ARMAsmParser.cpp revision 874b863f2ab9158db6f7f1b773b77e6334e31c41
1//===-- ARMAsmParser.cpp - Parse ARM assembly to MCInst instructions ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9
10#include "MCTargetDesc/ARMBaseInfo.h"
11#include "MCTargetDesc/ARMAddressingModes.h"
12#include "MCTargetDesc/ARMMCExpr.h"
13#include "llvm/MC/MCParser/MCAsmLexer.h"
14#include "llvm/MC/MCParser/MCAsmParser.h"
15#include "llvm/MC/MCParser/MCParsedAsmOperand.h"
16#include "llvm/MC/MCAsmInfo.h"
17#include "llvm/MC/MCContext.h"
18#include "llvm/MC/MCStreamer.h"
19#include "llvm/MC/MCExpr.h"
20#include "llvm/MC/MCInst.h"
21#include "llvm/MC/MCInstrDesc.h"
22#include "llvm/MC/MCRegisterInfo.h"
23#include "llvm/MC/MCSubtargetInfo.h"
24#include "llvm/MC/MCTargetAsmParser.h"
25#include "llvm/Support/MathExtras.h"
26#include "llvm/Support/SourceMgr.h"
27#include "llvm/Support/TargetRegistry.h"
28#include "llvm/Support/raw_ostream.h"
29#include "llvm/ADT/BitVector.h"
30#include "llvm/ADT/OwningPtr.h"
31#include "llvm/ADT/STLExtras.h"
32#include "llvm/ADT/SmallVector.h"
33#include "llvm/ADT/StringSwitch.h"
34#include "llvm/ADT/Twine.h"
35
36using namespace llvm;
37
38namespace {
39
40class ARMOperand;
41
42enum VectorLaneTy { NoLanes, AllLanes, IndexedLane };
43
44class ARMAsmParser : public MCTargetAsmParser {
45  MCSubtargetInfo &STI;
46  MCAsmParser &Parser;
47  const MCRegisterInfo *MRI;
48
49  // Map of register aliases registers via the .req directive.
50  StringMap<unsigned> RegisterReqs;
51
52  struct {
53    ARMCC::CondCodes Cond;    // Condition for IT block.
54    unsigned Mask:4;          // Condition mask for instructions.
55                              // Starting at first 1 (from lsb).
56                              //   '1'  condition as indicated in IT.
57                              //   '0'  inverse of condition (else).
58                              // Count of instructions in IT block is
59                              // 4 - trailingzeroes(mask)
60
61    bool FirstCond;           // Explicit flag for when we're parsing the
62                              // First instruction in the IT block. It's
63                              // implied in the mask, so needs special
64                              // handling.
65
66    unsigned CurPosition;     // Current position in parsing of IT
67                              // block. In range [0,3]. Initialized
68                              // according to count of instructions in block.
69                              // ~0U if no active IT block.
70  } ITState;
71  bool inITBlock() { return ITState.CurPosition != ~0U;}
72  void forwardITPosition() {
73    if (!inITBlock()) return;
74    // Move to the next instruction in the IT block, if there is one. If not,
75    // mark the block as done.
76    unsigned TZ = CountTrailingZeros_32(ITState.Mask);
77    if (++ITState.CurPosition == 5 - TZ)
78      ITState.CurPosition = ~0U; // Done with the IT block after this.
79  }
80
81
82  MCAsmParser &getParser() const { return Parser; }
83  MCAsmLexer &getLexer() const { return Parser.getLexer(); }
84
85  bool Warning(SMLoc L, const Twine &Msg,
86               ArrayRef<SMRange> Ranges = ArrayRef<SMRange>()) {
87    return Parser.Warning(L, Msg, Ranges);
88  }
89  bool Error(SMLoc L, const Twine &Msg,
90             ArrayRef<SMRange> Ranges = ArrayRef<SMRange>()) {
91    return Parser.Error(L, Msg, Ranges);
92  }
93
94  int tryParseRegister();
95  bool tryParseRegisterWithWriteBack(SmallVectorImpl<MCParsedAsmOperand*> &);
96  int tryParseShiftRegister(SmallVectorImpl<MCParsedAsmOperand*> &);
97  bool parseRegisterList(SmallVectorImpl<MCParsedAsmOperand*> &);
98  bool parseMemory(SmallVectorImpl<MCParsedAsmOperand*> &);
99  bool parseOperand(SmallVectorImpl<MCParsedAsmOperand*> &, StringRef Mnemonic);
100  bool parsePrefix(ARMMCExpr::VariantKind &RefKind);
101  bool parseMemRegOffsetShift(ARM_AM::ShiftOpc &ShiftType,
102                              unsigned &ShiftAmount);
103  bool parseDirectiveWord(unsigned Size, SMLoc L);
104  bool parseDirectiveThumb(SMLoc L);
105  bool parseDirectiveARM(SMLoc L);
106  bool parseDirectiveThumbFunc(SMLoc L);
107  bool parseDirectiveCode(SMLoc L);
108  bool parseDirectiveSyntax(SMLoc L);
109  bool parseDirectiveReq(StringRef Name, SMLoc L);
110  bool parseDirectiveUnreq(SMLoc L);
111  bool parseDirectiveArch(SMLoc L);
112  bool parseDirectiveEabiAttr(SMLoc L);
113
114  StringRef splitMnemonic(StringRef Mnemonic, unsigned &PredicationCode,
115                          bool &CarrySetting, unsigned &ProcessorIMod,
116                          StringRef &ITMask);
117  void getMnemonicAcceptInfo(StringRef Mnemonic, bool &CanAcceptCarrySet,
118                             bool &CanAcceptPredicationCode);
119
120  bool isThumb() const {
121    // FIXME: Can tablegen auto-generate this?
122    return (STI.getFeatureBits() & ARM::ModeThumb) != 0;
123  }
124  bool isThumbOne() const {
125    return isThumb() && (STI.getFeatureBits() & ARM::FeatureThumb2) == 0;
126  }
127  bool isThumbTwo() const {
128    return isThumb() && (STI.getFeatureBits() & ARM::FeatureThumb2);
129  }
130  bool hasV6Ops() const {
131    return STI.getFeatureBits() & ARM::HasV6Ops;
132  }
133  bool hasV7Ops() const {
134    return STI.getFeatureBits() & ARM::HasV7Ops;
135  }
136  void SwitchMode() {
137    unsigned FB = ComputeAvailableFeatures(STI.ToggleFeature(ARM::ModeThumb));
138    setAvailableFeatures(FB);
139  }
140  bool isMClass() const {
141    return STI.getFeatureBits() & ARM::FeatureMClass;
142  }
143
144  /// @name Auto-generated Match Functions
145  /// {
146
147#define GET_ASSEMBLER_HEADER
148#include "ARMGenAsmMatcher.inc"
149
150  /// }
151
152  OperandMatchResultTy parseITCondCode(SmallVectorImpl<MCParsedAsmOperand*>&);
153  OperandMatchResultTy parseCoprocNumOperand(
154    SmallVectorImpl<MCParsedAsmOperand*>&);
155  OperandMatchResultTy parseCoprocRegOperand(
156    SmallVectorImpl<MCParsedAsmOperand*>&);
157  OperandMatchResultTy parseCoprocOptionOperand(
158    SmallVectorImpl<MCParsedAsmOperand*>&);
159  OperandMatchResultTy parseMemBarrierOptOperand(
160    SmallVectorImpl<MCParsedAsmOperand*>&);
161  OperandMatchResultTy parseProcIFlagsOperand(
162    SmallVectorImpl<MCParsedAsmOperand*>&);
163  OperandMatchResultTy parseMSRMaskOperand(
164    SmallVectorImpl<MCParsedAsmOperand*>&);
165  OperandMatchResultTy parsePKHImm(SmallVectorImpl<MCParsedAsmOperand*> &O,
166                                   StringRef Op, int Low, int High);
167  OperandMatchResultTy parsePKHLSLImm(SmallVectorImpl<MCParsedAsmOperand*> &O) {
168    return parsePKHImm(O, "lsl", 0, 31);
169  }
170  OperandMatchResultTy parsePKHASRImm(SmallVectorImpl<MCParsedAsmOperand*> &O) {
171    return parsePKHImm(O, "asr", 1, 32);
172  }
173  OperandMatchResultTy parseSetEndImm(SmallVectorImpl<MCParsedAsmOperand*>&);
174  OperandMatchResultTy parseShifterImm(SmallVectorImpl<MCParsedAsmOperand*>&);
175  OperandMatchResultTy parseRotImm(SmallVectorImpl<MCParsedAsmOperand*>&);
176  OperandMatchResultTy parseBitfield(SmallVectorImpl<MCParsedAsmOperand*>&);
177  OperandMatchResultTy parsePostIdxReg(SmallVectorImpl<MCParsedAsmOperand*>&);
178  OperandMatchResultTy parseAM3Offset(SmallVectorImpl<MCParsedAsmOperand*>&);
179  OperandMatchResultTy parseFPImm(SmallVectorImpl<MCParsedAsmOperand*>&);
180  OperandMatchResultTy parseVectorList(SmallVectorImpl<MCParsedAsmOperand*>&);
181  OperandMatchResultTy parseVectorLane(VectorLaneTy &LaneKind, unsigned &Index);
182
183  // Asm Match Converter Methods
184  bool cvtT2LdrdPre(MCInst &Inst, unsigned Opcode,
185                    const SmallVectorImpl<MCParsedAsmOperand*> &);
186  bool cvtT2StrdPre(MCInst &Inst, unsigned Opcode,
187                    const SmallVectorImpl<MCParsedAsmOperand*> &);
188  bool cvtLdWriteBackRegT2AddrModeImm8(MCInst &Inst, unsigned Opcode,
189                                  const SmallVectorImpl<MCParsedAsmOperand*> &);
190  bool cvtStWriteBackRegT2AddrModeImm8(MCInst &Inst, unsigned Opcode,
191                                  const SmallVectorImpl<MCParsedAsmOperand*> &);
192  bool cvtLdWriteBackRegAddrMode2(MCInst &Inst, unsigned Opcode,
193                                  const SmallVectorImpl<MCParsedAsmOperand*> &);
194  bool cvtLdWriteBackRegAddrModeImm12(MCInst &Inst, unsigned Opcode,
195                                  const SmallVectorImpl<MCParsedAsmOperand*> &);
196  bool cvtStWriteBackRegAddrModeImm12(MCInst &Inst, unsigned Opcode,
197                                  const SmallVectorImpl<MCParsedAsmOperand*> &);
198  bool cvtStWriteBackRegAddrMode2(MCInst &Inst, unsigned Opcode,
199                                  const SmallVectorImpl<MCParsedAsmOperand*> &);
200  bool cvtStWriteBackRegAddrMode3(MCInst &Inst, unsigned Opcode,
201                                  const SmallVectorImpl<MCParsedAsmOperand*> &);
202  bool cvtLdExtTWriteBackImm(MCInst &Inst, unsigned Opcode,
203                             const SmallVectorImpl<MCParsedAsmOperand*> &);
204  bool cvtLdExtTWriteBackReg(MCInst &Inst, unsigned Opcode,
205                             const SmallVectorImpl<MCParsedAsmOperand*> &);
206  bool cvtStExtTWriteBackImm(MCInst &Inst, unsigned Opcode,
207                             const SmallVectorImpl<MCParsedAsmOperand*> &);
208  bool cvtStExtTWriteBackReg(MCInst &Inst, unsigned Opcode,
209                             const SmallVectorImpl<MCParsedAsmOperand*> &);
210  bool cvtLdrdPre(MCInst &Inst, unsigned Opcode,
211                  const SmallVectorImpl<MCParsedAsmOperand*> &);
212  bool cvtStrdPre(MCInst &Inst, unsigned Opcode,
213                  const SmallVectorImpl<MCParsedAsmOperand*> &);
214  bool cvtLdWriteBackRegAddrMode3(MCInst &Inst, unsigned Opcode,
215                                  const SmallVectorImpl<MCParsedAsmOperand*> &);
216  bool cvtThumbMultiply(MCInst &Inst, unsigned Opcode,
217                        const SmallVectorImpl<MCParsedAsmOperand*> &);
218  bool cvtVLDwbFixed(MCInst &Inst, unsigned Opcode,
219                     const SmallVectorImpl<MCParsedAsmOperand*> &);
220  bool cvtVLDwbRegister(MCInst &Inst, unsigned Opcode,
221                        const SmallVectorImpl<MCParsedAsmOperand*> &);
222  bool cvtVSTwbFixed(MCInst &Inst, unsigned Opcode,
223                     const SmallVectorImpl<MCParsedAsmOperand*> &);
224  bool cvtVSTwbRegister(MCInst &Inst, unsigned Opcode,
225                        const SmallVectorImpl<MCParsedAsmOperand*> &);
226
227  bool validateInstruction(MCInst &Inst,
228                           const SmallVectorImpl<MCParsedAsmOperand*> &Ops);
229  bool processInstruction(MCInst &Inst,
230                          const SmallVectorImpl<MCParsedAsmOperand*> &Ops);
231  bool shouldOmitCCOutOperand(StringRef Mnemonic,
232                              SmallVectorImpl<MCParsedAsmOperand*> &Operands);
233
234public:
235  enum ARMMatchResultTy {
236    Match_RequiresITBlock = FIRST_TARGET_MATCH_RESULT_TY,
237    Match_RequiresNotITBlock,
238    Match_RequiresV6,
239    Match_RequiresThumb2,
240#define GET_OPERAND_DIAGNOSTIC_TYPES
241#include "ARMGenAsmMatcher.inc"
242
243  };
244
245  ARMAsmParser(MCSubtargetInfo &_STI, MCAsmParser &_Parser)
246    : MCTargetAsmParser(), STI(_STI), Parser(_Parser) {
247    MCAsmParserExtension::Initialize(_Parser);
248
249    // Cache the MCRegisterInfo.
250    MRI = &getContext().getRegisterInfo();
251
252    // Initialize the set of available features.
253    setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits()));
254
255    // Not in an ITBlock to start with.
256    ITState.CurPosition = ~0U;
257  }
258
259  // Implementation of the MCTargetAsmParser interface:
260  bool ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc);
261  bool ParseInstruction(StringRef Name, SMLoc NameLoc,
262                        SmallVectorImpl<MCParsedAsmOperand*> &Operands);
263  bool ParseDirective(AsmToken DirectiveID);
264
265  unsigned checkTargetMatchPredicate(MCInst &Inst);
266
267  bool MatchAndEmitInstruction(SMLoc IDLoc,
268                               SmallVectorImpl<MCParsedAsmOperand*> &Operands,
269                               MCStreamer &Out);
270};
271} // end anonymous namespace
272
273namespace {
274
275/// ARMOperand - Instances of this class represent a parsed ARM machine
276/// instruction.
277class ARMOperand : public MCParsedAsmOperand {
278  enum KindTy {
279    k_CondCode,
280    k_CCOut,
281    k_ITCondMask,
282    k_CoprocNum,
283    k_CoprocReg,
284    k_CoprocOption,
285    k_Immediate,
286    k_MemBarrierOpt,
287    k_Memory,
288    k_PostIndexRegister,
289    k_MSRMask,
290    k_ProcIFlags,
291    k_VectorIndex,
292    k_Register,
293    k_RegisterList,
294    k_DPRRegisterList,
295    k_SPRRegisterList,
296    k_VectorList,
297    k_VectorListAllLanes,
298    k_VectorListIndexed,
299    k_ShiftedRegister,
300    k_ShiftedImmediate,
301    k_ShifterImmediate,
302    k_RotateImmediate,
303    k_BitfieldDescriptor,
304    k_Token
305  } Kind;
306
307  SMLoc StartLoc, EndLoc;
308  SmallVector<unsigned, 8> Registers;
309
310  union {
311    struct {
312      ARMCC::CondCodes Val;
313    } CC;
314
315    struct {
316      unsigned Val;
317    } Cop;
318
319    struct {
320      unsigned Val;
321    } CoprocOption;
322
323    struct {
324      unsigned Mask:4;
325    } ITMask;
326
327    struct {
328      ARM_MB::MemBOpt Val;
329    } MBOpt;
330
331    struct {
332      ARM_PROC::IFlags Val;
333    } IFlags;
334
335    struct {
336      unsigned Val;
337    } MMask;
338
339    struct {
340      const char *Data;
341      unsigned Length;
342    } Tok;
343
344    struct {
345      unsigned RegNum;
346    } Reg;
347
348    // A vector register list is a sequential list of 1 to 4 registers.
349    struct {
350      unsigned RegNum;
351      unsigned Count;
352      unsigned LaneIndex;
353      bool isDoubleSpaced;
354    } VectorList;
355
356    struct {
357      unsigned Val;
358    } VectorIndex;
359
360    struct {
361      const MCExpr *Val;
362    } Imm;
363
364    /// Combined record for all forms of ARM address expressions.
365    struct {
366      unsigned BaseRegNum;
367      // Offset is in OffsetReg or OffsetImm. If both are zero, no offset
368      // was specified.
369      const MCConstantExpr *OffsetImm;  // Offset immediate value
370      unsigned OffsetRegNum;    // Offset register num, when OffsetImm == NULL
371      ARM_AM::ShiftOpc ShiftType; // Shift type for OffsetReg
372      unsigned ShiftImm;        // shift for OffsetReg.
373      unsigned Alignment;       // 0 = no alignment specified
374                                // n = alignment in bytes (2, 4, 8, 16, or 32)
375      unsigned isNegative : 1;  // Negated OffsetReg? (~'U' bit)
376    } Memory;
377
378    struct {
379      unsigned RegNum;
380      bool isAdd;
381      ARM_AM::ShiftOpc ShiftTy;
382      unsigned ShiftImm;
383    } PostIdxReg;
384
385    struct {
386      bool isASR;
387      unsigned Imm;
388    } ShifterImm;
389    struct {
390      ARM_AM::ShiftOpc ShiftTy;
391      unsigned SrcReg;
392      unsigned ShiftReg;
393      unsigned ShiftImm;
394    } RegShiftedReg;
395    struct {
396      ARM_AM::ShiftOpc ShiftTy;
397      unsigned SrcReg;
398      unsigned ShiftImm;
399    } RegShiftedImm;
400    struct {
401      unsigned Imm;
402    } RotImm;
403    struct {
404      unsigned LSB;
405      unsigned Width;
406    } Bitfield;
407  };
408
409  ARMOperand(KindTy K) : MCParsedAsmOperand(), Kind(K) {}
410public:
411  ARMOperand(const ARMOperand &o) : MCParsedAsmOperand() {
412    Kind = o.Kind;
413    StartLoc = o.StartLoc;
414    EndLoc = o.EndLoc;
415    switch (Kind) {
416    case k_CondCode:
417      CC = o.CC;
418      break;
419    case k_ITCondMask:
420      ITMask = o.ITMask;
421      break;
422    case k_Token:
423      Tok = o.Tok;
424      break;
425    case k_CCOut:
426    case k_Register:
427      Reg = o.Reg;
428      break;
429    case k_RegisterList:
430    case k_DPRRegisterList:
431    case k_SPRRegisterList:
432      Registers = o.Registers;
433      break;
434    case k_VectorList:
435    case k_VectorListAllLanes:
436    case k_VectorListIndexed:
437      VectorList = o.VectorList;
438      break;
439    case k_CoprocNum:
440    case k_CoprocReg:
441      Cop = o.Cop;
442      break;
443    case k_CoprocOption:
444      CoprocOption = o.CoprocOption;
445      break;
446    case k_Immediate:
447      Imm = o.Imm;
448      break;
449    case k_MemBarrierOpt:
450      MBOpt = o.MBOpt;
451      break;
452    case k_Memory:
453      Memory = o.Memory;
454      break;
455    case k_PostIndexRegister:
456      PostIdxReg = o.PostIdxReg;
457      break;
458    case k_MSRMask:
459      MMask = o.MMask;
460      break;
461    case k_ProcIFlags:
462      IFlags = o.IFlags;
463      break;
464    case k_ShifterImmediate:
465      ShifterImm = o.ShifterImm;
466      break;
467    case k_ShiftedRegister:
468      RegShiftedReg = o.RegShiftedReg;
469      break;
470    case k_ShiftedImmediate:
471      RegShiftedImm = o.RegShiftedImm;
472      break;
473    case k_RotateImmediate:
474      RotImm = o.RotImm;
475      break;
476    case k_BitfieldDescriptor:
477      Bitfield = o.Bitfield;
478      break;
479    case k_VectorIndex:
480      VectorIndex = o.VectorIndex;
481      break;
482    }
483  }
484
485  /// getStartLoc - Get the location of the first token of this operand.
486  SMLoc getStartLoc() const { return StartLoc; }
487  /// getEndLoc - Get the location of the last token of this operand.
488  SMLoc getEndLoc() const { return EndLoc; }
489
490  SMRange getLocRange() const { return SMRange(StartLoc, EndLoc); }
491
492  ARMCC::CondCodes getCondCode() const {
493    assert(Kind == k_CondCode && "Invalid access!");
494    return CC.Val;
495  }
496
497  unsigned getCoproc() const {
498    assert((Kind == k_CoprocNum || Kind == k_CoprocReg) && "Invalid access!");
499    return Cop.Val;
500  }
501
502  StringRef getToken() const {
503    assert(Kind == k_Token && "Invalid access!");
504    return StringRef(Tok.Data, Tok.Length);
505  }
506
507  unsigned getReg() const {
508    assert((Kind == k_Register || Kind == k_CCOut) && "Invalid access!");
509    return Reg.RegNum;
510  }
511
512  const SmallVectorImpl<unsigned> &getRegList() const {
513    assert((Kind == k_RegisterList || Kind == k_DPRRegisterList ||
514            Kind == k_SPRRegisterList) && "Invalid access!");
515    return Registers;
516  }
517
518  const MCExpr *getImm() const {
519    assert(isImm() && "Invalid access!");
520    return Imm.Val;
521  }
522
523  unsigned getVectorIndex() const {
524    assert(Kind == k_VectorIndex && "Invalid access!");
525    return VectorIndex.Val;
526  }
527
528  ARM_MB::MemBOpt getMemBarrierOpt() const {
529    assert(Kind == k_MemBarrierOpt && "Invalid access!");
530    return MBOpt.Val;
531  }
532
533  ARM_PROC::IFlags getProcIFlags() const {
534    assert(Kind == k_ProcIFlags && "Invalid access!");
535    return IFlags.Val;
536  }
537
538  unsigned getMSRMask() const {
539    assert(Kind == k_MSRMask && "Invalid access!");
540    return MMask.Val;
541  }
542
543  bool isCoprocNum() const { return Kind == k_CoprocNum; }
544  bool isCoprocReg() const { return Kind == k_CoprocReg; }
545  bool isCoprocOption() const { return Kind == k_CoprocOption; }
546  bool isCondCode() const { return Kind == k_CondCode; }
547  bool isCCOut() const { return Kind == k_CCOut; }
548  bool isITMask() const { return Kind == k_ITCondMask; }
549  bool isITCondCode() const { return Kind == k_CondCode; }
550  bool isImm() const { return Kind == k_Immediate; }
551  bool isFPImm() const {
552    if (!isImm()) return false;
553    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
554    if (!CE) return false;
555    int Val = ARM_AM::getFP32Imm(APInt(32, CE->getValue()));
556    return Val != -1;
557  }
558  bool isFBits16() const {
559    if (!isImm()) return false;
560    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
561    if (!CE) return false;
562    int64_t Value = CE->getValue();
563    return Value >= 0 && Value <= 16;
564  }
565  bool isFBits32() const {
566    if (!isImm()) return false;
567    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
568    if (!CE) return false;
569    int64_t Value = CE->getValue();
570    return Value >= 1 && Value <= 32;
571  }
572  bool isImm8s4() const {
573    if (!isImm()) return false;
574    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
575    if (!CE) return false;
576    int64_t Value = CE->getValue();
577    return ((Value & 3) == 0) && Value >= -1020 && Value <= 1020;
578  }
579  bool isImm0_1020s4() const {
580    if (!isImm()) return false;
581    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
582    if (!CE) return false;
583    int64_t Value = CE->getValue();
584    return ((Value & 3) == 0) && Value >= 0 && Value <= 1020;
585  }
586  bool isImm0_508s4() const {
587    if (!isImm()) return false;
588    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
589    if (!CE) return false;
590    int64_t Value = CE->getValue();
591    return ((Value & 3) == 0) && Value >= 0 && Value <= 508;
592  }
593  bool isImm0_508s4Neg() const {
594    if (!isImm()) return false;
595    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
596    if (!CE) return false;
597    int64_t Value = -CE->getValue();
598    // explicitly exclude zero. we want that to use the normal 0_508 version.
599    return ((Value & 3) == 0) && Value > 0 && Value <= 508;
600  }
601  bool isImm0_255() const {
602    if (!isImm()) return false;
603    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
604    if (!CE) return false;
605    int64_t Value = CE->getValue();
606    return Value >= 0 && Value < 256;
607  }
608  bool isImm0_4095() const {
609    if (!isImm()) return false;
610    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
611    if (!CE) return false;
612    int64_t Value = CE->getValue();
613    return Value >= 0 && Value < 4096;
614  }
615  bool isImm0_4095Neg() const {
616    if (!isImm()) return false;
617    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
618    if (!CE) return false;
619    int64_t Value = -CE->getValue();
620    return Value > 0 && Value < 4096;
621  }
622  bool isImm0_1() const {
623    if (!isImm()) return false;
624    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
625    if (!CE) return false;
626    int64_t Value = CE->getValue();
627    return Value >= 0 && Value < 2;
628  }
629  bool isImm0_3() const {
630    if (!isImm()) return false;
631    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
632    if (!CE) return false;
633    int64_t Value = CE->getValue();
634    return Value >= 0 && Value < 4;
635  }
636  bool isImm0_7() const {
637    if (!isImm()) return false;
638    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
639    if (!CE) return false;
640    int64_t Value = CE->getValue();
641    return Value >= 0 && Value < 8;
642  }
643  bool isImm0_15() const {
644    if (!isImm()) return false;
645    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
646    if (!CE) return false;
647    int64_t Value = CE->getValue();
648    return Value >= 0 && Value < 16;
649  }
650  bool isImm0_31() const {
651    if (!isImm()) return false;
652    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
653    if (!CE) return false;
654    int64_t Value = CE->getValue();
655    return Value >= 0 && Value < 32;
656  }
657  bool isImm0_63() const {
658    if (!isImm()) return false;
659    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
660    if (!CE) return false;
661    int64_t Value = CE->getValue();
662    return Value >= 0 && Value < 64;
663  }
664  bool isImm8() const {
665    if (!isImm()) return false;
666    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
667    if (!CE) return false;
668    int64_t Value = CE->getValue();
669    return Value == 8;
670  }
671  bool isImm16() const {
672    if (!isImm()) return false;
673    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
674    if (!CE) return false;
675    int64_t Value = CE->getValue();
676    return Value == 16;
677  }
678  bool isImm32() const {
679    if (!isImm()) return false;
680    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
681    if (!CE) return false;
682    int64_t Value = CE->getValue();
683    return Value == 32;
684  }
685  bool isShrImm8() const {
686    if (!isImm()) return false;
687    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
688    if (!CE) return false;
689    int64_t Value = CE->getValue();
690    return Value > 0 && Value <= 8;
691  }
692  bool isShrImm16() const {
693    if (!isImm()) return false;
694    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
695    if (!CE) return false;
696    int64_t Value = CE->getValue();
697    return Value > 0 && Value <= 16;
698  }
699  bool isShrImm32() const {
700    if (!isImm()) return false;
701    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
702    if (!CE) return false;
703    int64_t Value = CE->getValue();
704    return Value > 0 && Value <= 32;
705  }
706  bool isShrImm64() const {
707    if (!isImm()) return false;
708    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
709    if (!CE) return false;
710    int64_t Value = CE->getValue();
711    return Value > 0 && Value <= 64;
712  }
713  bool isImm1_7() const {
714    if (!isImm()) return false;
715    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
716    if (!CE) return false;
717    int64_t Value = CE->getValue();
718    return Value > 0 && Value < 8;
719  }
720  bool isImm1_15() const {
721    if (!isImm()) return false;
722    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
723    if (!CE) return false;
724    int64_t Value = CE->getValue();
725    return Value > 0 && Value < 16;
726  }
727  bool isImm1_31() const {
728    if (!isImm()) return false;
729    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
730    if (!CE) return false;
731    int64_t Value = CE->getValue();
732    return Value > 0 && Value < 32;
733  }
734  bool isImm1_16() const {
735    if (!isImm()) return false;
736    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
737    if (!CE) return false;
738    int64_t Value = CE->getValue();
739    return Value > 0 && Value < 17;
740  }
741  bool isImm1_32() const {
742    if (!isImm()) return false;
743    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
744    if (!CE) return false;
745    int64_t Value = CE->getValue();
746    return Value > 0 && Value < 33;
747  }
748  bool isImm0_32() const {
749    if (!isImm()) return false;
750    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
751    if (!CE) return false;
752    int64_t Value = CE->getValue();
753    return Value >= 0 && Value < 33;
754  }
755  bool isImm0_65535() const {
756    if (!isImm()) return false;
757    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
758    if (!CE) return false;
759    int64_t Value = CE->getValue();
760    return Value >= 0 && Value < 65536;
761  }
762  bool isImm0_65535Expr() const {
763    if (!isImm()) return false;
764    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
765    // If it's not a constant expression, it'll generate a fixup and be
766    // handled later.
767    if (!CE) return true;
768    int64_t Value = CE->getValue();
769    return Value >= 0 && Value < 65536;
770  }
771  bool isImm24bit() const {
772    if (!isImm()) return false;
773    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
774    if (!CE) return false;
775    int64_t Value = CE->getValue();
776    return Value >= 0 && Value <= 0xffffff;
777  }
778  bool isImmThumbSR() const {
779    if (!isImm()) return false;
780    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
781    if (!CE) return false;
782    int64_t Value = CE->getValue();
783    return Value > 0 && Value < 33;
784  }
785  bool isPKHLSLImm() const {
786    if (!isImm()) return false;
787    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
788    if (!CE) return false;
789    int64_t Value = CE->getValue();
790    return Value >= 0 && Value < 32;
791  }
792  bool isPKHASRImm() const {
793    if (!isImm()) return false;
794    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
795    if (!CE) return false;
796    int64_t Value = CE->getValue();
797    return Value > 0 && Value <= 32;
798  }
799  bool isARMSOImm() const {
800    if (!isImm()) return false;
801    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
802    if (!CE) return false;
803    int64_t Value = CE->getValue();
804    return ARM_AM::getSOImmVal(Value) != -1;
805  }
806  bool isARMSOImmNot() const {
807    if (!isImm()) return false;
808    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
809    if (!CE) return false;
810    int64_t Value = CE->getValue();
811    return ARM_AM::getSOImmVal(~Value) != -1;
812  }
813  bool isARMSOImmNeg() const {
814    if (!isImm()) return false;
815    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
816    if (!CE) return false;
817    int64_t Value = CE->getValue();
818    // Only use this when not representable as a plain so_imm.
819    return ARM_AM::getSOImmVal(Value) == -1 &&
820      ARM_AM::getSOImmVal(-Value) != -1;
821  }
822  bool isT2SOImm() const {
823    if (!isImm()) return false;
824    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
825    if (!CE) return false;
826    int64_t Value = CE->getValue();
827    return ARM_AM::getT2SOImmVal(Value) != -1;
828  }
829  bool isT2SOImmNot() const {
830    if (!isImm()) return false;
831    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
832    if (!CE) return false;
833    int64_t Value = CE->getValue();
834    return ARM_AM::getT2SOImmVal(~Value) != -1;
835  }
836  bool isT2SOImmNeg() const {
837    if (!isImm()) return false;
838    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
839    if (!CE) return false;
840    int64_t Value = CE->getValue();
841    // Only use this when not representable as a plain so_imm.
842    return ARM_AM::getT2SOImmVal(Value) == -1 &&
843      ARM_AM::getT2SOImmVal(-Value) != -1;
844  }
845  bool isSetEndImm() const {
846    if (!isImm()) return false;
847    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
848    if (!CE) return false;
849    int64_t Value = CE->getValue();
850    return Value == 1 || Value == 0;
851  }
852  bool isReg() const { return Kind == k_Register; }
853  bool isRegList() const { return Kind == k_RegisterList; }
854  bool isDPRRegList() const { return Kind == k_DPRRegisterList; }
855  bool isSPRRegList() const { return Kind == k_SPRRegisterList; }
856  bool isToken() const { return Kind == k_Token; }
857  bool isMemBarrierOpt() const { return Kind == k_MemBarrierOpt; }
858  bool isMemory() const { return Kind == k_Memory; }
859  bool isShifterImm() const { return Kind == k_ShifterImmediate; }
860  bool isRegShiftedReg() const { return Kind == k_ShiftedRegister; }
861  bool isRegShiftedImm() const { return Kind == k_ShiftedImmediate; }
862  bool isRotImm() const { return Kind == k_RotateImmediate; }
863  bool isBitfield() const { return Kind == k_BitfieldDescriptor; }
864  bool isPostIdxRegShifted() const { return Kind == k_PostIndexRegister; }
865  bool isPostIdxReg() const {
866    return Kind == k_PostIndexRegister && PostIdxReg.ShiftTy ==ARM_AM::no_shift;
867  }
868  bool isMemNoOffset(bool alignOK = false) const {
869    if (!isMemory())
870      return false;
871    // No offset of any kind.
872    return Memory.OffsetRegNum == 0 && Memory.OffsetImm == 0 &&
873     (alignOK || Memory.Alignment == 0);
874  }
875  bool isMemPCRelImm12() const {
876    if (!isMemory() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
877      return false;
878    // Base register must be PC.
879    if (Memory.BaseRegNum != ARM::PC)
880      return false;
881    // Immediate offset in range [-4095, 4095].
882    if (!Memory.OffsetImm) return true;
883    int64_t Val = Memory.OffsetImm->getValue();
884    return (Val > -4096 && Val < 4096) || (Val == INT32_MIN);
885  }
886  bool isAlignedMemory() const {
887    return isMemNoOffset(true);
888  }
889  bool isAddrMode2() const {
890    if (!isMemory() || Memory.Alignment != 0) return false;
891    // Check for register offset.
892    if (Memory.OffsetRegNum) return true;
893    // Immediate offset in range [-4095, 4095].
894    if (!Memory.OffsetImm) return true;
895    int64_t Val = Memory.OffsetImm->getValue();
896    return Val > -4096 && Val < 4096;
897  }
898  bool isAM2OffsetImm() const {
899    if (!isImm()) return false;
900    // Immediate offset in range [-4095, 4095].
901    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
902    if (!CE) return false;
903    int64_t Val = CE->getValue();
904    return Val > -4096 && Val < 4096;
905  }
906  bool isAddrMode3() const {
907    // If we have an immediate that's not a constant, treat it as a label
908    // reference needing a fixup. If it is a constant, it's something else
909    // and we reject it.
910    if (isImm() && !isa<MCConstantExpr>(getImm()))
911      return true;
912    if (!isMemory() || Memory.Alignment != 0) return false;
913    // No shifts are legal for AM3.
914    if (Memory.ShiftType != ARM_AM::no_shift) return false;
915    // Check for register offset.
916    if (Memory.OffsetRegNum) return true;
917    // Immediate offset in range [-255, 255].
918    if (!Memory.OffsetImm) return true;
919    int64_t Val = Memory.OffsetImm->getValue();
920    // The #-0 offset is encoded as INT32_MIN, and we have to check
921    // for this too.
922    return (Val > -256 && Val < 256) || Val == INT32_MIN;
923  }
924  bool isAM3Offset() const {
925    if (Kind != k_Immediate && Kind != k_PostIndexRegister)
926      return false;
927    if (Kind == k_PostIndexRegister)
928      return PostIdxReg.ShiftTy == ARM_AM::no_shift;
929    // Immediate offset in range [-255, 255].
930    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
931    if (!CE) return false;
932    int64_t Val = CE->getValue();
933    // Special case, #-0 is INT32_MIN.
934    return (Val > -256 && Val < 256) || Val == INT32_MIN;
935  }
936  bool isAddrMode5() const {
937    // If we have an immediate that's not a constant, treat it as a label
938    // reference needing a fixup. If it is a constant, it's something else
939    // and we reject it.
940    if (isImm() && !isa<MCConstantExpr>(getImm()))
941      return true;
942    if (!isMemory() || Memory.Alignment != 0) return false;
943    // Check for register offset.
944    if (Memory.OffsetRegNum) return false;
945    // Immediate offset in range [-1020, 1020] and a multiple of 4.
946    if (!Memory.OffsetImm) return true;
947    int64_t Val = Memory.OffsetImm->getValue();
948    return (Val >= -1020 && Val <= 1020 && ((Val & 3) == 0)) ||
949      Val == INT32_MIN;
950  }
951  bool isMemTBB() const {
952    if (!isMemory() || !Memory.OffsetRegNum || Memory.isNegative ||
953        Memory.ShiftType != ARM_AM::no_shift || Memory.Alignment != 0)
954      return false;
955    return true;
956  }
957  bool isMemTBH() const {
958    if (!isMemory() || !Memory.OffsetRegNum || Memory.isNegative ||
959        Memory.ShiftType != ARM_AM::lsl || Memory.ShiftImm != 1 ||
960        Memory.Alignment != 0 )
961      return false;
962    return true;
963  }
964  bool isMemRegOffset() const {
965    if (!isMemory() || !Memory.OffsetRegNum || Memory.Alignment != 0)
966      return false;
967    return true;
968  }
969  bool isT2MemRegOffset() const {
970    if (!isMemory() || !Memory.OffsetRegNum || Memory.isNegative ||
971        Memory.Alignment != 0)
972      return false;
973    // Only lsl #{0, 1, 2, 3} allowed.
974    if (Memory.ShiftType == ARM_AM::no_shift)
975      return true;
976    if (Memory.ShiftType != ARM_AM::lsl || Memory.ShiftImm > 3)
977      return false;
978    return true;
979  }
980  bool isMemThumbRR() const {
981    // Thumb reg+reg addressing is simple. Just two registers, a base and
982    // an offset. No shifts, negations or any other complicating factors.
983    if (!isMemory() || !Memory.OffsetRegNum || Memory.isNegative ||
984        Memory.ShiftType != ARM_AM::no_shift || Memory.Alignment != 0)
985      return false;
986    return isARMLowRegister(Memory.BaseRegNum) &&
987      (!Memory.OffsetRegNum || isARMLowRegister(Memory.OffsetRegNum));
988  }
989  bool isMemThumbRIs4() const {
990    if (!isMemory() || Memory.OffsetRegNum != 0 ||
991        !isARMLowRegister(Memory.BaseRegNum) || Memory.Alignment != 0)
992      return false;
993    // Immediate offset, multiple of 4 in range [0, 124].
994    if (!Memory.OffsetImm) return true;
995    int64_t Val = Memory.OffsetImm->getValue();
996    return Val >= 0 && Val <= 124 && (Val % 4) == 0;
997  }
998  bool isMemThumbRIs2() const {
999    if (!isMemory() || Memory.OffsetRegNum != 0 ||
1000        !isARMLowRegister(Memory.BaseRegNum) || Memory.Alignment != 0)
1001      return false;
1002    // Immediate offset, multiple of 4 in range [0, 62].
1003    if (!Memory.OffsetImm) return true;
1004    int64_t Val = Memory.OffsetImm->getValue();
1005    return Val >= 0 && Val <= 62 && (Val % 2) == 0;
1006  }
1007  bool isMemThumbRIs1() const {
1008    if (!isMemory() || Memory.OffsetRegNum != 0 ||
1009        !isARMLowRegister(Memory.BaseRegNum) || Memory.Alignment != 0)
1010      return false;
1011    // Immediate offset in range [0, 31].
1012    if (!Memory.OffsetImm) return true;
1013    int64_t Val = Memory.OffsetImm->getValue();
1014    return Val >= 0 && Val <= 31;
1015  }
1016  bool isMemThumbSPI() const {
1017    if (!isMemory() || Memory.OffsetRegNum != 0 ||
1018        Memory.BaseRegNum != ARM::SP || Memory.Alignment != 0)
1019      return false;
1020    // Immediate offset, multiple of 4 in range [0, 1020].
1021    if (!Memory.OffsetImm) return true;
1022    int64_t Val = Memory.OffsetImm->getValue();
1023    return Val >= 0 && Val <= 1020 && (Val % 4) == 0;
1024  }
1025  bool isMemImm8s4Offset() const {
1026    // If we have an immediate that's not a constant, treat it as a label
1027    // reference needing a fixup. If it is a constant, it's something else
1028    // and we reject it.
1029    if (isImm() && !isa<MCConstantExpr>(getImm()))
1030      return true;
1031    if (!isMemory() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
1032      return false;
1033    // Immediate offset a multiple of 4 in range [-1020, 1020].
1034    if (!Memory.OffsetImm) return true;
1035    int64_t Val = Memory.OffsetImm->getValue();
1036    return Val >= -1020 && Val <= 1020 && (Val & 3) == 0;
1037  }
1038  bool isMemImm0_1020s4Offset() const {
1039    if (!isMemory() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
1040      return false;
1041    // Immediate offset a multiple of 4 in range [0, 1020].
1042    if (!Memory.OffsetImm) return true;
1043    int64_t Val = Memory.OffsetImm->getValue();
1044    return Val >= 0 && Val <= 1020 && (Val & 3) == 0;
1045  }
1046  bool isMemImm8Offset() const {
1047    if (!isMemory() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
1048      return false;
1049    // Base reg of PC isn't allowed for these encodings.
1050    if (Memory.BaseRegNum == ARM::PC) return false;
1051    // Immediate offset in range [-255, 255].
1052    if (!Memory.OffsetImm) return true;
1053    int64_t Val = Memory.OffsetImm->getValue();
1054    return (Val == INT32_MIN) || (Val > -256 && Val < 256);
1055  }
1056  bool isMemPosImm8Offset() const {
1057    if (!isMemory() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
1058      return false;
1059    // Immediate offset in range [0, 255].
1060    if (!Memory.OffsetImm) return true;
1061    int64_t Val = Memory.OffsetImm->getValue();
1062    return Val >= 0 && Val < 256;
1063  }
1064  bool isMemNegImm8Offset() const {
1065    if (!isMemory() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
1066      return false;
1067    // Base reg of PC isn't allowed for these encodings.
1068    if (Memory.BaseRegNum == ARM::PC) return false;
1069    // Immediate offset in range [-255, -1].
1070    if (!Memory.OffsetImm) return false;
1071    int64_t Val = Memory.OffsetImm->getValue();
1072    return (Val == INT32_MIN) || (Val > -256 && Val < 0);
1073  }
1074  bool isMemUImm12Offset() const {
1075    if (!isMemory() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
1076      return false;
1077    // Immediate offset in range [0, 4095].
1078    if (!Memory.OffsetImm) return true;
1079    int64_t Val = Memory.OffsetImm->getValue();
1080    return (Val >= 0 && Val < 4096);
1081  }
1082  bool isMemImm12Offset() const {
1083    // If we have an immediate that's not a constant, treat it as a label
1084    // reference needing a fixup. If it is a constant, it's something else
1085    // and we reject it.
1086    if (isImm() && !isa<MCConstantExpr>(getImm()))
1087      return true;
1088
1089    if (!isMemory() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
1090      return false;
1091    // Immediate offset in range [-4095, 4095].
1092    if (!Memory.OffsetImm) return true;
1093    int64_t Val = Memory.OffsetImm->getValue();
1094    return (Val > -4096 && Val < 4096) || (Val == INT32_MIN);
1095  }
1096  bool isPostIdxImm8() const {
1097    if (!isImm()) return false;
1098    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1099    if (!CE) return false;
1100    int64_t Val = CE->getValue();
1101    return (Val > -256 && Val < 256) || (Val == INT32_MIN);
1102  }
1103  bool isPostIdxImm8s4() const {
1104    if (!isImm()) return false;
1105    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1106    if (!CE) return false;
1107    int64_t Val = CE->getValue();
1108    return ((Val & 3) == 0 && Val >= -1020 && Val <= 1020) ||
1109      (Val == INT32_MIN);
1110  }
1111
1112  bool isMSRMask() const { return Kind == k_MSRMask; }
1113  bool isProcIFlags() const { return Kind == k_ProcIFlags; }
1114
1115  // NEON operands.
