ARMAsmParser.cpp revision 706d946cfe44fa93f482c3a56ed42d52ca81b257
1//===-- ARMAsmParser.cpp - Parse ARM assembly to MCInst instructions ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9
10#include "ARM.h"
11#include "ARMAddressingModes.h"
12#include "ARMMCExpr.h"
13#include "ARMBaseRegisterInfo.h"
14#include "ARMSubtarget.h"
15#include "llvm/MC/MCParser/MCAsmLexer.h"
16#include "llvm/MC/MCParser/MCAsmParser.h"
17#include "llvm/MC/MCParser/MCParsedAsmOperand.h"
18#include "llvm/MC/MCContext.h"
19#include "llvm/MC/MCStreamer.h"
20#include "llvm/MC/MCExpr.h"
21#include "llvm/MC/MCInst.h"
22#include "llvm/Target/TargetRegistry.h"
23#include "llvm/Target/TargetAsmParser.h"
24#include "llvm/Support/SourceMgr.h"
25#include "llvm/Support/raw_ostream.h"
26#include "llvm/ADT/SmallVector.h"
27#include "llvm/ADT/StringExtras.h"
28#include "llvm/ADT/StringSwitch.h"
29#include "llvm/ADT/Twine.h"
30using namespace llvm;
31
32/// Shift types used for register controlled shifts in ARM memory addressing.
33enum ShiftType {
34  Lsl,
35  Lsr,
36  Asr,
37  Ror,
38  Rrx
39};
40
41namespace {
42
43class ARMOperand;
44
45class ARMAsmParser : public TargetAsmParser {
46  MCAsmParser &Parser;
47  TargetMachine &TM;
48
49  MCAsmParser &getParser() const { return Parser; }
50  MCAsmLexer &getLexer() const { return Parser.getLexer(); }
51
52  void Warning(SMLoc L, const Twine &Msg) { Parser.Warning(L, Msg); }
53  bool Error(SMLoc L, const Twine &Msg) { return Parser.Error(L, Msg); }
54
55  int TryParseRegister();
56  virtual bool ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc);
57  bool TryParseRegisterWithWriteBack(SmallVectorImpl<MCParsedAsmOperand*> &);
58  bool ParseCoprocNumOperand(SmallVectorImpl<MCParsedAsmOperand*>&);
59  bool ParseCoprocRegOperand(SmallVectorImpl<MCParsedAsmOperand*>&);
60  bool ParseRegisterList(SmallVectorImpl<MCParsedAsmOperand*> &);
61  bool ParseMemBarrierOptOperand(SmallVectorImpl<MCParsedAsmOperand*> &);
62  bool ParseMemory(SmallVectorImpl<MCParsedAsmOperand*> &);
63  bool ParseOperand(SmallVectorImpl<MCParsedAsmOperand*> &, StringRef Mnemonic);
64  bool ParsePrefix(ARMMCExpr::VariantKind &RefKind);
65  const MCExpr *ApplyPrefixToExpr(const MCExpr *E,
66                                  MCSymbolRefExpr::VariantKind Variant);
67
68
69  bool ParseMemoryOffsetReg(bool &Negative,
70                            bool &OffsetRegShifted,
71                            enum ShiftType &ShiftType,
72                            const MCExpr *&ShiftAmount,
73                            const MCExpr *&Offset,
74                            bool &OffsetIsReg,
75                            int &OffsetRegNum,
76                            SMLoc &E);
77  bool ParseShift(enum ShiftType &St, const MCExpr *&ShiftAmount, SMLoc &E);
78  bool ParseDirectiveWord(unsigned Size, SMLoc L);
79  bool ParseDirectiveThumb(SMLoc L);
80  bool ParseDirectiveThumbFunc(SMLoc L);
81  bool ParseDirectiveCode(SMLoc L);
82  bool ParseDirectiveSyntax(SMLoc L);
83
84  bool MatchAndEmitInstruction(SMLoc IDLoc,
85                               SmallVectorImpl<MCParsedAsmOperand*> &Operands,
86                               MCStreamer &Out);
87  void GetMnemonicAcceptInfo(StringRef Mnemonic, bool &CanAcceptCarrySet,
88                             bool &CanAcceptPredicationCode);
89
90  /// @name Auto-generated Match Functions
91  /// {
92
93#define GET_ASSEMBLER_HEADER
94#include "ARMGenAsmMatcher.inc"
95
96  /// }
97
98public:
99  ARMAsmParser(const Target &T, MCAsmParser &_Parser, TargetMachine &_TM)
100    : TargetAsmParser(T), Parser(_Parser), TM(_TM) {
101      // Initialize the set of available features.
102      setAvailableFeatures(ComputeAvailableFeatures(
103          &TM.getSubtarget<ARMSubtarget>()));
104    }
105
106  virtual bool ParseInstruction(StringRef Name, SMLoc NameLoc,
107                                SmallVectorImpl<MCParsedAsmOperand*> &Operands);
108  virtual bool ParseDirective(AsmToken DirectiveID);
109};
110} // end anonymous namespace
111
112namespace {
113
114/// ARMOperand - Instances of this class represent a parsed ARM machine
115/// instruction.
116class ARMOperand : public MCParsedAsmOperand {
117  enum KindTy {
118    CondCode,
119    CCOut,
120    CoprocNum,
121    CoprocReg,
122    Immediate,
123    MemBarrierOpt,
124    Memory,
125    Register,
126    RegisterList,
127    DPRRegisterList,
128    SPRRegisterList,
129    Token
130  } Kind;
131
132  SMLoc StartLoc, EndLoc;
133  SmallVector<unsigned, 8> Registers;
134
135  union {
136    struct {
137      ARMCC::CondCodes Val;
138    } CC;
139
140    struct {
141      ARM_MB::MemBOpt Val;
142    } MBOpt;
143
144    struct {
145      unsigned Val;
146    } Cop;
147
148    struct {
149      const char *Data;
150      unsigned Length;
151    } Tok;
152
153    struct {
154      unsigned RegNum;
155    } Reg;
156
157    struct {
158      const MCExpr *Val;
159    } Imm;
160
161    /// Combined record for all forms of ARM address expressions.
162    struct {
163      unsigned BaseRegNum;
164      union {
165        unsigned RegNum;     ///< Offset register num, when OffsetIsReg.
166        const MCExpr *Value; ///< Offset value, when !OffsetIsReg.
167      } Offset;
168      const MCExpr *ShiftAmount;     // used when OffsetRegShifted is true
169      enum ShiftType ShiftType;      // used when OffsetRegShifted is true
170      unsigned OffsetRegShifted : 1; // only used when OffsetIsReg is true
171      unsigned Preindexed       : 1;
172      unsigned Postindexed      : 1;
173      unsigned OffsetIsReg      : 1;
174      unsigned Negative         : 1; // only used when OffsetIsReg is true
175      unsigned Writeback        : 1;
176    } Mem;
177  };
178
179  ARMOperand(KindTy K) : MCParsedAsmOperand(), Kind(K) {}
180public:
181  ARMOperand(const ARMOperand &o) : MCParsedAsmOperand() {
182    Kind = o.Kind;
183    StartLoc = o.StartLoc;
184    EndLoc = o.EndLoc;
185    switch (Kind) {
186    case CondCode:
187      CC = o.CC;
188      break;
189    case Token:
190      Tok = o.Tok;
191      break;
192    case CCOut:
193    case Register:
194      Reg = o.Reg;
195      break;
196    case RegisterList:
197    case DPRRegisterList:
198    case SPRRegisterList:
199      Registers = o.Registers;
200      break;
201    case CoprocNum:
202    case CoprocReg:
203      Cop = o.Cop;
204      break;
205    case Immediate:
206      Imm = o.Imm;
207      break;
208    case MemBarrierOpt:
209      MBOpt = o.MBOpt;
210      break;
211    case Memory:
212      Mem = o.Mem;
213      break;
214    }
215  }
216
217  /// getStartLoc - Get the location of the first token of this operand.
218  SMLoc getStartLoc() const { return StartLoc; }
219  /// getEndLoc - Get the location of the last token of this operand.
