ExecutionEngine.cpp revision fbd39762e9db897ffd8e30ce7d387715cba6d4c1
1//===-- ExecutionEngine.cpp - Common Implementation shared by EEs ---------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file defines the common interface used by the various execution engine 11// subclasses. 12// 13//===----------------------------------------------------------------------===// 14 15#define DEBUG_TYPE "jit" 16#include "llvm/ExecutionEngine/ExecutionEngine.h" 17 18#include "llvm/Constants.h" 19#include "llvm/DerivedTypes.h" 20#include "llvm/Module.h" 21#include "llvm/ModuleProvider.h" 22#include "llvm/ExecutionEngine/GenericValue.h" 23#include "llvm/ADT/Statistic.h" 24#include "llvm/Support/Debug.h" 25#include "llvm/Support/ErrorHandling.h" 26#include "llvm/Support/MutexGuard.h" 27#include "llvm/Support/ValueHandle.h" 28#include "llvm/Support/raw_ostream.h" 29#include "llvm/System/DynamicLibrary.h" 30#include "llvm/System/Host.h" 31#include "llvm/Target/TargetData.h" 32#include <cmath> 33#include <cstring> 34using namespace llvm; 35 36STATISTIC(NumInitBytes, "Number of bytes of global vars initialized"); 37STATISTIC(NumGlobals , "Number of global vars initialized"); 38 39ExecutionEngine *(*ExecutionEngine::JITCtor)(ModuleProvider *MP, 40 std::string *ErrorStr, 41 JITMemoryManager *JMM, 42 CodeGenOpt::Level OptLevel, 43 bool GVsWithCode) = 0; 44ExecutionEngine *(*ExecutionEngine::InterpCtor)(ModuleProvider *MP, 45 std::string *ErrorStr) = 0; 46ExecutionEngine::EERegisterFn ExecutionEngine::ExceptionTableRegister = 0; 47 48 49ExecutionEngine::ExecutionEngine(ModuleProvider *P) : LazyFunctionCreator(0) { 50 LazyCompilationDisabled = false; 51 GVCompilationDisabled = false; 52 SymbolSearchingDisabled = false; 53 DlsymStubsEnabled = false; 54 Modules.push_back(P); 55 assert(P && "ModuleProvider is null?"); 56} 57 58ExecutionEngine::~ExecutionEngine() { 59 clearAllGlobalMappings(); 60 for (unsigned i = 0, e = Modules.size(); i != e; ++i) 61 delete Modules[i]; 62} 63 64char* ExecutionEngine::getMemoryForGV(const GlobalVariable* GV) { 65 const Type *ElTy = GV->getType()->getElementType(); 66 size_t GVSize = (size_t)getTargetData()->getTypeAllocSize(ElTy); 67 return new char[GVSize]; 68} 69 70/// removeModuleProvider - Remove a ModuleProvider from the list of modules. 71/// Relases the Module from the ModuleProvider, materializing it in the 72/// process, and returns the materialized Module. 73Module* ExecutionEngine::removeModuleProvider(ModuleProvider *P, 74 std::string *ErrInfo) { 75 for(SmallVector<ModuleProvider *, 1>::iterator I = Modules.begin(), 76 E = Modules.end(); I != E; ++I) { 77 ModuleProvider *MP = *I; 78 if (MP == P) { 79 Modules.erase(I); 80 clearGlobalMappingsFromModule(MP->getModule()); 81 return MP->releaseModule(ErrInfo); 82 } 83 } 84 return NULL; 85} 86 87/// deleteModuleProvider - Remove a ModuleProvider from the list of modules, 88/// and deletes the ModuleProvider and owned Module. Avoids materializing 89/// the underlying module. 90void ExecutionEngine::deleteModuleProvider(ModuleProvider *P, 91 std::string *ErrInfo) { 92 for(SmallVector<ModuleProvider *, 1>::iterator I = Modules.begin(), 93 E = Modules.end(); I != E; ++I) { 94 ModuleProvider *MP = *I; 95 if (MP == P) { 96 Modules.erase(I); 97 clearGlobalMappingsFromModule(MP->getModule()); 98 delete MP; 99 return; 100 } 101 } 102} 103 104/// FindFunctionNamed - Search all of the active modules to find the one that 105/// defines FnName. This is very slow operation and shouldn't be used for 106/// general code. 107Function *ExecutionEngine::FindFunctionNamed(const char *FnName) { 108 for (unsigned i = 0, e = Modules.size(); i != e; ++i) { 109 if (Function *F = Modules[i]->getModule()->getFunction(FnName)) 110 return F; 111 } 112 return 0; 113} 114 115 116/// addGlobalMapping - Tell the execution engine that the specified global is 117/// at the specified location. This is used internally as functions are JIT'd 118/// and as global variables are laid out in memory. It can and should also be 119/// used by clients of the EE that want to have an LLVM global overlay 120/// existing data in memory. 121void ExecutionEngine::addGlobalMapping(const GlobalValue *GV, void *Addr) { 122 MutexGuard locked(lock); 123 124 DEBUG(errs() << "JIT: Map \'" << GV->getName() 125 << "\' to [" << Addr << "]\n";); 126 void *&CurVal = state.getGlobalAddressMap(locked)[GV]; 127 assert((CurVal == 0 || Addr == 0) && "GlobalMapping already established!"); 128 CurVal = Addr; 129 130 // If we are using the reverse mapping, add it too 131 if (!state.getGlobalAddressReverseMap(locked).empty()) { 132 AssertingVH<const GlobalValue> &V = 133 state.getGlobalAddressReverseMap(locked)[Addr]; 134 assert((V == 0 || GV == 0) && "GlobalMapping already established!"); 135 V = GV; 136 } 137} 138 139/// clearAllGlobalMappings - Clear all global mappings and start over again 