae4bf05021c5630c155fJordan Rose      return F;
1410832f82f763185767d63ae4bf05021c5630c155fJordan Rose  }
1420832f82f763185767d63ae4bf05021c5630c155fJordan Rose  return 0;
1430832f82f763185767d63ae4bf05021c5630c155fJordan Rose}
1440832f82f763185767d63ae4bf05021c5630c155fJordan Rose
1450832f82f763185767d63ae4bf05021c5630c155fJordan Rose
1460832f82f763185767d63ae4bf05021c5630c155fJordan Rosevoid *ExecutionEngineState::RemoveMapping(const MutexGuard &,
1470832f82f763185767d63ae4bf05021c5630c155fJordan Rose                                          const GlobalValue *ToUnmap) {
1480832f82f763185767d63ae4bf05021c5630c155fJordan Rose  GlobalAddressMapTy::iterator I = GlobalAddressMap.find(ToUnmap);
149  void *OldVal;
150
151  // FIXME: This is silly, we shouldn't end up with a mapping -> 0 in the
152  // GlobalAddressMap.
153  if (I == GlobalAddressMap.end())
154    OldVal = 0;
155  else {
156    OldVal = I->second;
157    GlobalAddressMap.erase(I);
158  }
159
160  GlobalAddressReverseMap.erase(OldVal);
161  return OldVal;
162}
163
164void ExecutionEngine::addGlobalMapping(const GlobalValue *GV, void *Addr) {
165  MutexGuard locked(lock);
166
167  DEBUG(dbgs() << "JIT: Map \'" << GV->getName()
168        << "\' to [" << Addr << "]\n";);
169  void *&CurVal = EEState.getGlobalAddressMap(locked)[GV];
170  assert((CurVal == 0 || Addr == 0) && "GlobalMapping already established!");
171  CurVal = Addr;
172
173  // If we are using the reverse mapping, add it too.
174  if (!EEState.getGlobalAddressReverseMap(locked).empty()) {
175    AssertingVH<const GlobalValue> &V =
176      EEState.getGlobalAddressReverseMap(locked)[Addr];
177    assert((V == 0 || GV == 0) && "GlobalMapping already established!");
178    V = GV;
179  }
180}
181
182void ExecutionEngine::clearAllGlobalMappings() {
183  MutexGuard locked(lock);
184
185  EEState.getGlobalAddressMap(locked).clear();
186  EEState.getGlobalAddressReverseMap(locked).clear();
187}
188
189void ExecutionEngine::clearGlobalMappingsFromModule(Module *M) {
190  MutexGuard locked(lock);
191
192  for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ++FI)
193    EEState.RemoveMapping(locked, FI);
194  for (Module::global_iterator GI = M->global_begin(), GE = M->global_end();
195       GI != GE; ++GI)
196    EEState.RemoveMapping(locked, GI);
197}
198
199void *ExecutionEngine::updateGlobalMapping(const GlobalValue *GV, void *Addr) {
200  MutexGuard locked(lock);
201
202  ExecutionEngineState::GlobalAddressMapTy &Map =
203    EEState.getGlobalAddressMap(locked);
204
205  // Deleting from the mapping?
206  if (Addr == 0)
207    return EEState.RemoveMapping(locked, GV);
208
209  void *&CurVal = Map[GV];
210  void *OldVal = CurVal;
211
212  if (CurVal && !EEState.getGlobalAddressReverseMap(locked).empty())
213    EEState.getGlobalAddressReverseMap(locked).erase(CurVal);
214  CurVal = Addr;
215
216  // If we are using the reverse mapping, add it too.
217  if (!EEState.getGlobalAddressReverseMap(locked).empty()) {
218    AssertingVH<const GlobalValue> &V =
219      EEState.getGlobalAddressReverseMap(locked)[Addr];
220    assert((V == 0 || GV == 0) && "GlobalMapping already established!");
221    V = GV;
222  }
223  return OldVal;
224}
225
226void *ExecutionEngine::getPointerToGlobalIfAvailable(const GlobalValue *GV) {
227  MutexGuard locked(lock);
228
229  ExecutionEngineState::GlobalAddressMapTy::iterator I =
230    EEState.getGlobalAddressMap(locked).find(GV);
231  return I != EEState.getGlobalAddressMap(locked).end() ? I->second : 0;
232}
233
234const GlobalValue *ExecutionEngine::getGlobalValueAtAddress(void *Addr) {
235  MutexGuard locked(lock);
236
237  // If we haven't computed the reverse mapping yet, do so first.
238  if (EEState.getGlobalAddressReverseMap(locked).empty()) {
239    for (ExecutionEngineState::GlobalAddressMapTy::iterator
240         I = EEState.getGlobalAddressMap(locked).begin(),
241         E = EEState.getGlobalAddressMap(locked).end(); I != E; ++I)
242      EEState.getGlobalAddressReverseMap(locked).insert(std::make_pair(
243                                                          I->second, I->first));
244  }
245
246  std::map<void *, AssertingVH<const GlobalValue> >::iterator I =
247    EEState.getGlobalAddressReverseMap(locked).find(Addr);
248  return I != EEState.getGlobalAddressReverseMap(locked).end() ? I->second : 0;
249}
250
251namespace {
252class ArgvArray {
253  char *Array;
254  std::vector<char*> Values;
255public:
256  ArgvArray() : Array(NULL) {}
257  ~ArgvArray() { clear(); }
258  void clear() {
259    delete[] Array;
260    Array = NULL;
261    for (size_t I = 0, E = Values.size(); I != E; ++I) {
262      delete[] Values[I];
263    }
264    Values.clear();
265  }
266  /// Turn a vector of strings into a nice argv style array of pointers to null
267  /// terminated strings.