220  SMLoc getEndLoc() const { return EndLoc; }
221
222  ARMCC::CondCodes getCondCode() const {
223    assert(Kind == CondCode && "Invalid access!");
224    return CC.Val;
225  }
226
227  unsigned getCoproc() const {
228    assert((Kind == CoprocNum || Kind == CoprocReg) && "Invalid access!");
229    return Cop.Val;
230  }
231
232  StringRef getToken() const {
233    assert(Kind == Token && "Invalid access!");
234    return StringRef(Tok.Data, Tok.Length);
235  }
236
237  unsigned getReg() const {
238    assert((Kind == Register || Kind == CCOut) && "Invalid access!");
239    return Reg.RegNum;
240  }
241
242  const SmallVectorImpl<unsigned> &getRegList() const {
243    assert((Kind == RegisterList || Kind == DPRRegisterList ||
244            Kind == SPRRegisterList) && "Invalid access!");
245    return Registers;
246  }
247
248  const MCExpr *getImm() const {
249    assert(Kind == Immediate && "Invalid access!");
250    return Imm.Val;
251  }
252
253  ARM_MB::MemBOpt getMemBarrierOpt() const {
254    assert(Kind == MemBarrierOpt && "Invalid access!");
255    return MBOpt.Val;
256  }
257
258  /// @name Memory Operand Accessors
259  /// @{
260
261  unsigned getMemBaseRegNum() const {
262    return Mem.BaseRegNum;
263  }
264  unsigned getMemOffsetRegNum() const {
265    assert(Mem.OffsetIsReg && "Invalid access!");
266    return Mem.Offset.RegNum;
267  }
268  const MCExpr *getMemOffset() const {
269    assert(!Mem.OffsetIsReg && "Invalid access!");
270    return Mem.Offset.Value;
271  }
272  unsigned getMemOffsetRegShifted() const {
273    assert(Mem.OffsetIsReg && "Invalid access!");
274    return Mem.OffsetRegShifted;
275  }
276  const MCExpr *getMemShiftAmount() const {
277    assert(Mem.OffsetIsReg && Mem.OffsetRegShifted && "Invalid access!");
278    return Mem.ShiftAmount;
279  }
280  enum ShiftType getMemShiftType() const {
281    assert(Mem.OffsetIsReg && Mem.OffsetRegShifted && "Invalid access!");
282    return Mem.ShiftType;
283  }
284  bool getMemPreindexed() const { return Mem.Preindexed; }
285  bool getMemPostindexed() const { return Mem.Postindexed; }
286  bool getMemOffsetIsReg() const { return Mem.OffsetIsReg; }
287  bool getMemNegative() const { return Mem.Negative; }
288  bool getMemWriteback() const { return Mem.Writeback; }
289
290  /// @}
291
292  bool isCoprocNum() const { return Kind == CoprocNum; }
293  bool isCoprocReg() const { return Kind == CoprocReg; }
294  bool isCondCode() const { return Kind == CondCode; }
295  bool isCCOut() const { return Kind == CCOut; }
296  bool isImm() const { return Kind == Immediate; }
297  bool isReg() const { return Kind == Register; }
298  bool isRegList() const { return Kind == RegisterList; }
299  bool isDPRRegList() const { return Kind == DPRRegisterList; }
300  bool isSPRRegList() const { return Kind == SPRRegisterList; }
301  bool isToken() const { return Kind == Token; }
302  bool isMemBarrierOpt() const { return Kind == MemBarrierOpt; }
303  bool isMemory() const { return Kind == Memory; }
304  bool isMemMode5() const {
305    if (!isMemory() || getMemOffsetIsReg() || getMemWriteback() ||
306        getMemNegative())
307      return false;
308
309    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getMemOffset());
310    if (!CE) return false;
311
312    // The offset must be a multiple of 4 in the range 0-1020.
313    int64_t Value = CE->getValue();
314    return ((Value & 0x3) == 0 && Value <= 1020 && Value >= -1020);
315  }
316  bool isMemModeRegThumb() const {
317    if (!isMemory() || !getMemOffsetIsReg() || getMemWriteback())
318      return false;
319    return true;
320  }
321  bool isMemModeImmThumb() const {
322    if (!isMemory() || getMemOffsetIsReg() || getMemWriteback())
323      return false;
324
325    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getMemOffset());
326    if (!CE) return false;
327
328    // The offset must be a multiple of 4 in the range 0-124.
329    uint64_t Value = CE->getValue();
330    return ((Value & 0x3) == 0 && Value <= 124);
331  }
332
333  void addExpr(MCInst &Inst, const MCExpr *Expr) const {
334    // Add as immediates when possible.  Null MCExpr = 0.
335    if (Expr == 0)
336      Inst.addOperand(MCOperand::CreateImm(0));
337    else if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr))
338      Inst.addOperand(MCOperand::CreateImm(CE->getValue()));
339    else
340      Inst.addOperand(MCOperand::CreateExpr(Expr));
341  }
342
343  void addCondCodeOperands(MCInst &Inst, unsigned N) const {
344    assert(N == 2 && "Invalid number of operands!");
345    Inst.addOperand(MCOperand::CreateImm(unsigned(getCondCode())));
346    unsigned RegNum = getCondCode() == ARMCC::AL ? 0: ARM::CPSR;
347    Inst.addOperand(MCOperand::CreateReg(RegNum));
348  }
349
350  void addCoprocNumOperands(MCInst &Inst, unsigned N) const {
351    assert(N == 1 && "Invalid number of operands!");
352    Inst.addOperand(MCOperand::CreateImm(getCoproc()));
353  }
354
355  void addCoprocRegOperands(MCInst &Inst, unsigned N) const {
356    assert(N == 1 && "Invalid number of operands!");
357    Inst.addOperand(MCOperand::CreateImm(getCoproc()));
358  }
359
360  void addCCOutOperands(MCInst &Inst, unsigned N) const {
361    assert(N == 1 && "Invalid number of operands!");
362    Inst.addOperand(MCOperand::CreateReg(getReg()));
363  }
364
365  void addRegOperands(MCInst &Inst, unsigned N) const {
366    assert(N == 1 && "Invalid number of operands!");
367    Inst.addOperand(MCOperand::CreateReg(getReg()));
368  }
369
370  void addRegListOperands(MCInst &Inst, unsigned N) const {
371    assert(N == 1 && "Invalid number of operands!");
372    const SmallVectorImpl<unsigned> &RegList = getRegList();
373    for (SmallVectorImpl<unsigned>::const_iterator
374           I = RegList.begin(), E = RegList.end(); I != E; ++I)
375      Inst.addOperand(MCOperand::CreateReg(*I));
376  }
377
378  void addDPRRegListOperands(MCInst &Inst, unsigned N) const {
379    addRegListOperands(Inst, N);
380  }
381
382  void addSPRRegListOperands(MCInst &Inst, unsigned N) const {
383    addRegListOperands(Inst, N);
384  }
385
386  void addImmOperands(MCInst &Inst, unsigned N) const {
387    assert(N == 1 && "Invalid number of operands!");
388    addExpr(Inst, getImm());
389  }
390
391  void addMemBarrierOptOperands(MCInst &Inst, unsigned N) const {
392    assert(N == 1 && "Invalid number of operands!");
393    Inst.addOperand(MCOperand::CreateImm(unsigned(getMemBarrierOpt())));
394  }
395
396  void addMemMode5Operands(MCInst &Inst, unsigned N) const {
397    assert(N == 2 && isMemMode5() && "Invalid number of operands!");
398
399    Inst.addOperand(MCOperand::CreateReg(getMemBaseRegNum()));
400    assert(!getMemOffsetIsReg() && "Invalid mode 5 operand");
401
402    // FIXME: #-0 is encoded differently than #0. Does the parser preserve
403    // the difference?
404    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getMemOffset());
405    assert(CE && "Non-constant mode 5 offset operand!");
406
407    // The MCInst offset operand doesn't include the low two bits (like
408    // the instruction encoding).