140/// use in dynamic compilation scenarios when you want to move globals 141void ExecutionEngine::clearAllGlobalMappings() { 142 MutexGuard locked(lock); 143 144 state.getGlobalAddressMap(locked).clear(); 145 state.getGlobalAddressReverseMap(locked).clear(); 146} 147 148/// clearGlobalMappingsFromModule - Clear all global mappings that came from a 149/// particular module, because it has been removed from the JIT. 150void ExecutionEngine::clearGlobalMappingsFromModule(Module *M) { 151 MutexGuard locked(lock); 152 153 for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ++FI) { 154 state.getGlobalAddressMap(locked).erase(&*FI); 155 state.getGlobalAddressReverseMap(locked).erase(&*FI); 156 } 157 for (Module::global_iterator GI = M->global_begin(), GE = M->global_end(); 158 GI != GE; ++GI) { 159 state.getGlobalAddressMap(locked).erase(&*GI); 160 state.getGlobalAddressReverseMap(locked).erase(&*GI); 161 } 162} 163 164/// updateGlobalMapping - Replace an existing mapping for GV with a new 165/// address. This updates both maps as required. If "Addr" is null, the 166/// entry for the global is removed from the mappings. 167void *ExecutionEngine::updateGlobalMapping(const GlobalValue *GV, void *Addr) { 168 MutexGuard locked(lock); 169 170 std::map<AssertingVH<const GlobalValue>, void *> &Map = 171 state.getGlobalAddressMap(locked); 172 173 // Deleting from the mapping? 174 if (Addr == 0) { 175 std::map<AssertingVH<const GlobalValue>, void *>::iterator I = Map.find(GV); 176 void *OldVal; 177 if (I == Map.end()) 178 OldVal = 0; 179 else { 180 OldVal = I->second; 181 Map.erase(I); 182 } 183 184 if (!state.getGlobalAddressReverseMap(locked).empty()) 185 state.getGlobalAddressReverseMap(locked).erase(OldVal); 186 return OldVal; 187 } 188 189 void *&CurVal = Map[GV]; 190 void *OldVal = CurVal; 191 192 if (CurVal && !state.getGlobalAddressReverseMap(locked).empty()) 193 state.getGlobalAddressReverseMap(locked).erase(CurVal); 194 CurVal = Addr; 195 196 // If we are using the reverse mapping, add it too 197 if (!state.getGlobalAddressReverseMap(locked).empty()) { 198 AssertingVH<const GlobalValue> &V = 199 state.getGlobalAddressReverseMap(locked)[Addr]; 200 assert((V == 0 || GV == 0) && "GlobalMapping already established!"); 201 V = GV; 202 } 203 return OldVal; 204} 205 206/// getPointerToGlobalIfAvailable - This returns the address of the specified 207/// global value if it is has already been codegen'd, otherwise it returns null. 208/// 209void *ExecutionEngine::getPointerToGlobalIfAvailable(const GlobalValue *GV) { 210 MutexGuard locked(lock); 211 212 std::map<AssertingVH<const GlobalValue>, void*>::iterator I = 213 state.getGlobalAddressMap(locked).find(GV); 214 return I != state.getGlobalAddressMap(locked).end() ? I->second : 0; 215} 216 217/// getGlobalValueAtAddress - Return the LLVM global value object that starts 218/// at the specified address. 219/// 220const GlobalValue *ExecutionEngine::getGlobalValueAtAddress(void *Addr) { 221 MutexGuard locked(lock); 222 223 // If we haven't computed the reverse mapping yet, do so first. 224 if (state.getGlobalAddressReverseMap(locked).empty()) { 225 for (std::map<AssertingVH<const GlobalValue>, void *>::iterator 226 I = state.getGlobalAddressMap(locked).begin(), 227 E = state.getGlobalAddressMap(locked).end(); I != E; ++I) 228 state.getGlobalAddressReverseMap(locked).insert(std::make_pair(I->second, 229 I->first)); 230 } 231 232 std::map<void *, AssertingVH<const GlobalValue> >::iterator I = 233 state.getGlobalAddressReverseMap(locked).find(Addr); 234 return I != state.getGlobalAddressReverseMap(locked).end() ? I->second : 0; 235} 236 237// CreateArgv - Turn a vector of strings into a nice argv style array of 238// pointers to null terminated strings. 239// 240static void *CreateArgv(LLVMContext &C, ExecutionEngine *EE, 241 const std::vector<std::string> &InputArgv) { 242 unsigned PtrSize = EE->getTargetData()->getPointerSize(); 243 char *Result = new char[(InputArgv.size()+1)*PtrSize]; 244 245 DEBUG(errs() << "JIT: ARGV = " << (void*)Result << "\n"); 246 const Type *SBytePtr = PointerType::getUnqual(Type::getInt8Ty(C)); 247 248 for (unsigned i = 0; i != InputArgv.size(); ++i) { 249 unsigned Size = InputArgv[i].size()+1; 250 char *Dest = new char[Size]; 251 DEBUG(errs() << "JIT: ARGV[" << i << "] = " << (void*)Dest << "\n"); 252 253 std::copy(InputArgv[i].begin(), InputArgv[i].end(), Dest); 254 Dest[Size-1] = 0; 255 256 // Endian safe: Result[i] = (PointerTy)Dest; 257 EE->StoreValueToMemory(PTOGV(Dest), (GenericValue*)(Result+i*PtrSize), 258 SBytePtr); 259 } 260 261 // Null terminate it 262 EE->StoreValueToMemory(PTOGV(0), 263 (GenericValue*)(Result+InputArgv.size()*PtrSize), 264 SBytePtr); 265 return Result; 266} 267 268 269/// runStaticConstructorsDestructors - This method is used to execute all of 270/// the static constructors or destructors for a module, depending on the 271/// value of isDtors. 