268  void *reset(LLVMContext &C, ExecutionEngine *EE,
269              const std::vector<std::string> &InputArgv);
270};
271}  // anonymous namespace
272void *ArgvArray::reset(LLVMContext &C, ExecutionEngine *EE,
273                       const std::vector<std::string> &InputArgv) {
274  clear();  // Free the old contents.
275  unsigned PtrSize = EE->getTargetData()->getPointerSize();
276  Array = new char[(InputArgv.size()+1)*PtrSize];
277
278  DEBUG(dbgs() << "JIT: ARGV = " << (void*)Array << "\n");
279  const Type *SBytePtr = Type::getInt8PtrTy(C);
280
281  for (unsigned i = 0; i != InputArgv.size(); ++i) {
282    unsigned Size = InputArgv[i].size()+1;
283    char *Dest = new char[Size];
284    Values.push_back(Dest);
285    DEBUG(dbgs() << "JIT: ARGV[" << i << "] = " << (void*)Dest << "\n");
286
287    std::copy(InputArgv[i].begin(), InputArgv[i].end(), Dest);
288    Dest[Size-1] = 0;
289
290    // Endian safe: Array[i] = (PointerTy)Dest;
291    EE->StoreValueToMemory(PTOGV(Dest), (GenericValue*)(Array+i*PtrSize),
292                           SBytePtr);
293  }
294
295  // Null terminate it
296  EE->StoreValueToMemory(PTOGV(0),
297                         (GenericValue*)(Array+InputArgv.size()*PtrSize),
298                         SBytePtr);
299  return Array;
300}
301
302void ExecutionEngine::runStaticConstructorsDestructors(Module *module,
303                                                       bool isDtors) {
304  const char *Name = isDtors ? "llvm.global_dtors" : "llvm.global_ctors";
305  GlobalVariable *GV = module->getNamedGlobal(Name);
306
307  // If this global has internal linkage, or if it has a use, then it must be
308  // an old-style (llvmgcc3) static ctor with __main linked in and in use.  If
309  // this is the case, don't execute any of the global ctors, __main will do
310  // it.
311  if (!GV || GV->isDeclaration() || GV->hasLocalLinkage()) return;
312
313  // Should be an array of '{ int, void ()* }' structs.  The first value is
314  // the init priority, which we ignore.
315  ConstantArray *InitList = dyn_cast<ConstantArray>(GV->getInitializer());
316  if (!InitList) return;
317  for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) {
318    ConstantStruct *CS =
319      dyn_cast<ConstantStruct>(InitList->getOperand(i));
320    if (!CS) continue;
321    if (CS->getNumOperands() != 2) return; // Not array of 2-element structs.
322
323    Constant *FP = CS->getOperand(1);
324    if (FP->isNullValue())
325      break;  // Found a null terminator, exit.
326
327    // Strip off constant expression casts.
328    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(FP))
329      if (CE->isCast())
330        FP = CE->getOperand(0);
331
332    // Execute the ctor/dtor function!
333    if (Function *F = dyn_cast<Function>(FP))
334      runFunction(F, std::vector<GenericValue>());
335
336    // FIXME: It is marginally lame that we just do nothing here if we see an
337    // entry we don't recognize. It might not be unreasonable for the verifier
338    // to not even allow this and just assert here.
339  }
340}
341
342void ExecutionEngine::runStaticConstructorsDestructors(bool isDtors) {
343  // Execute global ctors/dtors for each module in the program.
344  for (unsigned i = 0, e = Modules.size(); i != e; ++i)
345    runStaticConstructorsDestructors(Modules[i], isDtors);
346}
347
348#ifndef NDEBUG
349/// isTargetNullPtr - Return whether the target pointer stored at Loc is null.
350static bool isTargetNullPtr(ExecutionEngine *EE, void *Loc) {
351  unsigned PtrSize = EE->getTargetData()->getPointerSize();
352  for (unsigned i = 0; i < PtrSize; ++i)
353    if (*(i + (uint8_t*)Loc))
354      return false;
355  return true;
356}
357#endif
358
359int ExecutionEngine::runFunctionAsMain(Function *Fn,
360                                       const std::vector<std::string> &argv,
361                                       const char * const * envp) {
362  std::vector<GenericValue> GVArgs;
363  GenericValue GVArgc;
364  GVArgc.IntVal = APInt(32, argv.size());
365
366  // Check main() type
367  unsigned NumArgs = Fn->getFunctionType()->getNumParams();
368  const FunctionType *FTy = Fn->getFunctionType();
369  const Type* PPInt8Ty = Type::getInt8PtrTy(Fn->getContext())->getPointerTo();
370
371  // Check the argument types.