409    int64_t Offset = CE->getValue() / 4;
410    if (Offset >= 0)
411      Inst.addOperand(MCOperand::CreateImm(ARM_AM::getAM5Opc(ARM_AM::add,
412                                                             Offset)));
413    else
414      Inst.addOperand(MCOperand::CreateImm(ARM_AM::getAM5Opc(ARM_AM::sub,
415                                                             -Offset)));
416  }
417
418  void addMemModeRegThumbOperands(MCInst &Inst, unsigned N) const {
419    assert(N == 2 && isMemModeRegThumb() && "Invalid number of operands!");
420    Inst.addOperand(MCOperand::CreateReg(getMemBaseRegNum()));
421    Inst.addOperand(MCOperand::CreateReg(getMemOffsetRegNum()));
422  }
423
424  void addMemModeImmThumbOperands(MCInst &Inst, unsigned N) const {
425    assert(N == 2 && isMemModeImmThumb() && "Invalid number of operands!");
426    Inst.addOperand(MCOperand::CreateReg(getMemBaseRegNum()));
427    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getMemOffset());
428    assert(CE && "Non-constant mode offset operand!");
429    Inst.addOperand(MCOperand::CreateImm(CE->getValue()));
430  }
431
432  virtual void dump(raw_ostream &OS) const;
433
434  static ARMOperand *CreateCondCode(ARMCC::CondCodes CC, SMLoc S) {
435    ARMOperand *Op = new ARMOperand(CondCode);
436    Op->CC.Val = CC;
437    Op->StartLoc = S;
438    Op->EndLoc = S;
439    return Op;
440  }
441
442  static ARMOperand *CreateCoprocNum(unsigned CopVal, SMLoc S) {
443    ARMOperand *Op = new ARMOperand(CoprocNum);
444    Op->Cop.Val = CopVal;
445    Op->StartLoc = S;
446    Op->EndLoc = S;
447    return Op;
448  }
449
450  static ARMOperand *CreateCoprocReg(unsigned CopVal, SMLoc S) {
451    ARMOperand *Op = new ARMOperand(CoprocReg);
452    Op->Cop.Val = CopVal;
453    Op->StartLoc = S;
454    Op->EndLoc = S;
455    return Op;
456  }
457
458  static ARMOperand *CreateCCOut(unsigned RegNum, SMLoc S) {
459    ARMOperand *Op = new ARMOperand(CCOut);
460    Op->Reg.RegNum = RegNum;
461    Op->StartLoc = S;
462    Op->EndLoc = S;
463    return Op;
464  }
465
466  static ARMOperand *CreateToken(StringRef Str, SMLoc S) {
467    ARMOperand *Op = new ARMOperand(Token);
468    Op->Tok.Data = Str.data();
469    Op->Tok.Length = Str.size();
470    Op->StartLoc = S;
471    Op->EndLoc = S;
472    return Op;
473  }
474
475  static ARMOperand *CreateReg(unsigned RegNum, SMLoc S, SMLoc E) {
476    ARMOperand *Op = new ARMOperand(Register);
477    Op->Reg.RegNum = RegNum;
478    Op->StartLoc = S;
479    Op->EndLoc = E;
480    return Op;
481  }
482
483  static ARMOperand *
484  CreateRegList(const SmallVectorImpl<std::pair<unsigned, SMLoc> > &Regs,
485                SMLoc StartLoc, SMLoc EndLoc) {
486    KindTy Kind = RegisterList;
487
488    if (ARM::DPRRegClass.contains(Regs.front().first))
489      Kind = DPRRegisterList;
490    else if (ARM::SPRRegClass.contains(Regs.front().first))
491      Kind = SPRRegisterList;
492
493    ARMOperand *Op = new ARMOperand(Kind);
494    for (SmallVectorImpl<std::pair<unsigned, SMLoc> >::const_iterator
495           I = Regs.begin(), E = Regs.end(); I != E; ++I)
496      Op->Registers.push_back(I->first);
497    array_pod_sort(Op->Registers.begin(), Op->Registers.end());
498    Op->StartLoc = StartLoc;
499    Op->EndLoc = EndLoc;
500    return Op;
501  }
502
503  static ARMOperand *CreateImm(const MCExpr *Val, SMLoc S, SMLoc E) {
504    ARMOperand *Op = new ARMOperand(Immediate);
505    Op->Imm.Val = Val;
506    Op->StartLoc = S;
507    Op->EndLoc = E;
508    return Op;
509  }
510
511  static ARMOperand *CreateMem(unsigned BaseRegNum, bool OffsetIsReg,
512                               const MCExpr *Offset, int OffsetRegNum,
513                               bool OffsetRegShifted, enum ShiftType ShiftType,
514                               const MCExpr *ShiftAmount, bool Preindexed,
515                               bool Postindexed, bool Negative, bool Writeback,
516                               SMLoc S, SMLoc E) {
517    assert((OffsetRegNum == -1 || OffsetIsReg) &&
518           "OffsetRegNum must imply OffsetIsReg!");
519    assert((!OffsetRegShifted || OffsetIsReg) &&
520           "OffsetRegShifted must imply OffsetIsReg!");
521    assert((Offset || OffsetIsReg) &&
522           "Offset must exists unless register offset is used!");
523    assert((!ShiftAmount || (OffsetIsReg && OffsetRegShifted)) &&
524           "Cannot have shift amount without shifted register offset!");
525    assert((!Offset || !OffsetIsReg) &&
526           "Cannot have expression offset and register offset!");
527
528    ARMOperand *Op = new ARMOperand(Memory);
529    Op->Mem.BaseRegNum = BaseRegNum;
530    Op->Mem.OffsetIsReg = OffsetIsReg;
531    if (OffsetIsReg)
532      Op->Mem.Offset.RegNum = OffsetRegNum;
533    else
534      Op->Mem.Offset.Value = Offset;
535    Op->Mem.OffsetRegShifted = OffsetRegShifted;
536    Op->Mem.ShiftType = ShiftType;
537    Op->Mem.ShiftAmount = ShiftAmount;
538    Op->Mem.Preindexed = Preindexed;
539    Op->Mem.Postindexed = Postindexed;
540    Op->Mem.Negative = Negative;
541    Op->Mem.Writeback = Writeback;
542
543    Op->StartLoc = S;
544    Op->EndLoc = E;
545    return Op;
546  }
547
548  static ARMOperand *CreateMemBarrierOpt(ARM_MB::MemBOpt Opt, SMLoc S) {
549    ARMOperand *Op = new ARMOperand(MemBarrierOpt);
550    Op->MBOpt.Val = Opt;
551    Op->StartLoc = S;
552    Op->EndLoc = S;
553    return Op;
554  }
555};
556
557} // end anonymous namespace.
558
559void ARMOperand::dump(raw_ostream &OS) const {
560  switch (Kind) {
561  case CondCode:
562    OS << "<ARMCC::" << ARMCondCodeToString(getCondCode()) << ">";
563    break;
564  case CCOut:
565    OS << "<ccout " << getReg() << ">";
566    break;
567  case CoprocNum:
568    OS << "<coprocessor number: " << getCoproc() << ">";
569    break;
570  case CoprocReg:
571    OS << "<coprocessor register: " << getCoproc() << ">";
572    break;
573  case Immediate:
574    getImm()->print(OS);
575    break;
576  case MemBarrierOpt:
577    OS << "<ARM_MB::" << MemBOptToString(getMemBarrierOpt()) << ">";
578    break;
579  case Memory:
580    OS << "<memory "
581       << "base:" << getMemBaseRegNum();
582    if (getMemOffsetIsReg()) {
583      OS << " offset:<register " << getMemOffsetRegNum();
584      if (getMemOffsetRegShifted()) {
585        OS << " offset-shift-type:" << getMemShiftType();
586        OS << " offset-shift-amount:" << *getMemShiftAmount();
587      }
588    } else {
589      OS << " offset:" << *getMemOffset();
590    }
591    if (getMemOffsetIsReg())
592      OS << " (offset-is-reg)";
593    if (getMemPreindexed())
594      OS << " (pre-indexed)";
595    if (getMemPostindexed())
596      OS << " (post-indexed)";
597    if (getMemNegative())
598      OS << " (negative)";
599    if (getMemWriteback())
600      OS << " (writeback)";
601    OS << ">";
602    break;
603  case Register:
604    OS << "<register " << getReg() << ">";
605    break;
606  case RegisterList:
607  case DPRRegisterList:
608  case SPRRegisterList: {
609    OS << "<register_list ";
610
611    const SmallVectorImpl<unsigned> &RegList = getRegList();
612    for (SmallVectorImpl<unsigned>::const_iterator
613           I = RegList.begin(), E = RegList.end(); I != E; ) {
614      OS << *I;
615      if (++I < E) OS << ", ";
616    }
617
618    OS << ">";
619    break;
620  }
621  case Token:
622    OS << "'" << getToken() << "'";
623    break;
624  }
625}
626
627/// @name Auto-generated Match Functions
628/// {
629
630static unsigned MatchRegisterName(StringRef Name);
631
632/// }
633
634bool ARMAsmParser::ParseRegister(unsigned &RegNo,
635                                 SMLoc &StartLoc, SMLoc &EndLoc) {
636  RegNo = TryParseRegister();
637
638  return (RegNo == (unsigned)-1);
639}
640
641/// Try to parse a register name.  The token must be an Identifier when called,
642/// and if it is a register name the token is eaten and the register number is
643/// returned.  Otherwise return -1.
644///
645int ARMAsmParser::TryParseRegister() {
646  const AsmToken &Tok = Parser.getTok();
647  assert(Tok.is(AsmToken::Identifier) && "Token is not an Identifier");
648
649  // FIXME: Validate register for the current architecture; we have to do
650  // validation later, so maybe there is no need for this here.
