ARMAsmParser.cpp revision 8b36f9e4314ac4d786d2d4fd5fa9e7858487ee9e
1//===-- ARMAsmParser.cpp - Parse ARM assembly to MCInst instructions ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9
10#include "llvm/MC/MCTargetAsmParser.h"
11#include "MCTargetDesc/ARMAddressingModes.h"
12#include "MCTargetDesc/ARMBaseInfo.h"
13#include "MCTargetDesc/ARMMCExpr.h"
14#include "llvm/ADT/BitVector.h"
15#include "llvm/ADT/OwningPtr.h"
16#include "llvm/ADT/STLExtras.h"
17#include "llvm/ADT/SmallVector.h"
18#include "llvm/ADT/StringSwitch.h"
19#include "llvm/ADT/Twine.h"
20#include "llvm/MC/MCAsmInfo.h"
21#include "llvm/MC/MCAssembler.h"
22#include "llvm/MC/MCContext.h"
23#include "llvm/MC/MCELFStreamer.h"
24#include "llvm/MC/MCExpr.h"
25#include "llvm/MC/MCInst.h"
26#include "llvm/MC/MCInstrDesc.h"
27#include "llvm/MC/MCParser/MCAsmLexer.h"
28#include "llvm/MC/MCParser/MCAsmParser.h"
29#include "llvm/MC/MCParser/MCParsedAsmOperand.h"
30#include "llvm/MC/MCRegisterInfo.h"
31#include "llvm/MC/MCStreamer.h"
32#include "llvm/MC/MCSubtargetInfo.h"
33#include "llvm/Support/ELF.h"
34#include "llvm/Support/MathExtras.h"
35#include "llvm/Support/SourceMgr.h"
36#include "llvm/Support/TargetRegistry.h"
37#include "llvm/Support/raw_ostream.h"
38
39using namespace llvm;
40
41namespace {
42
43class ARMOperand;
44
45enum VectorLaneTy { NoLanes, AllLanes, IndexedLane };
46
47class ARMAsmParser : public MCTargetAsmParser {
48  MCSubtargetInfo &STI;
49  MCAsmParser &Parser;
50  const MCRegisterInfo *MRI;
51
52  // Unwind directives state
53  SMLoc FnStartLoc;
54  SMLoc CantUnwindLoc;
55  SMLoc PersonalityLoc;
56  SMLoc HandlerDataLoc;
57  int FPReg;
58  void resetUnwindDirectiveParserState() {
59    FnStartLoc = SMLoc();
60    CantUnwindLoc = SMLoc();
61    PersonalityLoc = SMLoc();
62    HandlerDataLoc = SMLoc();
63    FPReg = -1;
64  }
65
66  // Map of register aliases registers via the .req directive.
67  StringMap<unsigned> RegisterReqs;
68
69  struct {
70    ARMCC::CondCodes Cond;    // Condition for IT block.
71    unsigned Mask:4;          // Condition mask for instructions.
72                              // Starting at first 1 (from lsb).
73                              //   '1'  condition as indicated in IT.
74                              //   '0'  inverse of condition (else).
75                              // Count of instructions in IT block is
76                              // 4 - trailingzeroes(mask)
77
78    bool FirstCond;           // Explicit flag for when we're parsing the
79                              // First instruction in the IT block. It's
80                              // implied in the mask, so needs special
81                              // handling.
82
83    unsigned CurPosition;     // Current position in parsing of IT
84                              // block. In range [0,3]. Initialized
85                              // according to count of instructions in block.
86                              // ~0U if no active IT block.
87  } ITState;
88  bool inITBlock() { return ITState.CurPosition != ~0U;}
89  void forwardITPosition() {
90    if (!inITBlock()) return;
91    // Move to the next instruction in the IT block, if there is one. If not,
92    // mark the block as done.