372  if (NumArgs > 3)
373    report_fatal_error("Invalid number of arguments of main() supplied");
374  if (NumArgs >= 3 && FTy->getParamType(2) != PPInt8Ty)
375    report_fatal_error("Invalid type for third argument of main() supplied");
376  if (NumArgs >= 2 && FTy->getParamType(1) != PPInt8Ty)
377    report_fatal_error("Invalid type for second argument of main() supplied");
378  if (NumArgs >= 1 && !FTy->getParamType(0)->isIntegerTy(32))
379    report_fatal_error("Invalid type for first argument of main() supplied");
380  if (!FTy->getReturnType()->isIntegerTy() &&
381      !FTy->getReturnType()->isVoidTy())
382    report_fatal_error("Invalid return type of main() supplied");
383
384  ArgvArray CArgv;
385  ArgvArray CEnv;
386  if (NumArgs) {
387    GVArgs.push_back(GVArgc); // Arg #0 = argc.
388    if (NumArgs > 1) {
389      // Arg #1 = argv.
390      GVArgs.push_back(PTOGV(CArgv.reset(Fn->getContext(), this, argv)));
391      assert(!isTargetNullPtr(this, GVTOP(GVArgs[1])) &&
392             "argv[0] was null after CreateArgv");
393      if (NumArgs > 2) {
394        std::vector<std::string> EnvVars;
395        for (unsigned i = 0; envp[i]; ++i)
396          EnvVars.push_back(envp[i]);
397        // Arg #2 = envp.
398        GVArgs.push_back(PTOGV(CEnv.reset(Fn->getContext(), this, EnvVars)));
399      }
400    }
401  }
402
403  return runFunction(Fn, GVArgs).IntVal.getZExtValue();
404}
405
406ExecutionEngine *ExecutionEngine::create(Module *M,
407                                         bool ForceInterpreter,
408                                         std::string *ErrorStr,
409                                         CodeGenOpt::Level OptLevel,
410                                         bool GVsWithCode) {
411  return EngineBuilder(M)
412      .setEngineKind(ForceInterpreter
413                     ? EngineKind::Interpreter
414                     : EngineKind::JIT)
415      .setErrorStr(ErrorStr)
416      .setOptLevel(OptLevel)
417      .setAllocateGVsWithCode(GVsWithCode)
418      .create();
419}
420
421ExecutionEngine *EngineBuilder::create() {
422  // Make sure we can resolve symbols in the program as well. The zero arg
423  // to the function tells DynamicLibrary to load the program, not a library.
424  if (sys::DynamicLibrary::LoadLibraryPermanently(0, ErrorStr))
425    return 0;
426
427  // If the user specified a memory manager but didn't specify which engine to
428  // create, we assume they only want the JIT, and we fail if they only want
429  // the interpreter.
430  if (JMM) {
431    if (WhichEngine & EngineKind::JIT)
432      WhichEngine = EngineKind::JIT;
433    else {
434      if (ErrorStr)
435        *ErrorStr = "Cannot create an interpreter with a memory manager.";
436      return 0;
437    }
438  }
439
440  // Unless the interpreter was explicitly selected or the JIT is not linked,
441  // try making a JIT.
442  if (WhichEngine & EngineKind::JIT) {
443    if (UseMCJIT && ExecutionEngine::MCJITCtor) {
444      ExecutionEngine *EE =
445        ExecutionEngine::MCJITCtor(M, ErrorStr, JMM, OptLevel,
446                                   AllocateGVsWithCode, CMModel,
447                                   MArch, MCPU, MAttrs);
448      if (EE) return EE;
449    } else if (ExecutionEngine::JITCtor) {
450      ExecutionEngine *EE =
451        ExecutionEngine::JITCtor(M, ErrorStr, JMM, OptLevel,
452                                 AllocateGVsWithCode, CMModel,
453                                 MArch, MCPU, MAttrs);
454      if (EE) return EE;
455    }
456  }
457
458  // If we can't make a JIT and we didn't request one specifically, try making
459  // an interpreter instead.
460  if (WhichEngine & EngineKind::Interpreter) {
461    if (ExecutionEngine::InterpCtor)
462      return ExecutionEngine::InterpCtor(M, ErrorStr);
463    if (ErrorStr)
464      *ErrorStr = "Interpreter has not been linked in.";
465    return 0;
466  }
467
468  if ((WhichEngine & EngineKind::JIT) && ExecutionEngine::JITCtor == 0) {
469    if (ErrorStr)
470      *ErrorStr = "JIT has not been linked in.";
471  }
472
473  return 0;
474}
475
476void *ExecutionEngine::getPointerToGlobal(const GlobalValue *GV) {
477  if (Function *F = const_cast<Function*>(dyn_cast<Function>(GV)))
478    return getPointerToFunction(F);
479
480  MutexGuard locked(lock);
481  if (void *P = EEState.getGlobalAddressMap(locked)[GV])
482    return P;
483
484  // Global variable might have been added since interpreter started.
485  if (GlobalVariable *GVar =
486          const_cast<GlobalVariable *>(dyn_cast<GlobalVariable>(GV)))
487    EmitGlobalVariable(GVar);
488  else
489    llvm_unreachable("Global hasn't had an address allocated yet!");
490
491  return EEState.getGlobalAddressMap(locked)[GV];
492}
493
494/// \brief Converts a Constant* into a GenericValue, including handling of
495/// ConstantExpr values.
496GenericValue ExecutionEngine::getConstantValue(const Constant *C) {
497  // If its undefined, return the garbage.
498  if (isa<UndefValue>(C)) {
499    GenericValue Result;
500    switch (C->getType()->getTypeID()) {
501    case Type::IntegerTyID:
502    case Type::X86_FP80TyID:
503    case Type::FP128TyID:
504    case Type::PPC_FP128TyID:
505      // Although the value is undefined, we still have to construct an APInt
506      // with the correct bit width.