651  std::string upperCase = Tok.getString().str();
652  std::string lowerCase = LowercaseString(upperCase);
653  unsigned RegNum = MatchRegisterName(lowerCase);
654  if (!RegNum) {
655    RegNum = StringSwitch<unsigned>(lowerCase)
656      .Case("r13", ARM::SP)
657      .Case("r14", ARM::LR)
658      .Case("r15", ARM::PC)
659      .Case("ip", ARM::R12)
660      .Default(0);
661  }
662  if (!RegNum) return -1;
663
664  Parser.Lex(); // Eat identifier token.
665  return RegNum;
666}
667
668/// Try to parse a register name.  The token must be an Identifier when called.
669/// If it's a register, an AsmOperand is created. Another AsmOperand is created
670/// if there is a "writeback". 'true' if it's not a register.
671///
672/// TODO this is likely to change to allow different register types and or to
673/// parse for a specific register type.
674bool ARMAsmParser::
675TryParseRegisterWithWriteBack(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
676  SMLoc S = Parser.getTok().getLoc();
677  int RegNo = TryParseRegister();
678  if (RegNo == -1)
679    return true;
680
681  Operands.push_back(ARMOperand::CreateReg(RegNo, S, Parser.getTok().getLoc()));
682
683  const AsmToken &ExclaimTok = Parser.getTok();
684  if (ExclaimTok.is(AsmToken::Exclaim)) {
685    Operands.push_back(ARMOperand::CreateToken(ExclaimTok.getString(),
686                                               ExclaimTok.getLoc()));
687    Parser.Lex(); // Eat exclaim token
688  }
689
690  return false;
691}
692
693/// MatchCoprocessorOperandName - Try to parse an coprocessor related
694/// instruction with a symbolic operand name. Example: "p1", "p7", "c3",
695/// "c5", ...
696static int MatchCoprocessorOperandName(StringRef Name, char CoprocOp) {
697  // Use the same layout as the tablegen'erated register name matcher. Ugly,
698  // but efficient.
699  switch (Name.size()) {
700  default: break;
701  case 2:
702    if (Name[0] != CoprocOp)
703      return -1;
704    switch (Name[1]) {
705    default:  return -1;
706    case '0': return 0;
707    case '1': return 1;
708    case '2': return 2;
709    case '3': return 3;
710    case '4': return 4;
711    case '5': return 5;
712    case '6': return 6;
713    case '7': return 7;
714    case '8': return 8;
715    case '9': return 9;
716    }
717    break;
718  case 3:
719    if (Name[0] != CoprocOp || Name[1] != '1')
720      return -1;
721    switch (Name[2]) {
722    default:  return -1;
723    case '0': return 10;
724    case '1': return 11;
725    case '2': return 12;
726    case '3': return 13;
727    case '4': return 14;
728    case '5': return 15;
729    }
730    break;
731  }
732
733  llvm_unreachable("Unhandled coprocessor operand string!");
734  return -1;
735}
736
737/// ParseCoprocNumOperand - Try to parse an coprocessor number operand. The
738/// token must be an Identifier when called, and if it is a coprocessor
739/// number, the token is eaten and the operand is added to the operand list.
740bool ARMAsmParser::
741ParseCoprocNumOperand(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
742  SMLoc S = Parser.getTok().getLoc();
743  const AsmToken &Tok = Parser.getTok();
744  assert(Tok.is(AsmToken::Identifier) && "Token is not an Identifier");
745
746  int Num = MatchCoprocessorOperandName(Tok.getString(), 'p');
747  if (Num == -1)
748    return true;
749
750  Parser.Lex(); // Eat identifier token.
751  Operands.push_back(ARMOperand::CreateCoprocNum(Num, S));
752  return false;
753}
754
755/// ParseCoprocRegOperand - Try to parse an coprocessor register operand. The
756/// token must be an Identifier when called, and if it is a coprocessor
757/// number, the token is eaten and the operand is added to the operand list.
758bool ARMAsmParser::
759ParseCoprocRegOperand(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
760  SMLoc S = Parser.getTok().getLoc();
761  const AsmToken &Tok = Parser.getTok();
762  assert(Tok.is(AsmToken::Identifier) && "Token is not an Identifier");
763
764  int Reg = MatchCoprocessorOperandName(Tok.getString(), 'c');
765  if (Reg == -1)
766    return true;
767
768  Parser.Lex(); // Eat identifier token.
769  Operands.push_back(ARMOperand::CreateCoprocReg(Reg, S));
770  return false;
771}
772
773/// Parse a register list, return it if successful else return null.  The first
774/// token must be a '{' when called.
775bool ARMAsmParser::
776ParseRegisterList(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
777  assert(Parser.getTok().is(AsmToken::LCurly) &&
778         "Token is not a Left Curly Brace");
779  SMLoc S = Parser.getTok().getLoc();
780
781  // Read the rest of the registers in the list.
782  unsigned PrevRegNum = 0;
783  SmallVector<std::pair<unsigned, SMLoc>, 32> Registers;
784
785  do {
786    bool IsRange = Parser.getTok().is(AsmToken::Minus);
787    Parser.Lex(); // Eat non-identifier token.
788
789    const AsmToken &RegTok = Parser.getTok();
790    SMLoc RegLoc = RegTok.getLoc();
791    if (RegTok.isNot(AsmToken::Identifier)) {
792      Error(RegLoc, "register expected");
793      return true;
794    }
795
796    int RegNum = TryParseRegister();
797    if (RegNum == -1) {
798      Error(RegLoc, "register expected");
799      return true;
800    }
801
802    if (IsRange) {
803      int Reg = PrevRegNum;
804      do {
805        ++Reg;
806        Registers.push_back(std::make_pair(Reg, RegLoc));
807      } while (Reg != RegNum);
808    } else {
809      Registers.push_back(std::make_pair(RegNum, RegLoc));
810    }
811
812    PrevRegNum = RegNum;
813  } while (Parser.getTok().is(AsmToken::Comma) ||
814           Parser.getTok().is(AsmToken::Minus));
815
816  // Process the right curly brace of the list.
817  const AsmToken &RCurlyTok = Parser.getTok();
818  if (RCurlyTok.isNot(AsmToken::RCurly)) {
819    Error(RCurlyTok.getLoc(), "'}' expected");
820    return true;
821  }
822
823  SMLoc E = RCurlyTok.getLoc();
824  Parser.Lex(); // Eat right curly brace token.
825
826  // Verify the register list.
827  SmallVectorImpl<std::pair<unsigned, SMLoc> >::const_iterator
828    RI = Registers.begin(), RE = Registers.end();
829
830  unsigned HighRegNum = getARMRegisterNumbering(RI->first);
831  bool EmittedWarning = false;
832
833  DenseMap<unsigned, bool> RegMap;
834  RegMap[HighRegNum] = true;
835
836  for (++RI; RI != RE; ++RI) {
837    const std::pair<unsigned, SMLoc> &RegInfo = *RI;
838    unsigned Reg = getARMRegisterNumbering(RegInfo.first);
839
840    if (RegMap[Reg]) {
841      Error(RegInfo.second, "register duplicated in register list");
842      return true;
843    }
844
845    if (!EmittedWarning && Reg < HighRegNum)
846      Warning(RegInfo.second,
847              "register not in ascending order in register list");
848
849    RegMap[Reg] = true;
850    HighRegNum = std::max(Reg, HighRegNum);
851  }
852
853  Operands.push_back(ARMOperand::CreateRegList(Registers, S, E));
854  return false;
855}
856
857/// ParseMemBarrierOptOperand - Try to parse DSB/DMB data barrier options.
858bool ARMAsmParser::
859ParseMemBarrierOptOperand(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
860  SMLoc S = Parser.getTok().getLoc();
861  const AsmToken &Tok = Parser.getTok();
862  assert(Tok.is(AsmToken::Identifier) && "Token is not an Identifier");
863  StringRef OptStr = Tok.getString();
864
865  unsigned Opt = StringSwitch<unsigned>(OptStr.slice(0, OptStr.size()))
866    .Case("sy",    ARM_MB::SY)
867    .Case("st",    ARM_MB::ST)
868    .Case("ish",   ARM_MB::ISH)
869    .Case("ishst", ARM_MB::ISHST)
870    .Case("nsh",   ARM_MB::NSH)
871    .Case("nshst", ARM_MB::NSHST)
872    .Case("osh",   ARM_MB::OSH)
873    .Case("oshst", ARM_MB::OSHST)
874    .Default(~0U);
875
876  if (Opt == ~0U)
877    return true;
878
879  Parser.Lex(); // Eat identifier token.
880  Operands.push_back(ARMOperand::CreateMemBarrierOpt((ARM_MB::MemBOpt)Opt, S));
881  return false;
882}
883
884/// Parse an ARM memory expression, return false if successful else return true
885/// or an error.  The first token must be a '[' when called.
886///
887/// TODO Only preindexing and postindexing addressing are started, unindexed
888/// with option, etc are still to do.