1116  bool isSingleSpacedVectorList() const {
1117    return Kind == k_VectorList && !VectorList.isDoubleSpaced;
1118  }
1119  bool isDoubleSpacedVectorList() const {
1120    return Kind == k_VectorList && VectorList.isDoubleSpaced;
1121  }
1122  bool isVecListOneD() const {
1123    if (!isSingleSpacedVectorList()) return false;
1124    return VectorList.Count == 1;
1125  }
1126
1127  bool isVecListDPair() const {
1128    if (!isSingleSpacedVectorList()) return false;
1129    return (ARMMCRegisterClasses[ARM::DPairRegClassID]
1130              .contains(VectorList.RegNum));
1131  }
1132
1133  bool isVecListThreeD() const {
1134    if (!isSingleSpacedVectorList()) return false;
1135    return VectorList.Count == 3;
1136  }
1137
1138  bool isVecListFourD() const {
1139    if (!isSingleSpacedVectorList()) return false;
1140    return VectorList.Count == 4;
1141  }
1142
1143  bool isVecListDPairSpaced() const {
1144    if (isSingleSpacedVectorList()) return false;
1145    return (ARMMCRegisterClasses[ARM::DPairSpcRegClassID]
1146              .contains(VectorList.RegNum));
1147  }
1148
1149  bool isVecListThreeQ() const {
1150    if (!isDoubleSpacedVectorList()) return false;
1151    return VectorList.Count == 3;
1152  }
1153
1154  bool isVecListFourQ() const {
1155    if (!isDoubleSpacedVectorList()) return false;
1156    return VectorList.Count == 4;
1157  }
1158
1159  bool isSingleSpacedVectorAllLanes() const {
1160    return Kind == k_VectorListAllLanes && !VectorList.isDoubleSpaced;
1161  }
1162  bool isDoubleSpacedVectorAllLanes() const {
1163    return Kind == k_VectorListAllLanes && VectorList.isDoubleSpaced;
1164  }
1165  bool isVecListOneDAllLanes() const {
1166    if (!isSingleSpacedVectorAllLanes()) return false;
1167    return VectorList.Count == 1;
1168  }
1169
1170  bool isVecListDPairAllLanes() const {
1171    if (!isSingleSpacedVectorAllLanes()) return false;
1172    return (ARMMCRegisterClasses[ARM::DPairRegClassID]
1173              .contains(VectorList.RegNum));
1174  }
1175
1176  bool isVecListDPairSpacedAllLanes() const {
1177    if (!isDoubleSpacedVectorAllLanes()) return false;
1178    return VectorList.Count == 2;
1179  }
1180
1181  bool isVecListThreeDAllLanes() const {
1182    if (!isSingleSpacedVectorAllLanes()) return false;
1183    return VectorList.Count == 3;
1184  }
1185
1186  bool isVecListThreeQAllLanes() const {
1187    if (!isDoubleSpacedVectorAllLanes()) return false;
1188    return VectorList.Count == 3;
1189  }
1190
1191  bool isVecListFourDAllLanes() const {
1192    if (!isSingleSpacedVectorAllLanes()) return false;
1193    return VectorList.Count == 4;
1194  }
1195
1196  bool isVecListFourQAllLanes() const {
1197    if (!isDoubleSpacedVectorAllLanes()) return false;
1198    return VectorList.Count == 4;
1199  }
1200
1201  bool isSingleSpacedVectorIndexed() const {
1202    return Kind == k_VectorListIndexed && !VectorList.isDoubleSpaced;
1203  }
1204  bool isDoubleSpacedVectorIndexed() const {
1205    return Kind == k_VectorListIndexed && VectorList.isDoubleSpaced;
1206  }
1207  bool isVecListOneDByteIndexed() const {
1208    if (!isSingleSpacedVectorIndexed()) return false;
1209    return VectorList.Count == 1 && VectorList.LaneIndex <= 7;
1210  }
1211
1212  bool isVecListOneDHWordIndexed() const {
1213    if (!isSingleSpacedVectorIndexed()) return false;
1214    return VectorList.Count == 1 && VectorList.LaneIndex <= 3;
1215  }
1216
1217  bool isVecListOneDWordIndexed() const {
1218    if (!isSingleSpacedVectorIndexed()) return false;
1219    return VectorList.Count == 1 && VectorList.LaneIndex <= 1;
1220  }
1221
1222  bool isVecListTwoDByteIndexed() const {
1223    if (!isSingleSpacedVectorIndexed()) return false;
1224    return VectorList.Count == 2 && VectorList.LaneIndex <= 7;
1225  }
1226
1227  bool isVecListTwoDHWordIndexed() const {
1228    if (!isSingleSpacedVectorIndexed()) return false;
1229    return VectorList.Count == 2 && VectorList.LaneIndex <= 3;
1230  }
1231
1232  bool isVecListTwoQWordIndexed() const {
1233    if (!isDoubleSpacedVectorIndexed()) return false;
1234    return VectorList.Count == 2 && VectorList.LaneIndex <= 1;
1235  }
1236
1237  bool isVecListTwoQHWordIndexed() const {
1238    if (!isDoubleSpacedVectorIndexed()) return false;
1239    return VectorList.Count == 2 && VectorList.LaneIndex <= 3;
1240  }
1241
1242  bool isVecListTwoDWordIndexed() const {
1243    if (!isSingleSpacedVectorIndexed()) return false;
1244    return VectorList.Count == 2 && VectorList.LaneIndex <= 1;
1245  }
1246
1247  bool isVecListThreeDByteIndexed() const {
1248    if (!isSingleSpacedVectorIndexed()) return false;
1249    return VectorList.Count == 3 && VectorList.LaneIndex <= 7;
1250  }
1251
1252  bool isVecListThreeDHWordIndexed() const {
1253    if (!isSingleSpacedVectorIndexed()) return false;
1254    return VectorList.Count == 3 && VectorList.LaneIndex <= 3;
1255  }
1256
1257  bool isVecListThreeQWordIndexed() const {
1258    if (!isDoubleSpacedVectorIndexed()) return false;
1259    return VectorList.Count == 3 && VectorList.LaneIndex <= 1;
1260  }
1261
1262  bool isVecListThreeQHWordIndexed() const {
1263    if (!isDoubleSpacedVectorIndexed()) return false;
1264    return VectorList.Count == 3 && VectorList.LaneIndex <= 3;
1265  }
1266
1267  bool isVecListThreeDWordIndexed() const {
1268    if (!isSingleSpacedVectorIndexed()) return false;
1269    return VectorList.Count == 3 && VectorList.LaneIndex <= 1;
1270  }
1271
1272  bool isVecListFourDByteIndexed() const {
1273    if (!isSingleSpacedVectorIndexed()) return false;
1274    return VectorList.Count == 4 && VectorList.LaneIndex <= 7;
1275  }
1276
1277  bool isVecListFourDHWordIndexed() const {
1278    if (!isSingleSpacedVectorIndexed()) return false;
1279    return VectorList.Count == 4 && VectorList.LaneIndex <= 3;
1280  }
1281
1282  bool isVecListFourQWordIndexed() const {
1283    if (!isDoubleSpacedVectorIndexed()) return false;
1284    return VectorList.Count == 4 && VectorList.LaneIndex <= 1;
1285  }
1286
1287  bool isVecListFourQHWordIndexed() const {
1288    if (!isDoubleSpacedVectorIndexed()) return false;
1289    return VectorList.Count == 4 && VectorList.LaneIndex <= 3;
1290  }
1291
1292  bool isVecListFourDWordIndexed() const {
1293    if (!isSingleSpacedVectorIndexed()) return false;
1294    return VectorList.Count == 4 && VectorList.LaneIndex <= 1;
1295  }
1296
1297  bool isVectorIndex8() const {
1298    if (Kind != k_VectorIndex) return false;
1299    return VectorIndex.Val < 8;
1300  }
1301  bool isVectorIndex16() const {
1302    if (Kind != k_VectorIndex) return false;
1303    return VectorIndex.Val < 4;
1304  }
1305  bool isVectorIndex32() const {
1306    if (Kind != k_VectorIndex) return false;
1307    return VectorIndex.Val < 2;
1308  }
1309
1310  bool isNEONi8splat() const {
1311    if (!isImm()) return false;
1312    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1313    // Must be a constant.
1314    if (!CE) return false;
1315    int64_t Value = CE->getValue();
1316    // i8 value splatted across 8 bytes. The immediate is just the 8 byte
1317    // value.
1318    return Value >= 0 && Value < 256;
1319  }
1320
1321  bool isNEONi16splat() const {
1322    if (!isImm()) return false;
1323    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1324    // Must be a constant.
1325    if (!CE) return false;
1326    int64_t Value = CE->getValue();
1327    // i16 value in the range [0,255] or [0x0100, 0xff00]
1328    return (Value >= 0 && Value < 256) || (Value >= 0x0100 && Value <= 0xff00);
1329  }
1330
1331  bool isNEONi32splat() const {
1332    if (!isImm()) return false;
1333    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1334    // Must be a constant.
1335    if (!CE) return false;
1336    int64_t Value = CE->getValue();
1337    // i32 value with set bits only in one byte X000, 0X00, 00X0, or 000X.
1338    return (Value >= 0 && Value < 256) ||
1339      (Value >= 0x0100 && Value <= 0xff00) ||
1340      (Value >= 0x010000 && Value <= 0xff0000) ||
1341      (Value >= 0x01000000 && Value <= 0xff000000);
1342  }
1343
1344  bool isNEONi32vmov() const {
1345    if (!isImm()) return false;
1346    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1347    // Must be a constant.
1348    if (!CE) return false;
1349    int64_t Value = CE->getValue();
1350    // i32 value with set bits only in one byte X000, 0X00, 00X0, or 000X,
1351    // for VMOV/VMVN only, 00Xf or 0Xff are also accepted.
1352    return (Value >= 0 && Value < 256) ||
1353      (Value >= 0x0100 && Value <= 0xff00) ||
1354      (Value >= 0x010000 && Value <= 0xff0000) ||
1355      (Value >= 0x01000000 && Value <= 0xff000000) ||
1356      (Value >= 0x01ff && Value <= 0xffff && (Value & 0xff) == 0xff) ||
1357      (Value >= 0x01ffff && Value <= 0xffffff && (Value & 0xffff) == 0xffff);
1358  }
1359  bool isNEONi32vmovNeg() const {
1360    if (!isImm()) return false;
1361    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1362    // Must be a constant.
1363    if (!CE) return false;
1364    int64_t Value = ~CE->getValue();
1365    // i32 value with set bits only in one byte X000, 0X00, 00X0, or 000X,
1366    // for VMOV/VMVN only, 00Xf or 0Xff are also accepted.
1367    return (Value >= 0 && Value < 256) ||
1368      (Value >= 0x0100 && Value <= 0xff00) ||
1369      (Value >= 0x010000 && Value <= 0xff0000) ||
1370      (Value >= 0x01000000 && Value <= 0xff000000) ||
1371      (Value >= 0x01ff && Value <= 0xffff && (Value & 0xff) == 0xff) ||
1372      (Value >= 0x01ffff && Value <= 0xffffff && (Value & 0xffff) == 0xffff);
1373  }
1374
1375  bool isNEONi64splat() const {
1376    if (!isImm()) return false;
1377    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1378    // Must be a constant.
1379    if (!CE) return false;
1380    uint64_t Value = CE->getValue();
1381    // i64 value with each byte being either 0 or 0xff.
1382    for (unsigned i = 0; i < 8; ++i)
1383      if ((Value & 0xff) != 0 && (Value & 0xff) != 0xff) return false;
1384    return true;
1385  }
1386
1387  void addExpr(MCInst &Inst, const MCExpr *Expr) const {
1388    // Add as immediates when possible.  Null MCExpr = 0.
1389    if (Expr == 0)
1390      Inst.addOperand(MCOperand::CreateImm(0));
1391    else if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr))
1392      Inst.addOperand(MCOperand::CreateImm(CE->getValue()));
1393    else
1394      Inst.addOperand(MCOperand::CreateExpr(Expr));
1395  }
1396
1397  void addCondCodeOperands(MCInst &Inst, unsigned N) const {
1398    assert(N == 2 && "Invalid number of operands!");
1399    Inst.addOperand(MCOperand::CreateImm(unsigned(getCondCode())));
1400    unsigned RegNum = getCondCode() == ARMCC::AL ? 0: ARM::CPSR;
1401    Inst.addOperand(MCOperand::CreateReg(RegNum));
1402  }
1403
1404  void addCoprocNumOperands(MCInst &Inst, unsigned N) const {
1405    assert(N == 1 && "Invalid number of operands!");
1406    Inst.addOperand(MCOperand::CreateImm(getCoproc()));
1407  }
1408
1409  void addCoprocRegOperands(MCInst &Inst, unsigned N) const {
1410    assert(N == 1 && "Invalid number of operands!");
1411    Inst.addOperand(MCOperand::CreateImm(getCoproc()));
1412  }
1413
1414  void addCoprocOptionOperands(MCInst &Inst, unsigned N) const {
1415    assert(N == 1 && "Invalid number of operands!");
1416    Inst.addOperand(MCOperand::CreateImm(CoprocOption.Val));
1417  }
1418
1419  void addITMaskOperands(MCInst &Inst, unsigned N) const {
1420    assert(N == 1 && "Invalid number of operands!");
1421    Inst.addOperand(MCOperand::CreateImm(ITMask.Mask));
1422  }
1423
1424  void addITCondCodeOperands(MCInst &Inst, unsigned N) const {
1425    assert(N == 1 && "Invalid number of operands!");
1426    Inst.addOperand(MCOperand::CreateImm(unsigned(getCondCode())));
1427  }
1428
1429  void addCCOutOperands(MCInst &Inst, unsigned N) const {
1430    assert(N == 1 && "Invalid number of operands!");
1431    Inst.addOperand(MCOperand::CreateReg(getReg()));
1432  }
1433
1434  void addRegOperands(MCInst &Inst, unsigned N) const {
1435    assert(N == 1 && "Invalid number of operands!");
1436    Inst.addOperand(MCOperand::CreateReg(getReg()));
1437  }
1438
1439  void addRegShiftedRegOperands(MCInst &Inst, unsigned N) const {
1440    assert(N == 3 && "Invalid number of operands!");
1441    assert(isRegShiftedReg() &&
1442           "addRegShiftedRegOperands() on non RegShiftedReg!");
1443    Inst.addOperand(MCOperand::CreateReg(RegShiftedReg.SrcReg));
1444    Inst.addOperand(MCOperand::CreateReg(RegShiftedReg.ShiftReg));
1445    Inst.addOperand(MCOperand::CreateImm(
1446      ARM_AM::getSORegOpc(RegShiftedReg.ShiftTy, RegShiftedReg.ShiftImm)));
1447  }
1448
1449  void addRegShiftedImmOperands(MCInst &Inst, unsigned N) const {
1450    assert(N == 2 && "Invalid number of operands!");
1451    assert(isRegShiftedImm() &&
1452           "addRegShiftedImmOperands() on non RegShiftedImm!");
1453    Inst.addOperand(MCOperand::CreateReg(RegShiftedImm.SrcReg));
1454    // Shift of #32 is encoded as 0 where permitted
1455    unsigned Imm = (RegShiftedImm.ShiftImm == 32 ? 0 : RegShiftedImm.ShiftImm);
1456    Inst.addOperand(MCOperand::CreateImm(
1457      ARM_AM::getSORegOpc(RegShiftedImm.ShiftTy, Imm)));
1458  }
1459
1460  void addShifterImmOperands(MCInst &Inst, unsigned N) const {
1461    assert(N == 1 && "Invalid number of operands!");
1462    Inst.addOperand(MCOperand::CreateImm((ShifterImm.isASR << 5) |
1463                                         ShifterImm.Imm));
1464  }
1465
1466  void addRegListOperands(MCInst &Inst, unsigned N) const {
1467    assert(N == 1 && "Invalid number of operands!");
1468    const SmallVectorImpl<unsigned> &RegList = getRegList();
1469    for (SmallVectorImpl<unsigned>::const_iterator
1470           I = RegList.begin(), E = RegList.end(); I != E; ++I)
1471      Inst.addOperand(MCOperand::CreateReg(*I));
1472  }
1473
1474  void addDPRRegListOperands(MCInst &Inst, unsigned N) const {
1475    addRegListOperands(Inst, N);
1476  }
1477
1478  void addSPRRegListOperands(MCInst &Inst, unsigned N) const {
1479    addRegListOperands(Inst, N);
1480  }
1481
1482  void addRotImmOperands(MCInst &Inst, unsigned N) const {
1483    assert(N == 1 && "Invalid number of operands!");
1484    // Encoded as val>>3. The printer handles display as 8, 16, 24.
1485    Inst.addOperand(MCOperand::CreateImm(RotImm.Imm >> 3));
1486  }
1487
1488  void addBitfieldOperands(MCInst &Inst, unsigned N) const {
1489    assert(N == 1 && "Invalid number of operands!");
1490    // Munge the lsb/width into a bitfield mask.
1491    unsigned lsb = Bitfield.LSB;
1492    unsigned width = Bitfield.Width;
1493    // Make a 32-bit mask w/ the referenced bits clear and all other bits set.
1494    uint32_t Mask = ~(((uint32_t)0xffffffff >> lsb) << (32 - width) >>
1495                      (32 - (lsb + width)));
1496    Inst.addOperand(MCOperand::CreateImm(Mask));
1497  }
1498
1499  void addImmOperands(MCInst &Inst, unsigned N) const {
1500    assert(N == 1 && "Invalid number of operands!");
1501    addExpr(Inst, getImm());
1502  }
1503
1504  void addFBits16Operands(MCInst &Inst, unsigned N) const {
1505    assert(N == 1 && "Invalid number of operands!");
1506    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1507    Inst.addOperand(MCOperand::CreateImm(16 - CE->getValue()));
1508  }
1509
1510  void addFBits32Operands(MCInst &Inst, unsigned N) const {
1511    assert(N == 1 && "Invalid number of operands!");
1512    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1513    Inst.addOperand(MCOperand::CreateImm(32 - CE->getValue()));
1514  }
1515
1516  void addFPImmOperands(MCInst &Inst, unsigned N) const {
1517    assert(N == 1 && "Invalid number of operands!");
1518    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1519    int Val = ARM_AM::getFP32Imm(APInt(32, CE->getValue()));
1520    Inst.addOperand(MCOperand::CreateImm(Val));
1521  }
1522
1523  void addImm8s4Operands(MCInst &Inst, unsigned N) const {
1524    assert(N == 1 && "Invalid number of operands!");
1525    // FIXME: We really want to scale the value here, but the LDRD/STRD
1526    // instruction don't encode operands that way yet.
1527    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1528    Inst.addOperand(MCOperand::CreateImm(CE->getValue()));
1529  }
1530
1531  void addImm0_1020s4Operands(MCInst &Inst, unsigned N) const {
1532    assert(N == 1 && "Invalid number of operands!");
1533    // The immediate is scaled by four in the encoding and is stored
1534    // in the MCInst as such. Lop off the low two bits here.
1535    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1536    Inst.addOperand(MCOperand::CreateImm(CE->getValue() / 4));
1537  }
1538
1539  void addImm0_508s4NegOperands(MCInst &Inst, unsigned N) const {
1540    assert(N == 1 && "Invalid number of operands!");
1541    // The immediate is scaled by four in the encoding and is stored
1542    // in the MCInst as such. Lop off the low two bits here.
1543    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1544    Inst.addOperand(MCOperand::CreateImm(-(CE->getValue() / 4)));
1545  }
1546
1547  void addImm0_508s4Operands(MCInst &Inst, unsigned N) const {
1548    assert(N == 1 && "Invalid number of operands!");
1549    // The immediate is scaled by four in the encoding and is stored
1550    // in the MCInst as such. Lop off the low two bits here.
1551    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1552    Inst.addOperand(MCOperand::CreateImm(CE->getValue() / 4));
1553  }
1554
1555  void addImm1_16Operands(MCInst &Inst, unsigned N) const {
1556    assert(N == 1 && "Invalid number of operands!");
1557    // The constant encodes as the immediate-1, and we store in the instruction
1558    // the bits as encoded, so subtract off one here.
1559    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1560    Inst.addOperand(MCOperand::CreateImm(CE->getValue() - 1));
1561  }
1562
1563  void addImm1_32Operands(MCInst &Inst, unsigned N) const {
1564    assert(N == 1 && "Invalid number of operands!");
1565    // The constant encodes as the immediate-1, and we store in the instruction
1566    // the bits as encoded, so subtract off one here.
1567    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1568    Inst.addOperand(MCOperand::CreateImm(CE->getValue() - 1));
1569  }
1570
1571  void addImmThumbSROperands(MCInst &Inst, unsigned N) const {
1572    assert(N == 1 && "Invalid number of operands!");
1573    // The constant encodes as the immediate, except for 32, which encodes as
1574    // zero.
1575    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1576    unsigned Imm = CE->getValue();
1577    Inst.addOperand(MCOperand::CreateImm((Imm == 32 ? 0 : Imm)));
1578  }
1579
1580  void addPKHASRImmOperands(MCInst &Inst, unsigned N) const {
1581    assert(N == 1 && "Invalid number of operands!");
1582    // An ASR value of 32 encodes as 0, so that's how we want to add it to
1583    // the instruction as well.
1584    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1585    int Val = CE->getValue();
1586    Inst.addOperand(MCOperand::CreateImm(Val == 32 ? 0 : Val));
1587  }
1588
1589  void addT2SOImmNotOperands(MCInst &Inst, unsigned N) const {
1590    assert(N == 1 && "Invalid number of operands!");
1591    // The operand is actually a t2_so_imm, but we have its bitwise
1592    // negation in the assembly source, so twiddle it here.
1593    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1594    Inst.addOperand(MCOperand::CreateImm(~CE->getValue()));
1595  }
1596
1597  void addT2SOImmNegOperands(MCInst &Inst, unsigned N) const {
1598    assert(N == 1 && "Invalid number of operands!");
1599    // The operand is actually a t2_so_imm, but we have its
1600    // negation in the assembly source, so twiddle it here.
1601    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1602    Inst.addOperand(MCOperand::CreateImm(-CE->getValue()));
1603  }
1604
1605  void addImm0_4095NegOperands(MCInst &Inst, unsigned N) const {
1606    assert(N == 1 && "Invalid number of operands!");
1607    // The operand is actually an imm0_4095, but we have its
1608    // negation in the assembly source, so twiddle it here.
1609    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1610    Inst.addOperand(MCOperand::CreateImm(-CE->getValue()));
1611  }
1612
1613  void addARMSOImmNotOperands(MCInst &Inst, unsigned N) const {
1614    assert(N == 1 && "Invalid number of operands!");
1615    // The operand is actually a so_imm, but we have its bitwise
1616    // negation in the assembly source, so twiddle it here.
1617    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1618    Inst.addOperand(MCOperand::CreateImm(~CE->getValue()));
1619  }
1620
1621  void addARMSOImmNegOperands(MCInst &Inst, unsigned N) const {
1622    assert(N == 1 && "Invalid number of operands!");
1623    // The operand is actually a so_imm, but we have its
1624    // negation in the assembly source, so twiddle it here.
1625    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1626    Inst.addOperand(MCOperand::CreateImm(-CE->getValue()));
1627  }
1628
1629  void addMemBarrierOptOperands(MCInst &Inst, unsigned N) const {
1630    assert(N == 1 && "Invalid number of operands!");
1631    Inst.addOperand(MCOperand::CreateImm(unsigned(getMemBarrierOpt())));
1632  }
1633
1634  void addMemNoOffsetOperands(MCInst &Inst, unsigned N) const {
1635    assert(N == 1 && "Invalid number of operands!");
1636    Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
1637  }
1638
1639  void addMemPCRelImm12Operands(MCInst &Inst, unsigned N) const {
1640    assert(N == 1 && "Invalid number of operands!");
1641    int32_t Imm = Memory.OffsetImm->getValue();
1642    // FIXME: Handle #-0
1643    if (Imm == INT32_MIN) Imm = 0;
1644    Inst.addOperand(MCOperand::CreateImm(Imm));
1645  }
1646
1647  void addAlignedMemoryOperands(MCInst &Inst, unsigned N) const {
1648    assert(N == 2 && "Invalid number of operands!");
1649    Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
1650    Inst.addOperand(MCOperand::CreateImm(Memory.Alignment));
1651  }
1652
1653  void addAddrMode2Operands(MCInst &Inst, unsigned N) const {
1654    assert(N == 3 && "Invalid number of operands!");
1655    int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0;
1656    if (!Memory.OffsetRegNum) {
1657      ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add;
1658      // Special case for #-0
1659      if (Val == INT32_MIN) Val = 0;
1660      if (Val < 0) Val = -Val;
1661      Val = ARM_AM::getAM2Opc(AddSub, Val, ARM_AM::no_shift);
1662    } else {
1663      // For register offset, we encode the shift type and negation flag
1664      // here.
1665      Val = ARM_AM::getAM2Opc(Memory.isNegative ? ARM_AM::sub : ARM_AM::add,
1666                              Memory.ShiftImm, Memory.ShiftType);
1667    }
1668    Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
1669    Inst.addOperand(MCOperand::CreateReg(Memory.OffsetRegNum));
1670    Inst.addOperand(MCOperand::CreateImm(Val));
1671  }
1672
1673  void addAM2OffsetImmOperands(MCInst &Inst, unsigned N) const {
1674    assert(N == 2 && "Invalid number of operands!");
1675    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1676    assert(CE && "non-constant AM2OffsetImm operand!");
1677    int32_t Val = CE->getValue();
1678    ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add;
1679    // Special case for #-0
1680    if (Val == INT32_MIN) Val = 0;
1681    if (Val < 0) Val = -Val;
1682    Val = ARM_AM::getAM2Opc(AddSub, Val, ARM_AM::no_shift);
1683    Inst.addOperand(MCOperand::CreateReg(0));
1684    Inst.addOperand(MCOperand::CreateImm(Val));
1685  }
1686
1687  void addAddrMode3Operands(MCInst &Inst, unsigned N) const {
1688    assert(N == 3 && "Invalid number of operands!");
1689    // If we have an immediate that's not a constant, treat it as a label
1690    // reference needing a fixup. If it is a constant, it's something else
1691    // and we reject it.
1692    if (isImm()) {
1693      Inst.addOperand(MCOperand::CreateExpr(getImm()));
1694      Inst.addOperand(MCOperand::CreateReg(0));
1695      Inst.addOperand(MCOperand::CreateImm(0));
1696      return;
1697    }
1698
1699    int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0;
1700    if (!Memory.OffsetRegNum) {
1701      ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add;
1702      // Special case for #-0
1703      if (Val == INT32_MIN) Val = 0;
1704      if (Val < 0) Val = -Val;
1705      Val = ARM_AM::getAM3Opc(AddSub, Val);
1706    } else {
1707      // For register offset, we encode the shift type and negation flag
1708      // here.
1709      Val = ARM_AM::getAM3Opc(Memory.isNegative ? ARM_AM::sub : ARM_AM::add, 0);
1710    }
1711    Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
1712    Inst.addOperand(MCOperand::CreateReg(Memory.OffsetRegNum));
1713    Inst.addOperand(MCOperand::CreateImm(Val));
1714  }
1715
1716  void addAM3OffsetOperands(MCInst &Inst, unsigned N) const {
1717    assert(N == 2 && "Invalid number of operands!");
1718    if (Kind == k_PostIndexRegister) {
1719      int32_t Val =
1720        ARM_AM::getAM3Opc(PostIdxReg.isAdd ? ARM_AM::add : ARM_AM::sub, 0);
1721      Inst.addOperand(MCOperand::CreateReg(PostIdxReg.RegNum));
1722      Inst.addOperand(MCOperand::CreateImm(Val));
1723      return;
1724    }
1725
1726    // Constant offset.
1727    const MCConstantExpr *CE = static_cast<const MCConstantExpr*>(getImm());
1728    int32_t Val = CE->getValue();
1729    ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add;
1730    // Special case for #-0
1731    if (Val == INT32_MIN) Val = 0;
1732    if (Val < 0) Val = -Val;
1733    Val = ARM_AM::getAM3Opc(AddSub, Val);
1734    Inst.addOperand(MCOperand::CreateReg(0));
1735    Inst.addOperand(MCOperand::CreateImm(Val));
1736  }
1737
1738  void addAddrMode5Operands(MCInst &Inst, unsigned N) const {
1739    assert(N == 2 && "Invalid number of operands!");
1740    // If we have an immediate that's not a constant, treat it as a label
1741    // reference needing a fixup. If it is a constant, it's something else
1742    // and we reject it.
1743    if (isImm()) {
1744      Inst.addOperand(MCOperand::CreateExpr(getImm()));
1745      Inst.addOperand(MCOperand::CreateImm(0));
1746      return;
1747    }
1748
1749    // The lower two bits are always zero and as such are not encoded.
1750    int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() / 4 : 0;
1751    ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add;
1752    // Special case for #-0
1753    if (Val == INT32_MIN) Val = 0;
1754    if (Val < 0) Val = -Val;
1755    Val = ARM_AM::getAM5Opc(AddSub, Val);
1756    Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
1757    Inst.addOperand(MCOperand::CreateImm(Val));
1758  }
1759
1760  void addMemImm8s4OffsetOperands(MCInst &Inst, unsigned N) const {
1761    assert(N == 2 && "Invalid number of operands!");
1762    // If we have an immediate that's not a constant, treat it as a label
1763    // reference needing a fixup. If it is a constant, it's something else
1764    // and we reject it.
1765    if (isImm()) {
1766      Inst.addOperand(MCOperand::CreateExpr(getImm()));
1767      Inst.addOperand(MCOperand::CreateImm(0));
1768      return;
1769    }
1770
1771    int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0;
1772    Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
1773    Inst.addOperand(MCOperand::CreateImm(Val));
1774  }
1775
1776  void addMemImm0_1020s4OffsetOperands(MCInst &Inst, unsigned N) const {
1777    assert(N == 2 && "Invalid number of operands!");
1778    // The lower two bits are always zero and as such are not encoded.
1779    int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() / 4 : 0;
1780    Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
1781    Inst.addOperand(MCOperand::CreateImm(Val));
1782  }
1783
1784  void addMemImm8OffsetOperands(MCInst &Inst, unsigned N) const {
1785    assert(N == 2 && "Invalid number of operands!");
1786    int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0;
1787    Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
1788    Inst.addOperand(MCOperand::CreateImm(Val));
1789  }
1790
1791  void addMemPosImm8OffsetOperands(MCInst &Inst, unsigned N) const {
1792    addMemImm8OffsetOperands(Inst, N);
1793  }
1794
1795  void addMemNegImm8OffsetOperands(MCInst &Inst, unsigned N) const {
1796    addMemImm8OffsetOperands(Inst, N);
1797  }
1798
1799  void addMemUImm12OffsetOperands(MCInst &Inst, unsigned N) const {
1800    assert(N == 2 && "Invalid number of operands!");
1801    // If this is an immediate, it's a label reference.
1802    if (isImm()) {
1803      addExpr(Inst, getImm());
1804      Inst.addOperand(MCOperand::CreateImm(0));
1805      return;
1806    }
1807
1808    // Otherwise, it's a normal memory reg+offset.
1809    int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0;
1810    Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
1811    Inst.addOperand(MCOperand::CreateImm(Val));
1812  }
1813
1814  void addMemImm12OffsetOperands(MCInst &Inst, unsigned N) const {
1815    assert(N == 2 && "Invalid number of operands!");
1816    // If this is an immediate, it's a label reference.
1817    if (isImm()) {
1818      addExpr(Inst, getImm());
1819      Inst.addOperand(MCOperand::CreateImm(0));
1820      return;
1821    }
1822
1823    // Otherwise, it's a normal memory reg+offset.
1824    int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0;
1825    Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
1826    Inst.addOperand(MCOperand::CreateImm(Val));
1827  }
1828
1829  void addMemTBBOperands(MCInst &Inst, unsigned N) const {
1830    assert(N == 2 && "Invalid number of operands!");
1831    Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
1832    Inst.addOperand(MCOperand::CreateReg(Memory.OffsetRegNum));
1833  }
1834
1835  void addMemTBHOperands(MCInst &Inst, unsigned N) const {
1836    assert(N == 2 && "Invalid number of operands!");
1837    Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
1838    Inst.addOperand(MCOperand::CreateReg(Memory.OffsetRegNum));
1839  }
1840
1841  void addMemRegOffsetOperands(MCInst &Inst, unsigned N) const {
1842    assert(N == 3 && "Invalid number of operands!");
1843    unsigned Val =
1844      ARM_AM::getAM2Opc(Memory.isNegative ? ARM_AM::sub : ARM_AM::add,
1845                        Memory.ShiftImm, Memory.ShiftType);
1846    Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
1847    Inst.addOperand(MCOperand::CreateReg(Memory.OffsetRegNum));
1848    Inst.addOperand(MCOperand::CreateImm(Val));
1849  }
1850
1851  void addT2MemRegOffsetOperands(MCInst &Inst, unsigned N) const {
1852    assert(N == 3 && "Invalid number of operands!");
1853    Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
1854    Inst.addOperand(MCOperand::CreateReg(Memory.OffsetRegNum));
1855    Inst.addOperand(MCOperand::CreateImm(Memory.ShiftImm));
1856  }
1857
1858  void addMemThumbRROperands(MCInst &Inst, unsigned N) const {
1859    assert(N == 2 && "Invalid number of operands!");
1860    Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
1861    Inst.addOperand(MCOperand::CreateReg(Memory.OffsetRegNum));
1862  }
1863
1864  void addMemThumbRIs4Operands(MCInst &Inst, unsigned N) const {
1865    assert(N == 2 && "Invalid number of operands!");
1866    int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue() / 4) : 0;
1867    Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
1868    Inst.addOperand(MCOperand::CreateImm(Val));
1869  }
1870
1871  void addMemThumbRIs2Operands(MCInst &Inst, unsigned N) const {
1872    assert(N == 2 && "Invalid number of operands!");
1873    int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue() / 2) : 0;
1874    Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
1875    Inst.addOperand(MCOperand::CreateImm(Val));
1876  }
1877
1878  void addMemThumbRIs1Operands(MCInst &Inst, unsigned N) const {
1879    assert(N == 2 && "Invalid number of operands!");
1880    int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue()) : 0;
1881    Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
1882    Inst.addOperand(MCOperand::CreateImm(Val));
1883  }
1884
1885  void addMemThumbSPIOperands(MCInst &Inst, unsigned N) const {
1886    assert(N == 2 && "Invalid number of operands!");
1887    int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue() / 4) : 0;
1888    Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
1889    Inst.addOperand(MCOperand::CreateImm(Val));
1890  }
1891
1892  void addPostIdxImm8Operands(MCInst &Inst, unsigned N) const {
1893    assert(N == 1 && "Invalid number of operands!");
1894    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1895    assert(CE && "non-constant post-idx-imm8 operand!");
1896    int Imm = CE->getValue();
1897    bool isAdd = Imm >= 0;
1898    if (Imm == INT32_MIN) Imm = 0;
1899    Imm = (Imm < 0 ? -Imm : Imm) | (int)isAdd << 8;
1900    Inst.addOperand(MCOperand::CreateImm(Imm));
1901  }
1902
1903  void addPostIdxImm8s4Operands(MCInst &Inst, unsigned N) const {
1904    assert(N == 1 && "Invalid number of operands!");
1905    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1906    assert(CE && "non-constant post-idx-imm8s4 operand!");
1907    int Imm = CE->getValue();
1908    bool isAdd = Imm >= 0;
1909    if (Imm == INT32_MIN) Imm = 0;
1910    // Immediate is scaled by 4.
1911    Imm = ((Imm < 0 ? -Imm : Imm) / 4) | (int)isAdd << 8;
1912    Inst.addOperand(MCOperand::CreateImm(Imm));
1913  }
1914
1915  void addPostIdxRegOperands(MCInst &Inst, unsigned N) const {
1916    assert(N == 2 && "Invalid number of operands!");
1917    Inst.addOperand(MCOperand::CreateReg(PostIdxReg.RegNum));
1918    Inst.addOperand(MCOperand::CreateImm(PostIdxReg.isAdd));
1919  }
1920
1921  void addPostIdxRegShiftedOperands(MCInst &Inst, unsigned N) const {
1922    assert(N == 2 && "Invalid number of operands!");
1923    Inst.addOperand(MCOperand::CreateReg(PostIdxReg.RegNum));
1924    // The sign, shift type, and shift amount are encoded in a single operand
1925    // using the AM2 encoding helpers.
1926    ARM_AM::AddrOpc opc = PostIdxReg.isAdd ? ARM_AM::add : ARM_AM::sub;
1927    unsigned Imm = ARM_AM::getAM2Opc(opc, PostIdxReg.ShiftImm,
1928                                     PostIdxReg.ShiftTy);
1929    Inst.addOperand(MCOperand::CreateImm(Imm));
1930  }
1931
1932  void addMSRMaskOperands(MCInst &Inst, unsigned N) const {
1933    assert(N == 1 && "Invalid number of operands!");
1934    Inst.addOperand(MCOperand::CreateImm(unsigned(getMSRMask())));
1935  }
1936
1937  void addProcIFlagsOperands(MCInst &Inst, unsigned N) const {
1938    assert(N == 1 && "Invalid number of operands!");
1939    Inst.addOperand(MCOperand::CreateImm(unsigned(getProcIFlags())));
1940  }
1941
1942  void addVecListOperands(MCInst &Inst, unsigned N) const {
1943    assert(N == 1 && "Invalid number of operands!");
1944    Inst.addOperand(MCOperand::CreateReg(VectorList.RegNum));
1945  }
1946
1947  void addVecListIndexedOperands(MCInst &Inst, unsigned N) const {
1948    assert(N == 2 && "Invalid number of operands!");
1949    Inst.addOperand(MCOperand::CreateReg(VectorList.RegNum));
1950    Inst.addOperand(MCOperand::CreateImm(VectorList.LaneIndex));
1951  }
1952
1953  void addVectorIndex8Operands(MCInst &Inst, unsigned N) const {
1954    assert(N == 1 && "Invalid number of operands!");
1955    Inst.addOperand(MCOperand::CreateImm(getVectorIndex()));
1956  }
1957
1958  void addVectorIndex16Operands(MCInst &Inst, unsigned N) const {
1959    assert(N == 1 && "Invalid number of operands!");
1960    Inst.addOperand(MCOperand::CreateImm(getVectorIndex()));
1961  }
1962
1963  void addVectorIndex32Operands(MCInst &Inst, unsigned N) const {
1964    assert(N == 1 && "Invalid number of operands!");
1965    Inst.addOperand(MCOperand::CreateImm(getVectorIndex()));
1966  }
1967
1968  void addNEONi8splatOperands(MCInst &Inst, unsigned N) const {
1969    assert(N == 1 && "Invalid number of operands!");
1970    // The immediate encodes the type of constant as well as the value.
1971    // Mask in that this is an i8 splat.
1972    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1973    Inst.addOperand(MCOperand::CreateImm(CE->getValue() | 0xe00));
1974  }
1975
1976  void addNEONi16splatOperands(MCInst &Inst, unsigned N) const {
1977    assert(N == 1 && "Invalid number of operands!");
1978    // The immediate encodes the type of constant as well as the value.
1979    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1980    unsigned Value = CE->getValue();
1981    if (Value >= 256)
1982      Value = (Value >> 8) | 0xa00;
1983    else
1984      Value |= 0x800;
1985    Inst.addOperand(MCOperand::CreateImm(Value));
1986  }
1987
1988  void addNEONi32splatOperands(MCInst &Inst, unsigned N) const {
1989    assert(N == 1 && "Invalid number of operands!");
1990    // The immediate encodes the type of constant as well as the value.
1991    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1992    unsigned Value = CE->getValue();
1993    if (Value >= 256 && Value <= 0xff00)
1994      Value = (Value >> 8) | 0x200;
1995    else if (Value > 0xffff && Value <= 0xff0000)
1996      Value = (Value >> 16) | 0x400;
1997    else if (Value > 0xffffff)
1998      Value = (Value >> 24) | 0x600;
1999    Inst.addOperand(MCOperand::CreateImm(Value));
2000  }
2001
2002  void addNEONi32vmovOperands(MCInst &Inst, unsigned N) const {
2003    assert(N == 1 && "Invalid number of operands!");
2004    // The immediate encodes the type of constant as well as the value.
2005    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2006    unsigned Value = CE->getValue();
2007    if (Value >= 256 && Value <= 0xffff)
2008      Value = (Value >> 8) | ((Value & 0xff) ? 0xc00 : 0x200);
2009    else if (Value > 0xffff && Value <= 0xffffff)
2010      Value = (Value >> 16) | ((Value & 0xff) ? 0xd00 : 0x400);
2011    else if (Value > 0xffffff)
2012      Value = (Value >> 24) | 0x600;
2013    Inst.addOperand(MCOperand::CreateImm(Value));
2014  }
2015
2016  void addNEONi32vmovNegOperands(MCInst &Inst, unsigned N) const {
2017    assert(N == 1 && "Invalid number of operands!");
2018    // The immediate encodes the type of constant as well as the value.
2019    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2020    unsigned Value = ~CE->getValue();
2021    if (Value >= 256 && Value <= 0xffff)
2022      Value = (Value >> 8) | ((Value & 0xff) ? 0xc00 : 0x200);
2023    else if (Value > 0xffff && Value <= 0xffffff)
2024      Value = (Value >> 16) | ((Value & 0xff) ? 0xd00 : 0x400);
2025    else if (Value > 0xffffff)
2026      Value = (Value >> 24) | 0x600;
2027    Inst.addOperand(MCOperand::CreateImm(Value));
2028  }
2029
2030  void addNEONi64splatOperands(MCInst &Inst, unsigned N) const {
2031    assert(N == 1 && "Invalid number of operands!");
2032    // The immediate encodes the type of constant as well as the value.
2033    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2034    uint64_t Value = CE->getValue();
2035    unsigned Imm = 0;
2036    for (unsigned i = 0; i < 8; ++i, Value >>= 8) {
2037      Imm |= (Value & 1) << i;
2038    }
2039    Inst.addOperand(MCOperand::CreateImm(Imm | 0x1e00));
2040  }
2041
2042  virtual void print(raw_ostream &OS) const;
2043
2044  static ARMOperand *CreateITMask(unsigned Mask, SMLoc S) {
2045    ARMOperand *Op = new ARMOperand(k_ITCondMask);
2046    Op->ITMask.Mask = Mask;
2047    Op->StartLoc = S;
2048    Op->EndLoc = S;
2049    return Op;
2050  }
2051
2052  static ARMOperand *CreateCondCode(ARMCC::CondCodes CC, SMLoc S) {
2053    ARMOperand *Op = new ARMOperand(k_CondCode);
2054    Op->CC.Val = CC;
2055    Op->StartLoc = S;
2056    Op->EndLoc = S;
2057    return Op;
2058  }
2059
2060  static ARMOperand *CreateCoprocNum(unsigned CopVal, SMLoc S) {
2061    ARMOperand *Op = new ARMOperand(k_CoprocNum);
2062    Op->Cop.Val = CopVal;
2063    Op->StartLoc = S;
2064    Op->EndLoc = S;
2065    return Op;
2066  }
2067
2068  static ARMOperand *CreateCoprocReg(unsigned CopVal, SMLoc S) {
2069    ARMOperand *Op = new ARMOperand(k_CoprocReg);
2070    Op->Cop.Val = CopVal;
2071    Op->StartLoc = S;
2072    Op->EndLoc = S;
2073    return Op;
2074  }
2075
2076  static ARMOperand *CreateCoprocOption(unsigned Val, SMLoc S, SMLoc E) {
2077    ARMOperand *Op = new ARMOperand(k_CoprocOption);
2078    Op->Cop.Val = Val;
2079    Op->StartLoc = S;
2080    Op->EndLoc = E;
2081    return Op;
2082  }
2083
2084  static ARMOperand *CreateCCOut(unsigned RegNum, SMLoc S) {
2085    ARMOperand *Op = new ARMOperand(k_CCOut);
2086    Op->Reg.RegNum = RegNum;
2087    Op->StartLoc = S;
2088    Op->EndLoc = S;
2089    return Op;
2090  }
2091
2092  static ARMOperand *CreateToken(StringRef Str, SMLoc S) {
2093    ARMOperand *Op = new ARMOperand(k_Token);
2094    Op->Tok.Data = Str.data();
2095    Op->Tok.Length = Str.size();
2096    Op->StartLoc = S;
2097    Op->EndLoc = S;
2098    return Op;
2099  }
2100
2101  static ARMOperand *CreateReg(unsigned RegNum, SMLoc S, SMLoc E) {
2102    ARMOperand *Op = new ARMOperand(k_Register);
2103    Op->Reg.RegNum = RegNum;
2104    Op->StartLoc = S;
2105    Op->EndLoc = E;
2106    return Op;
2107  }
2108
2109  static ARMOperand *CreateShiftedRegister(ARM_AM::ShiftOpc ShTy,
2110                                           unsigned SrcReg,
2111                                           unsigned ShiftReg,
2112                                           unsigned ShiftImm,
2113                                           SMLoc S, SMLoc E) {
2114    ARMOperand *Op = new ARMOperand(k_ShiftedRegister);
2115    Op->RegShiftedReg.ShiftTy = ShTy;
2116    Op->RegShiftedReg.SrcReg = SrcReg;
2117    Op->RegShiftedReg.ShiftReg = ShiftReg;
2118    Op->RegShiftedReg.ShiftImm = ShiftImm;
2119    Op->StartLoc = S;
2120    Op->EndLoc = E;
2121    return Op;
2122  }
2123
2124  static ARMOperand *CreateShiftedImmediate(ARM_AM::ShiftOpc ShTy,
2125                                            unsigned SrcReg,
2126                                            unsigned ShiftImm,
2127                                            SMLoc S, SMLoc E) {
2128    ARMOperand *Op = new ARMOperand(k_ShiftedImmediate);
2129    Op->RegShiftedImm.ShiftTy = ShTy;
2130    Op->RegShiftedImm.SrcReg = SrcReg;
2131    Op->RegShiftedImm.ShiftImm = ShiftImm;
2132    Op->StartLoc = S;
2133    Op->EndLoc = E;
2134    return Op;
2135  }
2136
2137  static ARMOperand *CreateShifterImm(bool isASR, unsigned Imm,
2138                                   SMLoc S, SMLoc E) {
2139    ARMOperand *Op = new ARMOperand(k_ShifterImmediate);
2140    Op->ShifterImm.isASR = isASR;
2141    Op->ShifterImm.Imm = Imm;
2142    Op->StartLoc = S;
2143    Op->EndLoc = E;
2144    return Op;
2145  }
2146
2147  static ARMOperand *CreateRotImm(unsigned Imm, SMLoc S, SMLoc E) {
2148    ARMOperand *Op = new ARMOperand(k_RotateImmediate);
2149    Op->RotImm.Imm = Imm;
2150    Op->StartLoc = S;
2151    Op->EndLoc = E;
2152    return Op;
2153  }
2154
2155  static ARMOperand *CreateBitfield(unsigned LSB, unsigned Width,
2156                                    SMLoc S, SMLoc E) {
2157    ARMOperand *Op = new ARMOperand(k_BitfieldDescriptor);
2158    Op->Bitfield.LSB = LSB;
2159    Op->Bitfield.Width = Width;
2160    Op->StartLoc = S;
2161    Op->EndLoc = E;
2162    return Op;
2163  }
2164
2165  static ARMOperand *
2166  CreateRegList(const SmallVectorImpl<std::pair<unsigned, SMLoc> > &Regs,
2167                SMLoc StartLoc, SMLoc EndLoc) {
2168    KindTy Kind = k_RegisterList;
2169
2170    if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Regs.front().first))
2171      Kind = k_DPRRegisterList;
2172    else if (ARMMCRegisterClasses[ARM::SPRRegClassID].