507      Result.IntVal = APInt(C->getType()->getPrimitiveSizeInBits(), 0);
508      break;
509    default:
510      break;
511    }
512    return Result;
513  }
514
515  // Otherwise, if the value is a ConstantExpr...
516  if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
517    Constant *Op0 = CE->getOperand(0);
518    switch (CE->getOpcode()) {
519    case Instruction::GetElementPtr: {
520      // Compute the index
521      GenericValue Result = getConstantValue(Op0);
522      SmallVector<Value*, 8> Indices(CE->op_begin()+1, CE->op_end());
523      uint64_t Offset =
524        TD->getIndexedOffset(Op0->getType(), &Indices[0], Indices.size());
525
526      char* tmp = (char*) Result.PointerVal;
527      Result = PTOGV(tmp + Offset);
528      return Result;
529    }
530    case Instruction::Trunc: {
531      GenericValue GV = getConstantValue(Op0);
532      uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth();
533      GV.IntVal = GV.IntVal.trunc(BitWidth);
534      return GV;
535    }
536    case Instruction::ZExt: {
537      GenericValue GV = getConstantValue(Op0);
538      uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth();
539      GV.IntVal = GV.IntVal.zext(BitWidth);
540      return GV;
541    }
542    case Instruction::SExt: {
543      GenericValue GV = getConstantValue(Op0);
544      uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth();
545      GV.IntVal = GV.IntVal.sext(BitWidth);
546      return GV;
547    }
548    case Instruction::FPTrunc: {
549      // FIXME long double
550      GenericValue GV = getConstantValue(Op0);
551      GV.FloatVal = float(GV.DoubleVal);
552      return GV;
553    }
554    case Instruction::FPExt:{
555      // FIXME long double
556      GenericValue GV = getConstantValue(Op0);
557      GV.DoubleVal = double(GV.FloatVal);
558      return GV;
559    }
560    case Instruction::UIToFP: {
561      GenericValue GV = getConstantValue(Op0);
562      if (CE->getType()->isFloatTy())
563        GV.FloatVal = float(GV.IntVal.roundToDouble());
564      else if (CE->getType()->isDoubleTy())
565        GV.DoubleVal = GV.IntVal.roundToDouble();
566      else if (CE->getType()->isX86_FP80Ty()) {
567        const uint64_t zero[] = {0, 0};
568        APFloat apf = APFloat(APInt(80, 2, zero));
569        (void)apf.convertFromAPInt(GV.IntVal,
570                                   false,
571                                   APFloat::rmNearestTiesToEven);
572        GV.IntVal = apf.bitcastToAPInt();
573      }
574      return GV;
575    }
576    case Instruction::SIToFP: {
577      GenericValue GV = getConstantValue(Op0);
578      if (CE->getType()->isFloatTy())
579        GV.FloatVal = float(GV.IntVal.signedRoundToDouble());
580      else if (CE->getType()->isDoubleTy())
581        GV.DoubleVal = GV.IntVal.signedRoundToDouble();
582      else if (CE->getType()->isX86_FP80Ty()) {
583        const uint64_t zero[] = { 0, 0};
584        APFloat apf = APFloat(APInt(80, 2, zero));
585        (void)apf.convertFromAPInt(GV.IntVal,
586                                   true,
587                                   APFloat::rmNearestTiesToEven);
588        GV.IntVal = apf.bitcastToAPInt();
589      }
590      return GV;
591    }
592    case Instruction::FPToUI: // double->APInt conversion handles sign
593    case Instruction::FPToSI: {
594      GenericValue GV = getConstantValue(Op0);
595      uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth();
596      if (Op0->getType()->isFloatTy())
597        GV.IntVal = APIntOps::RoundFloatToAPInt(GV.FloatVal, BitWidth);
598      else if (Op0->getType()->isDoubleTy())
599        GV.IntVal = APIntOps::RoundDoubleToAPInt(GV.DoubleVal, BitWidth);
600      else if (Op0->getType()->isX86_FP80Ty()) {
601        APFloat apf = APFloat(GV.IntVal);
602        uint64_t v;
603        bool ignored;