889bool ARMAsmParser::
890ParseMemory(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
891  SMLoc S, E;
892  assert(Parser.getTok().is(AsmToken::LBrac) &&
893         "Token is not a Left Bracket");
894  S = Parser.getTok().getLoc();
895  Parser.Lex(); // Eat left bracket token.
896
897  const AsmToken &BaseRegTok = Parser.getTok();
898  if (BaseRegTok.isNot(AsmToken::Identifier)) {
899    Error(BaseRegTok.getLoc(), "register expected");
900    return true;
901  }
902  int BaseRegNum = TryParseRegister();
903  if (BaseRegNum == -1) {
904    Error(BaseRegTok.getLoc(), "register expected");
905    return true;
906  }
907
908  // The next token must either be a comma or a closing bracket.
909  const AsmToken &Tok = Parser.getTok();
910  if (!Tok.is(AsmToken::Comma) && !Tok.is(AsmToken::RBrac))
911    return true;
912
913  bool Preindexed = false;
914  bool Postindexed = false;
915  bool OffsetIsReg = false;
916  bool Negative = false;
917  bool Writeback = false;
918  ARMOperand *WBOp = 0;
919  int OffsetRegNum = -1;
920  bool OffsetRegShifted = false;
921  enum ShiftType ShiftType = Lsl;
922  const MCExpr *ShiftAmount = 0;
923  const MCExpr *Offset = 0;
924
925  // First look for preindexed address forms, that is after the "[Rn" we now
926  // have to see if the next token is a comma.
927  if (Tok.is(AsmToken::Comma)) {
928    Preindexed = true;
929    Parser.Lex(); // Eat comma token.
930
931    if (ParseMemoryOffsetReg(Negative, OffsetRegShifted, ShiftType, ShiftAmount,
932                             Offset, OffsetIsReg, OffsetRegNum, E))
933      return true;
934    const AsmToken &RBracTok = Parser.getTok();
935    if (RBracTok.isNot(AsmToken::RBrac)) {
936      Error(RBracTok.getLoc(), "']' expected");
937      return true;
938    }
939    E = RBracTok.getLoc();
940    Parser.Lex(); // Eat right bracket token.
941
942    const AsmToken &ExclaimTok = Parser.getTok();
943    if (ExclaimTok.is(AsmToken::Exclaim)) {
944      WBOp = ARMOperand::CreateToken(ExclaimTok.getString(),
945                                     ExclaimTok.getLoc());
946      Writeback = true;
947      Parser.Lex(); // Eat exclaim token
948    }
949  } else {
950    // The "[Rn" we have so far was not followed by a comma.
951
952    // If there's anything other than the right brace, this is a post indexing
953    // addressing form.
954    E = Tok.getLoc();
955    Parser.Lex(); // Eat right bracket token.
956
957    const AsmToken &NextTok = Parser.getTok();
958
959    if (NextTok.isNot(AsmToken::EndOfStatement)) {
960      Postindexed = true;
961      Writeback = true;
962
963      if (NextTok.isNot(AsmToken::Comma)) {
964        Error(NextTok.getLoc(), "',' expected");
965        return true;
966      }
967
968      Parser.Lex(); // Eat comma token.
969
970      if (ParseMemoryOffsetReg(Negative, OffsetRegShifted, ShiftType,
971                               ShiftAmount, Offset, OffsetIsReg, OffsetRegNum,
972                               E))
973        return true;
974    }
975  }
976
977  // Force Offset to exist if used.
978  if (!OffsetIsReg) {
979    if (!Offset)
980      Offset = MCConstantExpr::Create(0, getContext());
981  }
982
983  Operands.push_back(ARMOperand::CreateMem(BaseRegNum, OffsetIsReg, Offset,
984                                           OffsetRegNum, OffsetRegShifted,
985                                           ShiftType, ShiftAmount, Preindexed,
986                                           Postindexed, Negative, Writeback,
987                                           S, E));
988  if (WBOp)
989    Operands.push_back(WBOp);
990
991  return false;
992}
993
994/// Parse the offset of a memory operand after we have seen "[Rn," or "[Rn],"
995/// we will parse the following (were +/- means that a plus or minus is
996/// optional):
997///   +/-Rm
998///   +/-Rm, shift
999///   #offset
1000/// we return false on success or an error otherwise.
1001bool ARMAsmParser::ParseMemoryOffsetReg(bool &Negative,
1002                                        bool &OffsetRegShifted,
1003                                        enum ShiftType &ShiftType,
1004                                        const MCExpr *&ShiftAmount,
1005                                        const MCExpr *&Offset,
1006                                        bool &OffsetIsReg,
1007                                        int &OffsetRegNum,
1008                                        SMLoc &E) {
1009  Negative = false;
1010  OffsetRegShifted = false;
1011  OffsetIsReg = false;
1012  OffsetRegNum = -1;
1013  const AsmToken &NextTok = Parser.getTok();
1014  E = NextTok.getLoc();
1015  if (NextTok.is(AsmToken::Plus))
1016    Parser.Lex(); // Eat plus token.
1017  else if (NextTok.is(AsmToken::Minus)) {
1018    Negative = true;
1019    Parser.Lex(); // Eat minus token
1020  }
1021  // See if there is a register following the "[Rn," or "[Rn]," we have so far.
1022  const AsmToken &OffsetRegTok = Parser.getTok();
1023  if (OffsetRegTok.is(AsmToken::Identifier)) {
1024    SMLoc CurLoc = OffsetRegTok.getLoc();
1025    OffsetRegNum = TryParseRegister();
1026    if (OffsetRegNum != -1) {
1027      OffsetIsReg = true;
1028      E = CurLoc;
1029    }
1030  }
1031
1032  // If we parsed a register as the offset then there can be a shift after that.
1033  if (OffsetRegNum != -1) {
1034    // Look for a comma then a shift
1035    const AsmToken &Tok = Parser.getTok();
1036    if (Tok.is(AsmToken::Comma)) {
1037      Parser.Lex(); // Eat comma token.
1038
1039      const AsmToken &Tok = Parser.getTok();
1040      if (ParseShift(ShiftType, ShiftAmount, E))
1041        return Error(Tok.getLoc(), "shift expected");
1042      OffsetRegShifted = true;
1043    }
1044  }
1045  else { // the "[Rn," or "[Rn,]" we have so far was not followed by "Rm"
1046    // Look for #offset following the "[Rn," or "[Rn],"
1047    const AsmToken &HashTok = Parser.getTok();
1048    if (HashTok.isNot(AsmToken::Hash))
1049      return Error(HashTok.getLoc(), "'#' expected");
1050
1051    Parser.Lex(); // Eat hash token.
1052
1053    if (getParser().ParseExpression(Offset))
1054     return true;
1055    E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
1056  }
1057  return false;
1058}
1059
1060/// ParseShift as one of these two:
1061///   ( lsl | lsr | asr | ror ) , # shift_amount
1062///   rrx
1063/// and returns true if it parses a shift otherwise it returns false.
1064bool ARMAsmParser::ParseShift(ShiftType &St, const MCExpr *&ShiftAmount,
1065                              SMLoc &E) {
1066  const AsmToken &Tok = Parser.getTok();
1067  if (Tok.isNot(AsmToken::Identifier))
1068    return true;
1069  StringRef ShiftName = Tok.getString();
1070  if (ShiftName == "lsl" || ShiftName == "LSL")
1071    St = Lsl;
1072  else if (ShiftName == "lsr" || ShiftName == "LSR")
1073    St = Lsr;
1074  else if (ShiftName == "asr" || ShiftName == "ASR")
1075    St = Asr;
1076  else if (ShiftName == "ror" || ShiftName == "ROR")
1077    St = Ror;
1078  else if (ShiftName == "rrx" || ShiftName == "RRX")
1079    St = Rrx;
1080  else
1081    return true;
1082  Parser.Lex(); // Eat shift type token.
1083
1084  // Rrx stands alone.
1085  if (St == Rrx)
1086    return false;
1087
1088  // Otherwise, there must be a '#' and a shift amount.
1089  const AsmToken &HashTok = Parser.getTok();
1090  if (HashTok.isNot(AsmToken::Hash))
1091    return Error(HashTok.getLoc(), "'#' expected");
1092  Parser.Lex(); // Eat hash token.
1093
1094  if (getParser().ParseExpression(ShiftAmount))
1095    return true;
1096
1097  return false;
1098}
1099
1100/// Parse a arm instruction operand.  For now this parses the operand regardless
1101/// of the mnemonic.