2173             contains(Regs.front().first))
2174      Kind = k_SPRRegisterList;
2175
2176    ARMOperand *Op = new ARMOperand(Kind);
2177    for (SmallVectorImpl<std::pair<unsigned, SMLoc> >::const_iterator
2178           I = Regs.begin(), E = Regs.end(); I != E; ++I)
2179      Op->Registers.push_back(I->first);
2180    array_pod_sort(Op->Registers.begin(), Op->Registers.end());
2181    Op->StartLoc = StartLoc;
2182    Op->EndLoc = EndLoc;
2183    return Op;
2184  }
2185
2186  static ARMOperand *CreateVectorList(unsigned RegNum, unsigned Count,
2187                                      bool isDoubleSpaced, SMLoc S, SMLoc E) {
2188    ARMOperand *Op = new ARMOperand(k_VectorList);
2189    Op->VectorList.RegNum = RegNum;
2190    Op->VectorList.Count = Count;
2191    Op->VectorList.isDoubleSpaced = isDoubleSpaced;
2192    Op->StartLoc = S;
2193    Op->EndLoc = E;
2194    return Op;
2195  }
2196
2197  static ARMOperand *CreateVectorListAllLanes(unsigned RegNum, unsigned Count,
2198                                              bool isDoubleSpaced,
2199                                              SMLoc S, SMLoc E) {
2200    ARMOperand *Op = new ARMOperand(k_VectorListAllLanes);
2201    Op->VectorList.RegNum = RegNum;
2202    Op->VectorList.Count = Count;
2203    Op->VectorList.isDoubleSpaced = isDoubleSpaced;
2204    Op->StartLoc = S;
2205    Op->EndLoc = E;
2206    return Op;
2207  }
2208
2209  static ARMOperand *CreateVectorListIndexed(unsigned RegNum, unsigned Count,
2210                                             unsigned Index,
2211                                             bool isDoubleSpaced,
2212                                             SMLoc S, SMLoc E) {
2213    ARMOperand *Op = new ARMOperand(k_VectorListIndexed);
2214    Op->VectorList.RegNum = RegNum;
2215    Op->VectorList.Count = Count;
2216    Op->VectorList.LaneIndex = Index;
2217    Op->VectorList.isDoubleSpaced = isDoubleSpaced;
2218    Op->StartLoc = S;
2219    Op->EndLoc = E;
2220    return Op;
2221  }
2222
2223  static ARMOperand *CreateVectorIndex(unsigned Idx, SMLoc S, SMLoc E,
2224                                       MCContext &Ctx) {
2225    ARMOperand *Op = new ARMOperand(k_VectorIndex);
2226    Op->VectorIndex.Val = Idx;
2227    Op->StartLoc = S;
2228    Op->EndLoc = E;
2229    return Op;
2230  }
2231
2232  static ARMOperand *CreateImm(const MCExpr *Val, SMLoc S, SMLoc E) {
2233    ARMOperand *Op = new ARMOperand(k_Immediate);
2234    Op->Imm.Val = Val;
2235    Op->StartLoc = S;
2236    Op->EndLoc = E;
2237    return Op;
2238  }
2239
2240  static ARMOperand *CreateMem(unsigned BaseRegNum,
2241                               const MCConstantExpr *OffsetImm,
2242                               unsigned OffsetRegNum,
2243                               ARM_AM::ShiftOpc ShiftType,
2244                               unsigned ShiftImm,
2245                               unsigned Alignment,
2246                               bool isNegative,
2247                               SMLoc S, SMLoc E) {
2248    ARMOperand *Op = new ARMOperand(k_Memory);
2249    Op->Memory.BaseRegNum = BaseRegNum;
2250    Op->Memory.OffsetImm = OffsetImm;
2251    Op->Memory.OffsetRegNum = OffsetRegNum;
2252    Op->Memory.ShiftType = ShiftType;
2253    Op->Memory.ShiftImm = ShiftImm;
2254    Op->Memory.Alignment = Alignment;
2255    Op->Memory.isNegative = isNegative;
2256    Op->StartLoc = S;
2257    Op->EndLoc = E;
2258    return Op;
2259  }
2260
2261  static ARMOperand *CreatePostIdxReg(unsigned RegNum, bool isAdd,
2262                                      ARM_AM::ShiftOpc ShiftTy,
2263                                      unsigned ShiftImm,
2264                                      SMLoc S, SMLoc E) {
2265    ARMOperand *Op = new ARMOperand(k_PostIndexRegister);
2266    Op->PostIdxReg.RegNum = RegNum;
2267    Op->PostIdxReg.isAdd = isAdd;
2268    Op->PostIdxReg.ShiftTy = ShiftTy;
2269    Op->PostIdxReg.ShiftImm = ShiftImm;
2270    Op->StartLoc = S;
2271    Op->EndLoc = E;
2272    return Op;
2273  }
2274
2275  static ARMOperand *CreateMemBarrierOpt(ARM_MB::MemBOpt Opt, SMLoc S) {
2276    ARMOperand *Op = new ARMOperand(k_MemBarrierOpt);
2277    Op->MBOpt.Val = Opt;
2278    Op->StartLoc = S;
2279    Op->EndLoc = S;
2280    return Op;
2281  }
2282
2283  static ARMOperand *CreateProcIFlags(ARM_PROC::IFlags IFlags, SMLoc S) {
2284    ARMOperand *Op = new ARMOperand(k_ProcIFlags);
2285    Op->IFlags.Val = IFlags;
2286    Op->StartLoc = S;
2287    Op->EndLoc = S;
2288    return Op;
2289  }
2290
2291  static ARMOperand *CreateMSRMask(unsigned MMask, SMLoc S) {
2292    ARMOperand *Op = new ARMOperand(k_MSRMask);
2293    Op->MMask.Val = MMask;
2294    Op->StartLoc = S;
2295    Op->EndLoc = S;
2296    return Op;
2297  }
2298};
2299
2300} // end anonymous namespace.
2301
2302void ARMOperand::print(raw_ostream &OS) const {
2303  switch (Kind) {
2304  case k_CondCode:
2305    OS << "<ARMCC::" << ARMCondCodeToString(getCondCode()) << ">";
2306    break;
2307  case k_CCOut:
2308    OS << "<ccout " << getReg() << ">";
2309    break;
2310  case k_ITCondMask: {
2311    static const char *const MaskStr[] = {
2312      "()", "(t)", "(e)", "(tt)", "(et)", "(te)", "(ee)", "(ttt)", "(ett)",
2313      "(tet)", "(eet)", "(tte)", "(ete)", "(tee)", "(eee)"
2314    };
2315    assert((ITMask.Mask & 0xf) == ITMask.Mask);
2316    OS << "<it-mask " << MaskStr[ITMask.Mask] << ">";
2317    break;
2318  }
2319  case k_CoprocNum:
2320    OS << "<coprocessor number: " << getCoproc() << ">";
2321    break;
2322  case k_CoprocReg:
2323    OS << "<coprocessor register: " << getCoproc() << ">";
2324    break;
2325  case k_CoprocOption:
2326    OS << "<coprocessor option: " << CoprocOption.Val << ">";
2327    break;
2328  case k_MSRMask:
2329    OS << "<mask: " << getMSRMask() << ">";
2330    break;
2331  case k_Immediate:
2332    getImm()->print(OS);
2333    break;
2334  case k_MemBarrierOpt:
2335    OS << "<ARM_MB::" << MemBOptToString(getMemBarrierOpt()) << ">";
2336    break;
2337  case k_Memory:
2338    OS << "<memory "
2339       << " base:" << Memory.BaseRegNum;
2340    OS << ">";
2341    break;
2342  case k_PostIndexRegister:
2343    OS << "post-idx register " << (PostIdxReg.isAdd ? "" : "-")
2344       << PostIdxReg.RegNum;
2345    if (PostIdxReg.ShiftTy != ARM_AM::no_shift)
2346      OS << ARM_AM::getShiftOpcStr(PostIdxReg.ShiftTy) << " "
2347         << PostIdxReg.ShiftImm;
2348    OS << ">";
2349    break;
2350  case k_ProcIFlags: {
2351    OS << "<ARM_PROC::";
2352    unsigned IFlags = getProcIFlags();
2353    for (int i=2; i >= 0; --i)
2354      if (IFlags & (1 << i))
2355        OS << ARM_PROC::IFlagsToString(1 << i);
2356    OS << ">";
2357    break;
2358  }
2359  case k_Register:
2360    OS << "<register " << getReg() << ">";
2361    break;
2362  case k_ShifterImmediate:
2363    OS << "<shift " << (ShifterImm.isASR ? "asr" : "lsl")
2364       << " #" << ShifterImm.Imm << ">";
2365    break;
2366  case k_ShiftedRegister:
2367    OS << "<so_reg_reg "
2368       << RegShiftedReg.SrcReg << " "
2369       << ARM_AM::getShiftOpcStr(RegShiftedReg.ShiftTy)
2370       << " " << RegShiftedReg.ShiftReg << ">";
2371    break;
2372  case k_ShiftedImmediate:
2373    OS << "<so_reg_imm "
2374       << RegShiftedImm.SrcReg << " "
2375       << ARM_AM::getShiftOpcStr(RegShiftedImm.ShiftTy)
2376       << " #" << RegShiftedImm.ShiftImm << ">";
2377    break;
2378  case k_RotateImmediate:
2379    OS << "<ror " << " #" << (RotImm.Imm * 8) << ">";
2380    break;
2381  case k_BitfieldDescriptor:
2382    OS << "<bitfield " << "lsb: " << Bitfield.LSB
2383       << ", width: " << Bitfield.Width << ">";
2384    break;
2385  case k_RegisterList:
2386  case k_DPRRegisterList:
2387  case k_SPRRegisterList: {
2388    OS << "<register_list ";
2389
2390    const SmallVectorImpl<unsigned> &RegList = getRegList();
2391    for (SmallVectorImpl<unsigned>::const_iterator
2392           I = RegList.begin(), E = RegList.end(); I != E; ) {
2393      OS << *I;
2394      if (++I < E) OS << ", ";
2395    }
2396
2397    OS << ">";
2398    break;
2399  }
2400  case k_VectorList:
2401    OS << "<vector_list " << VectorList.Count << " * "
2402       << VectorList.RegNum << ">";
2403    break;
2404  case k_VectorListAllLanes:
2405    OS << "<vector_list(all lanes) " << VectorList.Count << " * "
2406       << VectorList.RegNum << ">";
2407    break;
2408  case k_VectorListIndexed:
2409    OS << "<vector_list(lane " << VectorList.LaneIndex << ") "
2410       << VectorList.Count << " * " << VectorList.RegNum << ">";
2411    break;
2412  case k_Token:
2413    OS << "'" << getToken() << "'";
2414    break;
2415  case k_VectorIndex:
2416    OS << "<vectorindex " << getVectorIndex() << ">";
2417    break;
2418  }
2419}
2420
2421/// @name Auto-generated Match Functions
2422/// {
2423
2424static unsigned MatchRegisterName(StringRef Name);
2425
2426/// }
2427
2428bool ARMAsmParser::ParseRegister(unsigned &RegNo,
2429                                 SMLoc &StartLoc, SMLoc &EndLoc) {
2430  StartLoc = Parser.getTok().getLoc();
2431  RegNo = tryParseRegister();
2432  EndLoc = Parser.getTok().getLoc();
2433
2434  return (RegNo == (unsigned)-1);
2435}
2436
2437/// Try to parse a register name.  The token must be an Identifier when called,
2438/// and if it is a register name the token is eaten and the register number is
2439/// returned.  Otherwise return -1.
2440///
2441int ARMAsmParser::tryParseRegister() {
2442  const AsmToken &Tok = Parser.getTok();
2443  if (Tok.isNot(AsmToken::Identifier)) return -1;
2444
2445  std::string lowerCase = Tok.getString().lower();
2446  unsigned RegNum = MatchRegisterName(lowerCase);
2447  if (!RegNum) {
2448    RegNum = StringSwitch<unsigned>(lowerCase)
2449      .Case("r13", ARM::SP)
2450      .Case("r14", ARM::LR)
2451      .Case("r15", ARM::PC)
2452      .Case("ip", ARM::R12)
2453      // Additional register name aliases for 'gas' compatibility.
2454      .Case("a1", ARM::R0)
2455      .Case("a2", ARM::R1)
2456      .Case("a3", ARM::R2)
2457      .Case("a4", ARM::R3)
2458      .Case("v1", ARM::R4)
2459      .Case("v2", ARM::R5)
2460      .Case("v3", ARM::R6)
2461      .Case("v4", ARM::R7)
2462      .Case("v5", ARM::R8)
2463      .Case("v6", ARM::R9)
2464      .Case("v7", ARM::R10)
2465      .Case("v8", ARM::R11)
2466      .Case("sb", ARM::R9)
2467      .Case("sl", ARM::R10)
2468      .Case("fp", ARM::R11)
2469      .Default(0);
2470  }
2471  if (!RegNum) {
2472    // Check for aliases registered via .req. Canonicalize to lower case.
2473    // That's more consistent since register names are case insensitive, and
2474    // it's how the original entry was passed in from MC/MCParser/AsmParser.
2475    StringMap<unsigned>::const_iterator Entry = RegisterReqs.find(lowerCase);
2476    // If no match, return failure.
2477    if (Entry == RegisterReqs.end())
2478      return -1;
2479    Parser.Lex(); // Eat identifier token.
2480    return Entry->getValue();
2481  }
2482
2483  Parser.Lex(); // Eat identifier token.
2484
2485  return RegNum;
2486}
2487
2488// Try to parse a shifter  (e.g., "lsl <amt>"). On success, return 0.
2489// If a recoverable error occurs, return 1. If an irrecoverable error
2490// occurs, return -1. An irrecoverable error is one where tokens have been
2491// consumed in the process of trying to parse the shifter (i.e., when it is
2492// indeed a shifter operand, but malformed).
2493int ARMAsmParser::tryParseShiftRegister(
2494                               SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
2495  SMLoc S = Parser.getTok().getLoc();
2496  const AsmToken &Tok = Parser.getTok();
2497  assert(Tok.is(AsmToken::Identifier) && "Token is not an Identifier");
2498
2499  std::string lowerCase = Tok.getString().lower();
2500  ARM_AM::ShiftOpc ShiftTy = StringSwitch<ARM_AM::ShiftOpc>(lowerCase)
2501      .Case("asl", ARM_AM::lsl)
2502      .Case("lsl", ARM_AM::lsl)
2503      .Case("lsr", ARM_AM::lsr)
2504      .Case("asr", ARM_AM::asr)
2505      .Case("ror", ARM_AM::ror)
2506      .Case("rrx", ARM_AM::rrx)
2507      .Default(ARM_AM::no_shift);
2508
2509  if (ShiftTy == ARM_AM::no_shift)
2510    return 1;
2511
2512  Parser.Lex(); // Eat the operator.
2513
2514  // The source register for the shift has already been added to the
2515  // operand list, so we need to pop it off and combine it into the shifted
2516  // register operand instead.
2517  OwningPtr<ARMOperand> PrevOp((ARMOperand*)Operands.pop_back_val());
2518  if (!PrevOp->isReg())
2519    return Error(PrevOp->getStartLoc(), "shift must be of a register");
2520  int SrcReg = PrevOp->getReg();
2521  int64_t Imm = 0;
2522  int ShiftReg = 0;
2523  if (ShiftTy == ARM_AM::rrx) {
2524    // RRX Doesn't have an explicit shift amount. The encoder expects
2525    // the shift register to be the same as the source register. Seems odd,
2526    // but OK.
2527    ShiftReg = SrcReg;
2528  } else {
2529    // Figure out if this is shifted by a constant or a register (for non-RRX).
2530    if (Parser.getTok().is(AsmToken::Hash) ||
2531        Parser.getTok().is(AsmToken::Dollar)) {
2532      Parser.Lex(); // Eat hash.
2533      SMLoc ImmLoc = Parser.getTok().getLoc();
2534      const MCExpr *ShiftExpr = 0;
2535      if (getParser().ParseExpression(ShiftExpr)) {
2536        Error(ImmLoc, "invalid immediate shift value");
2537        return -1;
2538      }
2539      // The expression must be evaluatable as an immediate.
2540      const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftExpr);
2541      if (!CE) {
2542        Error(ImmLoc, "invalid immediate shift value");
2543        return -1;
2544      }
2545      // Range check the immediate.
2546      // lsl, ror: 0 <= imm <= 31
2547      // lsr, asr: 0 <= imm <= 32
2548      Imm = CE->getValue();
2549      if (Imm < 0 ||
2550          ((ShiftTy == ARM_AM::lsl || ShiftTy == ARM_AM::ror) && Imm > 31) ||
2551          ((ShiftTy == ARM_AM::lsr || ShiftTy == ARM_AM::asr) && Imm > 32)) {
2552        Error(ImmLoc, "immediate shift value out of range");
2553        return -1;
2554      }
2555      // shift by zero is a nop. Always send it through as lsl.
2556      // ('as' compatibility)
2557      if (Imm == 0)
2558        ShiftTy = ARM_AM::lsl;
2559    } else if (Parser.getTok().is(AsmToken::Identifier)) {
2560      ShiftReg = tryParseRegister();
2561      SMLoc L = Parser.getTok().getLoc();
2562      if (ShiftReg == -1) {
2563        Error (L, "expected immediate or register in shift operand");
2564        return -1;
2565      }
2566    } else {
2567      Error (Parser.getTok().getLoc(),
2568                    "expected immediate or register in shift operand");
2569      return -1;
2570    }
2571  }
2572
2573  if (ShiftReg && ShiftTy != ARM_AM::rrx)
2574    Operands.push_back(ARMOperand::CreateShiftedRegister(ShiftTy, SrcReg,
2575                                                         ShiftReg, Imm,
2576                                               S, Parser.getTok().getLoc()));
2577  else
2578    Operands.push_back(ARMOperand::CreateShiftedImmediate(ShiftTy, SrcReg, Imm,
2579                                               S, Parser.getTok().getLoc()));
2580
2581  return 0;
2582}
2583
2584
2585/// Try to parse a register name.  The token must be an Identifier when called.
2586/// If it's a register, an AsmOperand is created. Another AsmOperand is created
2587/// if there is a "writeback". 'true' if it's not a register.
2588///
2589/// TODO this is likely to change to allow different register types and or to
2590/// parse for a specific register type.
2591bool ARMAsmParser::
2592tryParseRegisterWithWriteBack(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
2593  SMLoc S = Parser.getTok().getLoc();
2594  int RegNo = tryParseRegister();
2595  if (RegNo == -1)
2596    return true;
2597
2598  Operands.push_back(ARMOperand::CreateReg(RegNo, S, Parser.getTok().getLoc()));
2599
2600  const AsmToken &ExclaimTok = Parser.getTok();
2601  if (ExclaimTok.is(AsmToken::Exclaim)) {
2602    Operands.push_back(ARMOperand::CreateToken(ExclaimTok.getString(),
2603                                               ExclaimTok.getLoc()));
2604    Parser.Lex(); // Eat exclaim token
2605    return false;
2606  }
2607
2608  // Also check for an index operand. This is only legal for vector registers,
2609  // but that'll get caught OK in operand matching, so we don't need to
2610  // explicitly filter everything else out here.
2611  if (Parser.getTok().is(AsmToken::LBrac)) {
2612    SMLoc SIdx = Parser.getTok().getLoc();
2613    Parser.Lex(); // Eat left bracket token.
2614
2615    const MCExpr *ImmVal;
2616    if (getParser().ParseExpression(ImmVal))
2617      return true;
2618    const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(ImmVal);
2619    if (!MCE)
2620      return TokError("immediate value expected for vector index");
2621
2622    SMLoc E = Parser.getTok().getLoc();
2623    if (Parser.getTok().isNot(AsmToken::RBrac))
2624      return Error(E, "']' expected");
2625
2626    Parser.Lex(); // Eat right bracket token.
2627
2628    Operands.push_back(ARMOperand::CreateVectorIndex(MCE->getValue(),
2629                                                     SIdx, E,
2630                                                     getContext()));
2631  }
2632
2633  return false;
2634}
2635
2636/// MatchCoprocessorOperandName - Try to parse an coprocessor related
2637/// instruction with a symbolic operand name. Example: "p1", "p7", "c3",
2638/// "c5", ...
2639static int MatchCoprocessorOperandName(StringRef Name, char CoprocOp) {
2640  // Use the same layout as the tablegen'erated register name matcher. Ugly,
2641  // but efficient.
2642  switch (Name.size()) {
2643  default: return -1;
2644  case 2:
2645    if (Name[0] != CoprocOp)
2646      return -1;
2647    switch (Name[1]) {
2648    default:  return -1;
2649    case '0': return 0;
2650    case '1': return 1;
2651    case '2': return 2;
2652    case '3': return 3;
2653    case '4': return 4;
2654    case '5': return 5;
2655    case '6': return 6;
2656    case '7': return 7;
2657    case '8': return 8;
2658    case '9': return 9;
2659    }
2660  case 3:
2661    if (Name[0] != CoprocOp || Name[1] != '1')
2662      return -1;
2663    switch (Name[2]) {
2664    default:  return -1;
2665    case '0': return 10;
2666    case '1': return 11;
2667    case '2': return 12;
2668    case '3': return 13;
2669    case '4': return 14;
2670    case '5': return 15;
2671    }
2672  }
2673}
2674
2675/// parseITCondCode - Try to parse a condition code for an IT instruction.
2676ARMAsmParser::OperandMatchResultTy ARMAsmParser::
2677parseITCondCode(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
2678  SMLoc S = Parser.getTok().getLoc();
2679  const AsmToken &Tok = Parser.getTok();
2680  if (!Tok.is(AsmToken::Identifier))
2681    return MatchOperand_NoMatch;
2682  unsigned CC = StringSwitch<unsigned>(Tok.getString().lower())
2683    .Case("eq", ARMCC::EQ)
2684    .Case("ne", ARMCC::NE)
2685    .Case("hs", ARMCC::HS)
2686    .Case("cs", ARMCC::HS)
2687    .Case("lo", ARMCC::LO)
2688    .Case("cc", ARMCC::LO)
2689    .Case("mi", ARMCC::MI)
2690    .Case("pl", ARMCC::PL)
2691    .Case("vs", ARMCC::VS)
2692    .Case("vc", ARMCC::VC)
2693    .Case("hi", ARMCC::HI)
2694    .Case("ls", ARMCC::LS)
2695    .Case("ge", ARMCC::GE)
2696    .Case("lt", ARMCC::LT)
2697    .Case("gt", ARMCC::GT)
2698    .Case("le", ARMCC::LE)
2699    .Case("al", ARMCC::AL)
2700    .Default(~0U);
2701  if (CC == ~0U)
2702    return MatchOperand_NoMatch;
2703  Parser.Lex(); // Eat the token.
2704
2705  Operands.push_back(ARMOperand::CreateCondCode(ARMCC::CondCodes(CC), S));
2706
2707  return MatchOperand_Success;
2708}
2709
2710/// parseCoprocNumOperand - Try to parse an coprocessor number operand. The
2711/// token must be an Identifier when called, and if it is a coprocessor
2712/// number, the token is eaten and the operand is added to the operand list.
2713ARMAsmParser::OperandMatchResultTy ARMAsmParser::
2714parseCoprocNumOperand(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
2715  SMLoc S = Parser.getTok().getLoc();
2716  const AsmToken &Tok = Parser.getTok();
2717  if (Tok.isNot(AsmToken::Identifier))
2718    return MatchOperand_NoMatch;
2719
2720  int Num = MatchCoprocessorOperandName(Tok.getString(), 'p');
2721  if (Num == -1)
2722    return MatchOperand_NoMatch;
2723
2724  Parser.Lex(); // Eat identifier token.
2725  Operands.push_back(ARMOperand::CreateCoprocNum(Num, S));
2726  return MatchOperand_Success;
2727}
2728
2729/// parseCoprocRegOperand - Try to parse an coprocessor register operand. The
2730/// token must be an Identifier when called, and if it is a coprocessor
2731/// number, the token is eaten and the operand is added to the operand list.
2732ARMAsmParser::OperandMatchResultTy ARMAsmParser::
2733parseCoprocRegOperand(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
2734  SMLoc S = Parser.getTok().getLoc();
2735  const AsmToken &Tok = Parser.getTok();
2736  if (Tok.isNot(AsmToken::Identifier))
2737    return MatchOperand_NoMatch;
2738
2739  int Reg = MatchCoprocessorOperandName(Tok.getString(), 'c');
2740  if (Reg == -1)
2741    return MatchOperand_NoMatch;
2742
2743  Parser.Lex(); // Eat identifier token.
2744  Operands.push_back(ARMOperand::CreateCoprocReg(Reg, S));
2745  return MatchOperand_Success;
2746}
2747
2748/// parseCoprocOptionOperand - Try to parse an coprocessor option operand.
2749/// coproc_option : '{' imm0_255 '}'
2750ARMAsmParser::OperandMatchResultTy ARMAsmParser::
2751parseCoprocOptionOperand(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
2752  SMLoc S = Parser.getTok().getLoc();
2753
2754  // If this isn't a '{', this isn't a coprocessor immediate operand.
2755  if (Parser.getTok().isNot(AsmToken::LCurly))
2756    return MatchOperand_NoMatch;
2757  Parser.Lex(); // Eat the '{'
2758
2759  const MCExpr *Expr;
2760  SMLoc Loc = Parser.getTok().getLoc();
2761  if (getParser().ParseExpression(Expr)) {
2762    Error(Loc, "illegal expression");
2763    return MatchOperand_ParseFail;
2764  }
2765  const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr);
2766  if (!CE || CE->getValue() < 0 || CE->getValue() > 255) {
2767    Error(Loc, "coprocessor option must be an immediate in range [0, 255]");
2768    return MatchOperand_ParseFail;
2769  }
2770  int Val = CE->getValue();
2771
2772  // Check for and consume the closing '}'
2773  if (Parser.getTok().isNot(AsmToken::RCurly))
2774    return MatchOperand_ParseFail;
2775  SMLoc E = Parser.getTok().getLoc();
2776  Parser.Lex(); // Eat the '}'
2777
2778  Operands.push_back(ARMOperand::CreateCoprocOption(Val, S, E));
2779  return MatchOperand_Success;
2780}
2781
2782// For register list parsing, we need to map from raw GPR register numbering
2783// to the enumeration values. The enumeration values aren't sorted by
2784// register number due to our using "sp", "lr" and "pc" as canonical names.
2785static unsigned getNextRegister(unsigned Reg) {
2786  // If this is a GPR, we need to do it manually, otherwise we can rely
2787  // on the sort ordering of the enumeration since the other reg-classes
2788  // are sane.
2789  if (!ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg))
2790    return Reg + 1;
2791  switch(Reg) {
2792  default: llvm_unreachable("Invalid GPR number!");
2793  case ARM::R0:  return ARM::R1;  case ARM::R1:  return ARM::R2;
2794  case ARM::R2:  return ARM::R3;  case ARM::R3:  return ARM::R4;
2795  case ARM::R4:  return ARM::R5;  case ARM::R5:  return ARM::R6;
2796  case ARM::R6:  return ARM::R7;  case ARM::R7:  return ARM::R8;
2797  case ARM::R8:  return ARM::R9;  case ARM::R9:  return ARM::R10;
2798  case ARM::R10: return ARM::R11; case ARM::R11: return ARM::R12;
2799  case ARM::R12: return ARM::SP;  case ARM::SP:  return ARM::LR;
2800  case ARM::LR:  return ARM::PC;  case ARM::PC:  return ARM::R0;
2801  }
2802}
2803
2804// Return the low-subreg of a given Q register.
2805static unsigned getDRegFromQReg(unsigned QReg) {
2806  switch (QReg) {
2807  default: llvm_unreachable("expected a Q register!");
2808  case ARM::Q0:  return ARM::D0;
2809  case ARM::Q1:  return ARM::D2;
2810  case ARM::Q2:  return ARM::D4;
2811  case ARM::Q3:  return ARM::D6;
2812  case ARM::Q4:  return ARM::D8;
2813  case ARM::Q5:  return ARM::D10;
2814  case ARM::Q6:  return ARM::D12;
2815  case ARM::Q7:  return ARM::D14;
2816  case ARM::Q8:  return ARM::D16;
2817  case ARM::Q9:  return ARM::D18;
2818  case ARM::Q10: return ARM::D20;
2819  case ARM::Q11: return ARM::D22;
2820  case ARM::Q12: return ARM::D24;
2821  case ARM::Q13: return ARM::D26;
2822  case ARM::Q14: return ARM::D28;
2823  case ARM::Q15: return ARM::D30;
2824  }
2825}
2826
2827/// Parse a register list.
2828bool ARMAsmParser::
2829parseRegisterList(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
2830  assert(Parser.getTok().is(AsmToken::LCurly) &&
2831         "Token is not a Left Curly Brace");
2832  SMLoc S = Parser.getTok().getLoc();
2833  Parser.Lex(); // Eat '{' token.
2834  SMLoc RegLoc = Parser.getTok().getLoc();
2835
2836  // Check the first register in the list to see what register class
2837  // this is a list of.
2838  int Reg = tryParseRegister();
2839  if (Reg == -1)
2840    return Error(RegLoc, "register expected");
2841
2842  // The reglist instructions have at most 16 registers, so reserve
2843  // space for that many.
2844  SmallVector<std::pair<unsigned, SMLoc>, 16> Registers;
2845
2846  // Allow Q regs and just interpret them as the two D sub-registers.
2847  if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) {
2848    Reg = getDRegFromQReg(Reg);
2849    Registers.push_back(std::pair<unsigned, SMLoc>(Reg, RegLoc));
2850    ++Reg;
2851  }
2852  const MCRegisterClass *RC;
2853  if (ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg))
2854    RC = &ARMMCRegisterClasses[ARM::GPRRegClassID];
2855  else if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Reg))
2856    RC = &ARMMCRegisterClasses[ARM::DPRRegClassID];
2857  else if (ARMMCRegisterClasses[ARM::SPRRegClassID].contains(Reg))
2858    RC = &ARMMCRegisterClasses[ARM::SPRRegClassID];
2859  else
2860    return Error(RegLoc, "invalid register in register list");
2861
2862  // Store the register.
2863  Registers.push_back(std::pair<unsigned, SMLoc>(Reg, RegLoc));
2864
2865  // This starts immediately after the first register token in the list,
2866  // so we can see either a comma or a minus (range separator) as a legal
2867  // next token.
2868  while (Parser.getTok().is(AsmToken::Comma) ||
2869         Parser.getTok().is(AsmToken::Minus)) {
2870    if (Parser.getTok().is(AsmToken::Minus)) {
2871      Parser.Lex(); // Eat the minus.
2872      SMLoc EndLoc = Parser.getTok().getLoc();
2873      int EndReg = tryParseRegister();
2874      if (EndReg == -1)
2875        return Error(EndLoc, "register expected");
2876      // Allow Q regs and just interpret them as the two D sub-registers.
2877      if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(EndReg))
2878        EndReg = getDRegFromQReg(EndReg) + 1;
2879      // If the register is the same as the start reg, there's nothing
2880      // more to do.
2881      if (Reg == EndReg)
2882        continue;
2883      // The register must be in the same register class as the first.
2884      if (!RC->contains(EndReg))
2885        return Error(EndLoc, "invalid register in register list");
2886      // Ranges must go from low to high.
2887      if (getARMRegisterNumbering(Reg) > getARMRegisterNumbering(EndReg))
2888        return Error(EndLoc, "bad range in register list");
2889
2890      // Add all the registers in the range to the register list.
2891      while (Reg != EndReg) {
2892        Reg = getNextRegister(Reg);
2893        Registers.push_back(std::pair<unsigned, SMLoc>(Reg, RegLoc));
2894      }
2895      continue;
2896    }
2897    Parser.Lex(); // Eat the comma.
2898    RegLoc = Parser.getTok().getLoc();
2899    int OldReg = Reg;
2900    const AsmToken RegTok = Parser.getTok();
2901    Reg = tryParseRegister();
2902    if (Reg == -1)
2903      return Error(RegLoc, "register expected");
2904    // Allow Q regs and just interpret them as the two D sub-registers.
2905    bool isQReg = false;
2906    if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) {
2907      Reg = getDRegFromQReg(Reg);
2908      isQReg = true;
2909    }
2910    // The register must be in the same register class as the first.
2911    if (!RC->contains(Reg))
2912      return Error(RegLoc, "invalid register in register list");
2913    // List must be monotonically increasing.
2914    if (getARMRegisterNumbering(Reg) < getARMRegisterNumbering(OldReg)) {
2915      if (ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg))
2916        Warning(RegLoc, "register list not in ascending order");
2917      else
2918        return Error(RegLoc, "register list not in ascending order");
2919    }
2920    if (getARMRegisterNumbering(Reg) == getARMRegisterNumbering(OldReg)) {
2921      Warning(RegLoc, "duplicated register (" + RegTok.getString() +
2922              ") in register list");
2923      continue;
2924    }
2925    // VFP register lists must also be contiguous.
2926    // It's OK to use the enumeration values directly here rather, as the
2927    // VFP register classes have the enum sorted properly.
2928    if (RC != &ARMMCRegisterClasses[ARM::GPRRegClassID] &&
2929        Reg != OldReg + 1)
2930      return Error(RegLoc, "non-contiguous register range");
2931    Registers.push_back(std::pair<unsigned, SMLoc>(Reg, RegLoc));
2932    if (isQReg)
2933      Registers.push_back(std::pair<unsigned, SMLoc>(++Reg, RegLoc));
2934  }
2935
2936  SMLoc E = Parser.getTok().getLoc();
2937  if (Parser.getTok().isNot(AsmToken::RCurly))
2938    return Error(E, "'}' expected");
2939  Parser.Lex(); // Eat '}' token.
2940
2941  // Push the register list operand.
2942  Operands.push_back(ARMOperand::CreateRegList(Registers, S, E));
2943
2944  // The ARM system instruction variants for LDM/STM have a '^' token here.
2945  if (Parser.getTok().is(AsmToken::Caret)) {
2946    Operands.push_back(ARMOperand::CreateToken("^",Parser.getTok().getLoc()));
2947    Parser.Lex(); // Eat '^' token.
2948  }
2949
2950  return false;
2951}
2952
2953// Helper function to parse the lane index for vector lists.
2954ARMAsmParser::OperandMatchResultTy ARMAsmParser::
2955parseVectorLane(VectorLaneTy &LaneKind, unsigned &Index) {
2956  Index = 0; // Always return a defined index value.
2957  if (Parser.getTok().is(AsmToken::LBrac)) {
2958    Parser.Lex(); // Eat the '['.
2959    if (Parser.getTok().is(AsmToken::RBrac)) {
2960      // "Dn[]" is the 'all lanes' syntax.
2961      LaneKind = AllLanes;
2962      Parser.Lex(); // Eat the ']'.
2963      return MatchOperand_Success;
2964    }
2965
2966    // There's an optional '#' token here. Normally there wouldn't be, but
2967    // inline assemble puts one in, and it's friendly to accept that.
2968    if (Parser.getTok().is(AsmToken::Hash))
2969      Parser.Lex(); // Eat the '#'
2970
2971    const MCExpr *LaneIndex;
2972    SMLoc Loc = Parser.getTok().getLoc();
2973    if (getParser().ParseExpression(LaneIndex)) {
2974      Error(Loc, "illegal expression");
2975      return MatchOperand_ParseFail;
2976    }
2977    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(LaneIndex);
2978    if (!CE) {
2979      Error(Loc, "lane index must be empty or an integer");
2980      return MatchOperand_ParseFail;
2981    }
2982    if (Parser.getTok().isNot(AsmToken::RBrac)) {
2983      Error(Parser.getTok().getLoc(), "']' expected");
2984      return MatchOperand_ParseFail;
2985    }
2986    Parser.Lex(); // Eat the ']'.
2987    int64_t Val = CE->getValue();
2988
2989    // FIXME: Make this range check context sensitive for .8, .16, .32.
2990    if (Val < 0 || Val > 7) {
2991      Error(Parser.getTok().getLoc(), "lane index out of range");
2992      return MatchOperand_ParseFail;
2993    }
2994    Index = Val;
2995    LaneKind = IndexedLane;
2996    return MatchOperand_Success;
2997  }
2998  LaneKind = NoLanes;
2999  return MatchOperand_Success;
3000}
3001
3002// parse a vector register list
3003ARMAsmParser::OperandMatchResultTy ARMAsmParser::
3004parseVectorList(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
3005  VectorLaneTy LaneKind;
3006  unsigned LaneIndex;
3007  SMLoc S = Parser.getTok().getLoc();
3008  // As an extension (to match gas), support a plain D register or Q register
3009  // (without encosing curly braces) as a single or double entry list,
3010  // respectively.
3011  if (Parser.getTok().is(AsmToken::Identifier)) {
3012    int Reg = tryParseRegister();
3013    if (Reg == -1)
3014      return MatchOperand_NoMatch;
3015    SMLoc E = Parser.getTok().getLoc();
3016    if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Reg)) {
3017      OperandMatchResultTy Res = parseVectorLane(LaneKind, LaneIndex);
3018      if (Res != MatchOperand_Success)
3019        return Res;
3020      switch (LaneKind) {
3021      case NoLanes:
3022        E = Parser.getTok().getLoc();
3023        Operands.push_back(ARMOperand::CreateVectorList(Reg, 1, false, S, E));
3024        break;
3025      case AllLanes:
3026        E = Parser.getTok().getLoc();
3027        Operands.push_back(ARMOperand::CreateVectorListAllLanes(Reg, 1, false,
3028                                                                S, E));
3029        break;
3030      case IndexedLane:
3031        Operands.push_back(ARMOperand::CreateVectorListIndexed(Reg, 1,
3032                                                               LaneIndex,
3033                                                               false, S, E));
3034        break;
3035      }
3036      return MatchOperand_Success;
3037    }
3038    if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) {
3039      Reg = getDRegFromQReg(Reg);
3040      OperandMatchResultTy Res = parseVectorLane(LaneKind, LaneIndex);
3041      if (Res != MatchOperand_Success)
3042        return Res;
3043      switch (LaneKind) {
3044      case NoLanes:
3045        E = Parser.getTok().getLoc();
3046        Reg = MRI->getMatchingSuperReg(Reg, ARM::dsub_0,
3047                                   &ARMMCRegisterClasses[ARM::DPairRegClassID]);
3048        Operands.push_back(ARMOperand::CreateVectorList(Reg, 2, false, S, E));
3049        break;
3050      case AllLanes:
3051        E = Parser.getTok().getLoc();
3052        Reg = MRI->getMatchingSuperReg(Reg, ARM::dsub_0,
3053                                   &ARMMCRegisterClasses[ARM::DPairRegClassID]);
3054        Operands.push_back(ARMOperand::CreateVectorListAllLanes(Reg, 2, false,
3055                                                                S, E));
3056        break;
3057      case IndexedLane:
3058        Operands.push_back(ARMOperand::CreateVectorListIndexed(Reg, 2,
3059                                                               LaneIndex,
3060                                                               false, S, E));
3061        break;
3062      }
3063      return MatchOperand_Success;
3064    }
3065    Error(S, "vector register expected");
3066    return MatchOperand_ParseFail;
3067  }
3068
3069  if (Parser.getTok().isNot(AsmToken::LCurly))
3070    return MatchOperand_NoMatch;
3071
3072  Parser.Lex(); // Eat '{' token.
3073  SMLoc RegLoc = Parser.getTok().getLoc();
3074
3075  int Reg = tryParseRegister();
3076  if (Reg == -1) {
3077    Error(RegLoc, "register expected");
3078    return MatchOperand_ParseFail;
3079  }
3080  unsigned Count = 1;
3081  int Spacing = 0;
3082  unsigned FirstReg = Reg;
3083  // The list is of D registers, but we also allow Q regs and just interpret
3084  // them as the two D sub-registers.
3085  if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) {
3086    FirstReg = Reg = getDRegFromQReg(Reg);
3087    Spacing = 1; // double-spacing requires explicit D registers, otherwise
3088                 // it's ambiguous with four-register single spaced.
3089    ++Reg;
3090    ++Count;
3091  }
3092  if (parseVectorLane(LaneKind, LaneIndex) != MatchOperand_Success)
3093    return MatchOperand_ParseFail;
3094
3095  while (Parser.getTok().is(AsmToken::Comma) ||
3096         Parser.getTok().is(AsmToken::Minus)) {
3097    if (Parser.getTok().is(AsmToken::Minus)) {
3098      if (!Spacing)
3099        Spacing = 1; // Register range implies a single spaced list.
3100      else if (Spacing == 2) {
3101        Error(Parser.getTok().getLoc(),
3102              "sequential registers in double spaced list");
3103        return MatchOperand_ParseFail;
3104      }
3105      Parser.Lex(); // Eat the minus.
3106      SMLoc EndLoc = Parser.getTok().getLoc();
3107      int EndReg = tryParseRegister();
3108      if (EndReg == -1) {
3109        Error(EndLoc, "register expected");
3110        return MatchOperand_ParseFail;
3111      }
3112      // Allow Q regs and just interpret them as the two D sub-registers.
3113      if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(EndReg))
3114        EndReg = getDRegFromQReg(EndReg) + 1;
3115      // If the register is the same as the start reg, there's nothing
3116      // more to do.
3117      if (Reg == EndReg)
3118        continue;
3119      // The register must be in the same register class as the first.
3120      if (!ARMMCRegisterClasses[ARM::DPRRegClassID].contains(EndReg)) {
3121        Error(EndLoc, "invalid register in register list");
3122        return MatchOperand_ParseFail;
3123      }
3124      // Ranges must go from low to high.
3125      if (Reg > EndReg) {
3126        Error(EndLoc, "bad range in register list");
3127        return MatchOperand_ParseFail;
3128      }
3129      // Parse the lane specifier if present.
3130      VectorLaneTy NextLaneKind;
3131      unsigned NextLaneIndex;
3132      if (parseVectorLane(NextLaneKind, NextLaneIndex) != MatchOperand_Success)
3133        return MatchOperand_ParseFail;
3134      if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) {
3135        Error(EndLoc, "mismatched lane index in register list");
3136        return MatchOperand_ParseFail;
3137      }
3138      EndLoc = Parser.getTok().getLoc();
3139
3140      // Add all the registers in the range to the register list.
3141      Count += EndReg - Reg;
3142      Reg = EndReg;
3143      continue;
3144    }
3145    Parser.Lex(); // Eat the comma.
3146    RegLoc = Parser.getTok().getLoc();
3147    int OldReg = Reg;
3148    Reg = tryParseRegister();
3149    if (Reg == -1) {
3150      Error(RegLoc, "register expected");
3151      return MatchOperand_ParseFail;
3152    }
3153    // vector register lists must be contiguous.
3154    // It's OK to use the enumeration values directly here rather, as the
3155    // VFP register classes have the enum sorted properly.
3156    //
3157    // The list is of D registers, but we also allow Q regs and just interpret
3158    // them as the two D sub-registers.