272void ExecutionEngine::runStaticConstructorsDestructors(Module *module, 273 bool isDtors) { 274 const char *Name = isDtors ? "llvm.global_dtors" : "llvm.global_ctors"; 275 276 // Execute global ctors/dtors for each module in the program. 277 278 GlobalVariable *GV = module->getNamedGlobal(Name); 279 280 // If this global has internal linkage, or if it has a use, then it must be 281 // an old-style (llvmgcc3) static ctor with __main linked in and in use. If 282 // this is the case, don't execute any of the global ctors, __main will do 283 // it. 284 if (!GV || GV->isDeclaration() || GV->hasLocalLinkage()) return; 285 286 // Should be an array of '{ int, void ()* }' structs. The first value is 287 // the init priority, which we ignore. 288 ConstantArray *InitList = dyn_cast<ConstantArray>(GV->getInitializer()); 289 if (!InitList) return; 290 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) 291 if (ConstantStruct *CS = 292 dyn_cast<ConstantStruct>(InitList->getOperand(i))) { 293 if (CS->getNumOperands() != 2) return; // Not array of 2-element structs. 294 295 Constant *FP = CS->getOperand(1); 296 if (FP->isNullValue()) 297 break; // Found a null terminator, exit. 298 299 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(FP)) 300 if (CE->isCast()) 301 FP = CE->getOperand(0); 302 if (Function *F = dyn_cast<Function>(FP)) { 303 // Execute the ctor/dtor function! 304 runFunction(F, std::vector<GenericValue>()); 305 } 306 } 307} 308 309/// runStaticConstructorsDestructors - This method is used to execute all of 310/// the static constructors or destructors for a program, depending on the 311/// value of isDtors. 312void ExecutionEngine::runStaticConstructorsDestructors(bool isDtors) { 313 // Execute global ctors/dtors for each module in the program. 314 for (unsigned m = 0, e = Modules.size(); m != e; ++m) 315 runStaticConstructorsDestructors(Modules[m]->getModule(), isDtors); 316} 317 318#ifndef NDEBUG 319/// isTargetNullPtr - Return whether the target pointer stored at Loc is null. 320static bool isTargetNullPtr(ExecutionEngine *EE, void *Loc) { 321 unsigned PtrSize = EE->getTargetData()->getPointerSize(); 322 for (unsigned i = 0; i < PtrSize; ++i) 323 if (*(i + (uint8_t*)Loc)) 324 return false; 325 return true; 326} 327#endif 328 329/// runFunctionAsMain - This is a helper function which wraps runFunction to 330/// handle the common task of starting up main with the specified argc, argv, 331/// and envp parameters. 332int ExecutionEngine::runFunctionAsMain(Function *Fn, 333 const std::vector<std::string> &argv, 334 const char * const * envp) { 335 std::vector<GenericValue> GVArgs; 336 GenericValue GVArgc; 337 GVArgc.IntVal = APInt(32, argv.size()); 338 339 // Check main() type 340 unsigned NumArgs = Fn->getFunctionType()->getNumParams(); 341 const FunctionType *FTy = Fn->getFunctionType(); 342 const Type* PPInt8Ty = 343 PointerType::getUnqual(PointerType::getUnqual( 344 Type::getInt8Ty(Fn->getContext()))); 345 switch (NumArgs) { 346 case 3: 347 if (FTy->getParamType(2) != PPInt8Ty) { 348 llvm_report_error("Invalid type for third argument of main() supplied"); 349 } 350 // FALLS THROUGH 351 case 2: 352 if (FTy->getParamType(1) != PPInt8Ty) { 353 llvm_report_error("Invalid type for second argument of main() supplied"); 354 } 355 // FALLS THROUGH 356 case 1: 357 if (FTy->getParamType(0) != Type::getInt32Ty(Fn->getContext())) { 358 llvm_report_error("Invalid type for first argument of main() supplied"); 359 } 360 // FALLS THROUGH 361 case 0: 362 if (!isa<IntegerType>(FTy->getReturnType()) && 363 FTy->getReturnType() != Type::getVoidTy(FTy->getContext())) { 364 llvm_report_error("Invalid return type of main() supplied"); 365 } 366 break; 367 default: 368 llvm_report_error("Invalid number of arguments of main() supplied"); 369 } 370 371 if (NumArgs) { 372 GVArgs.push_back(GVArgc); // Arg #0 = argc. 373 if (NumArgs > 1) { 374 // Arg #1 = argv. 375 GVArgs.push_back(PTOGV(CreateArgv(Fn->getContext(), this, argv))); 376 assert(!isTargetNullPtr(this, GVTOP(GVArgs[1])) && 377 "argv[0] was null after CreateArgv"); 378 if (NumArgs > 2) { 379 std::vector<std::string> EnvVars; 380 for (unsigned i = 0; envp[i]; ++i) 381 EnvVars.push_back(envp[i]); 382 // Arg #2 = envp. 383 GVArgs.push_back(PTOGV(CreateArgv(Fn->getContext(), this, EnvVars))); 384 } 385 } 386 } 387 return runFunction(Fn, GVArgs).IntVal.getZExtValue(); 388} 389 390/// If possible, create a JIT, unless the caller specifically requests an 391/// Interpreter or there's an error. If even an Interpreter cannot be created, 392/// NULL is returned. 