604        (void)apf.convertToInteger(&v, BitWidth,
605                                   CE->getOpcode()==Instruction::FPToSI,
606                                   APFloat::rmTowardZero, &ignored);
607        GV.IntVal = v; // endian?
608      }
609      return GV;
610    }
611    case Instruction::PtrToInt: {
612      GenericValue GV = getConstantValue(Op0);
613      uint32_t PtrWidth = TD->getPointerSizeInBits();
614      GV.IntVal = APInt(PtrWidth, uintptr_t(GV.PointerVal));
615      return GV;
616    }
617    case Instruction::IntToPtr: {
618      GenericValue GV = getConstantValue(Op0);
619      uint32_t PtrWidth = TD->getPointerSizeInBits();
620      if (PtrWidth != GV.IntVal.getBitWidth())
621        GV.IntVal = GV.IntVal.zextOrTrunc(PtrWidth);
622      assert(GV.IntVal.getBitWidth() <= 64 && "Bad pointer width");
623      GV.PointerVal = PointerTy(uintptr_t(GV.IntVal.getZExtValue()));
624      return GV;
625    }
626    case Instruction::BitCast: {
627      GenericValue GV = getConstantValue(Op0);
628      const Type* DestTy = CE->getType();
629      switch (Op0->getType()->getTypeID()) {
630        default: llvm_unreachable("Invalid bitcast operand");
631        case Type::IntegerTyID:
632          assert(DestTy->isFloatingPointTy() && "invalid bitcast");
633          if (DestTy->isFloatTy())
634            GV.FloatVal = GV.IntVal.bitsToFloat();
635          else if (DestTy->isDoubleTy())
636            GV.DoubleVal = GV.IntVal.bitsToDouble();
637          break;
638        case Type::FloatTyID:
639          assert(DestTy->isIntegerTy(32) && "Invalid bitcast");
640          GV.IntVal = APInt::floatToBits(GV.FloatVal);
641          break;
642        case Type::DoubleTyID:
643          assert(DestTy->isIntegerTy(64) && "Invalid bitcast");
644          GV.IntVal = APInt::doubleToBits(GV.DoubleVal);
645          break;
646        case Type::PointerTyID:
647          assert(DestTy->isPointerTy() && "Invalid bitcast");
648          break; // getConstantValue(Op0)  above already converted it
649      }
650      return GV;
651    }
652    case Instruction::Add:
653    case Instruction::FAdd:
654    case Instruction::Sub:
655    case Instruction::FSub:
656    case Instruction::Mul:
657    case Instruction::FMul:
658    case Instruction::UDiv:
659    case Instruction::SDiv:
660    case Instruction::URem:
661    case Instruction::SRem:
662    case Instruction::And:
663    case Instruction::Or:
664    case Instruction::Xor: {
665      GenericValue LHS = getConstantValue(Op0);
666      GenericValue RHS = getConstantValue(CE->getOperand(1));
667      GenericValue GV;
668      switch (CE->getOperand(0)->getType()->getTypeID()) {
669      default: llvm_unreachable("Bad add type!");
670      case Type::IntegerTyID:
671        switch (CE->getOpcode()) {
672          default: llvm_unreachable("Invalid integer opcode");
673          case Instruction::Add: GV.IntVal = LHS.IntVal + RHS.IntVal; break;
674          case Instruction::Sub: GV.IntVal = LHS.IntVal - RHS.IntVal; break;
675          case Instruction::Mul: GV.IntVal = LHS.IntVal * RHS.IntVal; break;
676          case Instruction::UDiv:GV.IntVal = LHS.IntVal.udiv(RHS.IntVal); break;
677          case Instruction::SDiv:GV.IntVal = LHS.IntVal.sdiv(RHS.IntVal); break;
678          case Instruction::URem:GV.IntVal = LHS.IntVal.urem(RHS.IntVal); break;
679          case Instruction::SRem:GV.IntVal = LHS.IntVal.srem(RHS.IntVal); break;
680          case Instruction::And: GV.IntVal = LHS.IntVal & RHS.IntVal; break;
681          case Instruction::Or:  GV.IntVal = LHS.IntVal | RHS.IntVal; break;
682          case Instruction::Xor: GV.IntVal = LHS.IntVal ^ RHS.IntVal; break;
683        }
684        break;
685      case Type::FloatTyID:
686        switch (CE->getOpcode()) {
687          default: llvm_unreachable("Invalid float opcode");
688          case Instruction::FAdd:
689            GV.FloatVal = LHS.FloatVal + RHS.FloatVal; break;
690          case Instruction::FSub:
691            GV.FloatVal = LHS.FloatVal - RHS.FloatVal; break;
692          case Instruction::FMul:
693            GV.FloatVal = LHS.FloatVal * RHS.FloatVal; break;
694          case Instruction::FDiv:
695            GV.FloatVal = LHS.FloatVal / RHS.FloatVal; break;
696          case Instruction::FRem:
697            GV.FloatVal = std::fmod(LHS.FloatVal,RHS.FloatVal); break;
698        }
699        break;
700      case Type::DoubleTyID:
701        switch (CE->getOpcode()) {
702          default: llvm_unreachable("Invalid double opcode");
703          case Instruction::FAdd:
704            GV.DoubleVal = LHS.DoubleVal + RHS.DoubleVal; break;
705          case Instruction::FSub:
706            GV.DoubleVal = LHS.DoubleVal - RHS.DoubleVal; break;
707          case Instruction::FMul:
708            GV.DoubleVal = LHS.DoubleVal * RHS.DoubleVal; break;
709          case Instruction::FDiv:
710            GV.DoubleVal = LHS.DoubleVal / RHS.DoubleVal; break;
711          case Instruction::FRem:
712            GV.DoubleVal = std::fmod(LHS.DoubleVal,RHS.DoubleVal); break;
713        }
714        break;
715      case Type::X86_FP80TyID:
716      case Type::PPC_FP128TyID:
717      case Type::FP128TyID: {
718        APFloat apfLHS = APFloat(LHS.IntVal);
719        switch (CE->getOpcode()) {
720          default: llvm_unreachable("Invalid long double opcode");
721          case Instruction::FAdd:
722            apfLHS.add(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven);
723            GV.IntVal = apfLHS.bitcastToAPInt();
724            break;
725          case Instruction::FSub:
726            apfLHS.subtract(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven);
727            GV.IntVal = apfLHS.bitcastToAPInt();
728            break;
729          case Instruction::FMul:
730            apfLHS.multiply(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven);
731            GV.IntVal = apfLHS.bitcastToAPInt();
732            break;
733          case Instruction::FDiv:
734            apfLHS.divide(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven);
735            GV.IntVal = apfLHS.bitcastToAPInt();
736            break;
737          case Instruction::FRem:
738            apfLHS.mod(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven);
739            GV.IntVal = apfLHS.bitcastToAPInt();
740            break;
741          }
742        }
743        break;
744      }
745      return GV;
746    }
747    default:
748      break;
749    }
750
751    SmallString<256> Msg;
752    raw_svector_ostream OS(Msg);
753    OS << "ConstantExpr not handled: " << *CE;
754    report_fatal_error(OS.str());
755  }
756
757  // Otherwise, we have a simple constant.