3159    if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) {
3160      if (!Spacing)
3161        Spacing = 1; // Register range implies a single spaced list.
3162      else if (Spacing == 2) {
3163        Error(RegLoc,
3164              "invalid register in double-spaced list (must be 'D' register')");
3165        return MatchOperand_ParseFail;
3166      }
3167      Reg = getDRegFromQReg(Reg);
3168      if (Reg != OldReg + 1) {
3169        Error(RegLoc, "non-contiguous register range");
3170        return MatchOperand_ParseFail;
3171      }
3172      ++Reg;
3173      Count += 2;
3174      // Parse the lane specifier if present.
3175      VectorLaneTy NextLaneKind;
3176      unsigned NextLaneIndex;
3177      SMLoc EndLoc = Parser.getTok().getLoc();
3178      if (parseVectorLane(NextLaneKind, NextLaneIndex) != MatchOperand_Success)
3179        return MatchOperand_ParseFail;
3180      if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) {
3181        Error(EndLoc, "mismatched lane index in register list");
3182        return MatchOperand_ParseFail;
3183      }
3184      continue;
3185    }
3186    // Normal D register.
3187    // Figure out the register spacing (single or double) of the list if
3188    // we don't know it already.
3189    if (!Spacing)
3190      Spacing = 1 + (Reg == OldReg + 2);
3191
3192    // Just check that it's contiguous and keep going.
3193    if (Reg != OldReg + Spacing) {
3194      Error(RegLoc, "non-contiguous register range");
3195      return MatchOperand_ParseFail;
3196    }
3197    ++Count;
3198    // Parse the lane specifier if present.
3199    VectorLaneTy NextLaneKind;
3200    unsigned NextLaneIndex;
3201    SMLoc EndLoc = Parser.getTok().getLoc();
3202    if (parseVectorLane(NextLaneKind, NextLaneIndex) != MatchOperand_Success)
3203      return MatchOperand_ParseFail;
3204    if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) {
3205      Error(EndLoc, "mismatched lane index in register list");
3206      return MatchOperand_ParseFail;
3207    }
3208  }
3209
3210  SMLoc E = Parser.getTok().getLoc();
3211  if (Parser.getTok().isNot(AsmToken::RCurly)) {
3212    Error(E, "'}' expected");
3213    return MatchOperand_ParseFail;
3214  }
3215  Parser.Lex(); // Eat '}' token.
3216
3217  switch (LaneKind) {
3218  case NoLanes:
3219    // Two-register operands have been converted to the
3220    // composite register classes.
3221    if (Count == 2) {
3222      const MCRegisterClass *RC = (Spacing == 1) ?
3223        &ARMMCRegisterClasses[ARM::DPairRegClassID] :
3224        &ARMMCRegisterClasses[ARM::DPairSpcRegClassID];
3225      FirstReg = MRI->getMatchingSuperReg(FirstReg, ARM::dsub_0, RC);
3226    }
3227
3228    Operands.push_back(ARMOperand::CreateVectorList(FirstReg, Count,
3229                                                    (Spacing == 2), S, E));
3230    break;
3231  case AllLanes:
3232    // Two-register operands have been converted to the
3233    // composite register classes.
3234    if (Count == 2) {
3235      const MCRegisterClass *RC = (Spacing == 1) ?
3236        &ARMMCRegisterClasses[ARM::DPairRegClassID] :
3237        &ARMMCRegisterClasses[ARM::DPairSpcRegClassID];
3238      FirstReg = MRI->getMatchingSuperReg(FirstReg, ARM::dsub_0, RC);
3239    }
3240    Operands.push_back(ARMOperand::CreateVectorListAllLanes(FirstReg, Count,
3241                                                            (Spacing == 2),
3242                                                            S, E));
3243    break;
3244  case IndexedLane:
3245    Operands.push_back(ARMOperand::CreateVectorListIndexed(FirstReg, Count,
3246                                                           LaneIndex,
3247                                                           (Spacing == 2),
3248                                                           S, E));
3249    break;
3250  }
3251  return MatchOperand_Success;
3252}
3253
3254/// parseMemBarrierOptOperand - Try to parse DSB/DMB data barrier options.
3255ARMAsmParser::OperandMatchResultTy ARMAsmParser::
3256parseMemBarrierOptOperand(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
3257  SMLoc S = Parser.getTok().getLoc();
3258  const AsmToken &Tok = Parser.getTok();
3259  if (!Tok.is(AsmToken::Identifier))
3260    return MatchOperand_NoMatch;
3261  StringRef OptStr = Tok.getString();
3262
3263  unsigned Opt = StringSwitch<unsigned>(OptStr.slice(0, OptStr.size()).lower())
3264    .Case("sy",    ARM_MB::SY)
3265    .Case("st",    ARM_MB::ST)
3266    .Case("sh",    ARM_MB::ISH)
3267    .Case("ish",   ARM_MB::ISH)
3268    .Case("shst",  ARM_MB::ISHST)
3269    .Case("ishst", ARM_MB::ISHST)
3270    .Case("nsh",   ARM_MB::NSH)
3271    .Case("un",    ARM_MB::NSH)
3272    .Case("nshst", ARM_MB::NSHST)
3273    .Case("unst",  ARM_MB::NSHST)
3274    .Case("osh",   ARM_MB::OSH)
3275    .Case("oshst", ARM_MB::OSHST)
3276    .Default(~0U);
3277
3278  if (Opt == ~0U)
3279    return MatchOperand_NoMatch;
3280
3281  Parser.Lex(); // Eat identifier token.
3282  Operands.push_back(ARMOperand::CreateMemBarrierOpt((ARM_MB::MemBOpt)Opt, S));
3283  return MatchOperand_Success;
3284}
3285
3286/// parseProcIFlagsOperand - Try to parse iflags from CPS instruction.
3287ARMAsmParser::OperandMatchResultTy ARMAsmParser::
3288parseProcIFlagsOperand(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
3289  SMLoc S = Parser.getTok().getLoc();
3290  const AsmToken &Tok = Parser.getTok();
3291  if (!Tok.is(AsmToken::Identifier))
3292    return MatchOperand_NoMatch;
3293  StringRef IFlagsStr = Tok.getString();
3294
3295  // An iflags string of "none" is interpreted to mean that none of the AIF
3296  // bits are set.  Not a terribly useful instruction, but a valid encoding.
3297  unsigned IFlags = 0;
3298  if (IFlagsStr != "none") {
3299        for (int i = 0, e = IFlagsStr.size(); i != e; ++i) {
3300      unsigned Flag = StringSwitch<unsigned>(IFlagsStr.substr(i, 1))
3301        .Case("a", ARM_PROC::A)
3302        .Case("i", ARM_PROC::I)
3303        .Case("f", ARM_PROC::F)
3304        .Default(~0U);
3305
3306      // If some specific iflag is already set, it means that some letter is
3307      // present more than once, this is not acceptable.
3308      if (Flag == ~0U || (IFlags & Flag))
3309        return MatchOperand_NoMatch;
3310
3311      IFlags |= Flag;
3312    }
3313  }
3314
3315  Parser.Lex(); // Eat identifier token.
3316  Operands.push_back(ARMOperand::CreateProcIFlags((ARM_PROC::IFlags)IFlags, S));
3317  return MatchOperand_Success;
3318}
3319
3320/// parseMSRMaskOperand - Try to parse mask flags from MSR instruction.
3321ARMAsmParser::OperandMatchResultTy ARMAsmParser::
3322parseMSRMaskOperand(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
3323  SMLoc S = Parser.getTok().getLoc();
3324  const AsmToken &Tok = Parser.getTok();
3325  assert(Tok.is(AsmToken::Identifier) && "Token is not an Identifier");
3326  StringRef Mask = Tok.getString();
3327
3328  if (isMClass()) {
3329    // See ARMv6-M 10.1.1
3330    std::string Name = Mask.lower();
3331    unsigned FlagsVal = StringSwitch<unsigned>(Name)
3332      // Note: in the documentation:
3333      //  ARM deprecates using MSR APSR without a _<bits> qualifier as an alias
3334      //  for MSR APSR_nzcvq.
3335      // but we do make it an alias here.  This is so to get the "mask encoding"
3336      // bits correct on MSR APSR writes.
3337      //
3338      // FIXME: Note the 0xc00 "mask encoding" bits version of the registers
3339      // should really only be allowed when writing a special register.  Note
3340      // they get dropped in the MRS instruction reading a special register as
3341      // the SYSm field is only 8 bits.
3342      //
3343      // FIXME: the _g and _nzcvqg versions are only allowed if the processor
3344      // includes the DSP extension but that is not checked.
3345      .Case("apsr", 0x800)
3346      .Case("apsr_nzcvq", 0x800)
3347      .Case("apsr_g", 0x400)
3348      .Case("apsr_nzcvqg", 0xc00)
3349      .Case("iapsr", 0x801)
3350      .Case("iapsr_nzcvq", 0x801)
3351      .Case("iapsr_g", 0x401)
3352      .Case("iapsr_nzcvqg", 0xc01)
3353      .Case("eapsr", 0x802)
3354      .Case("eapsr_nzcvq", 0x802)
3355      .Case("eapsr_g", 0x402)
3356      .Case("eapsr_nzcvqg", 0xc02)
3357      .Case("xpsr", 0x803)
3358      .Case("xpsr_nzcvq", 0x803)
3359      .Case("xpsr_g", 0x403)
3360      .Case("xpsr_nzcvqg", 0xc03)
3361      .Case("ipsr", 0x805)
3362      .Case("epsr", 0x806)
3363      .Case("iepsr", 0x807)
3364      .Case("msp", 0x808)
3365      .Case("psp", 0x809)
3366      .Case("primask", 0x810)
3367      .Case("basepri", 0x811)
3368      .Case("basepri_max", 0x812)
3369      .Case("faultmask", 0x813)
3370      .Case("control", 0x814)
3371      .Default(~0U);
3372
3373    if (FlagsVal == ~0U)
3374      return MatchOperand_NoMatch;
3375
3376    if (!hasV7Ops() && FlagsVal >= 0x811 && FlagsVal <= 0x813)
3377      // basepri, basepri_max and faultmask only valid for V7m.
3378      return MatchOperand_NoMatch;
3379
3380    Parser.Lex(); // Eat identifier token.
3381    Operands.push_back(ARMOperand::CreateMSRMask(FlagsVal, S));
3382    return MatchOperand_Success;
3383  }
3384
3385  // Split spec_reg from flag, example: CPSR_sxf => "CPSR" and "sxf"
3386  size_t Start = 0, Next = Mask.find('_');
3387  StringRef Flags = "";
3388  std::string SpecReg = Mask.slice(Start, Next).lower();
3389  if (Next != StringRef::npos)
3390    Flags = Mask.slice(Next+1, Mask.size());
3391
3392  // FlagsVal contains the complete mask:
3393  // 3-0: Mask
3394  // 4: Special Reg (cpsr, apsr => 0; spsr => 1)
3395  unsigned FlagsVal = 0;
3396
3397  if (SpecReg == "apsr") {
3398    FlagsVal = StringSwitch<unsigned>(Flags)
3399    .Case("nzcvq",  0x8) // same as CPSR_f
3400    .Case("g",      0x4) // same as CPSR_s
3401    .Case("nzcvqg", 0xc) // same as CPSR_fs
3402    .Default(~0U);
3403
3404    if (FlagsVal == ~0U) {
3405      if (!Flags.empty())
3406        return MatchOperand_NoMatch;
3407      else
3408        FlagsVal = 8; // No flag
3409    }
3410  } else if (SpecReg == "cpsr" || SpecReg == "spsr") {
3411    // cpsr_all is an alias for cpsr_fc, as is plain cpsr.
3412    if (Flags == "all" || Flags == "")
3413      Flags = "fc";
3414    for (int i = 0, e = Flags.size(); i != e; ++i) {
3415      unsigned Flag = StringSwitch<unsigned>(Flags.substr(i, 1))
3416      .Case("c", 1)
3417      .Case("x", 2)
3418      .Case("s", 4)
3419      .Case("f", 8)
3420      .Default(~0U);
3421
3422      // If some specific flag is already set, it means that some letter is
3423      // present more than once, this is not acceptable.
3424      if (FlagsVal == ~0U || (FlagsVal & Flag))
3425        return MatchOperand_NoMatch;
3426      FlagsVal |= Flag;
3427    }
3428  } else // No match for special register.
3429    return MatchOperand_NoMatch;
3430
3431  // Special register without flags is NOT equivalent to "fc" flags.
3432  // NOTE: This is a divergence from gas' behavior.  Uncommenting the following
3433  // two lines would enable gas compatibility at the expense of breaking
3434  // round-tripping.
3435  //
3436  // if (!FlagsVal)
3437  //  FlagsVal = 0x9;
3438
3439  // Bit 4: Special Reg (cpsr, apsr => 0; spsr => 1)
3440  if (SpecReg == "spsr")
3441    FlagsVal |= 16;
3442
3443  Parser.Lex(); // Eat identifier token.
3444  Operands.push_back(ARMOperand::CreateMSRMask(FlagsVal, S));
3445  return MatchOperand_Success;
3446}
3447
3448ARMAsmParser::OperandMatchResultTy ARMAsmParser::
3449parsePKHImm(SmallVectorImpl<MCParsedAsmOperand*> &Operands, StringRef Op,
3450            int Low, int High) {
3451  const AsmToken &Tok = Parser.getTok();
3452  if (Tok.isNot(AsmToken::Identifier)) {
3453    Error(Parser.getTok().getLoc(), Op + " operand expected.");
3454    return MatchOperand_ParseFail;
3455  }
3456  StringRef ShiftName = Tok.getString();
3457  std::string LowerOp = Op.lower();
3458  std::string UpperOp = Op.upper();
3459  if (ShiftName != LowerOp && ShiftName != UpperOp) {
3460    Error(Parser.getTok().getLoc(), Op + " operand expected.");
3461    return MatchOperand_ParseFail;
3462  }
3463  Parser.Lex(); // Eat shift type token.
3464
3465  // There must be a '#' and a shift amount.
3466  if (Parser.getTok().isNot(AsmToken::Hash) &&
3467      Parser.getTok().isNot(AsmToken::Dollar)) {
3468    Error(Parser.getTok().getLoc(), "'#' expected");
3469    return MatchOperand_ParseFail;
3470  }
3471  Parser.Lex(); // Eat hash token.
3472
3473  const MCExpr *ShiftAmount;
3474  SMLoc Loc = Parser.getTok().getLoc();
3475  if (getParser().ParseExpression(ShiftAmount)) {
3476    Error(Loc, "illegal expression");
3477    return MatchOperand_ParseFail;
3478  }
3479  const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftAmount);
3480  if (!CE) {
3481    Error(Loc, "constant expression expected");
3482    return MatchOperand_ParseFail;
3483  }
3484  int Val = CE->getValue();
3485  if (Val < Low || Val > High) {
3486    Error(Loc, "immediate value out of range");
3487    return MatchOperand_ParseFail;
3488  }
3489
3490  Operands.push_back(ARMOperand::CreateImm(CE, Loc, Parser.getTok().getLoc()));
3491
3492  return MatchOperand_Success;
3493}
3494
3495ARMAsmParser::OperandMatchResultTy ARMAsmParser::
3496parseSetEndImm(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
3497  const AsmToken &Tok = Parser.getTok();
3498  SMLoc S = Tok.getLoc();
3499  if (Tok.isNot(AsmToken::Identifier)) {
3500    Error(Tok.getLoc(), "'be' or 'le' operand expected");
3501    return MatchOperand_ParseFail;
3502  }
3503  int Val = StringSwitch<int>(Tok.getString())
3504    .Case("be", 1)
3505    .Case("le", 0)
3506    .Default(-1);
3507  Parser.Lex(); // Eat the token.
3508
3509  if (Val == -1) {
3510    Error(Tok.getLoc(), "'be' or 'le' operand expected");
3511    return MatchOperand_ParseFail;
3512  }
3513  Operands.push_back(ARMOperand::CreateImm(MCConstantExpr::Create(Val,
3514                                                                  getContext()),
3515                                           S, Parser.getTok().getLoc()));
3516  return MatchOperand_Success;
3517}
3518
3519/// parseShifterImm - Parse the shifter immediate operand for SSAT/USAT
3520/// instructions. Legal values are:
3521///     lsl #n  'n' in [0,31]
3522///     asr #n  'n' in [1,32]
3523///             n == 32 encoded as n == 0.
3524ARMAsmParser::OperandMatchResultTy ARMAsmParser::
3525parseShifterImm(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
3526  const AsmToken &Tok = Parser.getTok();
3527  SMLoc S = Tok.getLoc();
3528  if (Tok.isNot(AsmToken::Identifier)) {
3529    Error(S, "shift operator 'asr' or 'lsl' expected");
3530    return MatchOperand_ParseFail;
3531  }
3532  StringRef ShiftName = Tok.getString();
3533  bool isASR;
3534  if (ShiftName == "lsl" || ShiftName == "LSL")
3535    isASR = false;
3536  else if (ShiftName == "asr" || ShiftName == "ASR")
3537    isASR = true;
3538  else {
3539    Error(S, "shift operator 'asr' or 'lsl' expected");
3540    return MatchOperand_ParseFail;
3541  }
3542  Parser.Lex(); // Eat the operator.
3543
3544  // A '#' and a shift amount.
3545  if (Parser.getTok().isNot(AsmToken::Hash) &&
3546      Parser.getTok().isNot(AsmToken::Dollar)) {
3547    Error(Parser.getTok().getLoc(), "'#' expected");
3548    return MatchOperand_ParseFail;
3549  }
3550  Parser.Lex(); // Eat hash token.
3551
3552  const MCExpr *ShiftAmount;
3553  SMLoc E = Parser.getTok().getLoc();
3554  if (getParser().ParseExpression(ShiftAmount)) {
3555    Error(E, "malformed shift expression");
3556    return MatchOperand_ParseFail;
3557  }
3558  const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftAmount);
3559  if (!CE) {
3560    Error(E, "shift amount must be an immediate");
3561    return MatchOperand_ParseFail;
3562  }
3563
3564  int64_t Val = CE->getValue();
3565  if (isASR) {
3566    // Shift amount must be in [1,32]
3567    if (Val < 1 || Val > 32) {
3568      Error(E, "'asr' shift amount must be in range [1,32]");
3569      return MatchOperand_ParseFail;
3570    }
3571    // asr #32 encoded as asr #0, but is not allowed in Thumb2 mode.
3572    if (isThumb() && Val == 32) {
3573      Error(E, "'asr #32' shift amount not allowed in Thumb mode");
3574      return MatchOperand_ParseFail;
3575    }
3576    if (Val == 32) Val = 0;
3577  } else {
3578    // Shift amount must be in [1,32]
3579    if (Val < 0 || Val > 31) {
3580      Error(E, "'lsr' shift amount must be in range [0,31]");
3581      return MatchOperand_ParseFail;
3582    }
3583  }
3584
3585  E = Parser.getTok().getLoc();
3586  Operands.push_back(ARMOperand::CreateShifterImm(isASR, Val, S, E));
3587
3588  return MatchOperand_Success;
3589}
3590
3591/// parseRotImm - Parse the shifter immediate operand for SXTB/UXTB family
3592/// of instructions. Legal values are:
3593///     ror #n  'n' in {0, 8, 16, 24}
3594ARMAsmParser::OperandMatchResultTy ARMAsmParser::
3595parseRotImm(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
3596  const AsmToken &Tok = Parser.getTok();
3597  SMLoc S = Tok.getLoc();
3598  if (Tok.isNot(AsmToken::Identifier))
3599    return MatchOperand_NoMatch;
3600  StringRef ShiftName = Tok.getString();
3601  if (ShiftName != "ror" && ShiftName != "ROR")
3602    return MatchOperand_NoMatch;
3603  Parser.Lex(); // Eat the operator.
3604
3605  // A '#' and a rotate amount.
3606  if (Parser.getTok().isNot(AsmToken::Hash) &&
3607      Parser.getTok().isNot(AsmToken::Dollar)) {
3608    Error(Parser.getTok().getLoc(), "'#' expected");
3609    return MatchOperand_ParseFail;
3610  }
3611  Parser.Lex(); // Eat hash token.
3612
3613  const MCExpr *ShiftAmount;
3614  SMLoc E = Parser.getTok().getLoc();
3615  if (getParser().ParseExpression(ShiftAmount)) {
3616    Error(E, "malformed rotate expression");
3617    return MatchOperand_ParseFail;
3618  }
3619  const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftAmount);
3620  if (!CE) {
3621    Error(E, "rotate amount must be an immediate");
3622    return MatchOperand_ParseFail;
3623  }
3624
3625  int64_t Val = CE->getValue();
3626  // Shift amount must be in {0, 8, 16, 24} (0 is undocumented extension)
3627  // normally, zero is represented in asm by omitting the rotate operand
3628  // entirely.
3629  if (Val != 8 && Val != 16 && Val != 24 && Val != 0) {
3630    Error(E, "'ror' rotate amount must be 8, 16, or 24");
3631    return MatchOperand_ParseFail;
3632  }
3633
3634  E = Parser.getTok().getLoc();
3635  Operands.push_back(ARMOperand::CreateRotImm(Val, S, E));
3636
3637  return MatchOperand_Success;
3638}
3639
3640ARMAsmParser::OperandMatchResultTy ARMAsmParser::
3641parseBitfield(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
3642  SMLoc S = Parser.getTok().getLoc();
3643  // The bitfield descriptor is really two operands, the LSB and the width.
3644  if (Parser.getTok().isNot(AsmToken::Hash) &&
3645      Parser.getTok().isNot(AsmToken::Dollar)) {
3646    Error(Parser.getTok().getLoc(), "'#' expected");
3647    return MatchOperand_ParseFail;
3648  }
3649  Parser.Lex(); // Eat hash token.
3650
3651  const MCExpr *LSBExpr;
3652  SMLoc E = Parser.getTok().getLoc();
3653  if (getParser().ParseExpression(LSBExpr)) {
3654    Error(E, "malformed immediate expression");
3655    return MatchOperand_ParseFail;
3656  }
3657  const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(LSBExpr);
3658  if (!CE) {
3659    Error(E, "'lsb' operand must be an immediate");
3660    return MatchOperand_ParseFail;
3661  }
3662
3663  int64_t LSB = CE->getValue();
3664  // The LSB must be in the range [0,31]
3665  if (LSB < 0 || LSB > 31) {
3666    Error(E, "'lsb' operand must be in the range [0,31]");
3667    return MatchOperand_ParseFail;
3668  }
3669  E = Parser.getTok().getLoc();
3670
3671  // Expect another immediate operand.
3672  if (Parser.getTok().isNot(AsmToken::Comma)) {
3673    Error(Parser.getTok().getLoc(), "too few operands");
3674    return MatchOperand_ParseFail;
3675  }
3676  Parser.Lex(); // Eat hash token.
3677  if (Parser.getTok().isNot(AsmToken::Hash) &&
3678      Parser.getTok().isNot(AsmToken::Dollar)) {
3679    Error(Parser.getTok().getLoc(), "'#' expected");
3680    return MatchOperand_ParseFail;
3681  }
3682  Parser.Lex(); // Eat hash token.
3683
3684  const MCExpr *WidthExpr;
3685  if (getParser().ParseExpression(WidthExpr)) {
3686    Error(E, "malformed immediate expression");
3687    return MatchOperand_ParseFail;
3688  }
3689  CE = dyn_cast<MCConstantExpr>(WidthExpr);
3690  if (!CE) {
3691    Error(E, "'width' operand must be an immediate");
3692    return MatchOperand_ParseFail;
3693  }
3694
3695  int64_t Width = CE->getValue();
3696  // The LSB must be in the range [1,32-lsb]
3697  if (Width < 1 || Width > 32 - LSB) {
3698    Error(E, "'width' operand must be in the range [1,32-lsb]");
3699    return MatchOperand_ParseFail;
3700  }
3701  E = Parser.getTok().getLoc();
3702
3703  Operands.push_back(ARMOperand::CreateBitfield(LSB, Width, S, E));
3704
3705  return MatchOperand_Success;
3706}
3707
3708ARMAsmParser::OperandMatchResultTy ARMAsmParser::
3709parsePostIdxReg(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
3710  // Check for a post-index addressing register operand. Specifically:
3711  // postidx_reg := '+' register {, shift}
3712  //              | '-' register {, shift}
3713  //              | register {, shift}
3714
3715  // This method must return MatchOperand_NoMatch without consuming any tokens
3716  // in the case where there is no match, as other alternatives take other
3717  // parse methods.
3718  AsmToken Tok = Parser.getTok();
3719  SMLoc S = Tok.getLoc();
3720  bool haveEaten = false;
3721  bool isAdd = true;
3722  int Reg = -1;
3723  if (Tok.is(AsmToken::Plus)) {
3724    Parser.Lex(); // Eat the '+' token.
3725    haveEaten = true;
3726  } else if (Tok.is(AsmToken::Minus)) {
3727    Parser.Lex(); // Eat the '-' token.
3728    isAdd = false;
3729    haveEaten = true;
3730  }
3731  if (Parser.getTok().is(AsmToken::Identifier))
3732    Reg = tryParseRegister();
3733  if (Reg == -1) {
3734    if (!haveEaten)
3735      return MatchOperand_NoMatch;
3736    Error(Parser.getTok().getLoc(), "register expected");
3737    return MatchOperand_ParseFail;
3738  }
3739  SMLoc E = Parser.getTok().getLoc();
3740
3741  ARM_AM::ShiftOpc ShiftTy = ARM_AM::no_shift;
3742  unsigned ShiftImm = 0;
3743  if (Parser.getTok().is(AsmToken::Comma)) {
3744    Parser.Lex(); // Eat the ','.
3745    if (parseMemRegOffsetShift(ShiftTy, ShiftImm))
3746      return MatchOperand_ParseFail;
3747  }
3748
3749  Operands.push_back(ARMOperand::CreatePostIdxReg(Reg, isAdd, ShiftTy,
3750                                                  ShiftImm, S, E));
3751
3752  return MatchOperand_Success;
3753}
3754
3755ARMAsmParser::OperandMatchResultTy ARMAsmParser::
3756parseAM3Offset(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
3757  // Check for a post-index addressing register operand. Specifically:
3758  // am3offset := '+' register
3759  //              | '-' register
3760  //              | register
3761  //              | # imm
3762  //              | # + imm
3763  //              | # - imm
3764
3765  // This method must return MatchOperand_NoMatch without consuming any tokens
3766  // in the case where there is no match, as other alternatives take other
3767  // parse methods.
3768  AsmToken Tok = Parser.getTok();
3769  SMLoc S = Tok.getLoc();
3770
3771  // Do immediates first, as we always parse those if we have a '#'.
3772  if (Parser.getTok().is(AsmToken::Hash) ||
3773      Parser.getTok().is(AsmToken::Dollar)) {
3774    Parser.Lex(); // Eat the '#'.
3775    // Explicitly look for a '-', as we need to encode negative zero
3776    // differently.
3777    bool isNegative = Parser.getTok().is(AsmToken::Minus);
3778    const MCExpr *Offset;
3779    if (getParser().ParseExpression(Offset))
3780      return MatchOperand_ParseFail;
3781    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Offset);
3782    if (!CE) {
3783      Error(S, "constant expression expected");
3784      return MatchOperand_ParseFail;
3785    }
3786    SMLoc E = Tok.getLoc();
3787    // Negative zero is encoded as the flag value INT32_MIN.
3788    int32_t Val = CE->getValue();
3789    if (isNegative && Val == 0)
3790      Val = INT32_MIN;
3791
3792    Operands.push_back(
3793      ARMOperand::CreateImm(MCConstantExpr::Create(Val, getContext()), S, E));
3794
3795    return MatchOperand_Success;
3796  }
3797
3798
3799  bool haveEaten = false;
3800  bool isAdd = true;
3801  int Reg = -1;
3802  if (Tok.is(AsmToken::Plus)) {
3803    Parser.Lex(); // Eat the '+' token.
3804    haveEaten = true;
3805  } else if (Tok.is(AsmToken::Minus)) {
3806    Parser.Lex(); // Eat the '-' token.
3807    isAdd = false;
3808    haveEaten = true;
3809  }
3810  if (Parser.getTok().is(AsmToken::Identifier))
3811    Reg = tryParseRegister();
3812  if (Reg == -1) {
3813    if (!haveEaten)
3814      return MatchOperand_NoMatch;
3815    Error(Parser.getTok().getLoc(), "register expected");
3816    return MatchOperand_ParseFail;
3817  }
3818  SMLoc E = Parser.getTok().getLoc();
3819
3820  Operands.push_back(ARMOperand::CreatePostIdxReg(Reg, isAdd, ARM_AM::no_shift,
3821                                                  0, S, E));
3822
3823  return MatchOperand_Success;
3824}
3825
3826/// cvtT2LdrdPre - Convert parsed operands to MCInst.
3827/// Needed here because the Asm Gen Matcher can't handle properly tied operands
3828/// when they refer multiple MIOperands inside a single one.
3829bool ARMAsmParser::
3830cvtT2LdrdPre(MCInst &Inst, unsigned Opcode,
3831             const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
3832  // Rt, Rt2
3833  ((ARMOperand*)Operands[2])->addRegOperands(Inst, 1);
3834  ((ARMOperand*)Operands[3])->addRegOperands(Inst, 1);
3835  // Create a writeback register dummy placeholder.
3836  Inst.addOperand(MCOperand::CreateReg(0));
3837  // addr
3838  ((ARMOperand*)Operands[4])->addMemImm8s4OffsetOperands(Inst, 2);
3839  // pred
3840  ((ARMOperand*)Operands[1])->addCondCodeOperands(Inst, 2);
3841  return true;
3842}
3843
3844/// cvtT2StrdPre - Convert parsed operands to MCInst.
3845/// Needed here because the Asm Gen Matcher can't handle properly tied operands
3846/// when they refer multiple MIOperands inside a single one.
3847bool ARMAsmParser::
3848cvtT2StrdPre(MCInst &Inst, unsigned Opcode,
3849             const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
3850  // Create a writeback register dummy placeholder.
3851  Inst.addOperand(MCOperand::CreateReg(0));
3852  // Rt, Rt2
3853  ((ARMOperand*)Operands[2])->addRegOperands(Inst, 1);
3854  ((ARMOperand*)Operands[3])->addRegOperands(Inst, 1);
3855  // addr
3856  ((ARMOperand*)Operands[4])->addMemImm8s4OffsetOperands(Inst, 2);
3857  // pred
3858  ((ARMOperand*)Operands[1])->addCondCodeOperands(Inst, 2);
3859  return true;
3860}
3861
3862/// cvtLdWriteBackRegT2AddrModeImm8 - Convert parsed operands to MCInst.
3863/// Needed here because the Asm Gen Matcher can't handle properly tied operands
3864/// when they refer multiple MIOperands inside a single one.
3865bool ARMAsmParser::
3866cvtLdWriteBackRegT2AddrModeImm8(MCInst &Inst, unsigned Opcode,
3867                         const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
3868  ((ARMOperand*)Operands[2])->addRegOperands(Inst, 1);
3869
3870  // Create a writeback register dummy placeholder.
3871  Inst.addOperand(MCOperand::CreateImm(0));
3872
3873  ((ARMOperand*)Operands[3])->addMemImm8OffsetOperands(Inst, 2);
3874  ((ARMOperand*)Operands[1])->addCondCodeOperands(Inst, 2);
3875  return true;
3876}
3877
3878/// cvtStWriteBackRegT2AddrModeImm8 - Convert parsed operands to MCInst.
3879/// Needed here because the Asm Gen Matcher can't handle properly tied operands
3880/// when they refer multiple MIOperands inside a single one.
3881bool ARMAsmParser::
3882cvtStWriteBackRegT2AddrModeImm8(MCInst &Inst, unsigned Opcode,
3883                         const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
3884  // Create a writeback register dummy placeholder.
3885  Inst.addOperand(MCOperand::CreateImm(0));
3886  ((ARMOperand*)Operands[2])->addRegOperands(Inst, 1);
3887  ((ARMOperand*)Operands[3])->addMemImm8OffsetOperands(Inst, 2);
3888  ((ARMOperand*)Operands[1])->addCondCodeOperands(Inst, 2);
3889  return true;
3890}
3891
3892/// cvtLdWriteBackRegAddrMode2 - Convert parsed operands to MCInst.
3893/// Needed here because the Asm Gen Matcher can't handle properly tied operands
3894/// when they refer multiple MIOperands inside a single one.
3895bool ARMAsmParser::
3896cvtLdWriteBackRegAddrMode2(MCInst &Inst, unsigned Opcode,
3897                         const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
3898  ((ARMOperand*)Operands[2])->addRegOperands(Inst, 1);
3899
3900  // Create a writeback register dummy placeholder.
3901  Inst.addOperand(MCOperand::CreateImm(0));
3902
3903  ((ARMOperand*)Operands[3])->addAddrMode2Operands(Inst, 3);
3904  ((ARMOperand*)Operands[1])->addCondCodeOperands(Inst, 2);
3905  return true;
3906}
3907
3908/// cvtLdWriteBackRegAddrModeImm12 - Convert parsed operands to MCInst.
3909/// Needed here because the Asm Gen Matcher can't handle properly tied operands
3910/// when they refer multiple MIOperands inside a single one.
3911bool ARMAsmParser::
3912cvtLdWriteBackRegAddrModeImm12(MCInst &Inst, unsigned Opcode,
3913                         const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
3914  ((ARMOperand*)Operands[2])->addRegOperands(Inst, 1);
3915
3916  // Create a writeback register dummy placeholder.
3917  Inst.addOperand(MCOperand::CreateImm(0));
3918
3919  ((ARMOperand*)Operands[3])->addMemImm12OffsetOperands(Inst, 2);
3920  ((ARMOperand*)Operands[1])->addCondCodeOperands(Inst, 2);
3921  return true;
3922}
3923
3924
3925/// cvtStWriteBackRegAddrModeImm12 - Convert parsed operands to MCInst.
3926/// Needed here because the Asm Gen Matcher can't handle properly tied operands
3927/// when they refer multiple MIOperands inside a single one.
3928bool ARMAsmParser::
3929cvtStWriteBackRegAddrModeImm12(MCInst &Inst, unsigned Opcode,
3930                         const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
3931  // Create a writeback register dummy placeholder.
3932  Inst.addOperand(MCOperand::CreateImm(0));
3933  ((ARMOperand*)Operands[2])->addRegOperands(Inst, 1);
3934  ((ARMOperand*)Operands[3])->addMemImm12OffsetOperands(Inst, 2);
3935  ((ARMOperand*)Operands[1])->addCondCodeOperands(Inst, 2);
3936  return true;
3937}
3938
3939/// cvtStWriteBackRegAddrMode2 - Convert parsed operands to MCInst.
3940/// Needed here because the Asm Gen Matcher can't handle properly tied operands
3941/// when they refer multiple MIOperands inside a single one.
3942bool ARMAsmParser::
3943cvtStWriteBackRegAddrMode2(MCInst &Inst, unsigned Opcode,
3944                         const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
3945  // Create a writeback register dummy placeholder.
3946  Inst.addOperand(MCOperand::CreateImm(0));
3947  ((ARMOperand*)Operands[2])->addRegOperands(Inst, 1);
3948  ((ARMOperand*)Operands[3])->addAddrMode2Operands(Inst, 3);
3949  ((ARMOperand*)Operands[1])->addCondCodeOperands(Inst, 2);
3950  return true;
3951}
3952
3953/// cvtStWriteBackRegAddrMode3 - Convert parsed operands to MCInst.
3954/// Needed here because the Asm Gen Matcher can't handle properly tied operands
3955/// when they refer multiple MIOperands inside a single one.
3956bool ARMAsmParser::
3957cvtStWriteBackRegAddrMode3(MCInst &Inst, unsigned Opcode,
3958                         const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
3959  // Create a writeback register dummy placeholder.
3960  Inst.addOperand(MCOperand::CreateImm(0));
3961  ((ARMOperand*)Operands[2])->addRegOperands(Inst, 1);
3962  ((ARMOperand*)Operands[3])->addAddrMode3Operands(Inst, 3);
3963  ((ARMOperand*)Operands[1])->addCondCodeOperands(Inst, 2);
3964  return true;
3965}
3966
3967/// cvtLdExtTWriteBackImm - Convert parsed operands to MCInst.
3968/// Needed here because the Asm Gen Matcher can't handle properly tied operands
3969/// when they refer multiple MIOperands inside a single one.
3970bool ARMAsmParser::
3971cvtLdExtTWriteBackImm(MCInst &Inst, unsigned Opcode,
3972                      const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
3973  // Rt
3974  ((ARMOperand*)Operands[2])->addRegOperands(Inst, 1);
3975  // Create a writeback register dummy placeholder.
3976  Inst.addOperand(MCOperand::CreateImm(0));
3977  // addr
3978  ((ARMOperand*)Operands[3])->addMemNoOffsetOperands(Inst, 1);
3979  // offset
3980  ((ARMOperand*)Operands[4])->addPostIdxImm8Operands(Inst, 1);
3981  // pred
3982  ((ARMOperand*)Operands[1])->addCondCodeOperands(Inst, 2);
3983  return true;
3984}
3985
3986/// cvtLdExtTWriteBackReg - Convert parsed operands to MCInst.
3987/// Needed here because the Asm Gen Matcher can't handle properly tied operands
3988/// when they refer multiple MIOperands inside a single one.
3989bool ARMAsmParser::
3990cvtLdExtTWriteBackReg(MCInst &Inst, unsigned Opcode,
3991                      const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
3992  // Rt
3993  ((ARMOperand*)Operands[2])->addRegOperands(Inst, 1);
3994  // Create a writeback register dummy placeholder.
3995  Inst.addOperand(MCOperand::CreateImm(0));
3996  // addr
3997  ((ARMOperand*)Operands[3])->addMemNoOffsetOperands(Inst, 1);
3998  // offset
3999  ((ARMOperand*)Operands[4])->addPostIdxRegOperands(Inst, 2);
4000  // pred
4001  ((ARMOperand*)Operands[1])->addCondCodeOperands(Inst, 2);
4002  return true;
4003}
4004
4005/// cvtStExtTWriteBackImm - Convert parsed operands to MCInst.
4006/// Needed here because the Asm Gen Matcher can't handle properly tied operands
4007/// when they refer multiple MIOperands inside a single one.
4008bool ARMAsmParser::
4009cvtStExtTWriteBackImm(MCInst &Inst, unsigned Opcode,
4010                      const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
4011  // Create a writeback register dummy placeholder.
4012  Inst.addOperand(MCOperand::CreateImm(0));
4013  // Rt
4014  ((ARMOperand*)Operands[2])->addRegOperands(Inst, 1);
4015  // addr
4016  ((ARMOperand*)Operands[3])->addMemNoOffsetOperands(Inst, 1);
4017  // offset
4018  ((ARMOperand*)Operands[4])->addPostIdxImm8Operands(Inst, 1);
4019  // pred
4020  ((ARMOperand*)Operands[1])->addCondCodeOperands(Inst, 2);
4021  return true;
4022}
4023
4024/// cvtStExtTWriteBackReg - Convert parsed operands to MCInst.
4025/// Needed here because the Asm Gen Matcher can't handle properly tied operands
4026/// when they refer multiple MIOperands inside a single one.
4027bool ARMAsmParser::
4028cvtStExtTWriteBackReg(MCInst &Inst, unsigned Opcode,
4029                      const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
4030  // Create a writeback register dummy placeholder.
4031  Inst.addOperand(MCOperand::CreateImm(0));
4032  // Rt
4033  ((ARMOperand*)Operands[2])->addRegOperands(Inst, 1);
4034  // addr
4035  ((ARMOperand*)Operands[3])->addMemNoOffsetOperands(Inst, 1);
4036  // offset
4037  ((ARMOperand*)Operands[4])->addPostIdxRegOperands(Inst, 2);
4038  // pred
4039  ((ARMOperand*)Operands[1])->addCondCodeOperands(Inst, 2);
4040  return true;
4041}
4042
4043/// cvtLdrdPre - Convert parsed operands to MCInst.
4044/// Needed here because the Asm Gen Matcher can't handle properly tied operands
4045/// when they refer multiple MIOperands inside a single one.
4046bool ARMAsmParser::
4047cvtLdrdPre(MCInst &Inst, unsigned Opcode,
4048           const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
4049  // Rt, Rt2
4050  ((ARMOperand*)Operands[2])->addRegOperands(Inst, 1);
4051  ((ARMOperand*)Operands[3])->addRegOperands(Inst, 1);
4052  // Create a writeback register dummy placeholder.
4053  Inst.addOperand(MCOperand::CreateImm(0));
4054  // addr
4055  ((ARMOperand*)Operands[4])->addAddrMode3Operands(Inst, 3);
4056  // pred
4057  ((ARMOperand*)Operands[1])->addCondCodeOperands(Inst, 2);
4058  return true;
4059}
4060
4061/// cvtStrdPre - Convert parsed operands to MCInst.
4062/// Needed here because the Asm Gen Matcher can't handle properly tied operands
4063/// when they refer multiple MIOperands inside a single one.
4064bool ARMAsmParser::
4065cvtStrdPre(MCInst &Inst, unsigned Opcode,
4066           const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
4067  // Create a writeback register dummy placeholder.
4068  Inst.addOperand(MCOperand::CreateImm(0));
4069  // Rt, Rt2
4070  ((ARMOperand*)Operands[2])->addRegOperands(Inst, 1);
4071  ((ARMOperand*)Operands[3])->addRegOperands(Inst, 1);
4072  // addr
4073  ((ARMOperand*)Operands[4])->addAddrMode3Operands(Inst, 3);
4074  // pred
4075  ((ARMOperand*)Operands[1])->addCondCodeOperands(Inst, 2);
4076  return true;
4077}
4078
4079/// cvtLdWriteBackRegAddrMode3 - Convert parsed operands to MCInst.
4080/// Needed here because the Asm Gen Matcher can't handle properly tied operands
4081/// when they refer multiple MIOperands inside a single one.
4082bool ARMAsmParser::
4083cvtLdWriteBackRegAddrMode3(MCInst &Inst, unsigned Opcode,
4084                         const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
4085  ((ARMOperand*)Operands[2])->addRegOperands(Inst, 1);
4086  // Create a writeback register dummy placeholder.
4087  Inst.addOperand(MCOperand::CreateImm(0));
4088  ((ARMOperand*)Operands[3])->addAddrMode3Operands(Inst, 3);
4089  ((ARMOperand*)Operands[1])->addCondCodeOperands(Inst, 2);
4090  return true;
4091}
4092
4093/// cvtThumbMultiple- Convert parsed operands to MCInst.
4094/// Needed here because the Asm Gen Matcher can't handle properly tied operands
4095/// when they refer multiple MIOperands inside a single one.
4096bool ARMAsmParser::
4097cvtThumbMultiply(MCInst &Inst, unsigned Opcode,
4098           const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
4099  // The second source operand must be the same register as the destination
4100  // operand.
4101  if (Operands.size() == 6 &&
4102      (((ARMOperand*)Operands[3])->getReg() !=
4103       ((ARMOperand*)Operands[5])->getReg()) &&
4104      (((ARMOperand*)Operands[3])->getReg() !=
4105       ((ARMOperand*)Operands[4])->getReg())) {
4106    Error(Operands[3]->getStartLoc(),
4107          "destination register must match source register");
4108    return false;
4109  }
4110  ((ARMOperand*)Operands[3])->addRegOperands(Inst, 1);
4111  ((ARMOperand*)Operands[1])->addCCOutOperands(Inst, 1);
4112  // If we have a three-operand form, make sure to set Rn to be the operand
4113  // that isn't the same as Rd.
4114  unsigned RegOp = 4;
4115  if (Operands.size() == 6 &&
4116      ((ARMOperand*)Operands[4])->getReg() ==
4117        ((ARMOperand*)Operands[3])->getReg())
4118    RegOp = 5;
4119  ((ARMOperand*)Operands[RegOp])->addRegOperands(Inst, 1);
4120  Inst.addOperand(Inst.getOperand(0));
4121  ((ARMOperand*)Operands[2])->addCondCodeOperands(Inst, 2);
4122
4123  return true;
4124}
4125
4126bool ARMAsmParser::
4127cvtVLDwbFixed(MCInst &Inst, unsigned Opcode,
4128              const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
4129  // Vd
4130  ((ARMOperand*)Operands[3])->addVecListOperands(Inst, 1);
4131  // Create a writeback register dummy placeholder.
4132  Inst.addOperand(MCOperand::CreateImm(0));
4133  // Vn
4134  ((ARMOperand*)Operands[4])->addAlignedMemoryOperands(Inst, 2);
4135  // pred
4136  ((ARMOperand*)Operands[1])->addCondCodeOperands(Inst, 2);
4137  return true;
4138}
4139
4140bool ARMAsmParser::
4141cvtVLDwbRegister(MCInst &Inst, unsigned Opcode,
4142                 const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
4143  // Vd
4144  ((ARMOperand*)Operands[3])->addVecListOperands(Inst, 1);
4145  // Create a writeback register dummy placeholder.