93    unsigned TZ = countTrailingZeros(ITState.Mask);
94    if (++ITState.CurPosition == 5 - TZ)
95      ITState.CurPosition = ~0U; // Done with the IT block after this.
96  }
97
98
99  MCAsmParser &getParser() const { return Parser; }
100  MCAsmLexer &getLexer() const { return Parser.getLexer(); }
101
102  bool Warning(SMLoc L, const Twine &Msg,
103               ArrayRef<SMRange> Ranges = None) {
104    return Parser.Warning(L, Msg, Ranges);
105  }
106  bool Error(SMLoc L, const Twine &Msg,
107             ArrayRef<SMRange> Ranges = None) {
108    return Parser.Error(L, Msg, Ranges);
109  }
110
111  int tryParseRegister();
112  bool tryParseRegisterWithWriteBack(SmallVectorImpl<MCParsedAsmOperand*> &);
113  int tryParseShiftRegister(SmallVectorImpl<MCParsedAsmOperand*> &);
114  bool parseRegisterList(SmallVectorImpl<MCParsedAsmOperand*> &);
115  bool parseMemory(SmallVectorImpl<MCParsedAsmOperand*> &);
116  bool parseOperand(SmallVectorImpl<MCParsedAsmOperand*> &, StringRef Mnemonic);
117  bool parsePrefix(ARMMCExpr::VariantKind &RefKind);
118  bool parseMemRegOffsetShift(ARM_AM::ShiftOpc &ShiftType,
119                              unsigned &ShiftAmount);
120  bool parseDirectiveWord(unsigned Size, SMLoc L);
121  bool parseDirectiveThumb(SMLoc L);
122  bool parseDirectiveARM(SMLoc L);
123  bool parseDirectiveThumbFunc(SMLoc L);
124  bool parseDirectiveCode(SMLoc L);
125  bool parseDirectiveSyntax(SMLoc L);
126  bool parseDirectiveReq(StringRef Name, SMLoc L);
127  bool parseDirectiveUnreq(SMLoc L);
128  bool parseDirectiveArch(SMLoc L);
129  bool parseDirectiveEabiAttr(SMLoc L);
130  bool parseDirectiveFnStart(SMLoc L);
131  bool parseDirectiveFnEnd(SMLoc L);
132  bool parseDirectiveCantUnwind(SMLoc L);
133  bool parseDirectivePersonality(SMLoc L);
134  bool parseDirectiveHandlerData(SMLoc L);
135  bool parseDirectiveSetFP(SMLoc L);
136  bool parseDirectivePad(SMLoc L);
137  bool parseDirectiveRegSave(SMLoc L, bool IsVector);
138
139  StringRef splitMnemonic(StringRef Mnemonic, unsigned &PredicationCode,
140                          bool &CarrySetting, unsigned &ProcessorIMod,
141                          StringRef &ITMask);
142  void getMnemonicAcceptInfo(StringRef Mnemonic, bool &CanAcceptCarrySet,
143                             bool &CanAcceptPredicationCode);
144
145  bool isThumb() const {
146    // FIXME: Can tablegen auto-generate this?
147    return (STI.getFeatureBits() & ARM::ModeThumb) != 0;
148  }
149  bool isThumbOne() const {
150    return isThumb() && (STI.getFeatureBits() & ARM::FeatureThumb2) == 0;
151  }
152  bool isThumbTwo() const {
153    return isThumb() && (STI.getFeatureBits() & ARM::FeatureThumb2);
154  }
155  bool hasThumb() const {
156    return STI.getFeatureBits() & ARM::HasV4TOps;
157  }
158  bool hasV6Ops() const {
159    return STI.getFeatureBits() & ARM::HasV6Ops;
160  }
161  bool hasV7Ops() const {
162    return STI.getFeatureBits() & ARM::HasV7Ops;
163  }
164  bool hasV8Ops() const {
165    return STI.getFeatureBits() & ARM::HasV8Ops;
166  }
167  bool hasARM() const {
168    return !(STI.getFeatureBits() & ARM::FeatureNoARM);
169  }
170
171  void SwitchMode() {
172    unsigned FB = ComputeAvailableFeatures(STI.ToggleFeature(ARM::ModeThumb));
173    setAvailableFeatures(FB);
174  }