758  GenericValue Result;
759  switch (C->getType()->getTypeID()) {
760  case Type::FloatTyID:
761    Result.FloatVal = cast<ConstantFP>(C)->getValueAPF().convertToFloat();
762    break;
763  case Type::DoubleTyID:
764    Result.DoubleVal = cast<ConstantFP>(C)->getValueAPF().convertToDouble();
765    break;
766  case Type::X86_FP80TyID:
767  case Type::FP128TyID:
768  case Type::PPC_FP128TyID:
769    Result.IntVal = cast <ConstantFP>(C)->getValueAPF().bitcastToAPInt();
770    break;
771  case Type::IntegerTyID:
772    Result.IntVal = cast<ConstantInt>(C)->getValue();
773    break;
774  case Type::PointerTyID:
775    if (isa<ConstantPointerNull>(C))
776      Result.PointerVal = 0;
777    else if (const Function *F = dyn_cast<Function>(C))
778      Result = PTOGV(getPointerToFunctionOrStub(const_cast<Function*>(F)));
779    else if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(C))
780      Result = PTOGV(getOrEmitGlobalVariable(const_cast<GlobalVariable*>(GV)));
781    else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
782      Result = PTOGV(getPointerToBasicBlock(const_cast<BasicBlock*>(
783                                                        BA->getBasicBlock())));
784    else
785      llvm_unreachable("Unknown constant pointer type!");
786    break;
787  default:
788    SmallString<256> Msg;
789    raw_svector_ostream OS(Msg);
790    OS << "ERROR: Constant unimplemented for type: " << *C->getType();
791    report_fatal_error(OS.str());
792  }
793
794  return Result;
795}
796
797/// StoreIntToMemory - Fills the StoreBytes bytes of memory starting from Dst
798/// with the integer held in IntVal.
799static void StoreIntToMemory(const APInt &IntVal, uint8_t *Dst,
800                             unsigned StoreBytes) {
801  assert((IntVal.getBitWidth()+7)/8 >= StoreBytes && "Integer too small!");
802  uint8_t *Src = (uint8_t *)IntVal.getRawData();
803
804  if (sys::isLittleEndianHost()) {
805    // Little-endian host - the source is ordered from LSB to MSB.  Order the
806    // destination from LSB to MSB: Do a straight copy.
807    memcpy(Dst, Src, StoreBytes);
808  } else {
809    // Big-endian host - the source is an array of 64 bit words ordered from
810    // LSW to MSW.  Each word is ordered from MSB to LSB.  Order the destination
811    // from MSB to LSB: Reverse the word order, but not the bytes in a word.
812    while (StoreBytes > sizeof(uint64_t)) {
813      StoreBytes -= sizeof(uint64_t);
814      // May not be aligned so use memcpy.
815      memcpy(Dst + StoreBytes, Src, sizeof(uint64_t));
816      Src += sizeof(uint64_t);
817    }
818
819    memcpy(Dst, Src + sizeof(uint64_t) - StoreBytes, StoreBytes);
820  }
821}
822
823void ExecutionEngine::StoreValueToMemory(const GenericValue &Val,
824                                         GenericValue *Ptr, const Type *Ty) {
825  const unsigned StoreBytes = getTargetData()->getTypeStoreSize(Ty);
826
827  switch (Ty->getTypeID()) {
828  case Type::IntegerTyID:
829    StoreIntToMemory(Val.IntVal, (uint8_t*)Ptr, StoreBytes);
830    break;
831  case Type::FloatTyID:
832    *((float*)Ptr) = Val.FloatVal;
833    break;
834  case Type::DoubleTyID:
835    *((double*)Ptr) = Val.DoubleVal;
836    break;
837  case Type::X86_FP80TyID:
838    memcpy(Ptr, Val.IntVal.getRawData(), 10);
839    break;
840  case Type::PointerTyID:
841    // Ensure 64 bit target pointers are fully initialized on 32 bit hosts.
842    if (StoreBytes != sizeof(PointerTy))
843      memset(Ptr, 0, StoreBytes);
844
845    *((PointerTy*)Ptr) = Val.PointerVal;
846    break;
847  default:
848    dbgs() << "Cannot store value of type " << *Ty << "!\n";
849  }
850
851  if (sys::isLittleEndianHost() != getTargetData()->isLittleEndian())
852    // Host and target are different endian - reverse the stored bytes.
853    std::reverse((uint8_t*)Ptr, StoreBytes + (uint8_t*)Ptr);
854}
855
856/// LoadIntFromMemory - Loads the integer stored in the LoadBytes bytes starting
857/// from Src into IntVal, which is assumed to be wide enough and to hold zero.
858static void LoadIntFromMemory(APInt &IntVal, uint8_t *Src, unsigned LoadBytes) {
859  assert((IntVal.getBitWidth()+7)/8 >= LoadBytes && "Integer too small!");
860  uint8_t *Dst = (uint8_t *)IntVal.getRawData();
861
862  if (sys::isLittleEndianHost())
863    // Little-endian host - the destination must be ordered from LSB to MSB.