4146  Inst.addOperand(MCOperand::CreateImm(0));
4147  // Vn
4148  ((ARMOperand*)Operands[4])->addAlignedMemoryOperands(Inst, 2);
4149  // Vm
4150  ((ARMOperand*)Operands[5])->addRegOperands(Inst, 1);
4151  // pred
4152  ((ARMOperand*)Operands[1])->addCondCodeOperands(Inst, 2);
4153  return true;
4154}
4155
4156bool ARMAsmParser::
4157cvtVSTwbFixed(MCInst &Inst, unsigned Opcode,
4158              const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
4159  // Create a writeback register dummy placeholder.
4160  Inst.addOperand(MCOperand::CreateImm(0));
4161  // Vn
4162  ((ARMOperand*)Operands[4])->addAlignedMemoryOperands(Inst, 2);
4163  // Vt
4164  ((ARMOperand*)Operands[3])->addVecListOperands(Inst, 1);
4165  // pred
4166  ((ARMOperand*)Operands[1])->addCondCodeOperands(Inst, 2);
4167  return true;
4168}
4169
4170bool ARMAsmParser::
4171cvtVSTwbRegister(MCInst &Inst, unsigned Opcode,
4172                 const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
4173  // Create a writeback register dummy placeholder.
4174  Inst.addOperand(MCOperand::CreateImm(0));
4175  // Vn
4176  ((ARMOperand*)Operands[4])->addAlignedMemoryOperands(Inst, 2);
4177  // Vm
4178  ((ARMOperand*)Operands[5])->addRegOperands(Inst, 1);
4179  // Vt
4180  ((ARMOperand*)Operands[3])->addVecListOperands(Inst, 1);
4181  // pred
4182  ((ARMOperand*)Operands[1])->addCondCodeOperands(Inst, 2);
4183  return true;
4184}
4185
4186/// Parse an ARM memory expression, return false if successful else return true
4187/// or an error.  The first token must be a '[' when called.
4188bool ARMAsmParser::
4189parseMemory(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
4190  SMLoc S, E;
4191  assert(Parser.getTok().is(AsmToken::LBrac) &&
4192         "Token is not a Left Bracket");
4193  S = Parser.getTok().getLoc();
4194  Parser.Lex(); // Eat left bracket token.
4195
4196  const AsmToken &BaseRegTok = Parser.getTok();
4197  int BaseRegNum = tryParseRegister();
4198  if (BaseRegNum == -1)
4199    return Error(BaseRegTok.getLoc(), "register expected");
4200
4201  // The next token must either be a comma or a closing bracket.
4202  const AsmToken &Tok = Parser.getTok();
4203  if (!Tok.is(AsmToken::Comma) && !Tok.is(AsmToken::RBrac))
4204    return Error(Tok.getLoc(), "malformed memory operand");
4205
4206  if (Tok.is(AsmToken::RBrac)) {
4207    E = Tok.getLoc();
4208    Parser.Lex(); // Eat right bracket token.
4209
4210    Operands.push_back(ARMOperand::CreateMem(BaseRegNum, 0, 0, ARM_AM::no_shift,
4211                                             0, 0, false, S, E));
4212
4213    // If there's a pre-indexing writeback marker, '!', just add it as a token
4214    // operand. It's rather odd, but syntactically valid.
4215    if (Parser.getTok().is(AsmToken::Exclaim)) {
4216      Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc()));
4217      Parser.Lex(); // Eat the '!'.
4218    }
4219
4220    return false;
4221  }
4222
4223  assert(Tok.is(AsmToken::Comma) && "Lost comma in memory operand?!");
4224  Parser.Lex(); // Eat the comma.
4225
4226  // If we have a ':', it's an alignment specifier.
4227  if (Parser.getTok().is(AsmToken::Colon)) {
4228    Parser.Lex(); // Eat the ':'.
4229    E = Parser.getTok().getLoc();
4230
4231    const MCExpr *Expr;
4232    if (getParser().ParseExpression(Expr))
4233     return true;
4234
4235    // The expression has to be a constant. Memory references with relocations
4236    // don't come through here, as they use the <label> forms of the relevant
4237    // instructions.
4238    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr);
4239    if (!CE)
4240      return Error (E, "constant expression expected");
4241
4242    unsigned Align = 0;
4243    switch (CE->getValue()) {
4244    default:
4245      return Error(E,
4246                   "alignment specifier must be 16, 32, 64, 128, or 256 bits");
4247    case 16:  Align = 2; break;
4248    case 32:  Align = 4; break;
4249    case 64:  Align = 8; break;
4250    case 128: Align = 16; break;
4251    case 256: Align = 32; break;
4252    }
4253
4254    // Now we should have the closing ']'
4255    E = Parser.getTok().getLoc();
4256    if (Parser.getTok().isNot(AsmToken::RBrac))
4257      return Error(E, "']' expected");
4258    Parser.Lex(); // Eat right bracket token.
4259
4260    // Don't worry about range checking the value here. That's handled by
4261    // the is*() predicates.
4262    Operands.push_back(ARMOperand::CreateMem(BaseRegNum, 0, 0,
4263                                             ARM_AM::no_shift, 0, Align,
4264                                             false, S, E));
4265
4266    // If there's a pre-indexing writeback marker, '!', just add it as a token
4267    // operand.
4268    if (Parser.getTok().is(AsmToken::Exclaim)) {
4269      Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc()));
4270      Parser.Lex(); // Eat the '!'.
4271    }
4272
4273    return false;
4274  }
4275
4276  // If we have a '#', it's an immediate offset, else assume it's a register
4277  // offset. Be friendly and also accept a plain integer (without a leading
4278  // hash) for gas compatibility.
4279  if (Parser.getTok().is(AsmToken::Hash) ||
4280      Parser.getTok().is(AsmToken::Dollar) ||
4281      Parser.getTok().is(AsmToken::Integer)) {
4282    if (Parser.getTok().isNot(AsmToken::Integer))
4283      Parser.Lex(); // Eat the '#'.
4284    E = Parser.getTok().getLoc();
4285
4286    bool isNegative = getParser().getTok().is(AsmToken::Minus);
4287    const MCExpr *Offset;
4288    if (getParser().ParseExpression(Offset))
4289     return true;
4290
4291    // The expression has to be a constant. Memory references with relocations
4292    // don't come through here, as they use the <label> forms of the relevant
4293    // instructions.
4294    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Offset);
4295    if (!CE)
4296      return Error (E, "constant expression expected");
4297
4298    // If the constant was #-0, represent it as INT32_MIN.
4299    int32_t Val = CE->getValue();
4300    if (isNegative && Val == 0)
4301      CE = MCConstantExpr::Create(INT32_MIN, getContext());
4302
4303    // Now we should have the closing ']'
4304    E = Parser.getTok().getLoc();
4305    if (Parser.getTok().isNot(AsmToken::RBrac))
4306      return Error(E, "']' expected");
4307    Parser.Lex(); // Eat right bracket token.
4308
4309    // Don't worry about range checking the value here. That's handled by
4310    // the is*() predicates.
4311    Operands.push_back(ARMOperand::CreateMem(BaseRegNum, CE, 0,
4312                                             ARM_AM::no_shift, 0, 0,
4313                                             false, S, E));
4314
4315    // If there's a pre-indexing writeback marker, '!', just add it as a token
4316    // operand.
4317    if (Parser.getTok().is(AsmToken::Exclaim)) {
4318      Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc()));
4319      Parser.Lex(); // Eat the '!'.
4320    }
4321
4322    return false;
4323  }
4324
4325  // The register offset is optionally preceded by a '+' or '-'
4326  bool isNegative = false;
4327  if (Parser.getTok().is(AsmToken::Minus)) {
4328    isNegative = true;
4329    Parser.Lex(); // Eat the '-'.
4330  } else if (Parser.getTok().is(AsmToken::Plus)) {
4331    // Nothing to do.
4332    Parser.Lex(); // Eat the '+'.
4333  }
4334
4335  E = Parser.getTok().getLoc();
4336  int OffsetRegNum = tryParseRegister();
4337  if (OffsetRegNum == -1)
4338    return Error(E, "register expected");
4339
4340  // If there's a shift operator, handle it.
4341  ARM_AM::ShiftOpc ShiftType = ARM_AM::no_shift;
4342  unsigned ShiftImm = 0;
4343  if (Parser.getTok().is(AsmToken::Comma)) {
4344    Parser.Lex(); // Eat the ','.
4345    if (parseMemRegOffsetShift(ShiftType, ShiftImm))
4346      return true;
4347  }
4348
4349  // Now we should have the closing ']'
4350  E = Parser.getTok().getLoc();
4351  if (Parser.getTok().isNot(AsmToken::RBrac))
4352    return Error(E, "']' expected");
4353  Parser.Lex(); // Eat right bracket token.
4354
4355  Operands.push_back(ARMOperand::CreateMem(BaseRegNum, 0, OffsetRegNum,
4356                                           ShiftType, ShiftImm, 0, isNegative,
4357                                           S, E));
4358
4359  // If there's a pre-indexing writeback marker, '!', just add it as a token
4360  // operand.
4361  if (Parser.getTok().is(AsmToken::Exclaim)) {
4362    Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc()));
4363    Parser.Lex(); // Eat the '!'.
4364  }
4365
4366  return false;
4367}
4368
4369/// parseMemRegOffsetShift - one of these two:
4370///   ( lsl | lsr | asr | ror ) , # shift_amount
4371///   rrx
4372/// return true if it parses a shift otherwise it returns false.
4373bool ARMAsmParser::parseMemRegOffsetShift(ARM_AM::ShiftOpc &St,
4374                                          unsigned &Amount) {
4375  SMLoc Loc = Parser.getTok().getLoc();
4376  const AsmToken &Tok = Parser.getTok();
4377  if (Tok.isNot(AsmToken::Identifier))
4378    return true;
4379  StringRef ShiftName = Tok.getString();
4380  if (ShiftName == "lsl" || ShiftName == "LSL" ||
4381      ShiftName == "asl" || ShiftName == "ASL")
4382    St = ARM_AM::lsl;
4383  else if (ShiftName == "lsr" || ShiftName == "LSR")
4384    St = ARM_AM::lsr;
4385  else if (ShiftName == "asr" || ShiftName == "ASR")
4386    St = ARM_AM::asr;
4387  else if (ShiftName == "ror" || ShiftName == "ROR")
4388    St = ARM_AM::ror;
4389  else if (ShiftName == "rrx" || ShiftName == "RRX")
4390    St = ARM_AM::rrx;
4391  else
4392    return Error(Loc, "illegal shift operator");
4393  Parser.Lex(); // Eat shift type token.
4394
4395  // rrx stands alone.
4396  Amount = 0;
4397  if (St != ARM_AM::rrx) {
4398    Loc = Parser.getTok().getLoc();
4399    // A '#' and a shift amount.
4400    const AsmToken &HashTok = Parser.getTok();
4401    if (HashTok.isNot(AsmToken::Hash) &&
4402        HashTok.isNot(AsmToken::Dollar))
4403      return Error(HashTok.getLoc(), "'#' expected");
4404    Parser.Lex(); // Eat hash token.
4405
4406    const MCExpr *Expr;
4407    if (getParser().ParseExpression(Expr))
4408      return true;
4409    // Range check the immediate.
4410    // lsl, ror: 0 <= imm <= 31
4411    // lsr, asr: 0 <= imm <= 32
4412    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr);
4413    if (!CE)
4414      return Error(Loc, "shift amount must be an immediate");
4415    int64_t Imm = CE->getValue();
4416    if (Imm < 0 ||
4417        ((St == ARM_AM::lsl || St == ARM_AM::ror) && Imm > 31) ||
4418        ((St == ARM_AM::lsr || St == ARM_AM::asr) && Imm > 32))
4419      return Error(Loc, "immediate shift value out of range");
4420    Amount = Imm;
4421  }
4422
4423  return false;
4424}
4425
4426/// parseFPImm - A floating point immediate expression operand.
4427ARMAsmParser::OperandMatchResultTy ARMAsmParser::
4428parseFPImm(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
4429  // Anything that can accept a floating point constant as an operand
4430  // needs to go through here, as the regular ParseExpression is
4431  // integer only.
4432  //
4433  // This routine still creates a generic Immediate operand, containing
4434  // a bitcast of the 64-bit floating point value. The various operands
4435  // that accept floats can check whether the value is valid for them
4436  // via the standard is*() predicates.
4437
4438  SMLoc S = Parser.getTok().getLoc();
4439
4440  if (Parser.getTok().isNot(AsmToken::Hash) &&
4441      Parser.getTok().isNot(AsmToken::Dollar))
4442    return MatchOperand_NoMatch;
4443
4444  // Disambiguate the VMOV forms that can accept an FP immediate.
4445  // vmov.f32 <sreg>, #imm
4446  // vmov.f64 <dreg>, #imm
4447  // vmov.f32 <dreg>, #imm  @ vector f32x2
4448  // vmov.f32 <qreg>, #imm  @ vector f32x4
4449  //
4450  // There are also the NEON VMOV instructions which expect an
4451  // integer constant. Make sure we don't try to parse an FPImm
4452  // for these:
4453  // vmov.i{8|16|32|64} <dreg|qreg>, #imm
4454  ARMOperand *TyOp = static_cast<ARMOperand*>(Operands[2]);
4455  if (!TyOp->isToken() || (TyOp->getToken() != ".f32" &&
4456                           TyOp->getToken() != ".f64"))
4457    return MatchOperand_NoMatch;
4458
4459  Parser.Lex(); // Eat the '#'.
4460
4461  // Handle negation, as that still comes through as a separate token.
4462  bool isNegative = false;
4463  if (Parser.getTok().is(AsmToken::Minus)) {
4464    isNegative = true;
4465    Parser.Lex();
4466  }
4467  const AsmToken &Tok = Parser.getTok();
4468  SMLoc Loc = Tok.getLoc();
4469  if (Tok.is(AsmToken::Real)) {
4470    APFloat RealVal(APFloat::IEEEsingle, Tok.getString());
4471    uint64_t IntVal = RealVal.bitcastToAPInt().getZExtValue();
4472    // If we had a '-' in front, toggle the sign bit.
4473    IntVal ^= (uint64_t)isNegative << 31;
4474    Parser.Lex(); // Eat the token.
4475    Operands.push_back(ARMOperand::CreateImm(
4476          MCConstantExpr::Create(IntVal, getContext()),
4477          S, Parser.getTok().getLoc()));
4478    return MatchOperand_Success;
4479  }
4480  // Also handle plain integers. Instructions which allow floating point
4481  // immediates also allow a raw encoded 8-bit value.
4482  if (Tok.is(AsmToken::Integer)) {
4483    int64_t Val = Tok.getIntVal();
4484    Parser.Lex(); // Eat the token.
4485    if (Val > 255 || Val < 0) {
4486      Error(Loc, "encoded floating point value out of range");
4487      return MatchOperand_ParseFail;
4488    }
4489    double RealVal = ARM_AM::getFPImmFloat(Val);
4490    Val = APFloat(APFloat::IEEEdouble, RealVal).bitcastToAPInt().getZExtValue();
4491    Operands.push_back(ARMOperand::CreateImm(
4492        MCConstantExpr::Create(Val, getContext()), S,
4493        Parser.getTok().getLoc()));
4494    return MatchOperand_Success;
4495  }
4496
4497  Error(Loc, "invalid floating point immediate");
4498  return MatchOperand_ParseFail;
4499}
4500
4501/// Parse a arm instruction operand.  For now this parses the operand regardless
4502/// of the mnemonic.
4503bool ARMAsmParser::parseOperand(SmallVectorImpl<MCParsedAsmOperand*> &Operands,
4504                                StringRef Mnemonic) {
4505  SMLoc S, E;
4506
4507  // Check if the current operand has a custom associated parser, if so, try to
4508  // custom parse the operand, or fallback to the general approach.
4509  OperandMatchResultTy ResTy = MatchOperandParserImpl(Operands, Mnemonic);
4510  if (ResTy == MatchOperand_Success)
4511    return false;
4512  // If there wasn't a custom match, try the generic matcher below. Otherwise,
4513  // there was a match, but an error occurred, in which case, just return that
4514  // the operand parsing failed.
4515  if (ResTy == MatchOperand_ParseFail)
4516    return true;
4517
4518  switch (getLexer().getKind()) {
4519  default:
4520    Error(Parser.getTok().getLoc(), "unexpected token in operand");
4521    return true;
4522  case AsmToken::Identifier: {
4523    if (!tryParseRegisterWithWriteBack(Operands))
4524      return false;
4525    int Res = tryParseShiftRegister(Operands);
4526    if (Res == 0) // success
4527      return false;
4528    else if (Res == -1) // irrecoverable error
4529      return true;
4530    // If this is VMRS, check for the apsr_nzcv operand.
4531    if (Mnemonic == "vmrs" &&
4532        Parser.getTok().getString().equals_lower("apsr_nzcv")) {
4533      S = Parser.getTok().getLoc();
4534      Parser.Lex();
4535      Operands.push_back(ARMOperand::CreateToken("APSR_nzcv", S));
4536      return false;
4537    }
4538
4539    // Fall though for the Identifier case that is not a register or a
4540    // special name.
4541  }
4542  case AsmToken::LParen:  // parenthesized expressions like (_strcmp-4)
4543  case AsmToken::Integer: // things like 1f and 2b as a branch targets
4544  case AsmToken::String:  // quoted label names.
4545  case AsmToken::Dot: {   // . as a branch target
4546    // This was not a register so parse other operands that start with an
4547    // identifier (like labels) as expressions and create them as immediates.
4548    const MCExpr *IdVal;
4549    S = Parser.getTok().getLoc();
4550    if (getParser().ParseExpression(IdVal))
4551      return true;
4552    E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
4553    Operands.push_back(ARMOperand::CreateImm(IdVal, S, E));
4554    return false;
4555  }
4556  case AsmToken::LBrac:
4557    return parseMemory(Operands);
4558  case AsmToken::LCurly:
4559    return parseRegisterList(Operands);
4560  case AsmToken::Dollar:
4561  case AsmToken::Hash: {
4562    // #42 -> immediate.
4563    S = Parser.getTok().getLoc();
4564    Parser.Lex();
4565
4566    if (Parser.getTok().isNot(AsmToken::Colon)) {
4567      bool isNegative = Parser.getTok().is(AsmToken::Minus);
4568      const MCExpr *ImmVal;
4569      if (getParser().ParseExpression(ImmVal))
4570        return true;
4571      const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ImmVal);
4572      if (CE) {
4573        int32_t Val = CE->getValue();
4574        if (isNegative && Val == 0)
4575          ImmVal = MCConstantExpr::Create(INT32_MIN, getContext());
4576      }
4577      E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
4578      Operands.push_back(ARMOperand::CreateImm(ImmVal, S, E));
4579      return false;
4580    }
4581    // w/ a ':' after the '#', it's just like a plain ':'.
4582    // FALLTHROUGH
4583  }
4584  case AsmToken::Colon: {
4585    // ":lower16:" and ":upper16:" expression prefixes
4586    // FIXME: Check it's an expression prefix,
4587    // e.g. (FOO - :lower16:BAR) isn't legal.
4588    ARMMCExpr::VariantKind RefKind;
4589    if (parsePrefix(RefKind))
4590      return true;
4591
4592    const MCExpr *SubExprVal;
4593    if (getParser().ParseExpression(SubExprVal))
4594      return true;
4595
4596    const MCExpr *ExprVal = ARMMCExpr::Create(RefKind, SubExprVal,
4597                                                   getContext());
4598    E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
4599    Operands.push_back(ARMOperand::CreateImm(ExprVal, S, E));
4600    return false;
4601  }
4602  }
4603}
4604
4605// parsePrefix - Parse ARM 16-bit relocations expression prefix, i.e.
4606//  :lower16: and :upper16:.
4607bool ARMAsmParser::parsePrefix(ARMMCExpr::VariantKind &RefKind) {
4608  RefKind = ARMMCExpr::VK_ARM_None;
4609
4610  // :lower16: and :upper16: modifiers
4611  assert(getLexer().is(AsmToken::Colon) && "expected a :");
4612  Parser.Lex(); // Eat ':'
4613
4614  if (getLexer().isNot(AsmToken::Identifier)) {
4615    Error(Parser.getTok().getLoc(), "expected prefix identifier in operand");
4616    return true;
4617  }
4618
4619  StringRef IDVal = Parser.getTok().getIdentifier();
4620  if (IDVal == "lower16") {
4621    RefKind = ARMMCExpr::VK_ARM_LO16;
4622  } else if (IDVal == "upper16") {
4623    RefKind = ARMMCExpr::VK_ARM_HI16;
4624  } else {
4625    Error(Parser.getTok().getLoc(), "unexpected prefix in operand");
4626    return true;
4627  }
4628  Parser.Lex();
4629
4630  if (getLexer().isNot(AsmToken::Colon)) {
4631    Error(Parser.getTok().getLoc(), "unexpected token after prefix");
4632    return true;
4633  }
4634  Parser.Lex(); // Eat the last ':'
4635  return false;
4636}
4637
4638/// \brief Given a mnemonic, split out possible predication code and carry
4639/// setting letters to form a canonical mnemonic and flags.
4640//
4641// FIXME: Would be nice to autogen this.
4642// FIXME: This is a bit of a maze of special cases.
4643StringRef ARMAsmParser::splitMnemonic(StringRef Mnemonic,
4644                                      unsigned &PredicationCode,
4645                                      bool &CarrySetting,
4646                                      unsigned &ProcessorIMod,
4647                                      StringRef &ITMask) {
4648  PredicationCode = ARMCC::AL;
4649  CarrySetting = false;
4650  ProcessorIMod = 0;
4651
4652  // Ignore some mnemonics we know aren't predicated forms.
4653  //
4654  // FIXME: Would be nice to autogen this.
4655  if ((Mnemonic == "movs" && isThumb()) ||
4656      Mnemonic == "teq"   || Mnemonic == "vceq"   || Mnemonic == "svc"   ||
4657      Mnemonic == "mls"   || Mnemonic == "smmls"  || Mnemonic == "vcls"  ||
4658      Mnemonic == "vmls"  || Mnemonic == "vnmls"  || Mnemonic == "vacge" ||
4659      Mnemonic == "vcge"  || Mnemonic == "vclt"   || Mnemonic == "vacgt" ||
4660      Mnemonic == "vcgt"  || Mnemonic == "vcle"   || Mnemonic == "smlal" ||
4661      Mnemonic == "umaal" || Mnemonic == "umlal"  || Mnemonic == "vabal" ||
4662      Mnemonic == "vmlal" || Mnemonic == "vpadal" || Mnemonic == "vqdmlal" ||
4663      Mnemonic == "fmuls")
4664    return Mnemonic;
4665
4666  // First, split out any predication code. Ignore mnemonics we know aren't
4667  // predicated but do have a carry-set and so weren't caught above.
4668  if (Mnemonic != "adcs" && Mnemonic != "bics" && Mnemonic != "movs" &&
4669      Mnemonic != "muls" && Mnemonic != "smlals" && Mnemonic != "smulls" &&
4670      Mnemonic != "umlals" && Mnemonic != "umulls" && Mnemonic != "lsls" &&
4671      Mnemonic != "sbcs" && Mnemonic != "rscs") {
4672    unsigned CC = StringSwitch<unsigned>(Mnemonic.substr(Mnemonic.size()-2))
4673      .Case("eq", ARMCC::EQ)
4674      .Case("ne", ARMCC::NE)
4675      .Case("hs", ARMCC::HS)
4676      .Case("cs", ARMCC::HS)
4677      .Case("lo", ARMCC::LO)
4678      .Case("cc", ARMCC::LO)
4679      .Case("mi", ARMCC::MI)
4680      .Case("pl", ARMCC::PL)
4681      .Case("vs", ARMCC::VS)
4682      .Case("vc", ARMCC::VC)
4683      .Case("hi", ARMCC::HI)
4684      .Case("ls", ARMCC::LS)
4685      .Case("ge", ARMCC::GE)
4686      .Case("lt", ARMCC::LT)
4687      .Case("gt", ARMCC::GT)
4688      .Case("le", ARMCC::LE)
4689      .Case("al", ARMCC::AL)
4690      .Default(~0U);
4691    if (CC != ~0U) {
4692      Mnemonic = Mnemonic.slice(0, Mnemonic.size() - 2);
4693      PredicationCode = CC;
4694    }
4695  }
4696
4697  // Next, determine if we have a carry setting bit. We explicitly ignore all
4698  // the instructions we know end in 's'.
4699  if (Mnemonic.endswith("s") &&
4700      !(Mnemonic == "cps" || Mnemonic == "mls" ||
4701        Mnemonic == "mrs" || Mnemonic == "smmls" || Mnemonic == "vabs" ||
4702        Mnemonic == "vcls" || Mnemonic == "vmls" || Mnemonic == "vmrs" ||
4703        Mnemonic == "vnmls" || Mnemonic == "vqabs" || Mnemonic == "vrecps" ||
4704        Mnemonic == "vrsqrts" || Mnemonic == "srs" || Mnemonic == "flds" ||
4705        Mnemonic == "fmrs" || Mnemonic == "fsqrts" || Mnemonic == "fsubs" ||
4706        Mnemonic == "fsts" || Mnemonic == "fcpys" || Mnemonic == "fdivs" ||
4707        Mnemonic == "fmuls" || Mnemonic == "fcmps" || Mnemonic == "fcmpzs" ||
4708        Mnemonic == "vfms" || Mnemonic == "vfnms" ||
4709        (Mnemonic == "movs" && isThumb()))) {
4710    Mnemonic = Mnemonic.slice(0, Mnemonic.size() - 1);
4711    CarrySetting = true;
4712  }
4713
4714  // The "cps" instruction can have a interrupt mode operand which is glued into
4715  // the mnemonic. Check if this is the case, split it and parse the imod op
4716  if (Mnemonic.startswith("cps")) {
4717    // Split out any imod code.
4718    unsigned IMod =
4719      StringSwitch<unsigned>(Mnemonic.substr(Mnemonic.size()-2, 2))
4720      .Case("ie", ARM_PROC::IE)
4721      .Case("id", ARM_PROC::ID)
4722      .Default(~0U);
4723    if (IMod != ~0U) {
4724      Mnemonic = Mnemonic.slice(0, Mnemonic.size()-2);
4725      ProcessorIMod = IMod;
4726    }
4727  }
4728
4729  // The "it" instruction has the condition mask on the end of the mnemonic.
4730  if (Mnemonic.startswith("it")) {
4731    ITMask = Mnemonic.slice(2, Mnemonic.size());
4732    Mnemonic = Mnemonic.slice(0, 2);
4733  }
4734
4735  return Mnemonic;
4736}
4737
4738/// \brief Given a canonical mnemonic, determine if the instruction ever allows
4739/// inclusion of carry set or predication code operands.
4740//
4741// FIXME: It would be nice to autogen this.
4742void ARMAsmParser::
4743getMnemonicAcceptInfo(StringRef Mnemonic, bool &CanAcceptCarrySet,
4744                      bool &CanAcceptPredicationCode) {
4745  if (Mnemonic == "and" || Mnemonic == "lsl" || Mnemonic == "lsr" ||
4746      Mnemonic == "rrx" || Mnemonic == "ror" || Mnemonic == "sub" ||
4747      Mnemonic == "add" || Mnemonic == "adc" ||
4748      Mnemonic == "mul" || Mnemonic == "bic" || Mnemonic == "asr" ||
4749      Mnemonic == "orr" || Mnemonic == "mvn" ||
4750      Mnemonic == "rsb" || Mnemonic == "rsc" || Mnemonic == "orn" ||
4751      Mnemonic == "sbc" || Mnemonic == "eor" || Mnemonic == "neg" ||
4752      Mnemonic == "vfm" || Mnemonic == "vfnm" ||
4753      (!isThumb() && (Mnemonic == "smull" || Mnemonic == "mov" ||
4754                      Mnemonic == "mla" || Mnemonic == "smlal" ||
4755                      Mnemonic == "umlal" || Mnemonic == "umull"))) {
4756    CanAcceptCarrySet = true;
4757  } else
4758    CanAcceptCarrySet = false;
4759
4760  if (Mnemonic == "cbnz" || Mnemonic == "setend" || Mnemonic == "dmb" ||
4761      Mnemonic == "cps" || Mnemonic == "mcr2" || Mnemonic == "it" ||
4762      Mnemonic == "mcrr2" || Mnemonic == "cbz" || Mnemonic == "cdp2" ||
4763      Mnemonic == "trap" || Mnemonic == "mrc2" || Mnemonic == "mrrc2" ||
4764      Mnemonic == "dsb" || Mnemonic == "isb" || Mnemonic == "setend" ||
4765      (Mnemonic == "clrex" && !isThumb()) ||
4766      (Mnemonic == "nop" && isThumbOne()) ||
4767      ((Mnemonic == "pld" || Mnemonic == "pli" || Mnemonic == "pldw" ||
4768        Mnemonic == "ldc2" || Mnemonic == "ldc2l" ||
4769        Mnemonic == "stc2" || Mnemonic == "stc2l") && !isThumb()) ||
4770      ((Mnemonic.startswith("rfe") || Mnemonic.startswith("srs")) &&
4771       !isThumb()) ||
4772      Mnemonic.startswith("cps") || (Mnemonic == "movs" && isThumbOne())) {
4773    CanAcceptPredicationCode = false;
4774  } else
4775    CanAcceptPredicationCode = true;
4776
4777  if (isThumb()) {
4778    if (Mnemonic == "bkpt" || Mnemonic == "mcr" || Mnemonic == "mcrr" ||
4779        Mnemonic == "mrc" || Mnemonic == "mrrc" || Mnemonic == "cdp")
4780      CanAcceptPredicationCode = false;
4781  }
4782}
4783
4784bool ARMAsmParser::shouldOmitCCOutOperand(StringRef Mnemonic,
4785                               SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
4786  // FIXME: This is all horribly hacky. We really need a better way to deal
4787  // with optional operands like this in the matcher table.
4788
4789  // The 'mov' mnemonic is special. One variant has a cc_out operand, while
4790  // another does not. Specifically, the MOVW instruction does not. So we
4791  // special case it here and remove the defaulted (non-setting) cc_out
4792  // operand if that's the instruction we're trying to match.
4793  //
4794  // We do this as post-processing of the explicit operands rather than just
4795  // conditionally adding the cc_out in the first place because we need
4796  // to check the type of the parsed immediate operand.
4797  if (Mnemonic == "mov" && Operands.size() > 4 && !isThumb() &&
4798      !static_cast<ARMOperand*>(Operands[4])->isARMSOImm() &&
4799      static_cast<ARMOperand*>(Operands[4])->isImm0_65535Expr() &&
4800      static_cast<ARMOperand*>(Operands[1])->getReg() == 0)
4801    return true;
4802
4803  // Register-register 'add' for thumb does not have a cc_out operand
4804  // when there are only two register operands.
4805  if (isThumb() && Mnemonic == "add" && Operands.size() == 5 &&
4806      static_cast<ARMOperand*>(Operands[3])->isReg() &&
4807      static_cast<ARMOperand*>(Operands[4])->isReg() &&
4808      static_cast<ARMOperand*>(Operands[1])->getReg() == 0)
4809    return true;
4810  // Register-register 'add' for thumb does not have a cc_out operand
4811  // when it's an ADD Rdm, SP, {Rdm|#imm0_255} instruction. We do
4812  // have to check the immediate range here since Thumb2 has a variant
4813  // that can handle a different range and has a cc_out operand.
4814  if (((isThumb() && Mnemonic == "add") ||
4815       (isThumbTwo() && Mnemonic == "sub")) &&
4816      Operands.size() == 6 &&
4817      static_cast<ARMOperand*>(Operands[3])->isReg() &&
4818      static_cast<ARMOperand*>(Operands[4])->isReg() &&
4819      static_cast<ARMOperand*>(Operands[4])->getReg() == ARM::SP &&
4820      static_cast<ARMOperand*>(Operands[1])->getReg() == 0 &&
4821      ((Mnemonic == "add" &&static_cast<ARMOperand*>(Operands[5])->isReg()) ||
4822       static_cast<ARMOperand*>(Operands[5])->isImm0_1020s4()))
4823    return true;
4824  // For Thumb2, add/sub immediate does not have a cc_out operand for the
4825  // imm0_4095 variant. That's the least-preferred variant when
4826  // selecting via the generic "add" mnemonic, so to know that we
4827  // should remove the cc_out operand, we have to explicitly check that
4828  // it's not one of the other variants. Ugh.
4829  if (isThumbTwo() && (Mnemonic == "add" || Mnemonic == "sub") &&
4830      Operands.size() == 6 &&
4831      static_cast<ARMOperand*>(Operands[3])->isReg() &&
4832      static_cast<ARMOperand*>(Operands[4])->isReg() &&
4833      static_cast<ARMOperand*>(Operands[5])->isImm()) {
4834    // Nest conditions rather than one big 'if' statement for readability.
4835    //
4836    // If either register is a high reg, it's either one of the SP
4837    // variants (handled above) or a 32-bit encoding, so we just
4838    // check against T3. If the second register is the PC, this is an
4839    // alternate form of ADR, which uses encoding T4, so check for that too.
4840    if ((!isARMLowRegister(static_cast<ARMOperand*>(Operands[3])->getReg()) ||
4841         !isARMLowRegister(static_cast<ARMOperand*>(Operands[4])->getReg())) &&
4842        static_cast<ARMOperand*>(Operands[4])->getReg() != ARM::PC &&
4843        static_cast<ARMOperand*>(Operands[5])->isT2SOImm())
4844      return false;
4845    // If both registers are low, we're in an IT block, and the immediate is
4846    // in range, we should use encoding T1 instead, which has a cc_out.
4847    if (inITBlock() &&
4848        isARMLowRegister(static_cast<ARMOperand*>(Operands[3])->getReg()) &&
4849        isARMLowRegister(static_cast<ARMOperand*>(Operands[4])->getReg()) &&
4850        static_cast<ARMOperand*>(Operands[5])->isImm0_7())
4851      return false;
4852
4853    // Otherwise, we use encoding T4, which does not have a cc_out
4854    // operand.
4855    return true;
4856  }
4857
4858  // The thumb2 multiply instruction doesn't have a CCOut register, so
4859  // if we have a "mul" mnemonic in Thumb mode, check if we'll be able to
4860  // use the 16-bit encoding or not.
4861  if (isThumbTwo() && Mnemonic == "mul" && Operands.size() == 6 &&
4862      static_cast<ARMOperand*>(Operands[1])->getReg() == 0 &&
4863      static_cast<ARMOperand*>(Operands[3])->isReg() &&
4864      static_cast<ARMOperand*>(Operands[4])->isReg() &&
4865      static_cast<ARMOperand*>(Operands[5])->isReg() &&
4866      // If the registers aren't low regs, the destination reg isn't the
4867      // same as one of the source regs, or the cc_out operand is zero
4868      // outside of an IT block, we have to use the 32-bit encoding, so
4869      // remove the cc_out operand.
4870      (!isARMLowRegister(static_cast<ARMOperand*>(Operands[3])->getReg()) ||
4871       !isARMLowRegister(static_cast<ARMOperand*>(Operands[4])->getReg()) ||
4872       !isARMLowRegister(static_cast<ARMOperand*>(Operands[5])->getReg()) ||
4873       !inITBlock() ||
4874       (static_cast<ARMOperand*>(Operands[3])->getReg() !=
4875        static_cast<ARMOperand*>(Operands[5])->getReg() &&
4876        static_cast<ARMOperand*>(Operands[3])->getReg() !=
4877        static_cast<ARMOperand*>(Operands[4])->getReg())))
4878    return true;
4879
4880  // Also check the 'mul' syntax variant that doesn't specify an explicit
4881  // destination register.
4882  if (isThumbTwo() && Mnemonic == "mul" && Operands.size() == 5 &&
4883      static_cast<ARMOperand*>(Operands[1])->getReg() == 0 &&
4884      static_cast<ARMOperand*>(Operands[3])->isReg() &&
4885      static_cast<ARMOperand*>(Operands[4])->isReg() &&
4886      // If the registers aren't low regs  or the cc_out operand is zero
4887      // outside of an IT block, we have to use the 32-bit encoding, so
4888      // remove the cc_out operand.
4889      (!isARMLowRegister(static_cast<ARMOperand*>(Operands[3])->getReg()) ||
4890       !isARMLowRegister(static_cast<ARMOperand*>(Operands[4])->getReg()) ||
4891       !inITBlock()))
4892    return true;
4893
4894
4895
4896  // Register-register 'add/sub' for thumb does not have a cc_out operand
4897  // when it's an ADD/SUB SP, #imm. Be lenient on count since there's also
4898  // the "add/sub SP, SP, #imm" version. If the follow-up operands aren't
4899  // right, this will result in better diagnostics (which operand is off)
4900  // anyway.
4901  if (isThumb() && (Mnemonic == "add" || Mnemonic == "sub") &&
4902      (Operands.size() == 5 || Operands.size() == 6) &&
4903      static_cast<ARMOperand*>(Operands[3])->isReg() &&
4904      static_cast<ARMOperand*>(Operands[3])->getReg() == ARM::SP &&
4905      static_cast<ARMOperand*>(Operands[1])->getReg() == 0 &&
4906      (static_cast<ARMOperand*>(Operands[4])->isImm() ||
4907       (Operands.size() == 6 &&
4908        static_cast<ARMOperand*>(Operands[5])->isImm())))
4909    return true;
4910
4911  return false;
4912}
4913
4914static bool isDataTypeToken(StringRef Tok) {
4915  return Tok == ".8" || Tok == ".16" || Tok == ".32" || Tok == ".64" ||
4916    Tok == ".i8" || Tok == ".i16" || Tok == ".i32" || Tok == ".i64" ||
4917    Tok == ".u8" || Tok == ".u16" || Tok == ".u32" || Tok == ".u64" ||
4918    Tok == ".s8" || Tok == ".s16" || Tok == ".s32" || Tok == ".s64" ||
4919    Tok == ".p8" || Tok == ".p16" || Tok == ".f32" || Tok == ".f64" ||
4920    Tok == ".f" || Tok == ".d";
4921}
4922
4923// FIXME: This bit should probably be handled via an explicit match class
4924// in the .td files that matches the suffix instead of having it be
4925// a literal string token the way it is now.
4926static bool doesIgnoreDataTypeSuffix(StringRef Mnemonic, StringRef DT) {
4927  return Mnemonic.startswith("vldm") || Mnemonic.startswith("vstm");
4928}
4929
4930static void applyMnemonicAliases(StringRef &Mnemonic, unsigned Features);
4931/// Parse an arm instruction mnemonic followed by its operands.
4932bool ARMAsmParser::ParseInstruction(StringRef Name, SMLoc NameLoc,
4933                               SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
4934  // Apply mnemonic aliases before doing anything else, as the destination
4935  // mnemnonic may include suffices and we want to handle them normally.
4936  // The generic tblgen'erated code does this later, at the start of
4937  // MatchInstructionImpl(), but that's too late for aliases that include
4938  // any sort of suffix.
4939  unsigned AvailableFeatures = getAvailableFeatures();
4940  applyMnemonicAliases(Name, AvailableFeatures);
4941
4942  // First check for the ARM-specific .req directive.
4943  if (Parser.getTok().is(AsmToken::Identifier) &&
4944      Parser.getTok().getIdentifier() == ".req") {
4945    parseDirectiveReq(Name, NameLoc);
4946    // We always return 'error' for this, as we're done with this
4947    // statement and don't need to match the 'instruction."
4948    return true;
4949  }
4950
4951  // Create the leading tokens for the mnemonic, split by '.' characters.
4952  size_t Start = 0, Next = Name.find('.');
4953  StringRef Mnemonic = Name.slice(Start, Next);
4954
4955  // Split out the predication code and carry setting flag from the mnemonic.
4956  unsigned PredicationCode;
4957  unsigned ProcessorIMod;
4958  bool CarrySetting;
4959  StringRef ITMask;
4960  Mnemonic = splitMnemonic(Mnemonic, PredicationCode, CarrySetting,
4961                           ProcessorIMod, ITMask);
4962
4963  // In Thumb1, only the branch (B) instruction can be predicated.
4964  if (isThumbOne() && PredicationCode != ARMCC::AL && Mnemonic != "b") {
4965    Parser.EatToEndOfStatement();
4966    return Error(NameLoc, "conditional execution not supported in Thumb1");
4967  }
4968
4969  Operands.push_back(ARMOperand::CreateToken(Mnemonic, NameLoc));
4970
4971  // Handle the IT instruction ITMask. Convert it to a bitmask. This
4972  // is the mask as it will be for the IT encoding if the conditional
4973  // encoding has a '1' as it's bit0 (i.e. 't' ==> '1'). In the case
4974  // where the conditional bit0 is zero, the instruction post-processing
4975  // will adjust the mask accordingly.
4976  if (Mnemonic == "it") {
4977    SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + 2);
4978    if (ITMask.size() > 3) {
4979      Parser.EatToEndOfStatement();
4980      return Error(Loc, "too many conditions on IT instruction");
4981    }
4982    unsigned Mask = 8;
4983    for (unsigned i = ITMask.size(); i != 0; --i) {
4984      char pos = ITMask[i - 1];
4985      if (pos != 't' && pos != 'e') {
4986        Parser.EatToEndOfStatement();
4987        return Error(Loc, "illegal IT block condition mask '" + ITMask + "'");
4988      }
4989      Mask >>= 1;
4990      if (ITMask[i - 1] == 't')
4991        Mask |= 8;
4992    }
4993    Operands.push_back(ARMOperand::CreateITMask(Mask, Loc));
4994  }
4995
4996  // FIXME: This is all a pretty gross hack. We should automatically handle
4997  // optional operands like this via tblgen.
4998
4999  // Next, add the CCOut and ConditionCode operands, if needed.
5000  //
5001  // For mnemonics which can ever incorporate a carry setting bit or predication
5002  // code, our matching model involves us always generating CCOut and
5003  // ConditionCode operands to match the mnemonic "as written" and then we let
5004  // the matcher deal with finding the right instruction or generating an
5005  // appropriate error.
5006  bool CanAcceptCarrySet, CanAcceptPredicationCode;
5007  getMnemonicAcceptInfo(Mnemonic, CanAcceptCarrySet, CanAcceptPredicationCode);
5008
5009  // If we had a carry-set on an instruction that can't do that, issue an
5010  // error.
5011  if (!CanAcceptCarrySet && CarrySetting) {
5012    Parser.EatToEndOfStatement();
5013    return Error(NameLoc, "instruction '" + Mnemonic +
5014                 "' can not set flags, but 's' suffix specified");
5015  }
5016  // If we had a predication code on an instruction that can't do that, issue an
5017  // error.
5018  if (!CanAcceptPredicationCode && PredicationCode != ARMCC::AL) {
5019    Parser.EatToEndOfStatement();
5020    return Error(NameLoc, "instruction '" + Mnemonic +
5021                 "' is not predicable, but condition code specified");
5022  }
5023
5024  // Add the carry setting operand, if necessary.
5025  if (CanAcceptCarrySet) {
5026    SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Mnemonic.size());
5027    Operands.push_back(ARMOperand::CreateCCOut(CarrySetting ? ARM::CPSR : 0,
5028                                               Loc));
5029  }
5030
5031  // Add the predication code operand, if necessary.
5032  if (CanAcceptPredicationCode) {
5033    SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Mnemonic.size() +
5034                                      CarrySetting);
5035    Operands.push_back(ARMOperand::CreateCondCode(
5036                         ARMCC::CondCodes(PredicationCode), Loc));
5037  }
5038
5039  // Add the processor imod operand, if necessary.
5040  if (ProcessorIMod) {
5041    Operands.push_back(ARMOperand::CreateImm(
5042          MCConstantExpr::Create(ProcessorIMod, getContext()),
5043                                 NameLoc, NameLoc));
5044  }
5045
5046  // Add the remaining tokens in the mnemonic.
5047  while (Next != StringRef::npos) {
5048    Start = Next;
5049    Next = Name.find('.', Start + 1);
5050    StringRef ExtraToken = Name.slice(Start, Next);
5051
5052    // Some NEON instructions have an optional datatype suffix that is
5053    // completely ignored. Check for that.
5054    if (isDataTypeToken(ExtraToken) &&
5055        doesIgnoreDataTypeSuffix(Mnemonic, ExtraToken))
5056      continue;
5057
5058    if (ExtraToken != ".n") {
5059      SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Start);
5060      Operands.push_back(ARMOperand::CreateToken(ExtraToken, Loc));
5061    }
5062  }
5063
5064  // Read the remaining operands.
5065  if (getLexer().isNot(AsmToken::EndOfStatement)) {
5066    // Read the first operand.
5067    if (parseOperand(Operands, Mnemonic)) {
5068      Parser.EatToEndOfStatement();
5069      return true;
5070    }
5071
5072    while (getLexer().is(AsmToken::Comma)) {
5073      Parser.Lex();  // Eat the comma.
5074
5075      // Parse and remember the operand.