393/// 394ExecutionEngine *ExecutionEngine::create(ModuleProvider *MP, 395 bool ForceInterpreter, 396 std::string *ErrorStr, 397 CodeGenOpt::Level OptLevel, 398 bool GVsWithCode) { 399 return EngineBuilder(MP) 400 .setEngineKind(ForceInterpreter 401 ? EngineKind::Interpreter 402 : EngineKind::JIT) 403 .setErrorStr(ErrorStr) 404 .setOptLevel(OptLevel) 405 .setAllocateGVsWithCode(GVsWithCode) 406 .create(); 407} 408 409ExecutionEngine *ExecutionEngine::create(Module *M) { 410 return EngineBuilder(M).create(); 411} 412 413/// EngineBuilder - Overloaded constructor that automatically creates an 414/// ExistingModuleProvider for an existing module. 415EngineBuilder::EngineBuilder(Module *m) : MP(new ExistingModuleProvider(m)) { 416 InitEngine(); 417} 418 419ExecutionEngine *EngineBuilder::create() { 420 // Make sure we can resolve symbols in the program as well. The zero arg 421 // to the function tells DynamicLibrary to load the program, not a library. 422 if (sys::DynamicLibrary::LoadLibraryPermanently(0, ErrorStr)) 423 return 0; 424 425 // If the user specified a memory manager but didn't specify which engine to 426 // create, we assume they only want the JIT, and we fail if they only want 427 // the interpreter. 428 if (JMM) { 429 if (WhichEngine & EngineKind::JIT) 430 WhichEngine = EngineKind::JIT; 431 else { 432 *ErrorStr = "Cannot create an interpreter with a memory manager."; 433 return 0; 434 } 435 } 436 437 // Unless the interpreter was explicitly selected or the JIT is not linked, 438 // try making a JIT. 439 if (WhichEngine & EngineKind::JIT) { 440 if (ExecutionEngine::JITCtor) { 441 ExecutionEngine *EE = 442 ExecutionEngine::JITCtor(MP, ErrorStr, JMM, OptLevel, 443 AllocateGVsWithCode); 444 if (EE) return EE; 445 } else { 446 *ErrorStr = "JIT has not been linked in."; 447 return 0; 448 } 449 } 450 451 // If we can't make a JIT and we didn't request one specifically, try making 452 // an interpreter instead. 453 if (WhichEngine & EngineKind::Interpreter) { 454 if (ExecutionEngine::InterpCtor) 455 return ExecutionEngine::InterpCtor(MP, ErrorStr); 456 *ErrorStr = "Interpreter has not been linked in."; 457 return 0; 458 } 459 460 return 0; 461} 462 463/// getPointerToGlobal - This returns the address of the specified global 464/// value. This may involve code generation if it's a function. 465/// 466void *ExecutionEngine::getPointerToGlobal(const GlobalValue *GV) { 467 if (Function *F = const_cast<Function*>(dyn_cast<Function>(GV))) 468 return getPointerToFunction(F); 469 470 MutexGuard locked(lock); 471 void *p = state.getGlobalAddressMap(locked)[GV]; 472 if (p) 473 return p; 474 475 // Global variable might have been added since interpreter started. 476 if (GlobalVariable *GVar = 477 const_cast<GlobalVariable *>(dyn_cast<GlobalVariable>(GV))) 478 EmitGlobalVariable(GVar); 479 else 480 llvm_unreachable("Global hasn't had an address allocated yet!"); 481 return state.getGlobalAddressMap(locked)[GV]; 482} 483 484/// This function converts a Constant* into a GenericValue. The interesting 485/// part is if C is a ConstantExpr. 486/// @brief Get a GenericValue for a Constant* 487GenericValue ExecutionEngine::getConstantValue(const Constant *C) { 488 // If its undefined, return the garbage. 489 if (isa<UndefValue>(C)) 490 return GenericValue(); 491 492 // If the value is a ConstantExpr 493 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 494 Constant *Op0 = CE->getOperand(0); 495 switch (CE->getOpcode()) { 496 case Instruction::GetElementPtr: { 497 // Compute the index 498 GenericValue Result = getConstantValue(Op0); 499 SmallVector<Value*, 8> Indices(CE->op_begin()+1, CE->op_end()); 500 uint64_t Offset = 501 TD->getIndexedOffset(Op0->getType(), &Indices[0], Indices.size()); 502 503 char* tmp = (char*) Result.PointerVal; 504 Result = PTOGV(tmp + Offset); 505 return Result; 506 } 507 case Instruction::Trunc: { 508 GenericValue GV = getConstantValue(Op0); 509 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); 510 GV.IntVal = GV.IntVal.trunc(BitWidth); 511 return GV; 512 } 513 case Instruction::ZExt: { 514 GenericValue GV = getConstantValue(Op0); 515 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); 516 GV.IntVal = GV.IntVal.zext(BitWidth); 517 return GV; 518 } 519 case Instruction::SExt: { 520 GenericValue GV = getConstantValue(Op0); 521 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); 522 GV.IntVal = GV.IntVal.sext(BitWidth); 523 return GV; 524 } 525 case Instruction::FPTrunc: { 526 // FIXME long double 527 GenericValue GV = getConstantValue(Op0); 528 GV.FloatVal = float(GV.DoubleVal); 529 return GV; 530 } 531 case Instruction::FPExt:{ 532 // FIXME long double 533 GenericValue GV = getConstantValue(Op0); 534 GV.DoubleVal = double(GV.FloatVal); 535 return GV; 536 } 537 case Instruction::UIToFP: { 538 GenericValue GV = getConstantValue(Op0); 539 if (CE->getType() == Type::getFloatTy(CE->getContext())) 540 GV.FloatVal = float(GV.IntVal.roundToDouble()); 541 else if (CE->getType() == Type::getDoubleTy(CE->getContext())) 542 GV.DoubleVal = GV.IntVal.roundToDouble(); 543 else if (CE->getType() == Type::getX86_FP80Ty(Op0->getContext())) { 544 const uint64_t zero[] = {0, 0}; 545 APFloat apf = APFloat(APInt(80, 2, zero)); 546 (void)apf.convertFromAPInt(GV.IntVal, 547 false, 548 APFloat::rmNearestTiesToEven); 549 GV.IntVal = apf.bitcastToAPInt(); 550 } 551 return GV; 552 } 553 case Instruction::SIToFP: { 554 GenericValue GV = getConstantValue(Op0); 555 if (CE->getType() == Type::getFloatTy(CE->getContext())) 556 GV.FloatVal = float(GV.IntVal.signedRoundToDouble()); 557 else if (CE->getType() == Type::getDoubleTy(CE->getContext())) 558 GV.DoubleVal = GV.IntVal.signedRoundToDouble(); 559 else if (CE->getType() == Type::getX86_FP80Ty(CE->getContext())) { 560 const uint64_t zero[] = { 0, 0}; 561 APFloat apf = APFloat(APInt(80, 2, zero)); 562 (void)apf.convertFromAPInt(GV.IntVal, 563 true, 564 APFloat::rmNearestTiesToEven); 565 GV.IntVal = apf.bitcastToAPInt(); 566 } 567 return GV; 568 } 569 case Instruction::FPToUI: // double->APInt conversion handles sign 570 case Instruction::FPToSI: { 571 GenericValue GV = getConstantValue(Op0); 572 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); 573 if (Op0->getType() == Type::getFloatTy(Op0->getContext())) 574 GV.IntVal = APIntOps::RoundFloatToAPInt(GV.FloatVal, BitWidth); 575 else if (Op0->getType() == Type::getDoubleTy(Op0->getContext())) 576 GV.IntVal = APIntOps::RoundDoubleToAPInt(GV.DoubleVal, BitWidth); 577 else if (Op0->getType() == Type::getX86_FP80Ty(Op0->getContext())) { 578 APFloat apf = APFloat(GV.IntVal); 579 uint64_t v; 580 bool ignored; 581 (void)apf.convertToInteger(&v, BitWidth, 582 CE->getOpcode()==Instruction::FPToSI, 583 APFloat::rmTowardZero, &ignored); 584 GV.IntVal = v; // endian? 585 } 586 return GV; 587 } 588 case Instruction::PtrToInt: { 589 GenericValue GV = getConstantValue(Op0); 590 uint32_t PtrWidth = TD->getPointerSizeInBits(); 591 GV.IntVal = APInt(PtrWidth, uintptr_t(GV.PointerVal)); 592 return GV; 593 } 594 case Instruction::IntToPtr: { 595 GenericValue GV = getConstantValue(Op0); 596 uint32_t PtrWidth = TD->getPointerSizeInBits(); 597 if (PtrWidth != GV.IntVal.getBitWidth()) 598 GV.IntVal = GV.IntVal.zextOrTrunc(PtrWidth); 599 assert(GV.IntVal.getBitWidth() <= 64 && "Bad pointer width"); 600 GV.PointerVal = PointerTy(uintptr_t(GV.IntVal.getZExtValue())); 601 return GV; 602 } 603 case Instruction::BitCast: { 604 GenericValue GV = getConstantValue(Op0); 605 const Type* DestTy = CE->getType(); 606 switch (Op0->getType()->getTypeID()) { 607 default: llvm_unreachable("Invalid bitcast operand"); 608 case Type::IntegerTyID: 609 assert(DestTy->isFloatingPoint() && "invalid bitcast"); 610 if (DestTy == Type::getFloatTy(Op0->getContext())) 611 GV.FloatVal = GV.IntVal.bitsToFloat(); 612 else if (DestTy == Type::getDoubleTy(DestTy->getContext())) 613 GV.DoubleVal = GV.IntVal.bitsToDouble(); 614 break; 615 case Type::FloatTyID: 616 assert(DestTy == Type::getInt32Ty(DestTy->getContext()) && 617 "Invalid bitcast"); 618 GV.IntVal.floatToBits(GV.FloatVal); 619 break; 620 case Type::DoubleTyID: 621 assert(DestTy == Type::getInt64Ty(DestTy->getContext()) && 622 "Invalid bitcast"); 623 GV.IntVal.doubleToBits(GV.DoubleVal); 624 break; 625 case Type::PointerTyID: 626 assert(isa<PointerType>(DestTy) && "Invalid bitcast"); 627 break; // getConstantValue(Op0) above already converted it 628 } 629 return GV; 630 } 631 case Instruction::Add: 632 case Instruction::FAdd: 633 case Instruction::Sub: 634 case Instruction::FSub: 635 case Instruction::Mul: 636 case Instruction::FMul: 637 case Instruction::UDiv: 638 case Instruction::SDiv: 639 case Instruction::URem: 640 case Instruction::SRem: 641 case Instruction::And: 642 case Instruction::Or: 643 case Instruction::Xor: { 644 GenericValue LHS = getConstantValue(Op0); 645 GenericValue RHS = getConstantValue(CE->getOperand(1)); 646 GenericValue GV; 647 switch (CE->getOperand(0)->getType()->getTypeID()) { 648 default: llvm_unreachable("Bad add type!"); 649 case Type::IntegerTyID: 650 switch (CE->getOpcode()) { 651 default: llvm_unreachable("Invalid integer opcode"); 652 case Instruction::Add: GV.IntVal = LHS.IntVal + RHS.IntVal; break; 653 case Instruction::Sub: GV.IntVal = LHS.IntVal - RHS.IntVal; break; 654 case Instruction::Mul: GV.IntVal = LHS.IntVal * RHS.IntVal; break; 655 case Instruction::UDiv:GV.IntVal = LHS.IntVal.udiv(RHS.IntVal); break; 656 case Instruction::SDiv:GV.IntVal = LHS.IntVal.sdiv(RHS.IntVal); break; 657 case Instruction::URem:GV.IntVal = LHS.IntVal.urem(RHS.IntVal); break; 658 case Instruction::SRem:GV.IntVal = LHS.IntVal.srem(RHS.IntVal); break; 659 case Instruction::And: GV.IntVal = LHS.IntVal & RHS.IntVal; break; 660 case Instruction::Or: GV.IntVal = LHS.IntVal | RHS.IntVal; break; 661 case Instruction::Xor: GV.IntVal = LHS.IntVal ^ RHS.IntVal; break; 662 } 663 break; 664 case Type::FloatTyID: 665 switch (CE->getOpcode()) { 666 default: llvm_unreachable("Invalid float