864    // The source is ordered from LSB to MSB: Do a straight copy.
865    memcpy(Dst, Src, LoadBytes);
866  else {
867    // Big-endian - the destination is an array of 64 bit words ordered from
868    // LSW to MSW.  Each word must be ordered from MSB to LSB.  The source is
869    // ordered from MSB to LSB: Reverse the word order, but not the bytes in
870    // a word.
871    while (LoadBytes > sizeof(uint64_t)) {
872      LoadBytes -= sizeof(uint64_t);
873      // May not be aligned so use memcpy.
874      memcpy(Dst, Src + LoadBytes, sizeof(uint64_t));
875      Dst += sizeof(uint64_t);
876    }
877
878    memcpy(Dst + sizeof(uint64_t) - LoadBytes, Src, LoadBytes);
879  }
880}
881
882/// FIXME: document
883///
884void ExecutionEngine::LoadValueFromMemory(GenericValue &Result,
885                                          GenericValue *Ptr,
886                                          const Type *Ty) {
887  const unsigned LoadBytes = getTargetData()->getTypeStoreSize(Ty);
888
889  switch (Ty->getTypeID()) {
890  case Type::IntegerTyID:
891    // An APInt with all words initially zero.
892    Result.IntVal = APInt(cast<IntegerType>(Ty)->getBitWidth(), 0);
893    LoadIntFromMemory(Result.IntVal, (uint8_t*)Ptr, LoadBytes);
894    break;
895  case Type::FloatTyID:
896    Result.FloatVal = *((float*)Ptr);
897    break;
898  case Type::DoubleTyID:
899    Result.DoubleVal = *((double*)Ptr);
900    break;
901  case Type::PointerTyID:
902    Result.PointerVal = *((PointerTy*)Ptr);
903    break;
904  case Type::X86_FP80TyID: {
905    // This is endian dependent, but it will only work on x86 anyway.
906    // FIXME: Will not trap if loading a signaling NaN.
907    uint64_t y[2];
908    memcpy(y, Ptr, 10);
909    Result.IntVal = APInt(80, 2, y);
910    break;
911  }
912  default:
913    SmallString<256> Msg;
914    raw_svector_ostream OS(Msg);
915    OS << "Cannot load value of type " << *Ty << "!";
916    report_fatal_error(OS.str());
917  }
918}
919
920void ExecutionEngine::InitializeMemory(const Constant *Init, void *Addr) {
921  DEBUG(dbgs() << "JIT: Initializing " << Addr << " ");
922  DEBUG(Init->dump());
923  if (isa<UndefValue>(Init)) {
924    return;
925  } else if (const ConstantVector *CP = dyn_cast<ConstantVector>(Init)) {
926    unsigned ElementSize =
927      getTargetData()->getTypeAllocSize(CP->getType()->getElementType());
928    for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i)
929      InitializeMemory(CP->getOperand(i), (char*)Addr+i*ElementSize);
930    return;
931  } else if (isa<ConstantAggregateZero>(Init)) {
932    memset(Addr, 0, (size_t)getTargetData()->getTypeAllocSize(Init->getType()));
933    return;
934  } else if (const ConstantArray *CPA = dyn_cast<ConstantArray>(Init)) {
935    unsigned ElementSize =
936      getTargetData()->getTypeAllocSize(CPA->getType()->getElementType());
937    for (unsigned i = 0, e = CPA->getNumOperands(); i != e; ++i)
938      InitializeMemory(CPA->getOperand(i), (char*)Addr+i*ElementSize);
939    return;
940  } else if (const ConstantStruct *CPS = dyn_cast<ConstantStruct>(Init)) {
941    const StructLayout *SL =
942      getTargetData()->getStructLayout(cast<StructType>(CPS->getType()));
943    for (unsigned i = 0, e = CPS->getNumOperands(); i != e; ++i)
944      InitializeMemory(CPS->getOperand(i), (char*)Addr+SL->getElementOffset(i));
945    return;
946  } else if (Init->getType()->isFirstClassType()) {
947    GenericValue Val = getConstantValue(Init);
948    StoreValueToMemory(Val, (GenericValue*)Addr, Init->getType());
949    return;
950  }
951
952  DEBUG(dbgs() << "Bad Type: " << *Init->getType() << "\n");
953  llvm_unreachable("Unknown constant type to initialize memory with!");
954}
955
956/// EmitGlobals - Emit all of the global variables to memory, storing their
957/// addresses into GlobalAddress.  This must make sure to copy the contents of
958/// their initializers into the memory.
959void ExecutionEngine::emitGlobals() {
960  // Loop over all of the global variables in the program, allocating the memory
961  // to hold them.  If there is more than one module, do a prepass over globals
962  // to figure out how the different modules should link together.
963  std::map<std::pair<std::string, const Type*>,
964           const GlobalValue*> LinkedGlobalsMap;
965
966  if (Modules.size() != 1) {
967    for (unsigned m = 0, e = Modules.size(); m != e; ++m) {
968      Module &M = *Modules[m];
969      for (Module::const_global_iterator I = M.global_begin(),
970           E = M.global_end(); I != E; ++I) {
971        const GlobalValue *GV = I;
972        if (GV->hasLocalLinkage() || GV->isDeclaration() ||
973            GV->hasAppendingLinkage() || !GV->hasName())
974          continue;// Ignore external globals and globals with internal linkage.