5076      if (parseOperand(Operands, Mnemonic)) {
5077        Parser.EatToEndOfStatement();
5078        return true;
5079      }
5080    }
5081  }
5082
5083  if (getLexer().isNot(AsmToken::EndOfStatement)) {
5084    SMLoc Loc = getLexer().getLoc();
5085    Parser.EatToEndOfStatement();
5086    return Error(Loc, "unexpected token in argument list");
5087  }
5088
5089  Parser.Lex(); // Consume the EndOfStatement
5090
5091  // Some instructions, mostly Thumb, have forms for the same mnemonic that
5092  // do and don't have a cc_out optional-def operand. With some spot-checks
5093  // of the operand list, we can figure out which variant we're trying to
5094  // parse and adjust accordingly before actually matching. We shouldn't ever
5095  // try to remove a cc_out operand that was explicitly set on the the
5096  // mnemonic, of course (CarrySetting == true). Reason number #317 the
5097  // table driven matcher doesn't fit well with the ARM instruction set.
5098  if (!CarrySetting && shouldOmitCCOutOperand(Mnemonic, Operands)) {
5099    ARMOperand *Op = static_cast<ARMOperand*>(Operands[1]);
5100    Operands.erase(Operands.begin() + 1);
5101    delete Op;
5102  }
5103
5104  // ARM mode 'blx' need special handling, as the register operand version
5105  // is predicable, but the label operand version is not. So, we can't rely
5106  // on the Mnemonic based checking to correctly figure out when to put
5107  // a k_CondCode operand in the list. If we're trying to match the label
5108  // version, remove the k_CondCode operand here.
5109  if (!isThumb() && Mnemonic == "blx" && Operands.size() == 3 &&
5110      static_cast<ARMOperand*>(Operands[2])->isImm()) {
5111    ARMOperand *Op = static_cast<ARMOperand*>(Operands[1]);
5112    Operands.erase(Operands.begin() + 1);
5113    delete Op;
5114  }
5115
5116  // The vector-compare-to-zero instructions have a literal token "#0" at
5117  // the end that comes to here as an immediate operand. Convert it to a
5118  // token to play nicely with the matcher.
5119  if ((Mnemonic == "vceq" || Mnemonic == "vcge" || Mnemonic == "vcgt" ||
5120      Mnemonic == "vcle" || Mnemonic == "vclt") && Operands.size() == 6 &&
5121      static_cast<ARMOperand*>(Operands[5])->isImm()) {
5122    ARMOperand *Op = static_cast<ARMOperand*>(Operands[5]);
5123    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Op->getImm());
5124    if (CE && CE->getValue() == 0) {
5125      Operands.erase(Operands.begin() + 5);
5126      Operands.push_back(ARMOperand::CreateToken("#0", Op->getStartLoc()));
5127      delete Op;
5128    }
5129  }
5130  // VCMP{E} does the same thing, but with a different operand count.
5131  if ((Mnemonic == "vcmp" || Mnemonic == "vcmpe") && Operands.size() == 5 &&
5132      static_cast<ARMOperand*>(Operands[4])->isImm()) {
5133    ARMOperand *Op = static_cast<ARMOperand*>(Operands[4]);
5134    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Op->getImm());
5135    if (CE && CE->getValue() == 0) {
5136      Operands.erase(Operands.begin() + 4);
5137      Operands.push_back(ARMOperand::CreateToken("#0", Op->getStartLoc()));
5138      delete Op;
5139    }
5140  }
5141  // Similarly, the Thumb1 "RSB" instruction has a literal "#0" on the
5142  // end. Convert it to a token here. Take care not to convert those
5143  // that should hit the Thumb2 encoding.
5144  if (Mnemonic == "rsb" && isThumb() && Operands.size() == 6 &&
5145      static_cast<ARMOperand*>(Operands[3])->isReg() &&
5146      static_cast<ARMOperand*>(Operands[4])->isReg() &&
5147      static_cast<ARMOperand*>(Operands[5])->isImm()) {
5148    ARMOperand *Op = static_cast<ARMOperand*>(Operands[5]);
5149    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Op->getImm());
5150    if (CE && CE->getValue() == 0 &&
5151        (isThumbOne() ||
5152         // The cc_out operand matches the IT block.
5153         ((inITBlock() != CarrySetting) &&
5154         // Neither register operand is a high register.
5155         (isARMLowRegister(static_cast<ARMOperand*>(Operands[3])->getReg()) &&
5156          isARMLowRegister(static_cast<ARMOperand*>(Operands[4])->getReg()))))){
5157      Operands.erase(Operands.begin() + 5);
5158      Operands.push_back(ARMOperand::CreateToken("#0", Op->getStartLoc()));
5159      delete Op;
5160    }
5161  }
5162
5163  return false;
5164}
5165
5166// Validate context-sensitive operand constraints.
5167
5168// return 'true' if register list contains non-low GPR registers,
5169// 'false' otherwise. If Reg is in the register list or is HiReg, set
5170// 'containsReg' to true.
5171static bool checkLowRegisterList(MCInst Inst, unsigned OpNo, unsigned Reg,
5172                                 unsigned HiReg, bool &containsReg) {
5173  containsReg = false;
5174  for (unsigned i = OpNo; i < Inst.getNumOperands(); ++i) {
5175    unsigned OpReg = Inst.getOperand(i).getReg();
5176    if (OpReg == Reg)
5177      containsReg = true;
5178    // Anything other than a low register isn't legal here.
5179    if (!isARMLowRegister(OpReg) && (!HiReg || OpReg != HiReg))
5180      return true;
5181  }
5182  return false;
5183}
5184
5185// Check if the specified regisgter is in the register list of the inst,
5186// starting at the indicated operand number.
5187static bool listContainsReg(MCInst &Inst, unsigned OpNo, unsigned Reg) {
5188  for (unsigned i = OpNo; i < Inst.getNumOperands(); ++i) {
5189    unsigned OpReg = Inst.getOperand(i).getReg();
5190    if (OpReg == Reg)
5191      return true;
5192  }
5193  return false;
5194}
5195
5196// FIXME: We would really prefer to have MCInstrInfo (the wrapper around
5197// the ARMInsts array) instead. Getting that here requires awkward
5198// API changes, though. Better way?
5199namespace llvm {
5200extern const MCInstrDesc ARMInsts[];
5201}
5202static const MCInstrDesc &getInstDesc(unsigned Opcode) {
5203  return ARMInsts[Opcode];
5204}
5205
5206// FIXME: We would really like to be able to tablegen'erate this.
5207bool ARMAsmParser::
5208validateInstruction(MCInst &Inst,
5209                    const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
5210  const MCInstrDesc &MCID = getInstDesc(Inst.getOpcode());
5211  SMLoc Loc = Operands[0]->getStartLoc();
5212  // Check the IT block state first.
5213  // NOTE: BKPT instruction has the interesting property of being
5214  // allowed in IT blocks, but not being predicable.  It just always
5215  // executes.
5216  if (inITBlock() && Inst.getOpcode() != ARM::tBKPT &&
5217      Inst.getOpcode() != ARM::BKPT) {
5218    unsigned bit = 1;
5219    if (ITState.FirstCond)
5220      ITState.FirstCond = false;
5221    else
5222      bit = (ITState.Mask >> (5 - ITState.CurPosition)) & 1;
5223    // The instruction must be predicable.
5224    if (!MCID.isPredicable())
5225      return Error(Loc, "instructions in IT block must be predicable");
5226    unsigned Cond = Inst.getOperand(MCID.findFirstPredOperandIdx()).getImm();
5227    unsigned ITCond = bit ? ITState.Cond :
5228      ARMCC::getOppositeCondition(ITState.Cond);
5229    if (Cond != ITCond) {
5230      // Find the condition code Operand to get its SMLoc information.
5231      SMLoc CondLoc;
5232      for (unsigned i = 1; i < Operands.size(); ++i)
5233        if (static_cast<ARMOperand*>(Operands[i])->isCondCode())
5234          CondLoc = Operands[i]->getStartLoc();
5235      return Error(CondLoc, "incorrect condition in IT block; got '" +
5236                   StringRef(ARMCondCodeToString(ARMCC::CondCodes(Cond))) +
5237                   "', but expected '" +
5238                   ARMCondCodeToString(ARMCC::CondCodes(ITCond)) + "'");
5239    }
5240  // Check for non-'al' condition codes outside of the IT block.
5241  } else if (isThumbTwo() && MCID.isPredicable() &&
5242             Inst.getOperand(MCID.findFirstPredOperandIdx()).getImm() !=
5243             ARMCC::AL && Inst.getOpcode() != ARM::tB &&
5244             Inst.getOpcode() != ARM::t2B)
5245    return Error(Loc, "predicated instructions must be in IT block");
5246
5247  switch (Inst.getOpcode()) {
5248  case ARM::LDRD:
5249  case ARM::LDRD_PRE:
5250  case ARM::LDRD_POST:
5251  case ARM::LDREXD: {
5252    // Rt2 must be Rt + 1.
5253    unsigned Rt = getARMRegisterNumbering(Inst.getOperand(0).getReg());
5254    unsigned Rt2 = getARMRegisterNumbering(Inst.getOperand(1).getReg());
5255    if (Rt2 != Rt + 1)
5256      return Error(Operands[3]->getStartLoc(),
5257                   "destination operands must be sequential");
5258    return false;
5259  }
5260  case ARM::STRD: {
5261    // Rt2 must be Rt + 1.
5262    unsigned Rt = getARMRegisterNumbering(Inst.getOperand(0).getReg());
5263    unsigned Rt2 = getARMRegisterNumbering(Inst.getOperand(1).getReg());
5264    if (Rt2 != Rt + 1)
5265      return Error(Operands[3]->getStartLoc(),
5266                   "source operands must be sequential");
5267    return false;
5268  }
5269  case ARM::STRD_PRE:
5270  case ARM::STRD_POST:
5271  case ARM::STREXD: {
5272    // Rt2 must be Rt + 1.
5273    unsigned Rt = getARMRegisterNumbering(Inst.getOperand(1).getReg());
5274    unsigned Rt2 = getARMRegisterNumbering(Inst.getOperand(2).getReg());
5275    if (Rt2 != Rt + 1)
5276      return Error(Operands[3]->getStartLoc(),
5277                   "source operands must be sequential");
5278    return false;
5279  }
5280  case ARM::SBFX:
5281  case ARM::UBFX: {
5282    // width must be in range [1, 32-lsb]
5283    unsigned lsb = Inst.getOperand(2).getImm();
5284    unsigned widthm1 = Inst.getOperand(3).getImm();
5285    if (widthm1 >= 32 - lsb)
5286      return Error(Operands[5]->getStartLoc(),
5287                   "bitfield width must be in range [1,32-lsb]");
5288    return false;
5289  }
5290  case ARM::tLDMIA: {
5291    // If we're parsing Thumb2, the .w variant is available and handles
5292    // most cases that are normally illegal for a Thumb1 LDM
5293    // instruction. We'll make the transformation in processInstruction()
5294    // if necessary.
5295    //
5296    // Thumb LDM instructions are writeback iff the base register is not
5297    // in the register list.
5298    unsigned Rn = Inst.getOperand(0).getReg();
5299    bool hasWritebackToken =
5300      (static_cast<ARMOperand*>(Operands[3])->isToken() &&
5301       static_cast<ARMOperand*>(Operands[3])->getToken() == "!");
5302    bool listContainsBase;
5303    if (checkLowRegisterList(Inst, 3, Rn, 0, listContainsBase) && !isThumbTwo())
5304      return Error(Operands[3 + hasWritebackToken]->getStartLoc(),
5305                   "registers must be in range r0-r7");
5306    // If we should have writeback, then there should be a '!' token.
5307    if (!listContainsBase && !hasWritebackToken && !isThumbTwo())
5308      return Error(Operands[2]->getStartLoc(),
5309                   "writeback operator '!' expected");
5310    // If we should not have writeback, there must not be a '!'. This is
5311    // true even for the 32-bit wide encodings.
5312    if (listContainsBase && hasWritebackToken)
5313      return Error(Operands[3]->getStartLoc(),
5314                   "writeback operator '!' not allowed when base register "
5315                   "in register list");
5316
5317    break;
5318  }
5319  case ARM::t2LDMIA_UPD: {
5320    if (listContainsReg(Inst, 3, Inst.getOperand(0).getReg()))
5321      return Error(Operands[4]->getStartLoc(),
5322                   "writeback operator '!' not allowed when base register "
5323                   "in register list");
5324    break;
5325  }
5326  // Like for ldm/stm, push and pop have hi-reg handling version in Thumb2,
5327  // so only issue a diagnostic for thumb1. The instructions will be
5328  // switched to the t2 encodings in processInstruction() if necessary.
5329  case ARM::tPOP: {
5330    bool listContainsBase;
5331    if (checkLowRegisterList(Inst, 2, 0, ARM::PC, listContainsBase) &&
5332        !isThumbTwo())
5333      return Error(Operands[2]->getStartLoc(),
5334                   "registers must be in range r0-r7 or pc");
5335    break;
5336  }
5337  case ARM::tPUSH: {
5338    bool listContainsBase;
5339    if (checkLowRegisterList(Inst, 2, 0, ARM::LR, listContainsBase) &&
5340        !isThumbTwo())
5341      return Error(Operands[2]->getStartLoc(),
5342                   "registers must be in range r0-r7 or lr");
5343    break;
5344  }
5345  case ARM::tSTMIA_UPD: {
5346    bool listContainsBase;
5347    if (checkLowRegisterList(Inst, 4, 0, 0, listContainsBase) && !isThumbTwo())
5348      return Error(Operands[4]->getStartLoc(),
5349                   "registers must be in range r0-r7");
5350    break;
5351  }
5352  case ARM::tADDrSP: {
5353    // If the non-SP source operand and the destination operand are not the
5354    // same, we need thumb2 (for the wide encoding), or we have an error.
5355    if (!isThumbTwo() &&
5356        Inst.getOperand(0).getReg() != Inst.getOperand(2).getReg()) {
5357      return Error(Operands[4]->getStartLoc(),
5358                   "source register must be the same as destination");
5359    }
5360    break;
5361  }
5362  }
5363
5364  return false;
5365}
5366
5367static unsigned getRealVSTOpcode(unsigned Opc, unsigned &Spacing) {
5368  switch(Opc) {
5369  default: llvm_unreachable("unexpected opcode!");
5370  // VST1LN
5371  case ARM::VST1LNdWB_fixed_Asm_8:  Spacing = 1; return ARM::VST1LNd8_UPD;
5372  case ARM::VST1LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST1LNd16_UPD;
5373  case ARM::VST1LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST1LNd32_UPD;
5374  case ARM::VST1LNdWB_register_Asm_8:  Spacing = 1; return ARM::VST1LNd8_UPD;
5375  case ARM::VST1LNdWB_register_Asm_16: Spacing = 1; return ARM::VST1LNd16_UPD;
5376  case ARM::VST1LNdWB_register_Asm_32: Spacing = 1; return ARM::VST1LNd32_UPD;
5377  case ARM::VST1LNdAsm_8:  Spacing = 1; return ARM::VST1LNd8;
5378  case ARM::VST1LNdAsm_16: Spacing = 1; return ARM::VST1LNd16;
5379  case ARM::VST1LNdAsm_32: Spacing = 1; return ARM::VST1LNd32;
5380
5381  // VST2LN
5382  case ARM::VST2LNdWB_fixed_Asm_8:  Spacing = 1; return ARM::VST2LNd8_UPD;
5383  case ARM::VST2LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST2LNd16_UPD;
5384  case ARM::VST2LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST2LNd32_UPD;
5385  case ARM::VST2LNqWB_fixed_Asm_16: Spacing = 2; return ARM::VST2LNq16_UPD;
5386  case ARM::VST2LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VST2LNq32_UPD;
5387
5388  case ARM::VST2LNdWB_register_Asm_8:  Spacing = 1; return ARM::VST2LNd8_UPD;
5389  case ARM::VST2LNdWB_register_Asm_16: Spacing = 1; return ARM::VST2LNd16_UPD;
5390  case ARM::VST2LNdWB_register_Asm_32: Spacing = 1; return ARM::VST2LNd32_UPD;
5391  case ARM::VST2LNqWB_register_Asm_16: Spacing = 2; return ARM::VST2LNq16_UPD;
5392  case ARM::VST2LNqWB_register_Asm_32: Spacing = 2; return ARM::VST2LNq32_UPD;
5393
5394  case ARM::VST2LNdAsm_8:  Spacing = 1; return ARM::VST2LNd8;
5395  case ARM::VST2LNdAsm_16: Spacing = 1; return ARM::VST2LNd16;
5396  case ARM::VST2LNdAsm_32: Spacing = 1; return ARM::VST2LNd32;
5397  case ARM::VST2LNqAsm_16: Spacing = 2; return ARM::VST2LNq16;
5398  case ARM::VST2LNqAsm_32: Spacing = 2; return ARM::VST2LNq32;
5399
5400  // VST3LN
5401  case ARM::VST3LNdWB_fixed_Asm_8:  Spacing = 1; return ARM::VST3LNd8_UPD;
5402  case ARM::VST3LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST3LNd16_UPD;
5403  case ARM::VST3LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST3LNd32_UPD;
5404  case ARM::VST3LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VST3LNq16_UPD;
5405  case ARM::VST3LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VST3LNq32_UPD;
5406  case ARM::VST3LNdWB_register_Asm_8:  Spacing = 1; return ARM::VST3LNd8_UPD;
5407  case ARM::VST3LNdWB_register_Asm_16: Spacing = 1; return ARM::VST3LNd16_UPD;
5408  case ARM::VST3LNdWB_register_Asm_32: Spacing = 1; return ARM::VST3LNd32_UPD;
5409  case ARM::VST3LNqWB_register_Asm_16: Spacing = 2; return ARM::VST3LNq16_UPD;
5410  case ARM::VST3LNqWB_register_Asm_32: Spacing = 2; return ARM::VST3LNq32_UPD;
5411  case ARM::VST3LNdAsm_8:  Spacing = 1; return ARM::VST3LNd8;
5412  case ARM::VST3LNdAsm_16: Spacing = 1; return ARM::VST3LNd16;
5413  case ARM::VST3LNdAsm_32: Spacing = 1; return ARM::VST3LNd32;
5414  case ARM::VST3LNqAsm_16: Spacing = 2; return ARM::VST3LNq16;
5415  case ARM::VST3LNqAsm_32: Spacing = 2; return ARM::VST3LNq32;
5416
5417  // VST3
5418  case ARM::VST3dWB_fixed_Asm_8:  Spacing = 1; return ARM::VST3d8_UPD;
5419  case ARM::VST3dWB_fixed_Asm_16: Spacing = 1; return ARM::VST3d16_UPD;
5420  case ARM::VST3dWB_fixed_Asm_32: Spacing = 1; return ARM::VST3d32_UPD;
5421  case ARM::VST3qWB_fixed_Asm_8:  Spacing = 2; return ARM::VST3q8_UPD;
5422  case ARM::VST3qWB_fixed_Asm_16: Spacing = 2; return ARM::VST3q16_UPD;
5423  case ARM::VST3qWB_fixed_Asm_32: Spacing = 2; return ARM::VST3q32_UPD;
5424  case ARM::VST3dWB_register_Asm_8:  Spacing = 1; return ARM::VST3d8_UPD;
5425  case ARM::VST3dWB_register_Asm_16: Spacing = 1; return ARM::VST3d16_UPD;
5426  case ARM::VST3dWB_register_Asm_32: Spacing = 1; return ARM::VST3d32_UPD;
5427  case ARM::VST3qWB_register_Asm_8:  Spacing = 2; return ARM::VST3q8_UPD;
5428  case ARM::VST3qWB_register_Asm_16: Spacing = 2; return ARM::VST3q16_UPD;
5429  case ARM::VST3qWB_register_Asm_32: Spacing = 2; return ARM::VST3q32_UPD;
5430  case ARM::VST3dAsm_8:  Spacing = 1; return ARM::VST3d8;
5431  case ARM::VST3dAsm_16: Spacing = 1; return ARM::VST3d16;
5432  case ARM::VST3dAsm_32: Spacing = 1; return ARM::VST3d32;
5433  case ARM::VST3qAsm_8:  Spacing = 2; return ARM::VST3q8;
5434  case ARM::VST3qAsm_16: Spacing = 2; return ARM::VST3q16;
5435  case ARM::VST3qAsm_32: Spacing = 2; return ARM::VST3q32;
5436
5437  // VST4LN
5438  case ARM::VST4LNdWB_fixed_Asm_8:  Spacing = 1; return ARM::VST4LNd8_UPD;
5439  case ARM::VST4LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST4LNd16_UPD;
5440  case ARM::VST4LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST4LNd32_UPD;
5441  case ARM::VST4LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VST4LNq16_UPD;
5442  case ARM::VST4LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VST4LNq32_UPD;
5443  case ARM::VST4LNdWB_register_Asm_8:  Spacing = 1; return ARM::VST4LNd8_UPD;
5444  case ARM::VST4LNdWB_register_Asm_16: Spacing = 1; return ARM::VST4LNd16_UPD;
5445  case ARM::VST4LNdWB_register_Asm_32: Spacing = 1; return ARM::VST4LNd32_UPD;
5446  case ARM::VST4LNqWB_register_Asm_16: Spacing = 2; return ARM::VST4LNq16_UPD;
5447  case ARM::VST4LNqWB_register_Asm_32: Spacing = 2; return ARM::VST4LNq32_UPD;
5448  case ARM::VST4LNdAsm_8:  Spacing = 1; return ARM::VST4LNd8;
5449  case ARM::VST4LNdAsm_16: Spacing = 1; return ARM::VST4LNd16;
5450  case ARM::VST4LNdAsm_32: Spacing = 1; return ARM::VST4LNd32;
5451  case ARM::VST4LNqAsm_16: Spacing = 2; return ARM::VST4LNq16;
5452  case ARM::VST4LNqAsm_32: Spacing = 2; return ARM::VST4LNq32;
5453
5454  // VST4
5455  case ARM::VST4dWB_fixed_Asm_8:  Spacing = 1; return ARM::VST4d8_UPD;
5456  case ARM::VST4dWB_fixed_Asm_16: Spacing = 1; return ARM::VST4d16_UPD;
5457  case ARM::VST4dWB_fixed_Asm_32: Spacing = 1; return ARM::VST4d32_UPD;
5458  case ARM::VST4qWB_fixed_Asm_8:  Spacing = 2; return ARM::VST4q8_UPD;
5459  case ARM::VST4qWB_fixed_Asm_16: Spacing = 2; return ARM::VST4q16_UPD;
5460  case ARM::VST4qWB_fixed_Asm_32: Spacing = 2; return ARM::VST4q32_UPD;
5461  case ARM::VST4dWB_register_Asm_8:  Spacing = 1; return ARM::VST4d8_UPD;
5462  case ARM::VST4dWB_register_Asm_16: Spacing = 1; return ARM::VST4d16_UPD;
5463  case ARM::VST4dWB_register_Asm_32: Spacing = 1; return ARM::VST4d32_UPD;
5464  case ARM::VST4qWB_register_Asm_8:  Spacing = 2; return ARM::VST4q8_UPD;
5465  case ARM::VST4qWB_register_Asm_16: Spacing = 2; return ARM::VST4q16_UPD;
5466  case ARM::VST4qWB_register_Asm_32: Spacing = 2; return ARM::VST4q32_UPD;
5467  case ARM::VST4dAsm_8:  Spacing = 1; return ARM::VST4d8;
5468  case ARM::VST4dAsm_16: Spacing = 1; return ARM::VST4d16;
5469  case ARM::VST4dAsm_32: Spacing = 1; return ARM::VST4d32;
5470  case ARM::VST4qAsm_8:  Spacing = 2; return ARM::VST4q8;
5471  case ARM::VST4qAsm_16: Spacing = 2; return ARM::VST4q16;
5472  case ARM::VST4qAsm_32: Spacing = 2; return ARM::VST4q32;
5473  }
5474}
5475
5476static unsigned getRealVLDOpcode(unsigned Opc, unsigned &Spacing) {
5477  switch(Opc) {
5478  default: llvm_unreachable("unexpected opcode!");
5479  // VLD1LN
5480  case ARM::VLD1LNdWB_fixed_Asm_8:  Spacing = 1; return ARM::VLD1LNd8_UPD;
5481  case ARM::VLD1LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD1LNd16_UPD;
5482  case ARM::VLD1LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD1LNd32_UPD;
5483  case ARM::VLD1LNdWB_register_Asm_8:  Spacing = 1; return ARM::VLD1LNd8_UPD;
5484  case ARM::VLD1LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD1LNd16_UPD;
5485  case ARM::VLD1LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD1LNd32_UPD;
5486  case ARM::VLD1LNdAsm_8:  Spacing = 1; return ARM::VLD1LNd8;
5487  case ARM::VLD1LNdAsm_16: Spacing = 1; return ARM::VLD1LNd16;
5488  case ARM::VLD1LNdAsm_32: Spacing = 1; return ARM::VLD1LNd32;
5489
5490  // VLD2LN
5491  case ARM::VLD2LNdWB_fixed_Asm_8:  Spacing = 1; return ARM::VLD2LNd8_UPD;
5492  case ARM::VLD2LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD2LNd16_UPD;
5493  case ARM::VLD2LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD2LNd32_UPD;
5494  case ARM::VLD2LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD2LNq16_UPD;
5495  case ARM::VLD2LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD2LNq32_UPD;
5496  case ARM::VLD2LNdWB_register_Asm_8:  Spacing = 1; return ARM::VLD2LNd8_UPD;
5497  case ARM::VLD2LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD2LNd16_UPD;
5498  case ARM::VLD2LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD2LNd32_UPD;
5499  case ARM::VLD2LNqWB_register_Asm_16: Spacing = 2; return ARM::VLD2LNq16_UPD;
5500  case ARM::VLD2LNqWB_register_Asm_32: Spacing = 2; return ARM::VLD2LNq32_UPD;
5501  case ARM::VLD2LNdAsm_8:  Spacing = 1; return ARM::VLD2LNd8;
5502  case ARM::VLD2LNdAsm_16: Spacing = 1; return ARM::VLD2LNd16;
5503  case ARM::VLD2LNdAsm_32: Spacing = 1; return ARM::VLD2LNd32;
5504  case ARM::VLD2LNqAsm_16: Spacing = 2; return ARM::VLD2LNq16;
5505  case ARM::VLD2LNqAsm_32: Spacing = 2; return ARM::VLD2LNq32;
5506
5507  // VLD3DUP
5508  case ARM::VLD3DUPdWB_fixed_Asm_8:  Spacing = 1; return ARM::VLD3DUPd8_UPD;
5509  case ARM::VLD3DUPdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3DUPd16_UPD;
5510  case ARM::VLD3DUPdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD3DUPd32_UPD;
5511  case ARM::VLD3DUPqWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3DUPq8_UPD;
5512  case ARM::VLD3DUPqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3DUPq16_UPD;
5513  case ARM::VLD3DUPqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD3DUPq32_UPD;
5514  case ARM::VLD3DUPdWB_register_Asm_8:  Spacing = 1; return ARM::VLD3DUPd8_UPD;
5515  case ARM::VLD3DUPdWB_register_Asm_16: Spacing = 1; return ARM::VLD3DUPd16_UPD;
5516  case ARM::VLD3DUPdWB_register_Asm_32: Spacing = 1; return ARM::VLD3DUPd32_UPD;
5517  case ARM::VLD3DUPqWB_register_Asm_8: Spacing = 2; return ARM::VLD3DUPq8_UPD;
5518  case ARM::VLD3DUPqWB_register_Asm_16: Spacing = 2; return ARM::VLD3DUPq16_UPD;
5519  case ARM::VLD3DUPqWB_register_Asm_32: Spacing = 2; return ARM::VLD3DUPq32_UPD;
5520  case ARM::VLD3DUPdAsm_8:  Spacing = 1; return ARM::VLD3DUPd8;
5521  case ARM::VLD3DUPdAsm_16: Spacing = 1; return ARM::VLD3DUPd16;
5522  case ARM::VLD3DUPdAsm_32: Spacing = 1; return ARM::VLD3DUPd32;
5523  case ARM::VLD3DUPqAsm_8: Spacing = 2; return ARM::VLD3DUPq8;
5524  case ARM::VLD3DUPqAsm_16: Spacing = 2; return ARM::VLD3DUPq16;
5525  case ARM::VLD3DUPqAsm_32: Spacing = 2; return ARM::VLD3DUPq32;
5526
5527  // VLD3LN
5528  case ARM::VLD3LNdWB_fixed_Asm_8:  Spacing = 1; return ARM::VLD3LNd8_UPD;
5529  case ARM::VLD3LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3LNd16_UPD;
5530  case ARM::VLD3LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD3LNd32_UPD;
5531  case ARM::VLD3LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3LNq16_UPD;
5532  case ARM::VLD3LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD3LNq32_UPD;
5533  case ARM::VLD3LNdWB_register_Asm_8:  Spacing = 1; return ARM::VLD3LNd8_UPD;
5534  case ARM::VLD3LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD3LNd16_UPD;
5535  case ARM::VLD3LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD3LNd32_UPD;
5536  case ARM::VLD3LNqWB_register_Asm_16: Spacing = 2; return ARM::VLD3LNq16_UPD;
5537  case ARM::VLD3LNqWB_register_Asm_32: Spacing = 2; return ARM::VLD3LNq32_UPD;
5538  case ARM::VLD3LNdAsm_8:  Spacing = 1; return ARM::VLD3LNd8;
5539  case ARM::VLD3LNdAsm_16: Spacing = 1; return ARM::VLD3LNd16;
5540  case ARM::VLD3LNdAsm_32: Spacing = 1; return ARM::VLD3LNd32;
5541  case ARM::VLD3LNqAsm_16: Spacing = 2; return ARM::VLD3LNq16;
5542  case ARM::VLD3LNqAsm_32: Spacing = 2; return ARM::VLD3LNq32;
5543
5544  // VLD3
5545  case ARM::VLD3dWB_fixed_Asm_8:  Spacing = 1; return ARM::VLD3d8_UPD;
5546  case ARM::VLD3dWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3d16_UPD;
5547  case ARM::VLD3dWB_fixed_Asm_32: Spacing = 1; return ARM::VLD3d32_UPD;
5548  case ARM::VLD3qWB_fixed_Asm_8:  Spacing = 2; return ARM::VLD3q8_UPD;
5549  case ARM::VLD3qWB_fixed_Asm_16: Spacing = 2; return ARM::VLD3q16_UPD;
5550  case ARM::VLD3qWB_fixed_Asm_32: Spacing = 2; return ARM::VLD3q32_UPD;
5551  case ARM::VLD3dWB_register_Asm_8:  Spacing = 1; return ARM::VLD3d8_UPD;
5552  case ARM::VLD3dWB_register_Asm_16: Spacing = 1; return ARM::VLD3d16_UPD;
5553  case ARM::VLD3dWB_register_Asm_32: Spacing = 1; return ARM::VLD3d32_UPD;
5554  case ARM::VLD3qWB_register_Asm_8:  Spacing = 2; return ARM::VLD3q8_UPD;
5555  case ARM::VLD3qWB_register_Asm_16: Spacing = 2; return ARM::VLD3q16_UPD;
5556  case ARM::VLD3qWB_register_Asm_32: Spacing = 2; return ARM::VLD3q32_UPD;
5557  case ARM::VLD3dAsm_8:  Spacing = 1; return ARM::VLD3d8;
5558  case ARM::VLD3dAsm_16: Spacing = 1; return ARM::VLD3d16;
5559  case ARM::VLD3dAsm_32: Spacing = 1; return ARM::VLD3d32;
5560  case ARM::VLD3qAsm_8:  Spacing = 2; return ARM::VLD3q8;
5561  case ARM::VLD3qAsm_16: Spacing = 2; return ARM::VLD3q16;
5562  case ARM::VLD3qAsm_32: Spacing = 2; return ARM::VLD3q32;
5563
5564  // VLD4LN
5565  case ARM::VLD4LNdWB_fixed_Asm_8:  Spacing = 1; return ARM::VLD4LNd8_UPD;
5566  case ARM::VLD4LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4LNd16_UPD;
5567  case ARM::VLD4LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD4LNd32_UPD;
5568  case ARM::VLD4LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4LNq16_UPD;
5569  case ARM::VLD4LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD4LNq32_UPD;
5570  case ARM::VLD4LNdWB_register_Asm_8:  Spacing = 1; return ARM::VLD4LNd8_UPD;
5571  case ARM::VLD4LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD4LNd16_UPD;
5572  case ARM::VLD4LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD4LNd32_UPD;
5573  case ARM::VLD4LNqWB_register_Asm_16: Spacing = 2; return ARM::VLD4LNq16_UPD;
5574  case ARM::VLD4LNqWB_register_Asm_32: Spacing = 2; return ARM::VLD4LNq32_UPD;
5575  case ARM::VLD4LNdAsm_8:  Spacing = 1; return ARM::VLD4LNd8;
5576  case ARM::VLD4LNdAsm_16: Spacing = 1; return ARM::VLD4LNd16;
5577  case ARM::VLD4LNdAsm_32: Spacing = 1; return ARM::VLD4LNd32;
5578  case ARM::VLD4LNqAsm_16: Spacing = 2; return ARM::VLD4LNq16;
5579  case ARM::VLD4LNqAsm_32: Spacing = 2; return ARM::VLD4LNq32;
5580
5581  // VLD4DUP
5582  case ARM::VLD4DUPdWB_fixed_Asm_8:  Spacing = 1; return ARM::VLD4DUPd8_UPD;
5583  case ARM::VLD4DUPdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4DUPd16_UPD;
5584  case ARM::VLD4DUPdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD4DUPd32_UPD;
5585  case ARM::VLD4DUPqWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4DUPq8_UPD;
5586  case ARM::VLD4DUPqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4DUPq16_UPD;
5587  case ARM::VLD4DUPqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD4DUPq32_UPD;
5588  case ARM::VLD4DUPdWB_register_Asm_8:  Spacing = 1; return ARM::VLD4DUPd8_UPD;
5589  case ARM::VLD4DUPdWB_register_Asm_16: Spacing = 1; return ARM::VLD4DUPd16_UPD;
5590  case ARM::VLD4DUPdWB_register_Asm_32: Spacing = 1; return ARM::VLD4DUPd32_UPD;
5591  case ARM::VLD4DUPqWB_register_Asm_8: Spacing = 2; return ARM::VLD4DUPq8_UPD;
5592  case ARM::VLD4DUPqWB_register_Asm_16: Spacing = 2; return ARM::VLD4DUPq16_UPD;
5593  case ARM::VLD4DUPqWB_register_Asm_32: Spacing = 2; return ARM::VLD4DUPq32_UPD;
5594  case ARM::VLD4DUPdAsm_8:  Spacing = 1; return ARM::VLD4DUPd8;
5595  case ARM::VLD4DUPdAsm_16: Spacing = 1; return ARM::VLD4DUPd16;
5596  case ARM::VLD4DUPdAsm_32: Spacing = 1; return ARM::VLD4DUPd32;
5597  case ARM::VLD4DUPqAsm_8: Spacing = 2; return ARM::VLD4DUPq8;
5598  case ARM::VLD4DUPqAsm_16: Spacing = 2; return ARM::VLD4DUPq16;
5599  case ARM::VLD4DUPqAsm_32: Spacing = 2; return ARM::VLD4DUPq32;
5600
5601  // VLD4
5602  case ARM::VLD4dWB_fixed_Asm_8:  Spacing = 1; return ARM::VLD4d8_UPD;
5603  case ARM::VLD4dWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4d16_UPD;
5604  case ARM::VLD4dWB_fixed_Asm_32: Spacing = 1; return ARM::VLD4d32_UPD;
5605  case ARM::VLD4qWB_fixed_Asm_8:  Spacing = 2; return ARM::VLD4q8_UPD;
5606  case ARM::VLD4qWB_fixed_Asm_16: Spacing = 2; return ARM::VLD4q16_UPD;
5607  case ARM::VLD4qWB_fixed_Asm_32: Spacing = 2; return ARM::VLD4q32_UPD;
5608  case ARM::VLD4dWB_register_Asm_8:  Spacing = 1; return ARM::VLD4d8_UPD;
5609  case ARM::VLD4dWB_register_Asm_16: Spacing = 1; return ARM::VLD4d16_UPD;
5610  case ARM::VLD4dWB_register_Asm_32: Spacing = 1; return ARM::VLD4d32_UPD;
5611  case ARM::VLD4qWB_register_Asm_8:  Spacing = 2; return ARM::VLD4q8_UPD;
5612  case ARM::VLD4qWB_register_Asm_16: Spacing = 2; return ARM::VLD4q16_UPD;
5613  case ARM::VLD4qWB_register_Asm_32: Spacing = 2; return ARM::VLD4q32_UPD;
5614  case ARM::VLD4dAsm_8:  Spacing = 1; return ARM::VLD4d8;
5615  case ARM::VLD4dAsm_16: Spacing = 1; return ARM::VLD4d16;
5616  case ARM::VLD4dAsm_32: Spacing = 1; return ARM::VLD4d32;
5617  case ARM::VLD4qAsm_8:  Spacing = 2; return ARM::VLD4q8;
5618  case ARM::VLD4qAsm_16: Spacing = 2; return ARM::VLD4q16;
5619  case ARM::VLD4qAsm_32: Spacing = 2; return ARM::VLD4q32;
5620  }
5621}
5622
5623bool ARMAsmParser::
5624processInstruction(MCInst &Inst,
5625                   const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
5626  switch (Inst.getOpcode()) {
5627  // Aliases for alternate PC+imm syntax of LDR instructions.
5628  case ARM::t2LDRpcrel:
5629    Inst.setOpcode(ARM::t2LDRpci);
5630    return true;
5631  case ARM::t2LDRBpcrel:
5632    Inst.setOpcode(ARM::t2LDRBpci);
5633    return true;
5634  case ARM::t2LDRHpcrel:
5635    Inst.setOpcode(ARM::t2LDRHpci);
5636    return true;
5637  case ARM::t2LDRSBpcrel:
5638    Inst.setOpcode(ARM::t2LDRSBpci);
5639    return true;
5640  case ARM::t2LDRSHpcrel:
5641    Inst.setOpcode(ARM::t2LDRSHpci);
5642    return true;
5643  // Handle NEON VST complex aliases.
5644  case ARM::VST1LNdWB_register_Asm_8:
5645  case ARM::VST1LNdWB_register_Asm_16:
5646  case ARM::VST1LNdWB_register_Asm_32: {
5647    MCInst TmpInst;
5648    // Shuffle the operands around so the lane index operand is in the
5649    // right place.
5650    unsigned Spacing;
5651    TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
5652    TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
5653    TmpInst.addOperand(Inst.getOperand(2)); // Rn
5654    TmpInst.addOperand(Inst.getOperand(3)); // alignment
5655    TmpInst.addOperand(Inst.getOperand(4)); // Rm
5656    TmpInst.addOperand(Inst.getOperand(0)); // Vd
5657    TmpInst.addOperand(Inst.getOperand(1)); // lane
5658    TmpInst.addOperand(Inst.getOperand(5)); // CondCode
5659    TmpInst.addOperand(Inst.getOperand(6));
5660    Inst = TmpInst;
5661    return true;
5662  }
5663
5664  case ARM::VST2LNdWB_register_Asm_8:
5665  case ARM::VST2LNdWB_register_Asm_16:
5666  case ARM::VST2LNdWB_register_Asm_32:
5667  case ARM::VST2LNqWB_register_Asm_16:
5668  case ARM::VST2LNqWB_register_Asm_32: {
5669    MCInst TmpInst;
5670    // Shuffle the operands around so the lane index operand is in the
5671    // right place.
5672    unsigned Spacing;
5673    TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
5674    TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
5675    TmpInst.addOperand(Inst.getOperand(2)); // Rn
5676    TmpInst.addOperand(Inst.getOperand(3)); // alignment
5677    TmpInst.addOperand(Inst.getOperand(4)); // Rm
5678    TmpInst.addOperand(Inst.getOperand(0)); // Vd
5679    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
5680                                            Spacing));
5681    TmpInst.addOperand(Inst.getOperand(1)); // lane
5682    TmpInst.addOperand(Inst.getOperand(5)); // CondCode
5683    TmpInst.addOperand(Inst.getOperand(6));
5684    Inst = TmpInst;
5685    return true;
5686  }
5687
5688  case ARM::VST3LNdWB_register_Asm_8:
5689  case ARM::VST3LNdWB_register_Asm_16:
5690  case ARM::VST3LNdWB_register_Asm_32:
5691  case ARM::VST3LNqWB_register_Asm_16:
5692  case ARM::VST3LNqWB_register_Asm_32: {
5693    MCInst TmpInst;
5694    // Shuffle the operands around so the lane index operand is in the
5695    // right place.
5696    unsigned Spacing;
5697    TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
5698    TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
5699    TmpInst.addOperand(Inst.getOperand(2)); // Rn
5700    TmpInst.addOperand(Inst.getOperand(3)); // alignment
5701    TmpInst.addOperand(Inst.getOperand(4)); // Rm
5702    TmpInst.addOperand(Inst.getOperand(0)); // Vd
5703    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
5704                                            Spacing));
5705    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
5706                                            Spacing * 2));
5707    TmpInst.addOperand(Inst.getOperand(1)); // lane
5708    TmpInst.addOperand(Inst.getOperand(5)); // CondCode
5709    TmpInst.addOperand(Inst.getOperand(6));
5710    Inst = TmpInst;
5711    return true;
5712  }
5713
5714  case ARM::VST4LNdWB_register_Asm_8:
5715  case ARM::VST4LNdWB_register_Asm_16:
5716  case ARM::VST4LNdWB_register_Asm_32:
5717  case ARM::VST4LNqWB_register_Asm_16:
5718  case ARM::VST4LNqWB_register_Asm_32: {
5719    MCInst TmpInst;
5720    // Shuffle the operands around so the lane index operand is in the
5721    // right place.
5722    unsigned Spacing;
5723    TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
5724    TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
5725    TmpInst.addOperand(Inst.getOperand(2)); // Rn
5726    TmpInst.addOperand(Inst.getOperand(3)); // alignment
5727    TmpInst.addOperand(Inst.getOperand(4)); // Rm
5728    TmpInst.addOperand(Inst.getOperand(0)); // Vd
5729    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
5730                                            Spacing));
5731    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
5732                                            Spacing * 2));
5733    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
5734                                            Spacing * 3));
5735    TmpInst.addOperand(Inst.getOperand(1)); // lane
5736    TmpInst.addOperand(Inst.getOperand(5)); // CondCode
5737    TmpInst.addOperand(Inst.getOperand(6));
5738    Inst = TmpInst;
5739    return true;
5740  }
5741
5742  case ARM::VST1LNdWB_fixed_Asm_8:
5743  case ARM::VST1LNdWB_fixed_Asm_16:
5744  case ARM::VST1LNdWB_fixed_Asm_32: {
5745    MCInst TmpInst;
5746    // Shuffle the operands around so the lane index operand is in the
5747    // right place.
5748    unsigned Spacing;
5749    TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
5750    TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
5751    TmpInst.addOperand(Inst.getOperand(2)); // Rn
5752    TmpInst.addOperand(Inst.getOperand(3)); // alignment
5753    TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm
5754    TmpInst.addOperand(Inst.getOperand(0)); // Vd
5755    TmpInst.addOperand(Inst.getOperand(1)); // lane
5756    TmpInst.addOperand(Inst.getOperand(4)); // CondCode
5757    TmpInst.addOperand(Inst.getOperand(5));
5758    Inst = TmpInst;
5759    return true;
5760  }
5761
5762  case ARM::VST2LNdWB_fixed_Asm_8:
5763  case ARM::VST2LNdWB_fixed_Asm_16:
5764  case ARM::VST2LNdWB_fixed_Asm_32:
5765  case ARM::VST2LNqWB_fixed_Asm_16:
5766  case ARM::VST2LNqWB_fixed_Asm_32: {
5767    MCInst TmpInst;
5768    // Shuffle the operands around so the lane index operand is in the
5769    // right place.
5770    unsigned Spacing;
5771    TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
5772    TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
5773    TmpInst.addOperand(Inst.getOperand(2)); // Rn
5774    TmpInst.addOperand(Inst.getOperand(3)); // alignment
5775    TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm
5776    TmpInst.addOperand(Inst.getOperand(0)); // Vd
5777    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
5778                                            Spacing));
5779    TmpInst.addOperand(Inst.getOperand(1)); // lane
5780    TmpInst.addOperand(Inst.getOperand(4)); // CondCode
5781    TmpInst.addOperand(Inst.getOperand(5));
5782    Inst = TmpInst;
5783    return true;
5784  }
5785
5786  case ARM::VST3LNdWB_fixed_Asm_8:
5787  case ARM::VST3LNdWB_fixed_Asm_16:
5788  case ARM::VST3LNdWB_fixed_Asm_32:
5789  case ARM::VST3LNqWB_fixed_Asm_16:
5790  case ARM::VST3LNqWB_fixed_Asm_32: {
5791    MCInst TmpInst;
5792    // Shuffle the operands around so the lane index operand is in the
5793    // right place.