1102bool ARMAsmParser::ParseOperand(SmallVectorImpl<MCParsedAsmOperand*> &Operands,
1103                                StringRef Mnemonic) {
1104  SMLoc S, E;
1105
1106  // Check if the current operand has a custom associated parser, if so, try to
1107  // custom parse the operand, or fallback to the general approach.
1108  MatchResultTy ResTy = MatchOperandParserImpl(Operands, Mnemonic);
1109  if (ResTy == Match_Success)
1110    return false;
1111
1112  switch (getLexer().getKind()) {
1113  default:
1114    Error(Parser.getTok().getLoc(), "unexpected token in operand");
1115    return true;
1116  case AsmToken::Identifier:
1117    if (!TryParseRegisterWithWriteBack(Operands))
1118      return false;
1119
1120    // Fall though for the Identifier case that is not a register or a
1121    // special name.
1122  case AsmToken::Integer: // things like 1f and 2b as a branch targets
1123  case AsmToken::Dot: {   // . as a branch target
1124    // This was not a register so parse other operands that start with an
1125    // identifier (like labels) as expressions and create them as immediates.
1126    const MCExpr *IdVal;
1127    S = Parser.getTok().getLoc();
1128    if (getParser().ParseExpression(IdVal))
1129      return true;
1130    E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
1131    Operands.push_back(ARMOperand::CreateImm(IdVal, S, E));
1132    return false;
1133  }
1134  case AsmToken::LBrac:
1135    return ParseMemory(Operands);
1136  case AsmToken::LCurly:
1137    return ParseRegisterList(Operands);
1138  case AsmToken::Hash:
1139    // #42 -> immediate.
1140    // TODO: ":lower16:" and ":upper16:" modifiers after # before immediate
1141    S = Parser.getTok().getLoc();
1142    Parser.Lex();
1143    const MCExpr *ImmVal;
1144    if (getParser().ParseExpression(ImmVal))
1145      return true;
1146    E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
1147    Operands.push_back(ARMOperand::CreateImm(ImmVal, S, E));
1148    return false;
1149  case AsmToken::Colon: {
1150    // ":lower16:" and ":upper16:" expression prefixes
1151    // FIXME: Check it's an expression prefix,
1152    // e.g. (FOO - :lower16:BAR) isn't legal.
1153    ARMMCExpr::VariantKind RefKind;
1154    if (ParsePrefix(RefKind))
1155      return true;
1156
1157    const MCExpr *SubExprVal;
1158    if (getParser().ParseExpression(SubExprVal))
1159      return true;
1160
1161    const MCExpr *ExprVal = ARMMCExpr::Create(RefKind, SubExprVal,
1162                                                   getContext());
1163    E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
1164    Operands.push_back(ARMOperand::CreateImm(ExprVal, S, E));
1165    return false;
1166  }
1167  }
1168}
1169
1170// ParsePrefix - Parse ARM 16-bit relocations expression prefix, i.e.
1171//  :lower16: and :upper16:.
1172bool ARMAsmParser::ParsePrefix(ARMMCExpr::VariantKind &RefKind) {
1173  RefKind = ARMMCExpr::VK_ARM_None;
1174
1175  // :lower16: and :upper16: modifiers
1176  assert(getLexer().is(AsmToken::Colon) && "expected a :");
1177  Parser.Lex(); // Eat ':'
1178
1179  if (getLexer().isNot(AsmToken::Identifier)) {
1180    Error(Parser.getTok().getLoc(), "expected prefix identifier in operand");
1181    return true;
1182  }
1183
1184  StringRef IDVal = Parser.getTok().getIdentifier();
1185  if (IDVal == "lower16") {
1186    RefKind = ARMMCExpr::VK_ARM_LO16;
1187  } else if (IDVal == "upper16") {
1188    RefKind = ARMMCExpr::VK_ARM_HI16;
1189  } else {
1190    Error(Parser.getTok().getLoc(), "unexpected prefix in operand");
1191    return true;
1192  }
1193  Parser.Lex();
1194
1195  if (getLexer().isNot(AsmToken::Colon)) {
1196    Error(Parser.getTok().getLoc(), "unexpected token after prefix");
1197    return true;
1198  }
1199  Parser.Lex(); // Eat the last ':'
1200  return false;
1201}
1202
1203const MCExpr *
1204ARMAsmParser::ApplyPrefixToExpr(const MCExpr *E,
1205                                MCSymbolRefExpr::VariantKind Variant) {
1206  // Recurse over the given expression, rebuilding it to apply the given variant
1207  // to the leftmost symbol.
1208  if (Variant == MCSymbolRefExpr::VK_None)
1209    return E;
1210
1211  switch (E->getKind()) {
1212  case MCExpr::Target:
1213    llvm_unreachable("Can't handle target expr yet");
1214  case MCExpr::Constant:
1215    llvm_unreachable("Can't handle lower16/upper16 of constant yet");
1216
1217  case MCExpr::SymbolRef: {
1218    const MCSymbolRefExpr *SRE = cast<MCSymbolRefExpr>(E);
1219
1220    if (SRE->getKind() != MCSymbolRefExpr::VK_None)
1221      return 0;
1222
1223    return MCSymbolRefExpr::Create(&SRE->getSymbol(), Variant, getContext());
1224  }
1225
1226  case MCExpr::Unary:
1227    llvm_unreachable("Can't handle unary expressions yet");
1228
1229  case MCExpr::Binary: {
1230    const MCBinaryExpr *BE = cast<MCBinaryExpr>(E);
1231    const MCExpr *LHS = ApplyPrefixToExpr(BE->getLHS(), Variant);
1232    const MCExpr *RHS = BE->getRHS();
1233    if (!LHS)
1234      return 0;
1235
1236    return MCBinaryExpr::Create(BE->getOpcode(), LHS, RHS, getContext());
1237  }
1238  }
1239
1240  assert(0 && "Invalid expression kind!");
1241  return 0;
1242}
1243
1244/// \brief Given a mnemonic, split out possible predication code and carry
1245/// setting letters to form a canonical mnemonic and flags.
1246//
1247// FIXME: Would be nice to autogen this.
1248static StringRef SplitMnemonicAndCC(StringRef Mnemonic,
1249                                    unsigned &PredicationCode,
1250                                    bool &CarrySetting) {
1251  PredicationCode = ARMCC::AL;
1252  CarrySetting = false;
1253
1254  // Ignore some mnemonics we know aren't predicated forms.
1255  //
1256  // FIXME: Would be nice to autogen this.
1257  if (Mnemonic == "teq" || Mnemonic == "vceq" ||
1258      Mnemonic == "movs" ||
1259      Mnemonic == "svc" ||
1260      (Mnemonic == "mls" || Mnemonic == "smmls" || Mnemonic == "vcls" ||
1261       Mnemonic == "vmls" || Mnemonic == "vnmls") ||
1262      Mnemonic == "vacge" || Mnemonic == "vcge" ||
1263      Mnemonic == "vclt" ||
1264      Mnemonic == "vacgt" || Mnemonic == "vcgt" ||
1265      Mnemonic == "vcle" ||
1266      (Mnemonic == "smlal" || Mnemonic == "umaal" || Mnemonic == "umlal" ||
1267       Mnemonic == "vabal" || Mnemonic == "vmlal" || Mnemonic == "vpadal" ||
1268       Mnemonic == "vqdmlal"))
1269    return Mnemonic;
1270
1271  // First, split out any predication code.
1272  unsigned CC = StringSwitch<unsigned>(Mnemonic.substr(Mnemonic.size()-2))
1273    .Case("eq", ARMCC::EQ)
1274    .Case("ne", ARMCC::NE)
1275    .Case("hs", ARMCC::HS)
1276    .Case("lo", ARMCC::LO)
1277    .Case("mi", ARMCC::MI)
1278    .Case("pl", ARMCC::PL)
1279    .Case("vs", ARMCC::VS)
1280    .Case("vc", ARMCC::VC)
1281    .Case("hi", ARMCC::HI)
1282    .Case("ls", ARMCC::LS)
1283    .Case("ge", ARMCC::GE)
1284    .Case("lt", ARMCC::LT)
1285    .Case("gt", ARMCC::GT)
1286    .Case("le", ARMCC::LE)
1287    .Case("al", ARMCC::AL)
1288    .Default(~0U);
1289  if (CC != ~0U) {
1290    Mnemonic = Mnemonic.slice(0, Mnemonic.size() - 2);
1291    PredicationCode = CC;
1292  }
1293
1294  // Next, determine if we have a carry setting bit. We explicitly ignore all
1295  // the instructions we know end in 's'.