opcode"); 667 case Instruction::FAdd: 668 GV.FloatVal = LHS.FloatVal + RHS.FloatVal; break; 669 case Instruction::FSub: 670 GV.FloatVal = LHS.FloatVal - RHS.FloatVal; break; 671 case Instruction::FMul: 672 GV.FloatVal = LHS.FloatVal * RHS.FloatVal; break; 673 case Instruction::FDiv: 674 GV.FloatVal = LHS.FloatVal / RHS.FloatVal; break; 675 case Instruction::FRem: 676 GV.FloatVal = ::fmodf(LHS.FloatVal,RHS.FloatVal); break; 677 } 678 break; 679 case Type::DoubleTyID: 680 switch (CE->getOpcode()) { 681 default: llvm_unreachable("Invalid double opcode"); 682 case Instruction::FAdd: 683 GV.DoubleVal = LHS.DoubleVal + RHS.DoubleVal; break; 684 case Instruction::FSub: 685 GV.DoubleVal = LHS.DoubleVal - RHS.DoubleVal; break; 686 case Instruction::FMul: 687 GV.DoubleVal = LHS.DoubleVal * RHS.DoubleVal; break; 688 case Instruction::FDiv: 689 GV.DoubleVal = LHS.DoubleVal / RHS.DoubleVal; break; 690 case Instruction::FRem: 691 GV.DoubleVal = ::fmod(LHS.DoubleVal,RHS.DoubleVal); break; 692 } 693 break; 694 case Type::X86_FP80TyID: 695 case Type::PPC_FP128TyID: 696 case Type::FP128TyID: { 697 APFloat apfLHS = APFloat(LHS.IntVal); 698 switch (CE->getOpcode()) { 699 default: llvm_unreachable("Invalid long double opcode");llvm_unreachable(0); 700 case Instruction::FAdd: 701 apfLHS.add(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven); 702 GV.IntVal = apfLHS.bitcastToAPInt(); 703 break; 704 case Instruction::FSub: 705 apfLHS.subtract(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven); 706 GV.IntVal = apfLHS.bitcastToAPInt(); 707 break; 708 case Instruction::FMul: 709 apfLHS.multiply(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven); 710 GV.IntVal = apfLHS.bitcastToAPInt(); 711 break; 712 case Instruction::FDiv: 713 apfLHS.divide(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven); 714 GV.IntVal = apfLHS.bitcastToAPInt(); 715 break; 716 case Instruction::FRem: 717 apfLHS.mod(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven); 718 GV.IntVal = apfLHS.bitcastToAPInt(); 719 break; 720 } 721 } 722 break; 723 } 724 return GV; 725 } 726 default: 727 break; 728 } 729 std::string msg; 730 raw_string_ostream Msg(msg); 731 Msg << "ConstantExpr not handled: " << *CE; 732 llvm_report_error(Msg.str()); 733 } 734 735 GenericValue Result; 736 switch (C->getType()->getTypeID()) { 737 case Type::FloatTyID: 738 Result.FloatVal = cast<ConstantFP>(C)->getValueAPF().convertToFloat(); 739 break; 740 case Type::DoubleTyID: 741 Result.DoubleVal = cast<ConstantFP>(C)->getValueAPF().convertToDouble(); 742 break; 743 case Type::X86_FP80TyID: 744 case Type::FP128TyID: 745 case Type::PPC_FP128TyID: 746 Result.IntVal = cast <ConstantFP>(C)->getValueAPF().bitcastToAPInt(); 747 break; 748 case Type::IntegerTyID: 749 Result.IntVal = cast<ConstantInt>(C)->getValue(); 750 break; 751 case Type::PointerTyID: 752 if (isa<ConstantPointerNull>(C)) 753 Result.PointerVal = 0; 754 else if (const Function *F = dyn_cast<Function>(C)) 755 Result = PTOGV(getPointerToFunctionOrStub(const_cast<Function*>(F))); 756 else if (const GlobalVariable* GV = dyn_cast<GlobalVariable>(C)) 757 Result = PTOGV(getOrEmitGlobalVariable(const_cast<GlobalVariable*>(GV))); 758 else 759 llvm_unreachable("Unknown constant pointer type!"); 760 break; 761 default: 762 std::string msg; 763 raw_string_ostream Msg(msg); 764 Msg << "ERROR: Constant unimplemented for type: " << *C->getType(); 765 llvm_report_error(Msg.str()); 766 } 767 return Result; 768} 769 770/// StoreIntToMemory - Fills the StoreBytes bytes of memory starting from Dst 771/// with the integer held in IntVal. 772static void StoreIntToMemory(const APInt &IntVal, uint8_t *Dst, 773 unsigned StoreBytes) { 774 assert((IntVal.getBitWidth()+7)/8 >= StoreBytes && "Integer too small!"); 775 uint8_t *Src = (uint8_t *)IntVal.getRawData(); 776 777 if (sys::isLittleEndianHost()) 778 // Little-endian host - the source is ordered from LSB to MSB. Order the 779 // destination from LSB to MSB: Do a straight copy. 780 memcpy(Dst, Src, StoreBytes); 781 else { 782 // Big-endian host - the source is an array of 64 bit words ordered from 783 // LSW to MSW. Each word is ordered from MSB to LSB. Order the destination 784 // from MSB to LSB: Reverse the word order, but not the bytes in a word. 785 while (StoreBytes > sizeof(uint64_t)) { 786 StoreBytes -= sizeof(uint64_t); 787 // May not be aligned so use memcpy. 788 memcpy(Dst + StoreBytes, Src, sizeof(uint64_t)); 789 Src += sizeof(uint64_t); 790 } 791 792 memcpy(Dst, Src + sizeof(uint64_t) - StoreBytes, StoreBytes); 793 } 794} 795 796/// StoreValueToMemory - Stores the data in Val of type Ty at address Ptr. Ptr 797/// is the address of the memory at which to store Val, cast to GenericValue *. 