5794    unsigned Spacing;
5795    TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
5796    TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
5797    TmpInst.addOperand(Inst.getOperand(2)); // Rn
5798    TmpInst.addOperand(Inst.getOperand(3)); // alignment
5799    TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm
5800    TmpInst.addOperand(Inst.getOperand(0)); // Vd
5801    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
5802                                            Spacing));
5803    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
5804                                            Spacing * 2));
5805    TmpInst.addOperand(Inst.getOperand(1)); // lane
5806    TmpInst.addOperand(Inst.getOperand(4)); // CondCode
5807    TmpInst.addOperand(Inst.getOperand(5));
5808    Inst = TmpInst;
5809    return true;
5810  }
5811
5812  case ARM::VST4LNdWB_fixed_Asm_8:
5813  case ARM::VST4LNdWB_fixed_Asm_16:
5814  case ARM::VST4LNdWB_fixed_Asm_32:
5815  case ARM::VST4LNqWB_fixed_Asm_16:
5816  case ARM::VST4LNqWB_fixed_Asm_32: {
5817    MCInst TmpInst;
5818    // Shuffle the operands around so the lane index operand is in the
5819    // right place.
5820    unsigned Spacing;
5821    TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
5822    TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
5823    TmpInst.addOperand(Inst.getOperand(2)); // Rn
5824    TmpInst.addOperand(Inst.getOperand(3)); // alignment
5825    TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm
5826    TmpInst.addOperand(Inst.getOperand(0)); // Vd
5827    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
5828                                            Spacing));
5829    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
5830                                            Spacing * 2));
5831    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
5832                                            Spacing * 3));
5833    TmpInst.addOperand(Inst.getOperand(1)); // lane
5834    TmpInst.addOperand(Inst.getOperand(4)); // CondCode
5835    TmpInst.addOperand(Inst.getOperand(5));
5836    Inst = TmpInst;
5837    return true;
5838  }
5839
5840  case ARM::VST1LNdAsm_8:
5841  case ARM::VST1LNdAsm_16:
5842  case ARM::VST1LNdAsm_32: {
5843    MCInst TmpInst;
5844    // Shuffle the operands around so the lane index operand is in the
5845    // right place.
5846    unsigned Spacing;
5847    TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
5848    TmpInst.addOperand(Inst.getOperand(2)); // Rn
5849    TmpInst.addOperand(Inst.getOperand(3)); // alignment
5850    TmpInst.addOperand(Inst.getOperand(0)); // Vd
5851    TmpInst.addOperand(Inst.getOperand(1)); // lane
5852    TmpInst.addOperand(Inst.getOperand(4)); // CondCode
5853    TmpInst.addOperand(Inst.getOperand(5));
5854    Inst = TmpInst;
5855    return true;
5856  }
5857
5858  case ARM::VST2LNdAsm_8:
5859  case ARM::VST2LNdAsm_16:
5860  case ARM::VST2LNdAsm_32:
5861  case ARM::VST2LNqAsm_16:
5862  case ARM::VST2LNqAsm_32: {
5863    MCInst TmpInst;
5864    // Shuffle the operands around so the lane index operand is in the
5865    // right place.
5866    unsigned Spacing;
5867    TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
5868    TmpInst.addOperand(Inst.getOperand(2)); // Rn
5869    TmpInst.addOperand(Inst.getOperand(3)); // alignment
5870    TmpInst.addOperand(Inst.getOperand(0)); // Vd
5871    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
5872                                            Spacing));
5873    TmpInst.addOperand(Inst.getOperand(1)); // lane
5874    TmpInst.addOperand(Inst.getOperand(4)); // CondCode
5875    TmpInst.addOperand(Inst.getOperand(5));
5876    Inst = TmpInst;
5877    return true;
5878  }
5879
5880  case ARM::VST3LNdAsm_8:
5881  case ARM::VST3LNdAsm_16:
5882  case ARM::VST3LNdAsm_32:
5883  case ARM::VST3LNqAsm_16:
5884  case ARM::VST3LNqAsm_32: {
5885    MCInst TmpInst;
5886    // Shuffle the operands around so the lane index operand is in the
5887    // right place.
5888    unsigned Spacing;
5889    TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
5890    TmpInst.addOperand(Inst.getOperand(2)); // Rn
5891    TmpInst.addOperand(Inst.getOperand(3)); // alignment
5892    TmpInst.addOperand(Inst.getOperand(0)); // Vd
5893    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
5894                                            Spacing));
5895    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
5896                                            Spacing * 2));
5897    TmpInst.addOperand(Inst.getOperand(1)); // lane
5898    TmpInst.addOperand(Inst.getOperand(4)); // CondCode
5899    TmpInst.addOperand(Inst.getOperand(5));
5900    Inst = TmpInst;
5901    return true;
5902  }
5903
5904  case ARM::VST4LNdAsm_8:
5905  case ARM::VST4LNdAsm_16:
5906  case ARM::VST4LNdAsm_32:
5907  case ARM::VST4LNqAsm_16:
5908  case ARM::VST4LNqAsm_32: {
5909    MCInst TmpInst;
5910    // Shuffle the operands around so the lane index operand is in the
5911    // right place.
5912    unsigned Spacing;
5913    TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
5914    TmpInst.addOperand(Inst.getOperand(2)); // Rn
5915    TmpInst.addOperand(Inst.getOperand(3)); // alignment
5916    TmpInst.addOperand(Inst.getOperand(0)); // Vd
5917    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
5918                                            Spacing));
5919    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
5920                                            Spacing * 2));
5921    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
5922                                            Spacing * 3));
5923    TmpInst.addOperand(Inst.getOperand(1)); // lane
5924    TmpInst.addOperand(Inst.getOperand(4)); // CondCode
5925    TmpInst.addOperand(Inst.getOperand(5));
5926    Inst = TmpInst;
5927    return true;
5928  }
5929
5930  // Handle NEON VLD complex aliases.
5931  case ARM::VLD1LNdWB_register_Asm_8:
5932  case ARM::VLD1LNdWB_register_Asm_16:
5933  case ARM::VLD1LNdWB_register_Asm_32: {
5934    MCInst TmpInst;
5935    // Shuffle the operands around so the lane index operand is in the
5936    // right place.
5937    unsigned Spacing;
5938    TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
5939    TmpInst.addOperand(Inst.getOperand(0)); // Vd
5940    TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
5941    TmpInst.addOperand(Inst.getOperand(2)); // Rn
5942    TmpInst.addOperand(Inst.getOperand(3)); // alignment
5943    TmpInst.addOperand(Inst.getOperand(4)); // Rm
5944    TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
5945    TmpInst.addOperand(Inst.getOperand(1)); // lane
5946    TmpInst.addOperand(Inst.getOperand(5)); // CondCode
5947    TmpInst.addOperand(Inst.getOperand(6));
5948    Inst = TmpInst;
5949    return true;
5950  }
5951
5952  case ARM::VLD2LNdWB_register_Asm_8:
5953  case ARM::VLD2LNdWB_register_Asm_16:
5954  case ARM::VLD2LNdWB_register_Asm_32:
5955  case ARM::VLD2LNqWB_register_Asm_16:
5956  case ARM::VLD2LNqWB_register_Asm_32: {
5957    MCInst TmpInst;
5958    // Shuffle the operands around so the lane index operand is in the
5959    // right place.
5960    unsigned Spacing;
5961    TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
5962    TmpInst.addOperand(Inst.getOperand(0)); // Vd
5963    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
5964                                            Spacing));
5965    TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
5966    TmpInst.addOperand(Inst.getOperand(2)); // Rn
5967    TmpInst.addOperand(Inst.getOperand(3)); // alignment
5968    TmpInst.addOperand(Inst.getOperand(4)); // Rm
5969    TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
5970    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
5971                                            Spacing));
5972    TmpInst.addOperand(Inst.getOperand(1)); // lane
5973    TmpInst.addOperand(Inst.getOperand(5)); // CondCode
5974    TmpInst.addOperand(Inst.getOperand(6));
5975    Inst = TmpInst;
5976    return true;
5977  }
5978
5979  case ARM::VLD3LNdWB_register_Asm_8:
5980  case ARM::VLD3LNdWB_register_Asm_16:
5981  case ARM::VLD3LNdWB_register_Asm_32:
5982  case ARM::VLD3LNqWB_register_Asm_16:
5983  case ARM::VLD3LNqWB_register_Asm_32: {
5984    MCInst TmpInst;
5985    // Shuffle the operands around so the lane index operand is in the
5986    // right place.
5987    unsigned Spacing;
5988    TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
5989    TmpInst.addOperand(Inst.getOperand(0)); // Vd
5990    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
5991                                            Spacing));
5992    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
5993                                            Spacing * 2));
5994    TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
5995    TmpInst.addOperand(Inst.getOperand(2)); // Rn
5996    TmpInst.addOperand(Inst.getOperand(3)); // alignment
5997    TmpInst.addOperand(Inst.getOperand(4)); // Rm
5998    TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
5999    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6000                                            Spacing));
6001    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6002                                            Spacing * 2));
6003    TmpInst.addOperand(Inst.getOperand(1)); // lane
6004    TmpInst.addOperand(Inst.getOperand(5)); // CondCode
6005    TmpInst.addOperand(Inst.getOperand(6));
6006    Inst = TmpInst;
6007    return true;
6008  }
6009
6010  case ARM::VLD4LNdWB_register_Asm_8:
6011  case ARM::VLD4LNdWB_register_Asm_16:
6012  case ARM::VLD4LNdWB_register_Asm_32:
6013  case ARM::VLD4LNqWB_register_Asm_16:
6014  case ARM::VLD4LNqWB_register_Asm_32: {
6015    MCInst TmpInst;
6016    // Shuffle the operands around so the lane index operand is in the
6017    // right place.
6018    unsigned Spacing;
6019    TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
6020    TmpInst.addOperand(Inst.getOperand(0)); // Vd
6021    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6022                                            Spacing));
6023    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6024                                            Spacing * 2));
6025    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6026                                            Spacing * 3));
6027    TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
6028    TmpInst.addOperand(Inst.getOperand(2)); // Rn
6029    TmpInst.addOperand(Inst.getOperand(3)); // alignment
6030    TmpInst.addOperand(Inst.getOperand(4)); // Rm
6031    TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
6032    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6033                                            Spacing));
6034    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6035                                            Spacing * 2));
6036    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6037                                            Spacing * 3));
6038    TmpInst.addOperand(Inst.getOperand(1)); // lane
6039    TmpInst.addOperand(Inst.getOperand(5)); // CondCode
6040    TmpInst.addOperand(Inst.getOperand(6));
6041    Inst = TmpInst;
6042    return true;
6043  }
6044
6045  case ARM::VLD1LNdWB_fixed_Asm_8:
6046  case ARM::VLD1LNdWB_fixed_Asm_16:
6047  case ARM::VLD1LNdWB_fixed_Asm_32: {
6048    MCInst TmpInst;
6049    // Shuffle the operands around so the lane index operand is in the
6050    // right place.
6051    unsigned Spacing;
6052    TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
6053    TmpInst.addOperand(Inst.getOperand(0)); // Vd
6054    TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
6055    TmpInst.addOperand(Inst.getOperand(2)); // Rn
6056    TmpInst.addOperand(Inst.getOperand(3)); // alignment
6057    TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm
6058    TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
6059    TmpInst.addOperand(Inst.getOperand(1)); // lane
6060    TmpInst.addOperand(Inst.getOperand(4)); // CondCode
6061    TmpInst.addOperand(Inst.getOperand(5));
6062    Inst = TmpInst;
6063    return true;
6064  }
6065
6066  case ARM::VLD2LNdWB_fixed_Asm_8:
6067  case ARM::VLD2LNdWB_fixed_Asm_16:
6068  case ARM::VLD2LNdWB_fixed_Asm_32:
6069  case ARM::VLD2LNqWB_fixed_Asm_16:
6070  case ARM::VLD2LNqWB_fixed_Asm_32: {
6071    MCInst TmpInst;
6072    // Shuffle the operands around so the lane index operand is in the
6073    // right place.
6074    unsigned Spacing;
6075    TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
6076    TmpInst.addOperand(Inst.getOperand(0)); // Vd
6077    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6078                                            Spacing));
6079    TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
6080    TmpInst.addOperand(Inst.getOperand(2)); // Rn
6081    TmpInst.addOperand(Inst.getOperand(3)); // alignment
6082    TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm
6083    TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
6084    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6085                                            Spacing));
6086    TmpInst.addOperand(Inst.getOperand(1)); // lane
6087    TmpInst.addOperand(Inst.getOperand(4)); // CondCode
6088    TmpInst.addOperand(Inst.getOperand(5));
6089    Inst = TmpInst;
6090    return true;
6091  }
6092
6093  case ARM::VLD3LNdWB_fixed_Asm_8:
6094  case ARM::VLD3LNdWB_fixed_Asm_16:
6095  case ARM::VLD3LNdWB_fixed_Asm_32:
6096  case ARM::VLD3LNqWB_fixed_Asm_16:
6097  case ARM::VLD3LNqWB_fixed_Asm_32: {
6098    MCInst TmpInst;
6099    // Shuffle the operands around so the lane index operand is in the
6100    // right place.
6101    unsigned Spacing;
6102    TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
6103    TmpInst.addOperand(Inst.getOperand(0)); // Vd
6104    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6105                                            Spacing));
6106    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6107                                            Spacing * 2));
6108    TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
6109    TmpInst.addOperand(Inst.getOperand(2)); // Rn
6110    TmpInst.addOperand(Inst.getOperand(3)); // alignment
6111    TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm
6112    TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
6113    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6114                                            Spacing));
6115    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6116                                            Spacing * 2));
6117    TmpInst.addOperand(Inst.getOperand(1)); // lane
6118    TmpInst.addOperand(Inst.getOperand(4)); // CondCode
6119    TmpInst.addOperand(Inst.getOperand(5));
6120    Inst = TmpInst;
6121    return true;
6122  }
6123
6124  case ARM::VLD4LNdWB_fixed_Asm_8:
6125  case ARM::VLD4LNdWB_fixed_Asm_16:
6126  case ARM::VLD4LNdWB_fixed_Asm_32:
6127  case ARM::VLD4LNqWB_fixed_Asm_16:
6128  case ARM::VLD4LNqWB_fixed_Asm_32: {
6129    MCInst TmpInst;
6130    // Shuffle the operands around so the lane index operand is in the
6131    // right place.
6132    unsigned Spacing;
6133    TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
6134    TmpInst.addOperand(Inst.getOperand(0)); // Vd
6135    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6136                                            Spacing));
6137    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6138                                            Spacing * 2));
6139    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6140                                            Spacing * 3));
6141    TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
6142    TmpInst.addOperand(Inst.getOperand(2)); // Rn
6143    TmpInst.addOperand(Inst.getOperand(3)); // alignment
6144    TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm
6145    TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
6146    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6147                                            Spacing));
6148    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6149                                            Spacing * 2));
6150    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6151                                            Spacing * 3));
6152    TmpInst.addOperand(Inst.getOperand(1)); // lane
6153    TmpInst.addOperand(Inst.getOperand(4)); // CondCode
6154    TmpInst.addOperand(Inst.getOperand(5));
6155    Inst = TmpInst;
6156    return true;
6157  }
6158
6159  case ARM::VLD1LNdAsm_8:
6160  case ARM::VLD1LNdAsm_16:
6161  case ARM::VLD1LNdAsm_32: {
6162    MCInst TmpInst;
6163    // Shuffle the operands around so the lane index operand is in the
6164    // right place.
6165    unsigned Spacing;
6166    TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
6167    TmpInst.addOperand(Inst.getOperand(0)); // Vd
6168    TmpInst.addOperand(Inst.getOperand(2)); // Rn
6169    TmpInst.addOperand(Inst.getOperand(3)); // alignment
6170    TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
6171    TmpInst.addOperand(Inst.getOperand(1)); // lane
6172    TmpInst.addOperand(Inst.getOperand(4)); // CondCode
6173    TmpInst.addOperand(Inst.getOperand(5));
6174    Inst = TmpInst;
6175    return true;
6176  }
6177
6178  case ARM::VLD2LNdAsm_8:
6179  case ARM::VLD2LNdAsm_16:
6180  case ARM::VLD2LNdAsm_32:
6181  case ARM::VLD2LNqAsm_16:
6182  case ARM::VLD2LNqAsm_32: {
6183    MCInst TmpInst;
6184    // Shuffle the operands around so the lane index operand is in the
6185    // right place.
6186    unsigned Spacing;
6187    TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
6188    TmpInst.addOperand(Inst.getOperand(0)); // Vd
6189    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6190                                            Spacing));
6191    TmpInst.addOperand(Inst.getOperand(2)); // Rn
6192    TmpInst.addOperand(Inst.getOperand(3)); // alignment
6193    TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
6194    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6195                                            Spacing));
6196    TmpInst.addOperand(Inst.getOperand(1)); // lane
6197    TmpInst.addOperand(Inst.getOperand(4)); // CondCode
6198    TmpInst.addOperand(Inst.getOperand(5));
6199    Inst = TmpInst;
6200    return true;
6201  }
6202
6203  case ARM::VLD3LNdAsm_8:
6204  case ARM::VLD3LNdAsm_16:
6205  case ARM::VLD3LNdAsm_32:
6206  case ARM::VLD3LNqAsm_16:
6207  case ARM::VLD3LNqAsm_32: {
6208    MCInst TmpInst;
6209    // Shuffle the operands around so the lane index operand is in the
6210    // right place.
6211    unsigned Spacing;
6212    TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
6213    TmpInst.addOperand(Inst.getOperand(0)); // Vd
6214    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6215                                            Spacing));
6216    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6217                                            Spacing * 2));
6218    TmpInst.addOperand(Inst.getOperand(2)); // Rn
6219    TmpInst.addOperand(Inst.getOperand(3)); // alignment
6220    TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
6221    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6222                                            Spacing));
6223    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6224                                            Spacing * 2));
6225    TmpInst.addOperand(Inst.getOperand(1)); // lane
6226    TmpInst.addOperand(Inst.getOperand(4)); // CondCode
6227    TmpInst.addOperand(Inst.getOperand(5));
6228    Inst = TmpInst;
6229    return true;
6230  }
6231
6232  case ARM::VLD4LNdAsm_8:
6233  case ARM::VLD4LNdAsm_16:
6234  case ARM::VLD4LNdAsm_32:
6235  case ARM::VLD4LNqAsm_16:
6236  case ARM::VLD4LNqAsm_32: {
6237    MCInst TmpInst;
6238    // Shuffle the operands around so the lane index operand is in the
6239    // right place.
6240    unsigned Spacing;
6241    TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
6242    TmpInst.addOperand(Inst.getOperand(0)); // Vd
6243    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6244                                            Spacing));
6245    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6246                                            Spacing * 2));
6247    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6248                                            Spacing * 3));
6249    TmpInst.addOperand(Inst.getOperand(2)); // Rn
6250    TmpInst.addOperand(Inst.getOperand(3)); // alignment
6251    TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
6252    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6253                                            Spacing));
6254    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6255                                            Spacing * 2));
6256    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6257                                            Spacing * 3));
6258    TmpInst.addOperand(Inst.getOperand(1)); // lane
6259    TmpInst.addOperand(Inst.getOperand(4)); // CondCode
6260    TmpInst.addOperand(Inst.getOperand(5));
6261    Inst = TmpInst;
6262    return true;
6263  }
6264
6265  // VLD3DUP single 3-element structure to all lanes instructions.
6266  case ARM::VLD3DUPdAsm_8:
6267  case ARM::VLD3DUPdAsm_16:
6268  case ARM::VLD3DUPdAsm_32:
6269  case ARM::VLD3DUPqAsm_8:
6270  case ARM::VLD3DUPqAsm_16:
6271  case ARM::VLD3DUPqAsm_32: {
6272    MCInst TmpInst;
6273    unsigned Spacing;
6274    TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
6275    TmpInst.addOperand(Inst.getOperand(0)); // Vd
6276    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6277                                            Spacing));
6278    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6279                                            Spacing * 2));
6280    TmpInst.addOperand(Inst.getOperand(1)); // Rn
6281    TmpInst.addOperand(Inst.getOperand(2)); // alignment
6282    TmpInst.addOperand(Inst.getOperand(3)); // CondCode
6283    TmpInst.addOperand(Inst.getOperand(4));
6284    Inst = TmpInst;
6285    return true;
6286  }
6287
6288  case ARM::VLD3DUPdWB_fixed_Asm_8:
6289  case ARM::VLD3DUPdWB_fixed_Asm_16:
6290  case ARM::VLD3DUPdWB_fixed_Asm_32:
6291  case ARM::VLD3DUPqWB_fixed_Asm_8:
6292  case ARM::VLD3DUPqWB_fixed_Asm_16:
6293  case ARM::VLD3DUPqWB_fixed_Asm_32: {
6294    MCInst TmpInst;
6295    unsigned Spacing;
6296    TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
6297    TmpInst.addOperand(Inst.getOperand(0)); // Vd
6298    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6299                                            Spacing));
6300    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6301                                            Spacing * 2));
6302    TmpInst.addOperand(Inst.getOperand(1)); // Rn
6303    TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
6304    TmpInst.addOperand(Inst.getOperand(2)); // alignment
6305    TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm
6306    TmpInst.addOperand(Inst.getOperand(3)); // CondCode
6307    TmpInst.addOperand(Inst.getOperand(4));
6308    Inst = TmpInst;
6309    return true;
6310  }
6311
6312  case ARM::VLD3DUPdWB_register_Asm_8:
6313  case ARM::VLD3DUPdWB_register_Asm_16:
6314  case ARM::VLD3DUPdWB_register_Asm_32:
6315  case ARM::VLD3DUPqWB_register_Asm_8:
6316  case ARM::VLD3DUPqWB_register_Asm_16:
6317  case ARM::VLD3DUPqWB_register_Asm_32: {
6318    MCInst TmpInst;
6319    unsigned Spacing;
6320    TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
6321    TmpInst.addOperand(Inst.getOperand(0)); // Vd
6322    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6323                                            Spacing));
6324    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6325                                            Spacing * 2));
6326    TmpInst.addOperand(Inst.getOperand(1)); // Rn
6327    TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
6328    TmpInst.addOperand(Inst.getOperand(2)); // alignment
6329    TmpInst.addOperand(Inst.getOperand(3)); // Rm
6330    TmpInst.addOperand(Inst.getOperand(4)); // CondCode
6331    TmpInst.addOperand(Inst.getOperand(5));
6332    Inst = TmpInst;
6333    return true;
6334  }
6335
6336  // VLD3 multiple 3-element structure instructions.
6337  case ARM::VLD3dAsm_8:
6338  case ARM::VLD3dAsm_16:
6339  case ARM::VLD3dAsm_32:
6340  case ARM::VLD3qAsm_8:
6341  case ARM::VLD3qAsm_16:
6342  case ARM::VLD3qAsm_32: {
6343    MCInst TmpInst;
6344    unsigned Spacing;
6345    TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
6346    TmpInst.addOperand(Inst.getOperand(0)); // Vd
6347    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6348                                            Spacing));
6349    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6350                                            Spacing * 2));
6351    TmpInst.addOperand(Inst.getOperand(1)); // Rn
6352    TmpInst.addOperand(Inst.getOperand(2)); // alignment
6353    TmpInst.addOperand(Inst.getOperand(3)); // CondCode
6354    TmpInst.addOperand(Inst.getOperand(4));
6355    Inst = TmpInst;
6356    return true;
6357  }
6358
6359  case ARM::VLD3dWB_fixed_Asm_8:
6360  case ARM::VLD3dWB_fixed_Asm_16:
6361  case ARM::VLD3dWB_fixed_Asm_32:
6362  case ARM::VLD3qWB_fixed_Asm_8:
6363  case ARM::VLD3qWB_fixed_Asm_16:
6364  case ARM::VLD3qWB_fixed_Asm_32: {
6365    MCInst TmpInst;
6366    unsigned Spacing;
6367    TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
6368    TmpInst.addOperand(Inst.getOperand(0)); // Vd
6369    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6370                                            Spacing));
6371    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6372                                            Spacing * 2));
6373    TmpInst.addOperand(Inst.getOperand(1)); // Rn
6374    TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
6375    TmpInst.addOperand(Inst.getOperand(2)); // alignment
6376    TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm
6377    TmpInst.addOperand(Inst.getOperand(3)); // CondCode
6378    TmpInst.addOperand(Inst.getOperand(4));
6379    Inst = TmpInst;
6380    return true;
6381  }
6382
6383  case ARM::VLD3dWB_register_Asm_8:
6384  case ARM::VLD3dWB_register_Asm_16:
6385  case ARM::VLD3dWB_register_Asm_32:
6386  case ARM::VLD3qWB_register_Asm_8:
6387  case ARM::VLD3qWB_register_Asm_16:
6388  case ARM::VLD3qWB_register_Asm_32: {
6389    MCInst TmpInst;
6390    unsigned Spacing;
6391    TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
6392    TmpInst.addOperand(Inst.getOperand(0)); // Vd
6393    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6394                                            Spacing));
6395    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6396                                            Spacing * 2));
6397    TmpInst.addOperand(Inst.getOperand(1)); // Rn
6398    TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
6399    TmpInst.addOperand(Inst.getOperand(2)); // alignment
6400    TmpInst.addOperand(Inst.getOperand(3)); // Rm
6401    TmpInst.addOperand(Inst.getOperand(4)); // CondCode
6402    TmpInst.addOperand(Inst.getOperand(5));
6403    Inst = TmpInst;
6404    return true;
6405  }
6406
6407  // VLD4DUP single 3-element structure to all lanes instructions.
6408  case ARM::VLD4DUPdAsm_8:
6409  case ARM::VLD4DUPdAsm_16:
6410  case ARM::VLD4DUPdAsm_32:
6411  case ARM::VLD4DUPqAsm_8:
6412  case ARM::VLD4DUPqAsm_16:
6413  case ARM::VLD4DUPqAsm_32: {
6414    MCInst TmpInst;
6415    unsigned Spacing;
6416    TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
6417    TmpInst.addOperand(Inst.getOperand(0)); // Vd
6418    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6419                                            Spacing));
6420    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6421                                            Spacing * 2));
6422    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6423                                            Spacing * 3));
6424    TmpInst.addOperand(Inst.getOperand(1)); // Rn
6425    TmpInst.addOperand(Inst.getOperand(2)); // alignment
6426    TmpInst.addOperand(Inst.getOperand(3)); // CondCode
6427    TmpInst.addOperand(Inst.getOperand(4));
6428    Inst = TmpInst;
6429    return true;
6430  }
6431
6432  case ARM::VLD4DUPdWB_fixed_Asm_8:
6433  case ARM::VLD4DUPdWB_fixed_Asm_16:
6434  case ARM::VLD4DUPdWB_fixed_Asm_32:
6435  case ARM::VLD4DUPqWB_fixed_Asm_8:
6436  case ARM::VLD4DUPqWB_fixed_Asm_16:
6437  case ARM::VLD4DUPqWB_fixed_Asm_32: {
6438    MCInst TmpInst;
6439    unsigned Spacing;
6440    TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
6441    TmpInst.addOperand(Inst.getOperand(0)); // Vd
6442    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6443                                            Spacing));
6444    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6445                                            Spacing * 2));
6446    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6447                                            Spacing * 3));
6448    TmpInst.addOperand(Inst.getOperand(1)); // Rn
6449    TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
6450    TmpInst.addOperand(Inst.getOperand(2)); // alignment
6451    TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm
6452    TmpInst.addOperand(Inst.getOperand(3)); // CondCode
6453    TmpInst.addOperand(Inst.getOperand(4));
6454    Inst = TmpInst;
6455    return true;
6456  }
6457
6458  case ARM::VLD4DUPdWB_register_Asm_8:
6459  case ARM::VLD4DUPdWB_register_Asm_16:
6460  case ARM::VLD4DUPdWB_register_Asm_32:
6461  case ARM::VLD4DUPqWB_register_Asm_8:
6462  case ARM::VLD4DUPqWB_register_Asm_16:
6463  case ARM::VLD4DUPqWB_register_Asm_32: {
6464    MCInst TmpInst;
6465    unsigned Spacing;
6466    TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
6467    TmpInst.addOperand(Inst.getOperand(0)); // Vd
6468    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6469                                            Spacing));
6470    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6471                                            Spacing * 2));
6472    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6473                                            Spacing * 3));
6474    TmpInst.addOperand(Inst.getOperand(1)); // Rn
6475    TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
6476    TmpInst.addOperand(Inst.getOperand(2)); // alignment
6477    TmpInst.addOperand(Inst.getOperand(3)); // Rm
6478    TmpInst.addOperand(Inst.getOperand(4)); // CondCode
6479    TmpInst.addOperand(Inst.getOperand(5));
6480    Inst = TmpInst;
6481    return true;
6482  }
6483
6484  // VLD4 multiple 4-element structure instructions.
6485  case ARM::VLD4dAsm_8:
6486  case ARM::VLD4dAsm_16:
6487  case ARM::VLD4dAsm_32:
6488  case ARM::VLD4qAsm_8:
6489  case ARM::VLD4qAsm_16:
6490  case ARM::VLD4qAsm_32: {
6491    MCInst TmpInst;
6492    unsigned Spacing;
6493    TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
6494    TmpInst.addOperand(Inst.getOperand(0)); // Vd
6495    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6496                                            Spacing));
6497    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6498                                            Spacing * 2));
6499    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6500                                            Spacing * 3));
6501    TmpInst.addOperand(Inst.getOperand(1)); // Rn
6502    TmpInst.addOperand(Inst.getOperand(2)); // alignment
6503    TmpInst.addOperand(Inst.getOperand(3)); // CondCode
6504    TmpInst.addOperand(Inst.getOperand(4));
6505    Inst = TmpInst;
6506    return true;
6507  }
6508
6509  case ARM::VLD4dWB_fixed_Asm_8:
6510  case ARM::VLD4dWB_fixed_Asm_16:
6511  case ARM::VLD4dWB_fixed_Asm_32:
6512  case ARM::VLD4qWB_fixed_Asm_8:
6513  case ARM::VLD4qWB_fixed_Asm_16:
6514  case ARM::VLD4qWB_fixed_Asm_32: {
6515    MCInst TmpInst;
6516    unsigned Spacing;
6517    TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
6518    TmpInst.addOperand(Inst.getOperand(0)); // Vd
6519    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6520                                            Spacing));
6521    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6522                                            Spacing * 2));
6523    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6524                                            Spacing * 3));
6525    TmpInst.addOperand(Inst.getOperand(1)); // Rn
6526    TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
6527    TmpInst.addOperand(Inst.getOperand(2)); // alignment
6528    TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm
6529    TmpInst.addOperand(Inst.getOperand(3)); // CondCode
6530    TmpInst.addOperand(Inst.getOperand(4));
6531    Inst = TmpInst;
6532    return true;
6533  }
6534
6535  case ARM::VLD4dWB_register_Asm_8:
6536  case ARM::VLD4dWB_register_Asm_16:
6537  case ARM::VLD4dWB_register_Asm_32:
6538  case ARM::VLD4qWB_register_Asm_8:
6539  case ARM::VLD4qWB_register_Asm_16:
6540  case ARM::VLD4qWB_register_Asm_32: {
6541    MCInst TmpInst;
6542    unsigned Spacing;
6543    TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
6544    TmpInst.addOperand(Inst.getOperand(0)); // Vd
6545    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6546                                            Spacing));
6547    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6548                                            Spacing * 2));
6549    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6550                                            Spacing * 3));
6551    TmpInst.addOperand(Inst.getOperand(1)); // Rn
6552    TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
6553    TmpInst.addOperand(Inst.getOperand(2)); // alignment
6554    TmpInst.addOperand(Inst.getOperand(3)); // Rm
6555    TmpInst.addOperand(Inst.getOperand(4)); // CondCode
6556    TmpInst.addOperand(Inst.getOperand(5));
6557    Inst = TmpInst;
6558    return true;
6559  }
6560
6561  // VST3 multiple 3-element structure instructions.
6562  case ARM::VST3dAsm_8:
6563  case ARM::VST3dAsm_16:
6564  case ARM::VST3dAsm_32:
6565  case ARM::VST3qAsm_8:
6566  case ARM::VST3qAsm_16:
6567  case ARM::VST3qAsm_32: {
6568    MCInst TmpInst;
6569    unsigned Spacing;
6570    TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
6571    TmpInst.addOperand(Inst.getOperand(1)); // Rn
6572    TmpInst.addOperand(Inst.getOperand(2)); // alignment
6573    TmpInst.addOperand(Inst.getOperand(0)); // Vd
6574    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6575                                            Spacing));
6576    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6577                                            Spacing * 2));
6578    TmpInst.addOperand(Inst.getOperand(3)); // CondCode
6579    TmpInst.addOperand(Inst.getOperand(4));
6580    Inst = TmpInst;
6581    return true;
6582  }
6583
6584  case ARM::VST3dWB_fixed_Asm_8:
6585  case ARM::VST3dWB_fixed_Asm_16:
6586  case ARM::VST3dWB_fixed_Asm_32:
6587  case ARM::VST3qWB_fixed_Asm_8:
6588  case ARM::VST3qWB_fixed_Asm_16:
6589  case ARM::VST3qWB_fixed_Asm_32: {
6590    MCInst TmpInst;
6591    unsigned Spacing;
6592    TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
6593    TmpInst.addOperand(Inst.getOperand(1)); // Rn
6594    TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
6595    TmpInst.addOperand(Inst.getOperand(2)); // alignment
6596    TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm
6597    TmpInst.addOperand(Inst.getOperand(0)); // Vd
6598    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6599                                            Spacing));
6600    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6601                                            Spacing * 2));
6602    TmpInst.addOperand(Inst.getOperand(3)); // CondCode
6603    TmpInst.addOperand(Inst.getOperand(4));
6604    Inst = TmpInst;
6605    return true;
6606  }
6607
6608  case ARM::VST3dWB_register_Asm_8:
6609  case ARM::VST3dWB_register_Asm_16:
6610  case ARM::VST3dWB_register_Asm_32:
6611  case ARM::VST3qWB_register_Asm_8:
6612  case ARM::VST3qWB_register_Asm_16:
6613  case ARM::VST3qWB_register_Asm_32: {
6614    MCInst TmpInst;
6615    unsigned Spacing;
6616    TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
6617    TmpInst.addOperand(Inst.getOperand(1)); // Rn
6618    TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
6619    TmpInst.addOperand(Inst.getOperand(2)); // alignment
6620    TmpInst.addOperand(Inst.getOperand(3)); // Rm
6621    TmpInst.addOperand(Inst.getOperand(0)); // Vd
6622    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6623                                            Spacing));
6624    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6625                                            Spacing * 2));
6626    TmpInst.addOperand(Inst.getOperand(4)); // CondCode
6627    TmpInst.addOperand(Inst.getOperand(5));
6628    Inst = TmpInst;
6629    return true;
6630  }
6631
6632  // VST4 multiple 3-element structure instructions.
6633  case ARM::VST4dAsm_8:
6634  case ARM::VST4dAsm_16:
6635  case ARM::VST4dAsm_32:
6636  case ARM::VST4qAsm_8:
6637  case ARM::VST4qAsm_16:
6638  case ARM::VST4qAsm_32: {
6639    MCInst TmpInst;
6640    unsigned Spacing;
6641    TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
6642    TmpInst.addOperand(Inst.getOperand(1)); // Rn
6643    TmpInst.addOperand(Inst.getOperand(2)); // alignment
6644    TmpInst.addOperand(Inst.getOperand(0)); // Vd
6645    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6646                                            Spacing));
6647    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6648                                            Spacing * 2));
6649    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6650                                            Spacing * 3));
6651    TmpInst.addOperand(Inst.getOperand(3)); // CondCode
6652    TmpInst.addOperand(Inst.getOperand(4));
6653    Inst = TmpInst;
6654    return true;
6655  }
6656
6657  case ARM::VST4dWB_fixed_Asm_8:
6658  case ARM::VST4dWB_fixed_Asm_16:
6659  case ARM::VST4dWB_fixed_Asm_32:
6660  case ARM::VST4qWB_fixed_Asm_8:
6661  case ARM::VST4qWB_fixed_Asm_16:
6662  case ARM::VST4qWB_fixed_Asm_32: {
6663    MCInst TmpInst;
6664    unsigned Spacing;
6665    TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
6666    TmpInst.addOperand(Inst.getOperand(1)); // Rn
6667    TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
6668    TmpInst.addOperand(Inst.getOperand(2)); // alignment
6669    TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm
6670    TmpInst.addOperand(Inst.getOperand(0)); // Vd
6671    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6672                                            Spacing));
6673    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6674                                            Spacing * 2));
6675    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6676                                            Spacing * 3));
6677    TmpInst.addOperand(Inst.getOperand(3)); // CondCode
6678    TmpInst.addOperand(Inst.getOperand(4));
6679    Inst = TmpInst;
6680    return true;
6681  }
6682
6683  case ARM::VST4dWB_register_Asm_8:
6684  case ARM::VST4dWB_register_Asm_16:
6685  case ARM::VST4dWB_register_Asm_32:
6686  case ARM::VST4qWB_register_Asm_8:
6687  case ARM::VST4qWB_register_Asm_16:
6688  case ARM::VST4qWB_register_Asm_32: {
6689    MCInst TmpInst;
6690    unsigned Spacing;
6691    TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
6692    TmpInst.addOperand(Inst.getOperand(1)); // Rn
6693    TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
6694    TmpInst.addOperand(Inst.getOperand(2)); // alignment
6695    TmpInst.addOperand(Inst.getOperand(3)); // Rm
6696    TmpInst.addOperand(Inst.getOperand(0)); // Vd
6697    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6698                                            Spacing));
6699    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6700                                            Spacing * 2));
6701    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6702                                            Spacing * 3));
6703    TmpInst.addOperand(Inst.getOperand(4)); // CondCode
6704    TmpInst.addOperand(Inst.getOperand(5));
6705    Inst = TmpInst;
6706    return true;
6707  }
6708
6709  // Handle encoding choice for the shift-immediate instructions.
6710  case ARM::t2LSLri:
6711  case ARM::t2LSRri:
6712  case ARM::t2ASRri: {
6713    if (isARMLowRegister(Inst.getOperand(0).getReg()) &&
6714        Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() &&
6715        Inst.getOperand(5).getReg() == (inITBlock() ? 0 : ARM::CPSR) &&
6716        !(static_cast<ARMOperand*>(Operands[3])->isToken() &&
6717         static_cast<ARMOperand*>(Operands[3])->getToken() == ".w")) {
6718      unsigned NewOpc;
6719      switch (Inst.getOpcode()) {
6720      default: llvm_unreachable("unexpected opcode");
6721      case ARM::t2LSLri: NewOpc = ARM::tLSLri; break;
6722      case ARM::t2LSRri: NewOpc = ARM::tLSRri; break;
6723      case ARM::t2ASRri: NewOpc = ARM::tASRri; break;
6724      }
6725      // The Thumb1 operands aren't in the same order. Awesome, eh?
6726      MCInst TmpInst;
6727      TmpInst.setOpcode(NewOpc);
6728      TmpInst.addOperand(Inst.getOperand(0));
6729      TmpInst.addOperand(Inst.getOperand(5));
6730      TmpInst.addOperand(Inst.getOperand(1));
6731      TmpInst.addOperand(Inst.getOperand(2));
6732      TmpInst.addOperand(Inst.getOperand(3));
6733      TmpInst.addOperand(Inst.getOperand(4));
6734      Inst = TmpInst;
6735      return true;
6736    }
6737    return false;
6738  }
6739
6740  // Handle the Thumb2 mode MOV complex aliases.
6741  case ARM::t2MOVsr:
6742  case ARM::t2MOVSsr: {
6743    // Which instruction to expand to depends on the CCOut operand and
6744    // whether we're in an IT block if the register operands are low
6745    // registers.
6746    bool isNarrow = false;
6747    if (isARMLowRegister(Inst.getOperand(0).getReg()) &&
6748        isARMLowRegister(Inst.getOperand(1).getReg()) &&
6749        isARMLowRegister(Inst.getOperand(2).getReg()) &&
6750        Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() &&
6751        inITBlock() == (Inst.getOpcode() == ARM::t2MOVsr))
6752      isNarrow = true;
6753    MCInst TmpInst;
6754    unsigned newOpc;
6755    switch(ARM_AM::getSORegShOp(Inst.getOperand(3).getImm())) {
6756    default: llvm_unreachable("unexpected opcode!");
6757    case ARM_AM::asr: newOpc = isNarrow ? ARM::tASRrr : ARM::t2ASRrr; break;
6758    case ARM_AM::lsr: newOpc = isNarrow ? ARM::tLSRrr : ARM::t2LSRrr; break;
6759    case ARM_AM::lsl: newOpc = isNarrow ? ARM::tLSLrr : ARM::t2LSLrr; break;
6760    case ARM_AM::ror: newOpc = isNarrow ? ARM::tROR   : ARM::t2RORrr; break;
6761    }
6762    TmpInst.setOpcode(newOpc);
6763    TmpInst.addOperand(Inst.getOperand(0)); // Rd
6764    if (isNarrow)
6765      TmpInst.addOperand(MCOperand::CreateReg(
6766          Inst.getOpcode() == ARM::t2MOVSsr ? ARM::CPSR : 0));
6767    TmpInst.addOperand(Inst.getOperand(1)); // Rn
6768    TmpInst.addOperand(Inst.getOperand(2)); // Rm
6769    TmpInst.addOperand(Inst.getOperand(4)); // CondCode
6770    TmpInst.addOperand(Inst.getOperand(5));
6771    if (!isNarrow)
6772      TmpInst.addOperand(MCOperand::CreateReg(
6773          Inst.getOpcode() == ARM::t2MOVSsr ? ARM::CPSR : 0));
6774    Inst = TmpInst;
6775    return true;
6776  }
6777  case ARM::t2MOVsi:
6778  case ARM::t2MOVSsi: {
6779    // Which instruction to expand to depends on the CCOut operand and
6780    // whether we're in an IT block if the register operands are low
6781    // registers.
6782    bool isNarrow = false;
6783    if (isARMLowRegister(Inst.getOperand(0).getReg()) &&
6784        isARMLowRegister(Inst.getOperand(1).getReg()) &&
6785        inITBlock() == (Inst.getOpcode() == ARM::t2MOVsi))
6786      isNarrow = true;
6787    MCInst TmpInst;
6788    unsigned newOpc;
6789    switch(ARM_AM::getSORegShOp(Inst.getOperand(2).getImm())) {
6790    default: llvm_unreachable("unexpected opcode!");
6791    case ARM_AM::asr: newOpc = isNarrow ? ARM::tASRri : ARM::t2ASRri; break;
6792    case ARM_AM::lsr: newOpc = isNarrow ? ARM::tLSRri : ARM::t2LSRri; break;
6793    case ARM_AM::lsl: newOpc = isNarrow ? ARM::tLSLri : ARM::t2LSLri; break;
6794    case ARM_AM::ror: newOpc = ARM::t2RORri; isNarrow = false; break;
6795    case ARM_AM::rrx: isNarrow = false; newOpc = ARM::t2RRX; break;
6796    }
6797    unsigned Amount = ARM_AM::getSORegOffset(Inst.getOperand(2).getImm());
6798    if (Amount == 32) Amount = 0;
6799    TmpInst.setOpcode(newOpc);
6800    TmpInst.addOperand(Inst.getOperand(0)); // Rd
6801    if (isNarrow)
6802      TmpInst.addOperand(MCOperand::CreateReg(
6803          Inst.getOpcode() == ARM::t2MOVSsi ? ARM::CPSR : 0));
6804    TmpInst.addOperand(Inst.getOperand(1)); // Rn
6805    if (newOpc != ARM::t2RRX)
6806      TmpInst.addOperand(MCOperand::CreateImm(Amount));
6807    TmpInst.addOperand(Inst.getOperand(3)); // CondCode
6808    TmpInst.addOperand(Inst.getOperand(4));
6809    if (!isNarrow)
6810      TmpInst.addOperand(MCOperand::CreateReg(
6811          Inst.getOpcode() == ARM::t2MOVSsi ? ARM::CPSR : 0));
6812    Inst = TmpInst;
6813    return true;
6814  }
6815  // Handle the ARM mode MOV complex aliases.