975
976        const GlobalValue *&GVEntry =
977          LinkedGlobalsMap[std::make_pair(GV->getName(), GV->getType())];
978
979        // If this is the first time we've seen this global, it is the canonical
980        // version.
981        if (!GVEntry) {
982          GVEntry = GV;
983          continue;
984        }
985
986        // If the existing global is strong, never replace it.
987        if (GVEntry->hasExternalLinkage() ||
988            GVEntry->hasDLLImportLinkage() ||
989            GVEntry->hasDLLExportLinkage())
990          continue;
991
992        // Otherwise, we know it's linkonce/weak, replace it if this is a strong
993        // symbol.  FIXME is this right for common?
994        if (GV->hasExternalLinkage() || GVEntry->hasExternalWeakLinkage())
995          GVEntry = GV;
996      }
997    }
998  }
999
1000  std::vector<const GlobalValue*> NonCanonicalGlobals;
1001  for (unsigned m = 0, e = Modules.size(); m != e; ++m) {
1002    Module &M = *Modules[m];
1003    for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
1004         I != E; ++I) {
1005      // In the multi-module case, see what this global maps to.
1006      if (!LinkedGlobalsMap.empty()) {
1007        if (const GlobalValue *GVEntry =
1008              LinkedGlobalsMap[std::make_pair(I->getName(), I->getType())]) {
1009          // If something else is the canonical global, ignore this one.
1010          if (GVEntry != &*I) {
1011            NonCanonicalGlobals.push_back(I);
1012            continue;
1013          }
1014        }
1015      }
1016
1017      if (!I->isDeclaration()) {
1018        addGlobalMapping(I, getMemoryForGV(I));
1019      } else {
1020        // External variable reference. Try to use the dynamic loader to
1021        // get a pointer to it.
1022        if (void *SymAddr =
1023            sys::DynamicLibrary::SearchForAddressOfSymbol(I->getName()))
1024          addGlobalMapping(I, SymAddr);
1025        else {
1026          report_fatal_error("Could not resolve external global address: "
1027                            +I->getName());
1028        }
1029      }
1030    }
1031
1032    // If there are multiple modules, map the non-canonical globals to their
1033    // canonical location.
1034    if (!NonCanonicalGlobals.empty()) {
1035      for (unsigned i = 0, e = NonCanonicalGlobals.size(); i != e; ++i) {
1036        const GlobalValue *GV = NonCanonicalGlobals[i];
1037        const GlobalValue *CGV =
1038          LinkedGlobalsMap[std::make_pair(GV->getName(), GV->getType())];
1039        void *Ptr = getPointerToGlobalIfAvailable(CGV);
1040        assert(Ptr && "Canonical global wasn't codegen'd!");
1041        addGlobalMapping(GV, Ptr);
1042      }
1043    }
1044
1045    // Now that all of the globals are set up in memory, loop through them all
1046    // and initialize their contents.
1047    for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
1048         I != E; ++I) {
1049      if (!I->isDeclaration()) {
1050        if (!LinkedGlobalsMap.empty()) {
1051          if (const GlobalValue *GVEntry =
1052                LinkedGlobalsMap[std::make_pair(I->getName(), I->getType())])
1053            if (GVEntry != &*I)  // Not the canonical variable.
1054              continue;
1055        }
1056        EmitGlobalVariable(I);
1057      }
1058    }
1059  }
1060}
1061
1062// EmitGlobalVariable - This method emits the specified global variable to the
1063// address specified in GlobalAddresses, or allocates new memory if it's not
1064// already in the map.
1065void ExecutionEngine::EmitGlobalVariable(const GlobalVariable *GV) {
1066  void *GA = getPointerToGlobalIfAvailable(GV);
1067
1068  if (GA == 0) {
1069    // If it's not already specified, allocate memory for the global.
1070    GA = getMemoryForGV(GV);
1071    addGlobalMapping(GV, GA);
1072  }
1073
1074  // Don't initialize if it's thread local, let the client do it.
1075  if (!GV->isThreadLocal())
1076    InitializeMemory(GV->getInitializer(), GA);
1077
1078  const Type *ElTy = GV->getType()->getElementType();
1079  size_t GVSize = (size_t)getTargetData()->getTypeAllocSize(ElTy);
1080  NumInitBytes += (unsigned)GVSize;
1081  ++NumGlobals;
1082}
1083
1084ExecutionEngineState::ExecutionEngineState(ExecutionEngine &EE)
1085  : EE(EE), GlobalAddressMap(this) {
1086}
1087
1088sys::Mutex *
1089ExecutionEngineState::AddressMapConfig::getMutex(ExecutionEngineState *EES) {
1090  return &EES->EE.lock;
1091}
1092
1093void ExecutionEngineState::AddressMapConfig::onDelete(ExecutionEngineState *EES,
1094                                                      const GlobalValue *Old) {
1095  void *OldVal = EES->GlobalAddressMap.lookup(Old);
1096  EES->GlobalAddressReverseMap.erase(OldVal);
1097}
1098
1099void ExecutionEngineState::AddressMapConfig::onRAUW(ExecutionEngineState *,
1100                                                    const GlobalValue *,
1101                                                    const GlobalValue *) {
1102  assert(false && "The ExecutionEngine doesn't know how to handle a"
1103         " RAUW on a value it has a global mapping for.");
1104}
1105