798/// It is not a pointer to a GenericValue containing the address at which to 799/// store Val. 800void ExecutionEngine::StoreValueToMemory(const GenericValue &Val, 801 GenericValue *Ptr, const Type *Ty) { 802 const unsigned StoreBytes = getTargetData()->getTypeStoreSize(Ty); 803 804 switch (Ty->getTypeID()) { 805 case Type::IntegerTyID: 806 StoreIntToMemory(Val.IntVal, (uint8_t*)Ptr, StoreBytes); 807 break; 808 case Type::FloatTyID: 809 *((float*)Ptr) = Val.FloatVal; 810 break; 811 case Type::DoubleTyID: 812 *((double*)Ptr) = Val.DoubleVal; 813 break; 814 case Type::X86_FP80TyID: 815 memcpy(Ptr, Val.IntVal.getRawData(), 10); 816 break; 817 case Type::PointerTyID: 818 // Ensure 64 bit target pointers are fully initialized on 32 bit hosts. 819 if (StoreBytes != sizeof(PointerTy)) 820 memset(Ptr, 0, StoreBytes); 821 822 *((PointerTy*)Ptr) = Val.PointerVal; 823 break; 824 default: 825 errs() << "Cannot store value of type " << *Ty << "!\n"; 826 } 827 828 if (sys::isLittleEndianHost() != getTargetData()->isLittleEndian()) 829 // Host and target are different endian - reverse the stored bytes. 830 std::reverse((uint8_t*)Ptr, StoreBytes + (uint8_t*)Ptr); 831} 832 833/// LoadIntFromMemory - Loads the integer stored in the LoadBytes bytes starting 834/// from Src into IntVal, which is assumed to be wide enough and to hold zero. 835static void LoadIntFromMemory(APInt &IntVal, uint8_t *Src, unsigned LoadBytes) { 836 assert((IntVal.getBitWidth()+7)/8 >= LoadBytes && "Integer too small!"); 837 uint8_t *Dst = (uint8_t *)IntVal.getRawData(); 838 839 if (sys::isLittleEndianHost()) 840 // Little-endian host - the destination must be ordered from LSB to MSB. 841 // The source is ordered from LSB to MSB: Do a straight copy. 842 memcpy(Dst, Src, LoadBytes); 843 else { 844 // Big-endian - the destination is an array of 64 bit words ordered from 845 // LSW to MSW. Each word must be ordered from MSB to LSB. The source is 846 // ordered from MSB to LSB: Reverse the word order, but not the bytes in 847 // a word. 848 while (LoadBytes > sizeof(uint64_t)) { 849 LoadBytes -= sizeof(uint64_t); 850 // May not be aligned so use memcpy. 851 memcpy(Dst, Src + LoadBytes, sizeof(uint64_t)); 852 Dst += sizeof(uint64_t); 853 } 854 855 memcpy(Dst + sizeof(uint64_t) - LoadBytes, Src, LoadBytes); 856 } 857} 858 859/// FIXME: document 860/// 861void ExecutionEngine::LoadValueFromMemory(GenericValue &Result, 862 GenericValue *Ptr, 863 const Type *Ty) { 864 const unsigned LoadBytes = getTargetData()->getTypeStoreSize(Ty); 865 866 switch (Ty->getTypeID()) { 867 case Type::IntegerTyID: 868 // An APInt with all words initially zero. 869 Result.IntVal = APInt(cast<IntegerType>(Ty)->getBitWidth(), 0); 870 LoadIntFromMemory(Result.IntVal, (uint8_t*)Ptr, LoadBytes); 871 break; 872 case Type::FloatTyID: 873 Result.FloatVal = *((float*)Ptr); 874 break; 875 case Type::DoubleTyID: 876 Result.DoubleVal = *((double*)Ptr); 877 break; 878 case Type::PointerTyID: 879 Result.PointerVal = *((PointerTy*)Ptr); 880 break; 881 case Type::X86_FP80TyID: { 882 // This is endian dependent, but it will only work on x86 anyway. 883 // FIXME: Will not trap if loading a signaling NaN. 884 uint64_t y[2]; 885 memcpy(y, Ptr, 10); 886 Result.IntVal = APInt(80, 2, y); 887 break; 888 } 889 default: 890 std::string msg; 891 raw_string_ostream Msg(msg); 892 Msg << "Cannot load value of type " << *Ty << "!"; 893 llvm_report_error(Msg.str()); 894 } 895} 896 897// InitializeMemory - Recursive function to apply a Constant value into the 898// specified memory location... 899// 900void ExecutionEngine::InitializeMemory(const Constant *Init, void *Addr) { 901 DEBUG(errs() << "JIT: Initializing " << Addr << " "); 902 DEBUG(Init->dump()); 903 if (isa<UndefValue>(Init)) { 904 return; 905 } else if (const ConstantVector *CP = dyn_cast<ConstantVector>(Init)) { 906 unsigned ElementSize = 907 getTargetData()->getTypeAllocSize(CP->getType()->getElementType()); 908 for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i) 909 InitializeMemory(CP->getOperand(i), (char*)Addr+i*ElementSize); 910 return; 911 } else if (isa<ConstantAggregateZero>(Init)) { 912 memset(Addr, 0, (size_t)getTargetData()->getTypeAllocSize(Init->getType())); 913 return; 914 } else if (const ConstantArray *CPA = dyn_cast<ConstantArray>(Init)) { 915 unsigned ElementSize = 916 getTargetData()->getTypeAllocSize(CPA->getType()->getElementType()); 917 for (unsigned i = 0, e = CPA->getNumOperands(); i != e; ++i) 918 InitializeMemory(CPA->getOperand(i), (char*)Addr+i*ElementSize); 919 return; 920 } else if (const ConstantStruct *CPS = dyn_cast<ConstantStruct>(Init)) { 921 const StructLayout *SL = 922 getTargetData()->getStructLayout(cast<StructType>(CPS->getType())); 923 for (unsigned i = 0, e = CPS->getNumOperands(); i != e; ++i) 924 InitializeMemory(CPS->getOperand(i), (char*)Addr+SL->getElementOffset(i)); 925 return; 926 } else if (Init->getType()->isFirstClassType()) { 927 GenericValue Val = getConstantValue(Init); 928 StoreValueToMemory(Val, (GenericValue*)Addr, Init->getType()); 929 return; 930 } 931 932 errs() << "Bad Type: " << *Init->getType() << "\n"; 933 llvm_unreachable("Unknown constant type to initialize memory with!"); 934} 935 936/// EmitGlobals - Emit all of the global variables to memory, storing their 937/// addresses into GlobalAddress. This must make sure to copy the contents of 938/// their initializers into the memory. 