6816  case ARM::ASRr:
6817  case ARM::LSRr:
6818  case ARM::LSLr:
6819  case ARM::RORr: {
6820    ARM_AM::ShiftOpc ShiftTy;
6821    switch(Inst.getOpcode()) {
6822    default: llvm_unreachable("unexpected opcode!");
6823    case ARM::ASRr: ShiftTy = ARM_AM::asr; break;
6824    case ARM::LSRr: ShiftTy = ARM_AM::lsr; break;
6825    case ARM::LSLr: ShiftTy = ARM_AM::lsl; break;
6826    case ARM::RORr: ShiftTy = ARM_AM::ror; break;
6827    }
6828    unsigned Shifter = ARM_AM::getSORegOpc(ShiftTy, 0);
6829    MCInst TmpInst;
6830    TmpInst.setOpcode(ARM::MOVsr);
6831    TmpInst.addOperand(Inst.getOperand(0)); // Rd
6832    TmpInst.addOperand(Inst.getOperand(1)); // Rn
6833    TmpInst.addOperand(Inst.getOperand(2)); // Rm
6834    TmpInst.addOperand(MCOperand::CreateImm(Shifter)); // Shift value and ty
6835    TmpInst.addOperand(Inst.getOperand(3)); // CondCode
6836    TmpInst.addOperand(Inst.getOperand(4));
6837    TmpInst.addOperand(Inst.getOperand(5)); // cc_out
6838    Inst = TmpInst;
6839    return true;
6840  }
6841  case ARM::ASRi:
6842  case ARM::LSRi:
6843  case ARM::LSLi:
6844  case ARM::RORi: {
6845    ARM_AM::ShiftOpc ShiftTy;
6846    switch(Inst.getOpcode()) {
6847    default: llvm_unreachable("unexpected opcode!");
6848    case ARM::ASRi: ShiftTy = ARM_AM::asr; break;
6849    case ARM::LSRi: ShiftTy = ARM_AM::lsr; break;
6850    case ARM::LSLi: ShiftTy = ARM_AM::lsl; break;
6851    case ARM::RORi: ShiftTy = ARM_AM::ror; break;
6852    }
6853    // A shift by zero is a plain MOVr, not a MOVsi.
6854    unsigned Amt = Inst.getOperand(2).getImm();
6855    unsigned Opc = Amt == 0 ? ARM::MOVr : ARM::MOVsi;
6856    // A shift by 32 should be encoded as 0 when permitted
6857    if (Amt == 32 && (ShiftTy == ARM_AM::lsr || ShiftTy == ARM_AM::asr))
6858      Amt = 0;
6859    unsigned Shifter = ARM_AM::getSORegOpc(ShiftTy, Amt);
6860    MCInst TmpInst;
6861    TmpInst.setOpcode(Opc);
6862    TmpInst.addOperand(Inst.getOperand(0)); // Rd
6863    TmpInst.addOperand(Inst.getOperand(1)); // Rn
6864    if (Opc == ARM::MOVsi)
6865      TmpInst.addOperand(MCOperand::CreateImm(Shifter)); // Shift value and ty
6866    TmpInst.addOperand(Inst.getOperand(3)); // CondCode
6867    TmpInst.addOperand(Inst.getOperand(4));
6868    TmpInst.addOperand(Inst.getOperand(5)); // cc_out
6869    Inst = TmpInst;
6870    return true;
6871  }
6872  case ARM::RRXi: {
6873    unsigned Shifter = ARM_AM::getSORegOpc(ARM_AM::rrx, 0);
6874    MCInst TmpInst;
6875    TmpInst.setOpcode(ARM::MOVsi);
6876    TmpInst.addOperand(Inst.getOperand(0)); // Rd
6877    TmpInst.addOperand(Inst.getOperand(1)); // Rn
6878    TmpInst.addOperand(MCOperand::CreateImm(Shifter)); // Shift value and ty
6879    TmpInst.addOperand(Inst.getOperand(2)); // CondCode
6880    TmpInst.addOperand(Inst.getOperand(3));
6881    TmpInst.addOperand(Inst.getOperand(4)); // cc_out
6882    Inst = TmpInst;
6883    return true;
6884  }
6885  case ARM::t2LDMIA_UPD: {
6886    // If this is a load of a single register, then we should use
6887    // a post-indexed LDR instruction instead, per the ARM ARM.
6888    if (Inst.getNumOperands() != 5)
6889      return false;
6890    MCInst TmpInst;
6891    TmpInst.setOpcode(ARM::t2LDR_POST);
6892    TmpInst.addOperand(Inst.getOperand(4)); // Rt
6893    TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb
6894    TmpInst.addOperand(Inst.getOperand(1)); // Rn
6895    TmpInst.addOperand(MCOperand::CreateImm(4));
6896    TmpInst.addOperand(Inst.getOperand(2)); // CondCode
6897    TmpInst.addOperand(Inst.getOperand(3));
6898    Inst = TmpInst;
6899    return true;
6900  }
6901  case ARM::t2STMDB_UPD: {
6902    // If this is a store of a single register, then we should use
6903    // a pre-indexed STR instruction instead, per the ARM ARM.
6904    if (Inst.getNumOperands() != 5)
6905      return false;
6906    MCInst TmpInst;
6907    TmpInst.setOpcode(ARM::t2STR_PRE);
6908    TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb
6909    TmpInst.addOperand(Inst.getOperand(4)); // Rt
6910    TmpInst.addOperand(Inst.getOperand(1)); // Rn
6911    TmpInst.addOperand(MCOperand::CreateImm(-4));
6912    TmpInst.addOperand(Inst.getOperand(2)); // CondCode
6913    TmpInst.addOperand(Inst.getOperand(3));
6914    Inst = TmpInst;
6915    return true;
6916  }
6917  case ARM::LDMIA_UPD:
6918    // If this is a load of a single register via a 'pop', then we should use
6919    // a post-indexed LDR instruction instead, per the ARM ARM.
6920    if (static_cast<ARMOperand*>(Operands[0])->getToken() == "pop" &&
6921        Inst.getNumOperands() == 5) {
6922      MCInst TmpInst;
6923      TmpInst.setOpcode(ARM::LDR_POST_IMM);
6924      TmpInst.addOperand(Inst.getOperand(4)); // Rt
6925      TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb
6926      TmpInst.addOperand(Inst.getOperand(1)); // Rn
6927      TmpInst.addOperand(MCOperand::CreateReg(0));  // am2offset
6928      TmpInst.addOperand(MCOperand::CreateImm(4));
6929      TmpInst.addOperand(Inst.getOperand(2)); // CondCode
6930      TmpInst.addOperand(Inst.getOperand(3));
6931      Inst = TmpInst;
6932      return true;
6933    }
6934    break;
6935  case ARM::STMDB_UPD:
6936    // If this is a store of a single register via a 'push', then we should use
6937    // a pre-indexed STR instruction instead, per the ARM ARM.
6938    if (static_cast<ARMOperand*>(Operands[0])->getToken() == "push" &&
6939        Inst.getNumOperands() == 5) {
6940      MCInst TmpInst;
6941      TmpInst.setOpcode(ARM::STR_PRE_IMM);
6942      TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb
6943      TmpInst.addOperand(Inst.getOperand(4)); // Rt
6944      TmpInst.addOperand(Inst.getOperand(1)); // addrmode_imm12
6945      TmpInst.addOperand(MCOperand::CreateImm(-4));
6946      TmpInst.addOperand(Inst.getOperand(2)); // CondCode
6947      TmpInst.addOperand(Inst.getOperand(3));
6948      Inst = TmpInst;
6949    }
6950    break;
6951  case ARM::t2ADDri12:
6952    // If the immediate fits for encoding T3 (t2ADDri) and the generic "add"
6953    // mnemonic was used (not "addw"), encoding T3 is preferred.
6954    if (static_cast<ARMOperand*>(Operands[0])->getToken() != "add" ||
6955        ARM_AM::getT2SOImmVal(Inst.getOperand(2).getImm()) == -1)
6956      break;
6957    Inst.setOpcode(ARM::t2ADDri);
6958    Inst.addOperand(MCOperand::CreateReg(0)); // cc_out
6959    break;
6960  case ARM::t2SUBri12:
6961    // If the immediate fits for encoding T3 (t2SUBri) and the generic "sub"
6962    // mnemonic was used (not "subw"), encoding T3 is preferred.
6963    if (static_cast<ARMOperand*>(Operands[0])->getToken() != "sub" ||
6964        ARM_AM::getT2SOImmVal(Inst.getOperand(2).getImm()) == -1)
6965      break;
6966    Inst.setOpcode(ARM::t2SUBri);
6967    Inst.addOperand(MCOperand::CreateReg(0)); // cc_out
6968    break;
6969  case ARM::tADDi8:
6970    // If the immediate is in the range 0-7, we want tADDi3 iff Rd was
6971    // explicitly specified. From the ARM ARM: "Encoding T1 is preferred
6972    // to encoding T2 if <Rd> is specified and encoding T2 is preferred
6973    // to encoding T1 if <Rd> is omitted."
6974    if ((unsigned)Inst.getOperand(3).getImm() < 8 && Operands.size() == 6) {
6975      Inst.setOpcode(ARM::tADDi3);
6976      return true;
6977    }
6978    break;
6979  case ARM::tSUBi8:
6980    // If the immediate is in the range 0-7, we want tADDi3 iff Rd was
6981    // explicitly specified. From the ARM ARM: "Encoding T1 is preferred
6982    // to encoding T2 if <Rd> is specified and encoding T2 is preferred
6983    // to encoding T1 if <Rd> is omitted."
6984    if ((unsigned)Inst.getOperand(3).getImm() < 8 && Operands.size() == 6) {
6985      Inst.setOpcode(ARM::tSUBi3);
6986      return true;
6987    }
6988    break;
6989  case ARM::t2ADDri:
6990  case ARM::t2SUBri: {
6991    // If the destination and first source operand are the same, and
6992    // the flags are compatible with the current IT status, use encoding T2
6993    // instead of T3. For compatibility with the system 'as'. Make sure the
6994    // wide encoding wasn't explicit.
6995    if (Inst.getOperand(0).getReg() != Inst.getOperand(1).getReg() ||
6996        !isARMLowRegister(Inst.getOperand(0).getReg()) ||
6997        (unsigned)Inst.getOperand(2).getImm() > 255 ||
6998        ((!inITBlock() && Inst.getOperand(5).getReg() != ARM::CPSR) ||
6999        (inITBlock() && Inst.getOperand(5).getReg() != 0)) ||
7000        (static_cast<ARMOperand*>(Operands[3])->isToken() &&
7001         static_cast<ARMOperand*>(Operands[3])->getToken() == ".w"))
7002      break;
7003    MCInst TmpInst;
7004    TmpInst.setOpcode(Inst.getOpcode() == ARM::t2ADDri ?
7005                      ARM::tADDi8 : ARM::tSUBi8);
7006    TmpInst.addOperand(Inst.getOperand(0));
7007    TmpInst.addOperand(Inst.getOperand(5));
7008    TmpInst.addOperand(Inst.getOperand(0));
7009    TmpInst.addOperand(Inst.getOperand(2));
7010    TmpInst.addOperand(Inst.getOperand(3));
7011    TmpInst.addOperand(Inst.getOperand(4));
7012    Inst = TmpInst;
7013    return true;
7014  }
7015  case ARM::t2ADDrr: {
7016    // If the destination and first source operand are the same, and
7017    // there's no setting of the flags, use encoding T2 instead of T3.
7018    // Note that this is only for ADD, not SUB. This mirrors the system
7019    // 'as' behaviour. Make sure the wide encoding wasn't explicit.
7020    if (Inst.getOperand(0).getReg() != Inst.getOperand(1).getReg() ||
7021        Inst.getOperand(5).getReg() != 0 ||
7022        (static_cast<ARMOperand*>(Operands[3])->isToken() &&
7023         static_cast<ARMOperand*>(Operands[3])->getToken() == ".w"))
7024      break;
7025    MCInst TmpInst;
7026    TmpInst.setOpcode(ARM::tADDhirr);
7027    TmpInst.addOperand(Inst.getOperand(0));
7028    TmpInst.addOperand(Inst.getOperand(0));
7029    TmpInst.addOperand(Inst.getOperand(2));
7030    TmpInst.addOperand(Inst.getOperand(3));
7031    TmpInst.addOperand(Inst.getOperand(4));
7032    Inst = TmpInst;
7033    return true;
7034  }
7035  case ARM::tADDrSP: {
7036    // If the non-SP source operand and the destination operand are not the
7037    // same, we need to use the 32-bit encoding if it's available.
7038    if (Inst.getOperand(0).getReg() != Inst.getOperand(2).getReg()) {
7039      Inst.setOpcode(ARM::t2ADDrr);
7040      Inst.addOperand(MCOperand::CreateReg(0)); // cc_out
7041      return true;
7042    }
7043    break;
7044  }
7045  case ARM::tB:
7046    // A Thumb conditional branch outside of an IT block is a tBcc.
7047    if (Inst.getOperand(1).getImm() != ARMCC::AL && !inITBlock()) {
7048      Inst.setOpcode(ARM::tBcc);
7049      return true;
7050    }
7051    break;
7052  case ARM::t2B:
7053    // A Thumb2 conditional branch outside of an IT block is a t2Bcc.
7054    if (Inst.getOperand(1).getImm() != ARMCC::AL && !inITBlock()){
7055      Inst.setOpcode(ARM::t2Bcc);
7056      return true;
7057    }
7058    break;
7059  case ARM::t2Bcc:
7060    // If the conditional is AL or we're in an IT block, we really want t2B.
7061    if (Inst.getOperand(1).getImm() == ARMCC::AL || inITBlock()) {
7062      Inst.setOpcode(ARM::t2B);
7063      return true;
7064    }
7065    break;
7066  case ARM::tBcc:
7067    // If the conditional is AL, we really want tB.
7068    if (Inst.getOperand(1).getImm() == ARMCC::AL) {
7069      Inst.setOpcode(ARM::tB);
7070      return true;
7071    }
7072    break;
7073  case ARM::tLDMIA: {
7074    // If the register list contains any high registers, or if the writeback
7075    // doesn't match what tLDMIA can do, we need to use the 32-bit encoding
7076    // instead if we're in Thumb2. Otherwise, this should have generated
7077    // an error in validateInstruction().
7078    unsigned Rn = Inst.getOperand(0).getReg();
7079    bool hasWritebackToken =
7080      (static_cast<ARMOperand*>(Operands[3])->isToken() &&
7081       static_cast<ARMOperand*>(Operands[3])->getToken() == "!");
7082    bool listContainsBase;
7083    if (checkLowRegisterList(Inst, 3, Rn, 0, listContainsBase) ||
7084        (!listContainsBase && !hasWritebackToken) ||
7085        (listContainsBase && hasWritebackToken)) {
7086      // 16-bit encoding isn't sufficient. Switch to the 32-bit version.
7087      assert (isThumbTwo());
7088      Inst.setOpcode(hasWritebackToken ? ARM::t2LDMIA_UPD : ARM::t2LDMIA);
7089      // If we're switching to the updating version, we need to insert
7090      // the writeback tied operand.
7091      if (hasWritebackToken)
7092        Inst.insert(Inst.begin(),
7093                    MCOperand::CreateReg(Inst.getOperand(0).getReg()));
7094      return true;
7095    }
7096    break;
7097  }
7098  case ARM::tSTMIA_UPD: {
7099    // If the register list contains any high registers, we need to use
7100    // the 32-bit encoding instead if we're in Thumb2. Otherwise, this
7101    // should have generated an error in validateInstruction().
7102    unsigned Rn = Inst.getOperand(0).getReg();
7103    bool listContainsBase;
7104    if (checkLowRegisterList(Inst, 4, Rn, 0, listContainsBase)) {
7105      // 16-bit encoding isn't sufficient. Switch to the 32-bit version.
7106      assert (isThumbTwo());
7107      Inst.setOpcode(ARM::t2STMIA_UPD);
7108      return true;
7109    }
7110    break;
7111  }
7112  case ARM::tPOP: {
7113    bool listContainsBase;
7114    // If the register list contains any high registers, we need to use
7115    // the 32-bit encoding instead if we're in Thumb2. Otherwise, this
7116    // should have generated an error in validateInstruction().
7117    if (!checkLowRegisterList(Inst, 2, 0, ARM::PC, listContainsBase))
7118      return false;
7119    assert (isThumbTwo());
7120    Inst.setOpcode(ARM::t2LDMIA_UPD);
7121    // Add the base register and writeback operands.
7122    Inst.insert(Inst.begin(), MCOperand::CreateReg(ARM::SP));
7123    Inst.insert(Inst.begin(), MCOperand::CreateReg(ARM::SP));
7124    return true;
7125  }
7126  case ARM::tPUSH: {
7127    bool listContainsBase;
7128    if (!checkLowRegisterList(Inst, 2, 0, ARM::LR, listContainsBase))
7129      return false;
7130    assert (isThumbTwo());
7131    Inst.setOpcode(ARM::t2STMDB_UPD);
7132    // Add the base register and writeback operands.
7133    Inst.insert(Inst.begin(), MCOperand::CreateReg(ARM::SP));
7134    Inst.insert(Inst.begin(), MCOperand::CreateReg(ARM::SP));
7135    return true;
7136  }
7137  case ARM::t2MOVi: {
7138    // If we can use the 16-bit encoding and the user didn't explicitly
7139    // request the 32-bit variant, transform it here.
7140    if (isARMLowRegister(Inst.getOperand(0).getReg()) &&
7141        (unsigned)Inst.getOperand(1).getImm() <= 255 &&
7142        ((!inITBlock() && Inst.getOperand(2).getImm() == ARMCC::AL &&
7143         Inst.getOperand(4).getReg() == ARM::CPSR) ||
7144        (inITBlock() && Inst.getOperand(4).getReg() == 0)) &&
7145        (!static_cast<ARMOperand*>(Operands[2])->isToken() ||
7146         static_cast<ARMOperand*>(Operands[2])->getToken() != ".w")) {
7147      // The operands aren't in the same order for tMOVi8...
7148      MCInst TmpInst;
7149      TmpInst.setOpcode(ARM::tMOVi8);
7150      TmpInst.addOperand(Inst.getOperand(0));
7151      TmpInst.addOperand(Inst.getOperand(4));
7152      TmpInst.addOperand(Inst.getOperand(1));
7153      TmpInst.addOperand(Inst.getOperand(2));
7154      TmpInst.addOperand(Inst.getOperand(3));
7155      Inst = TmpInst;
7156      return true;
7157    }
7158    break;
7159  }
7160  case ARM::t2MOVr: {
7161    // If we can use the 16-bit encoding and the user didn't explicitly
7162    // request the 32-bit variant, transform it here.
7163    if (isARMLowRegister(Inst.getOperand(0).getReg()) &&
7164        isARMLowRegister(Inst.getOperand(1).getReg()) &&
7165        Inst.getOperand(2).getImm() == ARMCC::AL &&
7166        Inst.getOperand(4).getReg() == ARM::CPSR &&
7167        (!static_cast<ARMOperand*>(Operands[2])->isToken() ||
7168         static_cast<ARMOperand*>(Operands[2])->getToken() != ".w")) {
7169      // The operands aren't the same for tMOV[S]r... (no cc_out)
7170      MCInst TmpInst;
7171      TmpInst.setOpcode(Inst.getOperand(4).getReg() ? ARM::tMOVSr : ARM::tMOVr);
7172      TmpInst.addOperand(Inst.getOperand(0));
7173      TmpInst.addOperand(Inst.getOperand(1));
7174      TmpInst.addOperand(Inst.getOperand(2));
7175      TmpInst.addOperand(Inst.getOperand(3));
7176      Inst = TmpInst;
7177      return true;
7178    }
7179    break;
7180  }
7181  case ARM::t2SXTH:
7182  case ARM::t2SXTB:
7183  case ARM::t2UXTH:
7184  case ARM::t2UXTB: {
7185    // If we can use the 16-bit encoding and the user didn't explicitly
7186    // request the 32-bit variant, transform it here.
7187    if (isARMLowRegister(Inst.getOperand(0).getReg()) &&
7188        isARMLowRegister(Inst.getOperand(1).getReg()) &&
7189        Inst.getOperand(2).getImm() == 0 &&
7190        (!static_cast<ARMOperand*>(Operands[2])->isToken() ||
7191         static_cast<ARMOperand*>(Operands[2])->getToken() != ".w")) {
7192      unsigned NewOpc;
7193      switch (Inst.getOpcode()) {
7194      default: llvm_unreachable("Illegal opcode!");
7195      case ARM::t2SXTH: NewOpc = ARM::tSXTH; break;
7196      case ARM::t2SXTB: NewOpc = ARM::tSXTB; break;
7197      case ARM::t2UXTH: NewOpc = ARM::tUXTH; break;
7198      case ARM::t2UXTB: NewOpc = ARM::tUXTB; break;
7199      }
7200      // The operands aren't the same for thumb1 (no rotate operand).
7201      MCInst TmpInst;
7202      TmpInst.setOpcode(NewOpc);
7203      TmpInst.addOperand(Inst.getOperand(0));
7204      TmpInst.addOperand(Inst.getOperand(1));
7205      TmpInst.addOperand(Inst.getOperand(3));
7206      TmpInst.addOperand(Inst.getOperand(4));
7207      Inst = TmpInst;
7208      return true;
7209    }
7210    break;
7211  }
7212  case ARM::MOVsi: {
7213    ARM_AM::ShiftOpc SOpc = ARM_AM::getSORegShOp(Inst.getOperand(2).getImm());
7214    // rrx shifts and asr/lsr of #32 is encoded as 0
7215    if (SOpc == ARM_AM::rrx || SOpc == ARM_AM::asr || SOpc == ARM_AM::lsr)
7216      return false;
7217    if (ARM_AM::getSORegOffset(Inst.getOperand(2).getImm()) == 0) {
7218      // Shifting by zero is accepted as a vanilla 'MOVr'
7219      MCInst TmpInst;
7220      TmpInst.setOpcode(ARM::MOVr);
7221      TmpInst.addOperand(Inst.getOperand(0));
7222      TmpInst.addOperand(Inst.getOperand(1));
7223      TmpInst.addOperand(Inst.getOperand(3));
7224      TmpInst.addOperand(Inst.getOperand(4));
7225      TmpInst.addOperand(Inst.getOperand(5));
7226      Inst = TmpInst;
7227      return true;
7228    }
7229    return false;
7230  }
7231  case ARM::ANDrsi:
7232  case ARM::ORRrsi:
7233  case ARM::EORrsi:
7234  case ARM::BICrsi:
7235  case ARM::SUBrsi:
7236  case ARM::ADDrsi: {
7237    unsigned newOpc;
7238    ARM_AM::ShiftOpc SOpc = ARM_AM::getSORegShOp(Inst.getOperand(3).getImm());
7239    if (SOpc == ARM_AM::rrx) return false;
7240    switch (Inst.getOpcode()) {
7241    default: llvm_unreachable("unexpected opcode!");
7242    case ARM::ANDrsi: newOpc = ARM::ANDrr; break;
7243    case ARM::ORRrsi: newOpc = ARM::ORRrr; break;
7244    case ARM::EORrsi: newOpc = ARM::EORrr; break;
7245    case ARM::BICrsi: newOpc = ARM::BICrr; break;
7246    case ARM::SUBrsi: newOpc = ARM::SUBrr; break;
7247    case ARM::ADDrsi: newOpc = ARM::ADDrr; break;
7248    }
7249    // If the shift is by zero, use the non-shifted instruction definition.
7250    // The exception is for right shifts, where 0 == 32
7251    if (ARM_AM::getSORegOffset(Inst.getOperand(3).getImm()) == 0 &&
7252        !(SOpc == ARM_AM::lsr || SOpc == ARM_AM::asr)) {
7253      MCInst TmpInst;
7254      TmpInst.setOpcode(newOpc);
7255      TmpInst.addOperand(Inst.getOperand(0));
7256      TmpInst.addOperand(Inst.getOperand(1));
7257      TmpInst.addOperand(Inst.getOperand(2));
7258      TmpInst.addOperand(Inst.getOperand(4));
7259      TmpInst.addOperand(Inst.getOperand(5));
7260      TmpInst.addOperand(Inst.getOperand(6));
7261      Inst = TmpInst;
7262      return true;
7263    }
7264    return false;
7265  }
7266  case ARM::ITasm:
7267  case ARM::t2IT: {
7268    // The mask bits for all but the first condition are represented as
7269    // the low bit of the condition code value implies 't'. We currently
7270    // always have 1 implies 't', so XOR toggle the bits if the low bit
7271    // of the condition code is zero.
7272    MCOperand &MO = Inst.getOperand(1);
7273    unsigned Mask = MO.getImm();
7274    unsigned OrigMask = Mask;
7275    unsigned TZ = CountTrailingZeros_32(Mask);
7276    if ((Inst.getOperand(0).getImm() & 1) == 0) {
7277      assert(Mask && TZ <= 3 && "illegal IT mask value!");
7278      for (unsigned i = 3; i != TZ; --i)
7279        Mask ^= 1 << i;
7280    }
7281    MO.setImm(Mask);
7282
7283    // Set up the IT block state according to the IT instruction we just
7284    // matched.
7285    assert(!inITBlock() && "nested IT blocks?!");
7286    ITState.Cond = ARMCC::CondCodes(Inst.getOperand(0).getImm());
7287    ITState.Mask = OrigMask; // Use the original mask, not the updated one.
7288    ITState.CurPosition = 0;
7289    ITState.FirstCond = true;
7290    break;
7291  }
7292  case ARM::t2LSLrr:
7293  case ARM::t2LSRrr:
7294  case ARM::t2ASRrr:
7295  case ARM::t2SBCrr:
7296  case ARM::t2RORrr:
7297  case ARM::t2BICrr:
7298  {
7299    // Assemblers should use the narrow encodings of these instructions when permissible.
7300    if ((isARMLowRegister(Inst.getOperand(1).getReg()) &&
7301         isARMLowRegister(Inst.getOperand(2).getReg())) &&
7302        Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() &&
7303        ((!inITBlock() && Inst.getOperand(5).getReg() == ARM::CPSR) ||
7304         (inITBlock() && Inst.getOperand(5).getReg() != ARM::CPSR)) &&
7305        (!static_cast<ARMOperand*>(Operands[3])->isToken() ||
7306         !static_cast<ARMOperand*>(Operands[3])->getToken().equals_lower(".w"))) {
7307      unsigned NewOpc;
7308      switch (Inst.getOpcode()) {
7309        default: llvm_unreachable("unexpected opcode");
7310        case ARM::t2LSLrr: NewOpc = ARM::tLSLrr; break;
7311        case ARM::t2LSRrr: NewOpc = ARM::tLSRrr; break;
7312        case ARM::t2ASRrr: NewOpc = ARM::tASRrr; break;
7313        case ARM::t2SBCrr: NewOpc = ARM::tSBC; break;
7314        case ARM::t2RORrr: NewOpc = ARM::tROR; break;
7315        case ARM::t2BICrr: NewOpc = ARM::tBIC; break;
7316      }
7317      MCInst TmpInst;
7318      TmpInst.setOpcode(NewOpc);
7319      TmpInst.addOperand(Inst.getOperand(0));
7320      TmpInst.addOperand(Inst.getOperand(5));
7321      TmpInst.addOperand(Inst.getOperand(1));
7322      TmpInst.addOperand(Inst.getOperand(2));
7323      TmpInst.addOperand(Inst.getOperand(3));
7324      TmpInst.addOperand(Inst.getOperand(4));
7325      Inst = TmpInst;
7326      return true;
7327    }
7328    return false;
7329  }
7330  case ARM::t2ANDrr:
7331  case ARM::t2EORrr:
7332  case ARM::t2ADCrr:
7333  case ARM::t2ORRrr:
7334  {
7335    // Assemblers should use the narrow encodings of these instructions when permissible.
7336    // These instructions are special in that they are commutable, so shorter encodings
7337    // are available more often.
7338    if ((isARMLowRegister(Inst.getOperand(1).getReg()) &&
7339         isARMLowRegister(Inst.getOperand(2).getReg())) &&
7340        (Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() ||
7341         Inst.getOperand(0).getReg() == Inst.getOperand(2).getReg()) &&
7342        ((!inITBlock() && Inst.getOperand(5).getReg() == ARM::CPSR) ||
7343         (inITBlock() && Inst.getOperand(5).getReg() != ARM::CPSR)) &&
7344        (!static_cast<ARMOperand*>(Operands[3])->isToken() ||
7345         !static_cast<ARMOperand*>(Operands[3])->getToken().equals_lower(".w"))) {
7346      unsigned NewOpc;
7347      switch (Inst.getOpcode()) {
7348        default: llvm_unreachable("unexpected opcode");
7349        case ARM::t2ADCrr: NewOpc = ARM::tADC; break;
7350        case ARM::t2ANDrr: NewOpc = ARM::tAND; break;
7351        case ARM::t2EORrr: NewOpc = ARM::tEOR; break;
7352        case ARM::t2ORRrr: NewOpc = ARM::tORR; break;
7353      }
7354      MCInst TmpInst;
7355      TmpInst.setOpcode(NewOpc);
7356      TmpInst.addOperand(Inst.getOperand(0));
7357      TmpInst.addOperand(Inst.getOperand(5));
7358      if (Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg()) {
7359        TmpInst.addOperand(Inst.getOperand(1));
7360        TmpInst.addOperand(Inst.getOperand(2));
7361      } else {
7362        TmpInst.addOperand(Inst.getOperand(2));
7363        TmpInst.addOperand(Inst.getOperand(1));
7364      }
7365      TmpInst.addOperand(Inst.getOperand(3));
7366      TmpInst.addOperand(Inst.getOperand(4));
7367      Inst = TmpInst;
7368      return true;
7369    }
7370    return false;
7371  }
7372  }
7373  return false;
7374}
7375
7376unsigned ARMAsmParser::checkTargetMatchPredicate(MCInst &Inst) {
7377  // 16-bit thumb arithmetic instructions either require or preclude the 'S'
7378  // suffix depending on whether they're in an IT block or not.
7379  unsigned Opc = Inst.getOpcode();
7380  const MCInstrDesc &MCID = getInstDesc(Opc);
7381  if (MCID.TSFlags & ARMII::ThumbArithFlagSetting) {
7382    assert(MCID.hasOptionalDef() &&
7383           "optionally flag setting instruction missing optional def operand");
7384    assert(MCID.NumOperands == Inst.getNumOperands() &&
7385           "operand count mismatch!");
7386    // Find the optional-def operand (cc_out).
7387    unsigned OpNo;
7388    for (OpNo = 0;
7389         !MCID.OpInfo[OpNo].isOptionalDef() && OpNo < MCID.NumOperands;
7390         ++OpNo)
7391      ;
7392    // If we're parsing Thumb1, reject it completely.
7393    if (isThumbOne() && Inst.getOperand(OpNo).getReg() != ARM::CPSR)
7394      return Match_MnemonicFail;
7395    // If we're parsing Thumb2, which form is legal depends on whether we're
7396    // in an IT block.
7397    if (isThumbTwo() && Inst.getOperand(OpNo).getReg() != ARM::CPSR &&
7398        !inITBlock())
7399      return Match_RequiresITBlock;
7400    if (isThumbTwo() && Inst.getOperand(OpNo).getReg() == ARM::CPSR &&
7401        inITBlock())
7402      return Match_RequiresNotITBlock;
7403  }
7404  // Some high-register supporting Thumb1 encodings only allow both registers
7405  // to be from r0-r7 when in Thumb2.
7406  else if (Opc == ARM::tADDhirr && isThumbOne() &&
7407           isARMLowRegister(Inst.getOperand(1).getReg()) &&
7408           isARMLowRegister(Inst.getOperand(2).getReg()))
7409    return Match_RequiresThumb2;
7410  // Others only require ARMv6 or later.
7411  else if (Opc == ARM::tMOVr && isThumbOne() && !hasV6Ops() &&
7412           isARMLowRegister(Inst.getOperand(0).getReg()) &&
7413           isARMLowRegister(Inst.getOperand(1).getReg()))
7414    return Match_RequiresV6;
7415  return Match_Success;
7416}
7417
7418static const char *getSubtargetFeatureName(unsigned Val);
7419bool ARMAsmParser::
7420MatchAndEmitInstruction(SMLoc IDLoc,
7421                        SmallVectorImpl<MCParsedAsmOperand*> &Operands,
7422                        MCStreamer &Out) {
7423  MCInst Inst;
7424  unsigned ErrorInfo;
7425  unsigned MatchResult;
7426  MatchResult = MatchInstructionImpl(Operands, Inst, ErrorInfo);
7427  switch (MatchResult) {
7428  default: break;
7429  case Match_Success:
7430    // Context sensitive operand constraints aren't handled by the matcher,
7431    // so check them here.
7432    if (validateInstruction(Inst, Operands)) {
7433      // Still progress the IT block, otherwise one wrong condition causes
7434      // nasty cascading errors.
7435      forwardITPosition();
7436      return true;
7437    }
7438
7439    // Some instructions need post-processing to, for example, tweak which
7440    // encoding is selected. Loop on it while changes happen so the
7441    // individual transformations can chain off each other. E.g.,
7442    // tPOP(r8)->t2LDMIA_UPD(sp,r8)->t2STR_POST(sp,r8)
7443    while (processInstruction(Inst, Operands))
7444      ;
7445
7446    // Only move forward at the very end so that everything in validate
7447    // and process gets a consistent answer about whether we're in an IT
7448    // block.
7449    forwardITPosition();
7450
7451    // ITasm is an ARM mode pseudo-instruction that just sets the ITblock and
7452    // doesn't actually encode.
7453    if (Inst.getOpcode() == ARM::ITasm)
7454      return false;
7455
7456    Inst.setLoc(IDLoc);
7457    Out.EmitInstruction(Inst);
7458    return false;
7459  case Match_MissingFeature: {
7460    assert(ErrorInfo && "Unknown missing feature!");
7461    // Special case the error message for the very common case where only
7462    // a single subtarget feature is missing (Thumb vs. ARM, e.g.).
7463    std::string Msg = "instruction requires:";
7464    unsigned Mask = 1;
7465    for (unsigned i = 0; i < (sizeof(ErrorInfo)*8-1); ++i) {
7466      if (ErrorInfo & Mask) {
7467        Msg += " ";
7468        Msg += getSubtargetFeatureName(ErrorInfo & Mask);
7469      }
7470      Mask <<= 1;
7471    }
7472    return Error(IDLoc, Msg);
7473  }
7474  case Match_InvalidOperand: {
7475    SMLoc ErrorLoc = IDLoc;
7476    if (ErrorInfo != ~0U) {
7477      if (ErrorInfo >= Operands.size())
7478        return Error(IDLoc, "too few operands for instruction");
7479
7480      ErrorLoc = ((ARMOperand*)Operands[ErrorInfo])->getStartLoc();
7481      if (ErrorLoc == SMLoc()) ErrorLoc = IDLoc;
7482    }
7483
7484    return Error(ErrorLoc, "invalid operand for instruction");
7485  }
7486  case Match_MnemonicFail:
7487    return Error(IDLoc, "invalid instruction",
7488                 ((ARMOperand*)Operands[0])->getLocRange());
7489  case Match_ConversionFail:
7490    // The converter function will have already emitted a diagnostic.
7491    return true;
7492  case Match_RequiresNotITBlock:
7493    return Error(IDLoc, "flag setting instruction only valid outside IT block");
7494  case Match_RequiresITBlock:
7495    return Error(IDLoc, "instruction only valid inside IT block");
7496  case Match_RequiresV6:
7497    return Error(IDLoc, "instruction variant requires ARMv6 or later");
7498  case Match_RequiresThumb2:
7499    return Error(IDLoc, "instruction variant requires Thumb2");
7500  case Match_ImmRange0_15: {
7501    SMLoc ErrorLoc = ((ARMOperand*)Operands[ErrorInfo])->getStartLoc();
7502    if (ErrorLoc == SMLoc()) ErrorLoc = IDLoc;
7503    return Error(ErrorLoc, "immediate operand must be in the range [0,15]");
7504  }
7505  }
7506
7507  llvm_unreachable("Implement any new match types added!");
7508}
7509
7510/// parseDirective parses the arm specific directives
7511bool ARMAsmParser::ParseDirective(AsmToken DirectiveID) {
7512  StringRef IDVal = DirectiveID.getIdentifier();
7513  if (IDVal == ".word")
7514    return parseDirectiveWord(4, DirectiveID.getLoc());
7515  else if (IDVal == ".thumb")
7516    return parseDirectiveThumb(DirectiveID.getLoc());
7517  else if (IDVal == ".arm")
7518    return parseDirectiveARM(DirectiveID.getLoc());
7519  else if (IDVal == ".thumb_func")
7520    return parseDirectiveThumbFunc(DirectiveID.getLoc());
7521  else if (IDVal == ".code")
7522    return parseDirectiveCode(DirectiveID.getLoc());
7523  else if (IDVal == ".syntax")
7524    return parseDirectiveSyntax(DirectiveID.getLoc());
7525  else if (IDVal == ".unreq")
7526    return parseDirectiveUnreq(DirectiveID.getLoc());
7527  else if (IDVal == ".arch")
7528    return parseDirectiveArch(DirectiveID.getLoc());
7529  else if (IDVal == ".eabi_attribute")
7530    return parseDirectiveEabiAttr(DirectiveID.getLoc());
7531  return true;
7532}
7533
7534/// parseDirectiveWord
7535///  ::= .word [ expression (, expression)* ]
7536bool ARMAsmParser::parseDirectiveWord(unsigned Size, SMLoc L) {
7537  if (getLexer().isNot(AsmToken::EndOfStatement)) {
7538    for (;;) {
7539      const MCExpr *Value;
7540      if (getParser().ParseExpression(Value))
7541        return true;
7542
7543      getParser().getStreamer().EmitValue(Value, Size, 0/*addrspace*/);
7544
7545      if (getLexer().is(AsmToken::EndOfStatement))
7546        break;
7547
7548      // FIXME: Improve diagnostic.
7549      if (getLexer().isNot(AsmToken::Comma))
7550        return Error(L, "unexpected token in directive");
7551      Parser.Lex();
7552    }
7553  }
7554
7555  Parser.Lex();
7556  return false;
7557}
7558
7559/// parseDirectiveThumb
7560///  ::= .thumb
7561bool ARMAsmParser::parseDirectiveThumb(SMLoc L) {
7562  if (getLexer().isNot(AsmToken::EndOfStatement))
7563    return Error(L, "unexpected token in directive");
7564  Parser.Lex();
7565
7566  if (!isThumb())
7567    SwitchMode();
7568  getParser().getStreamer().EmitAssemblerFlag(MCAF_Code16);
7569  return false;
7570}
7571
7572/// parseDirectiveARM
7573///  ::= .arm
7574bool ARMAsmParser::parseDirectiveARM(SMLoc L) {
7575  if (getLexer().isNot(AsmToken::EndOfStatement))
7576    return Error(L, "unexpected token in directive");
7577  Parser.Lex();
7578
7579  if (isThumb())
7580    SwitchMode();
7581  getParser().getStreamer().EmitAssemblerFlag(MCAF_Code32);
7582  return false;
7583}
7584
7585/// parseDirectiveThumbFunc
7586///  ::= .thumbfunc symbol_name
7587bool ARMAsmParser::parseDirectiveThumbFunc(SMLoc L) {
7588  const MCAsmInfo &MAI = getParser().getStreamer().getContext().getAsmInfo();
7589  bool isMachO = MAI.hasSubsectionsViaSymbols();
7590  StringRef Name;
7591  bool needFuncName = true;
7592
7593  // Darwin asm has (optionally) function name after .thumb_func direction
7594  // ELF doesn't
7595  if (isMachO) {
7596    const AsmToken &Tok = Parser.getTok();
7597    if (Tok.isNot(AsmToken::EndOfStatement)) {
7598      if (Tok.isNot(AsmToken::Identifier) && Tok.isNot(AsmToken::String))
7599        return Error(L, "unexpected token in .thumb_func directive");
7600      Name = Tok.getIdentifier();
7601      Parser.Lex(); // Consume the identifier token.
7602      needFuncName = false;
7603    }
7604  }
7605
7606  if (getLexer().isNot(AsmToken::EndOfStatement))
7607    return Error(L, "unexpected token in directive");
7608
7609  // Eat the end of statement and any blank lines that follow.
7610  while (getLexer().is(AsmToken::EndOfStatement))
7611    Parser.Lex();
7612
7613  // FIXME: assuming function name will be the line following .thumb_func
7614  // We really should be checking the next symbol definition even if there's
7615  // stuff in between.
7616  if (needFuncName) {
7617    Name = Parser.getTok().getIdentifier();
7618  }
7619
7620  // Mark symbol as a thumb symbol.
7621  MCSymbol *Func = getParser().getContext().GetOrCreateSymbol(Name);
7622  getParser().getStreamer().EmitThumbFunc(Func);
7623  return false;
7624}
7625
7626/// parseDirectiveSyntax
7627///  ::= .syntax unified | divided
7628bool ARMAsmParser::parseDirectiveSyntax(SMLoc L) {
7629  const AsmToken &Tok = Parser.getTok();
7630  if (Tok.isNot(AsmToken::Identifier))
7631    return Error(L, "unexpected token in .syntax directive");
7632  StringRef Mode = Tok.getString();
7633  if (Mode == "unified" || Mode == "UNIFIED")
7634    Parser.Lex();
7635  else if (Mode == "divided" || Mode == "DIVIDED")
7636    return Error(L, "'.syntax divided' arm asssembly not supported");
7637  else
7638    return Error(L, "unrecognized syntax mode in .syntax directive");
7639
7640  if (getLexer().isNot(AsmToken::EndOfStatement))
7641    return Error(Parser.getTok().getLoc(), "unexpected token in directive");
7642  Parser.Lex();
7643
7644  // TODO tell the MC streamer the mode
7645  // getParser().getStreamer().Emit???();
7646  return false;
7647}
7648
7649/// parseDirectiveCode
7650///  ::= .code 16 | 32
7651bool ARMAsmParser::parseDirectiveCode(SMLoc L) {
7652  const AsmToken &Tok = Parser.getTok();
7653  if (Tok.isNot(AsmToken::Integer))
7654    return Error(L, "unexpected token in .code directive");
7655  int64_t Val = Parser.getTok().getIntVal();
7656  if (Val == 16)
7657    Parser.Lex();
7658  else if (Val == 32)
7659    Parser.Lex();
7660  else
7661    return Error(L, "invalid operand to .code directive");
7662
7663  if (getLexer().isNot(AsmToken::EndOfStatement))
7664    return Error(Parser.getTok().getLoc(), "unexpected token in directive");
7665  Parser.Lex();
7666
7667  if (Val == 16) {
7668    if (!isThumb())
7669      SwitchMode();
7670    getParser().getStreamer().EmitAssemblerFlag(MCAF_Code16);
7671  } else {
7672    if (isThumb())
7673      SwitchMode();
7674    getParser().getStreamer().EmitAssemblerFlag(MCAF_Code32);
7675  }
7676
7677  return false;
7678}
7679
7680/// parseDirectiveReq
7681///  ::= name .req registername
7682bool ARMAsmParser::parseDirectiveReq(StringRef Name, SMLoc L) {
7683  Parser.Lex(); // Eat the '.req' token.
7684  unsigned Reg;
7685  SMLoc SRegLoc, ERegLoc;
7686  if (ParseRegister(Reg, SRegLoc, ERegLoc)) {
7687    Parser.EatToEndOfStatement();
7688    return Error(SRegLoc, "register name expected");
7689  }
7690
7691  // Shouldn't be anything else.
7692  if (Parser.getTok().isNot(AsmToken::EndOfStatement)) {
7693    Parser.EatToEndOfStatement();
7694    return Error(Parser.getTok().getLoc(),
7695                 "unexpected input in .req directive.");
7696  }
7697
7698  Parser.Lex(); // Consume the EndOfStatement
7699
7700  if (RegisterReqs.GetOrCreateValue(Name, Reg).getValue() != Reg)
7701    return Error(SRegLoc, "redefinition of '" + Name +
7702                          "' does not match original.");
7703
7704  return false;
7705}
7706
7707/// parseDirectiveUneq
7708///  ::= .unreq registername
7709bool ARMAsmParser::parseDirectiveUnreq(SMLoc L) {
7710  if (Parser.getTok().isNot(AsmToken::Identifier)) {
7711    Parser.EatToEndOfStatement();
7712    return Error(L, "unexpected input in .unreq directive.");
7713  }
7714  RegisterReqs.erase(Parser.getTok().getIdentifier());
7715  Parser.Lex(); // Eat the identifier.
7716  return false;
7717}
7718
7719/// parseDirectiveArch
7720///  ::= .arch token
7721bool ARMAsmParser::parseDirectiveArch(SMLoc L) {
7722  return true;
7723}
7724
7725/// parseDirectiveEabiAttr
7726///  ::= .eabi_attribute int, int
7727bool ARMAsmParser::parseDirectiveEabiAttr(SMLoc L) {
7728  return true;
7729}
7730
7731extern "C" void LLVMInitializeARMAsmLexer();
7732
7733/// Force static initialization.
7734extern "C" void LLVMInitializeARMAsmParser() {
7735  RegisterMCAsmParser<ARMAsmParser> X(TheARMTarget);
7736  RegisterMCAsmParser<ARMAsmParser> Y(TheThumbTarget);
7737  LLVMInitializeARMAsmLexer();
7738}
7739
7740#define GET_REGISTER_MATCHER
7741#define GET_SUBTARGET_FEATURE_NAME
7742#define GET_MATCHER_IMPLEMENTATION
7743#include "ARMGenAsmMatcher.inc"
7744