1296  if (Mnemonic.endswith("s") &&
1297      !(Mnemonic == "asrs" || Mnemonic == "cps" || Mnemonic == "mls" ||
1298        Mnemonic == "movs" || Mnemonic == "mrs" || Mnemonic == "smmls" ||
1299        Mnemonic == "vabs" || Mnemonic == "vcls" || Mnemonic == "vmls" ||
1300        Mnemonic == "vmrs" || Mnemonic == "vnmls" || Mnemonic == "vqabs" ||
1301        Mnemonic == "vrecps" || Mnemonic == "vrsqrts")) {
1302    Mnemonic = Mnemonic.slice(0, Mnemonic.size() - 1);
1303    CarrySetting = true;
1304  }
1305
1306  return Mnemonic;
1307}
1308
1309/// \brief Given a canonical mnemonic, determine if the instruction ever allows
1310/// inclusion of carry set or predication code operands.
1311//
1312// FIXME: It would be nice to autogen this.
1313void ARMAsmParser::
1314GetMnemonicAcceptInfo(StringRef Mnemonic, bool &CanAcceptCarrySet,
1315                      bool &CanAcceptPredicationCode) {
1316  bool isThumb = TM.getSubtarget<ARMSubtarget>().isThumb();
1317
1318  if (Mnemonic == "and" || Mnemonic == "lsl" || Mnemonic == "lsr" ||
1319      Mnemonic == "rrx" || Mnemonic == "ror" || Mnemonic == "sub" ||
1320      Mnemonic == "smull" || Mnemonic == "add" || Mnemonic == "adc" ||
1321      Mnemonic == "mul" || Mnemonic == "bic" || Mnemonic == "asr" ||
1322      Mnemonic == "umlal" || Mnemonic == "orr" || Mnemonic == "mov" ||
1323      Mnemonic == "rsb" || Mnemonic == "rsc" || Mnemonic == "orn" ||
1324      Mnemonic == "sbc" || Mnemonic == "mla" || Mnemonic == "umull" ||
1325      Mnemonic == "eor" || Mnemonic == "smlal" || Mnemonic == "mvn") {
1326    CanAcceptCarrySet = true;
1327  } else {
1328    CanAcceptCarrySet = false;
1329  }
1330
1331  if (Mnemonic == "cbnz" || Mnemonic == "setend" || Mnemonic == "dmb" ||
1332      Mnemonic == "cps" || Mnemonic == "mcr2" || Mnemonic == "it" ||
1333      Mnemonic == "mcrr2" || Mnemonic == "cbz" || Mnemonic == "cdp2" ||
1334      Mnemonic == "trap" || Mnemonic == "mrc2" || Mnemonic == "mrrc2" ||
1335      Mnemonic == "dsb" || Mnemonic == "movs" || Mnemonic == "isb" ||
1336      Mnemonic == "clrex") {
1337    CanAcceptPredicationCode = false;
1338  } else {
1339    CanAcceptPredicationCode = true;
1340  }
1341
1342  if (isThumb)
1343    if (Mnemonic == "bkpt" || Mnemonic == "mcr" || Mnemonic == "mcrr" ||
1344        Mnemonic == "mrc" || Mnemonic == "mrrc" || Mnemonic == "cdp")
1345      CanAcceptPredicationCode = false;
1346}
1347
1348/// Parse an arm instruction mnemonic followed by its operands.
1349bool ARMAsmParser::ParseInstruction(StringRef Name, SMLoc NameLoc,
1350                               SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
1351  // Create the leading tokens for the mnemonic, split by '.' characters.
1352  size_t Start = 0, Next = Name.find('.');
1353  StringRef Head = Name.slice(Start, Next);
1354
1355  // Split out the predication code and carry setting flag from the mnemonic.
1356  unsigned PredicationCode;
1357  bool CarrySetting;
1358  Head = SplitMnemonicAndCC(Head, PredicationCode, CarrySetting);
1359
1360  Operands.push_back(ARMOperand::CreateToken(Head, NameLoc));
1361
1362  // Next, add the CCOut and ConditionCode operands, if needed.
1363  //
1364  // For mnemonics which can ever incorporate a carry setting bit or predication
1365  // code, our matching model involves us always generating CCOut and
1366  // ConditionCode operands to match the mnemonic "as written" and then we let
1367  // the matcher deal with finding the right instruction or generating an
1368  // appropriate error.
1369  bool CanAcceptCarrySet, CanAcceptPredicationCode;
1370  GetMnemonicAcceptInfo(Head, CanAcceptCarrySet, CanAcceptPredicationCode);
1371
1372  // Add the carry setting operand, if necessary.
1373  //
1374  // FIXME: It would be awesome if we could somehow invent a location such that
1375  // match errors on this operand would print a nice diagnostic about how the
1376  // 's' character in the mnemonic resulted in a CCOut operand.
1377  if (CanAcceptCarrySet) {
1378    Operands.push_back(ARMOperand::CreateCCOut(CarrySetting ? ARM::CPSR : 0,
1379                                               NameLoc));
1380  } else {
1381    // This mnemonic can't ever accept a carry set, but the user wrote one (or
1382    // misspelled another mnemonic).
1383
1384    // FIXME: Issue a nice error.
1385  }
1386
1387  // Add the predication code operand, if necessary.
1388  if (CanAcceptPredicationCode) {
1389    Operands.push_back(ARMOperand::CreateCondCode(
1390                         ARMCC::CondCodes(PredicationCode), NameLoc));
1391  } else {
1392    // This mnemonic can't ever accept a predication code, but the user wrote
1393    // one (or misspelled another mnemonic).
1394
1395    // FIXME: Issue a nice error.
1396  }
1397
1398  // Add the remaining tokens in the mnemonic.
1399  while (Next != StringRef::npos) {
1400    Start = Next;
1401    Next = Name.find('.', Start + 1);
1402    Head = Name.slice(Start, Next);
1403
1404    Operands.push_back(ARMOperand::CreateToken(Head, NameLoc));
1405  }
1406
1407  // Read the remaining operands.
1408  if (getLexer().isNot(AsmToken::EndOfStatement)) {
1409    // Read the first operand.
1410    if (ParseOperand(Operands, Head)) {
1411      Parser.EatToEndOfStatement();
1412      return true;
1413    }
1414
1415    while (getLexer().is(AsmToken::Comma)) {
1416      Parser.Lex();  // Eat the comma.
1417
1418      // Parse and remember the operand.
1419      if (ParseOperand(Operands, Head)) {
1420        Parser.EatToEndOfStatement();
1421        return true;
1422      }
1423    }
1424  }
1425
1426  if (getLexer().isNot(AsmToken::EndOfStatement)) {
1427    Parser.EatToEndOfStatement();
1428    return TokError("unexpected token in argument list");
1429  }
1430
1431  Parser.Lex(); // Consume the EndOfStatement
1432  return false;
1433}
1434
1435bool ARMAsmParser::
1436MatchAndEmitInstruction(SMLoc IDLoc,
1437                        SmallVectorImpl<MCParsedAsmOperand*> &Operands,
1438                        MCStreamer &Out) {
1439  MCInst Inst;
1440  unsigned ErrorInfo;
1441  MatchResultTy MatchResult, MatchResult2;
1442  MatchResult = MatchInstructionImpl(Operands, Inst, ErrorInfo);
1443  if (MatchResult != Match_Success) {
1444    // If we get a Match_InvalidOperand it might be some arithmetic instruction
1445    // that does not update the condition codes.  So try adding a CCOut operand
1446    // with a value of reg0.
1447    if (MatchResult == Match_InvalidOperand) {
1448      Operands.insert(Operands.begin() + 1,
1449                      ARMOperand::CreateCCOut(0,
1450                                  ((ARMOperand*)Operands[0])->getStartLoc()));
1451      MatchResult2 = MatchInstructionImpl(Operands, Inst, ErrorInfo);
1452      if (MatchResult2 == Match_Success)
1453        MatchResult = Match_Success;
1454      else {
1455        ARMOperand *CCOut = ((ARMOperand*)Operands[1]);
1456        Operands.erase(Operands.begin() + 1);
1457        delete CCOut;
1458      }
1459    }
1460    // If we get a Match_MnemonicFail it might be some arithmetic instruction
1461    // that updates the condition codes if it ends in 's'.  So see if the
1462    // mnemonic ends in 's' and if so try removing the 's' and adding a CCOut
1463    // operand with a value of CPSR.
1464    else if(MatchResult == Match_MnemonicFail) {
1465      // Get the instruction mnemonic, which is the first token.
1466      StringRef Mnemonic = ((ARMOperand*)Operands[0])->getToken();
1467      if (Mnemonic.substr(Mnemonic.size()-1) == "s") {
1468        // removed the 's' from the mnemonic for matching.