939/// 940void ExecutionEngine::emitGlobals() { 941 942 // Loop over all of the global variables in the program, allocating the memory 943 // to hold them. If there is more than one module, do a prepass over globals 944 // to figure out how the different modules should link together. 945 // 946 std::map<std::pair<std::string, const Type*>, 947 const GlobalValue*> LinkedGlobalsMap; 948 949 if (Modules.size() != 1) { 950 for (unsigned m = 0, e = Modules.size(); m != e; ++m) { 951 Module &M = *Modules[m]->getModule(); 952 for (Module::const_global_iterator I = M.global_begin(), 953 E = M.global_end(); I != E; ++I) { 954 const GlobalValue *GV = I; 955 if (GV->hasLocalLinkage() || GV->isDeclaration() || 956 GV->hasAppendingLinkage() || !GV->hasName()) 957 continue;// Ignore external globals and globals with internal linkage. 958 959 const GlobalValue *&GVEntry = 960 LinkedGlobalsMap[std::make_pair(GV->getName(), GV->getType())]; 961 962 // If this is the first time we've seen this global, it is the canonical 963 // version. 964 if (!GVEntry) { 965 GVEntry = GV; 966 continue; 967 } 968 969 // If the existing global is strong, never replace it. 970 if (GVEntry->hasExternalLinkage() || 971 GVEntry->hasDLLImportLinkage() || 972 GVEntry->hasDLLExportLinkage()) 973 continue; 974 975 // Otherwise, we know it's linkonce/weak, replace it if this is a strong 976 // symbol. FIXME is this right for common? 977 if (GV->hasExternalLinkage() || GVEntry->hasExternalWeakLinkage()) 978 GVEntry = GV; 979 } 980 } 981 } 982 983 std::vector<const GlobalValue*> NonCanonicalGlobals; 984 for (unsigned m = 0, e = Modules.size(); m != e; ++m) { 985 Module &M = *Modules[m]->getModule(); 986 for (Module::const_global_iterator I = M.global_begin(), E = M.global_end(); 987 I != E; ++I) { 988 // In the multi-module case, see what this global maps to. 989 if (!LinkedGlobalsMap.empty()) { 990 if (const GlobalValue *GVEntry = 991 LinkedGlobalsMap[std::make_pair(I->getName(), I->getType())]) { 992 // If something else is the canonical global, ignore this one. 993 if (GVEntry != &*I) { 994 NonCanonicalGlobals.push_back(I); 995 continue; 996 } 997 } 998 } 999 1000 if (!I->isDeclaration()) { 1001 addGlobalMapping(I, getMemoryForGV(I)); 1002 } else { 1003 // External variable reference. Try to use the dynamic loader to 1004 // get a pointer to it. 1005 if (void *SymAddr = 1006 sys::DynamicLibrary::SearchForAddressOfSymbol(I->getName())) 1007 addGlobalMapping(I, SymAddr); 1008 else { 1009 llvm_report_error("Could not resolve external global address: " 1010 +I->getName()); 1011 } 1012 } 1013 } 1014 1015 // If there are multiple modules, map the non-canonical globals to their 1016 // canonical location. 1017 if (!NonCanonicalGlobals.empty()) { 1018 for (unsigned i = 0, e = NonCanonicalGlobals.size(); i != e; ++i) { 1019 const GlobalValue *GV = NonCanonicalGlobals[i]; 1020 const GlobalValue *CGV = 1021 LinkedGlobalsMap[std::make_pair(GV->getName(), GV->getType())]; 1022 void *Ptr = getPointerToGlobalIfAvailable(CGV); 1023 assert(Ptr && "Canonical global wasn't codegen'd!"); 1024 addGlobalMapping(GV, Ptr); 1025 } 1026 } 1027 1028 // Now that all of the globals are set up in memory, loop through them all 1029 // and initialize their contents. 1030 for (Module::const_global_iterator I = M.global_begin(), E = M.global_end(); 1031 I != E; ++I) { 1032 if (!I->isDeclaration()) { 1033 if (!LinkedGlobalsMap.empty()) { 1034 if (const GlobalValue *GVEntry = 1035 LinkedGlobalsMap[std::make_pair(I->getName(), I->getType())]) 1036 if (GVEntry != &*I) // Not the canonical variable. 1037 continue; 1038 } 1039 EmitGlobalVariable(I); 1040 } 1041 } 1042 } 1043} 1044 1045// EmitGlobalVariable - This method emits the specified global variable to the 1046// address specified in GlobalAddresses, or allocates new memory if it's not 1047// already in the map. 1048void ExecutionEngine::EmitGlobalVariable(const GlobalVariable *GV) { 1049 void *GA = getPointerToGlobalIfAvailable(GV); 1050 1051 if (GA == 0) { 1052 // If it's not already specified, allocate memory for the global. 1053 GA = getMemoryForGV(GV); 1054 addGlobalMapping(GV, GA); 1055 } 1056 1057 // Don't initialize if it's thread local, let the client do it. 1058 if (!GV->isThreadLocal()) 1059 InitializeMemory(GV->getInitializer(), GA); 1060 1061 const Type *ElTy = GV->getType()->getElementType(); 1062 size_t GVSize = (size_t)getTargetData()->getTypeAllocSize(ElTy); 1063 NumInitBytes += (unsigned)GVSize; 1064 ++NumGlobals; 1065} 1066