1469        StringRef MnemonicNoS = Mnemonic.slice(0, Mnemonic.size() - 1);
1470        SMLoc NameLoc = ((ARMOperand*)Operands[0])->getStartLoc();
1471        ARMOperand *OldMnemonic = ((ARMOperand*)Operands[0]);
1472        Operands.erase(Operands.begin());
1473        delete OldMnemonic;
1474        Operands.insert(Operands.begin(),
1475                        ARMOperand::CreateToken(MnemonicNoS, NameLoc));
1476        Operands.insert(Operands.begin() + 1,
1477                        ARMOperand::CreateCCOut(ARM::CPSR, NameLoc));
1478        MatchResult2 = MatchInstructionImpl(Operands, Inst, ErrorInfo);
1479        if (MatchResult2 == Match_Success)
1480          MatchResult = Match_Success;
1481        else {
1482          ARMOperand *OldMnemonic = ((ARMOperand*)Operands[0]);
1483          Operands.erase(Operands.begin());
1484          delete OldMnemonic;
1485          Operands.insert(Operands.begin(),
1486                          ARMOperand::CreateToken(Mnemonic, NameLoc));
1487          ARMOperand *CCOut = ((ARMOperand*)Operands[1]);
1488          Operands.erase(Operands.begin() + 1);
1489          delete CCOut;
1490        }
1491      }
1492    }
1493  }
1494  switch (MatchResult) {
1495  case Match_Success:
1496    Out.EmitInstruction(Inst);
1497    return false;
1498  case Match_MissingFeature:
1499    Error(IDLoc, "instruction requires a CPU feature not currently enabled");
1500    return true;
1501  case Match_InvalidOperand: {
1502    SMLoc ErrorLoc = IDLoc;
1503    if (ErrorInfo != ~0U) {
1504      if (ErrorInfo >= Operands.size())
1505        return Error(IDLoc, "too few operands for instruction");
1506
1507      ErrorLoc = ((ARMOperand*)Operands[ErrorInfo])->getStartLoc();
1508      if (ErrorLoc == SMLoc()) ErrorLoc = IDLoc;
1509    }
1510
1511    return Error(ErrorLoc, "invalid operand for instruction");
1512  }
1513  case Match_MnemonicFail:
1514    return Error(IDLoc, "unrecognized instruction mnemonic");
1515  case Match_ConversionFail:
1516    return Error(IDLoc, "unable to convert operands to instruction");
1517  }
1518
1519  llvm_unreachable("Implement any new match types added!");
1520  return true;
1521}
1522
1523/// ParseDirective parses the arm specific directives
1524bool ARMAsmParser::ParseDirective(AsmToken DirectiveID) {
1525  StringRef IDVal = DirectiveID.getIdentifier();
1526  if (IDVal == ".word")
1527    return ParseDirectiveWord(4, DirectiveID.getLoc());
1528  else if (IDVal == ".thumb")
1529    return ParseDirectiveThumb(DirectiveID.getLoc());
1530  else if (IDVal == ".thumb_func")
1531    return ParseDirectiveThumbFunc(DirectiveID.getLoc());
1532  else if (IDVal == ".code")
1533    return ParseDirectiveCode(DirectiveID.getLoc());
1534  else if (IDVal == ".syntax")
1535    return ParseDirectiveSyntax(DirectiveID.getLoc());
1536  return true;
1537}
1538
1539/// ParseDirectiveWord
1540///  ::= .word [ expression (, expression)* ]
1541bool ARMAsmParser::ParseDirectiveWord(unsigned Size, SMLoc L) {
1542  if (getLexer().isNot(AsmToken::EndOfStatement)) {
1543    for (;;) {
1544      const MCExpr *Value;
1545      if (getParser().ParseExpression(Value))
1546        return true;
1547
1548      getParser().getStreamer().EmitValue(Value, Size, 0/*addrspace*/);
1549
1550      if (getLexer().is(AsmToken::EndOfStatement))
1551        break;
1552
1553      // FIXME: Improve diagnostic.
1554      if (getLexer().isNot(AsmToken::Comma))
1555        return Error(L, "unexpected token in directive");
1556      Parser.Lex();
1557    }
1558  }
1559
1560  Parser.Lex();
1561  return false;
1562}
1563
1564/// ParseDirectiveThumb
1565///  ::= .thumb
1566bool ARMAsmParser::ParseDirectiveThumb(SMLoc L) {
1567  if (getLexer().isNot(AsmToken::EndOfStatement))
1568    return Error(L, "unexpected token in directive");
1569  Parser.Lex();
1570
1571  // TODO: set thumb mode
1572  // TODO: tell the MC streamer the mode
1573  // getParser().getStreamer().Emit???();
1574  return false;
1575}
1576
1577/// ParseDirectiveThumbFunc
1578///  ::= .thumbfunc symbol_name
1579bool ARMAsmParser::ParseDirectiveThumbFunc(SMLoc L) {
1580  const AsmToken &Tok = Parser.getTok();
1581  if (Tok.isNot(AsmToken::Identifier) && Tok.isNot(AsmToken::String))
1582    return Error(L, "unexpected token in .thumb_func directive");
1583  StringRef Name = Tok.getString();
1584  Parser.Lex(); // Consume the identifier token.
1585  if (getLexer().isNot(AsmToken::EndOfStatement))
1586    return Error(L, "unexpected token in directive");
1587  Parser.Lex();
1588
1589  // Mark symbol as a thumb symbol.
1590  MCSymbol *Func = getParser().getContext().GetOrCreateSymbol(Name);
1591  getParser().getStreamer().EmitThumbFunc(Func);
1592  return false;
1593}
1594
1595/// ParseDirectiveSyntax
1596///  ::= .syntax unified | divided
1597bool ARMAsmParser::ParseDirectiveSyntax(SMLoc L) {
1598  const AsmToken &Tok = Parser.getTok();
1599  if (Tok.isNot(AsmToken::Identifier))
1600    return Error(L, "unexpected token in .syntax directive");
1601  StringRef Mode = Tok.getString();
1602  if (Mode == "unified" || Mode == "UNIFIED")
1603    Parser.Lex();
1604  else if (Mode == "divided" || Mode == "DIVIDED")
1605    return Error(L, "'.syntax divided' arm asssembly not supported");
1606  else
1607    return Error(L, "unrecognized syntax mode in .syntax directive");
1608
1609  if (getLexer().isNot(AsmToken::EndOfStatement))
1610    return Error(Parser.getTok().getLoc(), "unexpected token in directive");
1611  Parser.Lex();
1612
1613  // TODO tell the MC streamer the mode
1614  // getParser().getStreamer().Emit???();
1615  return false;
1616}
1617
1618/// ParseDirectiveCode
1619///  ::= .code 16 | 32
1620bool ARMAsmParser::ParseDirectiveCode(SMLoc L) {
1621  const AsmToken &Tok = Parser.getTok();
1622  if (Tok.isNot(AsmToken::Integer))
1623    return Error(L, "unexpected token in .code directive");
1624  int64_t Val = Parser.getTok().getIntVal();
1625  if (Val == 16)
1626    Parser.Lex();
1627  else if (Val == 32)
1628    Parser.Lex();
1629  else
1630    return Error(L, "invalid operand to .code directive");
1631
1632  if (getLexer().isNot(AsmToken::EndOfStatement))
1633    return Error(Parser.getTok().getLoc(), "unexpected token in directive");
1634  Parser.Lex();
1635
1636  // FIXME: We need to be able switch subtargets at this point so that
1637  // MatchInstructionImpl() will work when it gets the AvailableFeatures which
1638  // includes Feature_IsThumb or not to match the right instructions.  This is
1639  // blocked on the FIXME in llvm-mc.cpp when creating the TargetMachine.
1640  if (Val == 16){
1641    assert(TM.getSubtarget<ARMSubtarget>().isThumb() &&
1642	   "switching between arm/thumb not yet suppported via .code 16)");
1643    getParser().getStreamer().EmitAssemblerFlag(MCAF_Code16);
1644  }
1645  else{
1646    assert(!TM.getSubtarget<ARMSubtarget>().isThumb() &&
1647           "switching between thumb/arm not yet suppported via .code 32)");
1648    getParser().getStreamer().EmitAssemblerFlag(MCAF_Code32);
1649   }
1650
1651  return false;
1652}
1653
1654extern "C" void LLVMInitializeARMAsmLexer();
1655
1656/// Force static initialization.
1657extern "C" void LLVMInitializeARMAsmParser() {
1658  RegisterAsmParser<ARMAsmParser> X(TheARMTarget);
1659  RegisterAsmParser<ARMAsmParser> Y(TheThumbTarget);
1660  LLVMInitializeARMAsmLexer();
1661}
1662
1663#define GET_REGISTER_MATCHER
1664#define GET_MATCHER_IMPLEMENTATION
1665#include "ARMGenAsmMatcher.inc"
1666