175  bool isMClass() const {
176    return STI.getFeatureBits() & ARM::FeatureMClass;
177  }
178
179  /// @name Auto-generated Match Functions
180  /// {
181
182#define GET_ASSEMBLER_HEADER
183#include "ARMGenAsmMatcher.inc"
184
185  /// }
186
187  OperandMatchResultTy parseITCondCode(SmallVectorImpl<MCParsedAsmOperand*>&);
188  OperandMatchResultTy parseCoprocNumOperand(
189    SmallVectorImpl<MCParsedAsmOperand*>&);
190  OperandMatchResultTy parseCoprocRegOperand(
191    SmallVectorImpl<MCParsedAsmOperand*>&);
192  OperandMatchResultTy parseCoprocOptionOperand(
193    SmallVectorImpl<MCParsedAsmOperand*>&);
194  OperandMatchResultTy parseMemBarrierOptOperand(
195    SmallVectorImpl<MCParsedAsmOperand*>&);
196  OperandMatchResultTy parseInstSyncBarrierOptOperand(
197    SmallVectorImpl<MCParsedAsmOperand*>&);
198  OperandMatchResultTy parseProcIFlagsOperand(
199    SmallVectorImpl<MCParsedAsmOperand*>&);
200  OperandMatchResultTy parseMSRMaskOperand(
201    SmallVectorImpl<MCParsedAsmOperand*>&);
202  OperandMatchResultTy parsePKHImm(SmallVectorImpl<MCParsedAsmOperand*> &O,
203                                   StringRef Op, int Low, int High);
204  OperandMatchResultTy parsePKHLSLImm(SmallVectorImpl<MCParsedAsmOperand*> &O) {
205    return parsePKHImm(O, "lsl", 0, 31);
206  }
207  OperandMatchResultTy parsePKHASRImm(SmallVectorImpl<MCParsedAsmOperand*> &O) {
208    return parsePKHImm(O, "asr", 1, 32);
209  }
210  OperandMatchResultTy parseSetEndImm(SmallVectorImpl<MCParsedAsmOperand*>&);
211  OperandMatchResultTy parseShifterImm(SmallVectorImpl<MCParsedAsmOperand*>&);
212  OperandMatchResultTy parseRotImm(SmallVectorImpl<MCParsedAsmOperand*>&);
213  OperandMatchResultTy parseBitfield(SmallVectorImpl<MCParsedAsmOperand*>&);
214  OperandMatchResultTy parsePostIdxReg(SmallVectorImpl<MCParsedAsmOperand*>&);
215  OperandMatchResultTy parseAM3Offset(SmallVectorImpl<MCParsedAsmOperand*>&);
216  OperandMatchResultTy parseFPImm(SmallVectorImpl<MCParsedAsmOperand*>&);
217  OperandMatchResultTy parseVectorList(SmallVectorImpl<MCParsedAsmOperand*>&);
218  OperandMatchResultTy parseVectorLane(VectorLaneTy &LaneKind, unsigned &Index,
219                                       SMLoc &EndLoc);
220
221  // Asm Match Converter Methods
222  void cvtThumbMultiply(MCInst &Inst,
223                        const SmallVectorImpl<MCParsedAsmOperand*> &);
224  void cvtThumbBranches(MCInst &Inst,
225                        const SmallVectorImpl<MCParsedAsmOperand*> &);
226
227  bool validateInstruction(MCInst &Inst,
228                           const SmallVectorImpl<MCParsedAsmOperand*> &Ops);
229  bool processInstruction(MCInst &Inst,
230                          const SmallVectorImpl<MCParsedAsmOperand*> &Ops);
231  bool shouldOmitCCOutOperand(StringRef Mnemonic,
232                              SmallVectorImpl<MCParsedAsmOperand*> &Operands);
233  bool shouldOmitPredicateOperand(StringRef Mnemonic,
234                              SmallVectorImpl<MCParsedAsmOperand*> &Operands);
235  bool isDeprecated(MCInst &Inst, StringRef &Info);
236
237public:
238  enum ARMMatchResultTy {
239    Match_RequiresITBlock = FIRST_TARGET_MATCH_RESULT_TY,
240    Match_RequiresNotITBlock,
241    Match_RequiresV6,
242    Match_RequiresThumb2,
243#define GET_OPERAND_DIAGNOSTIC_TYPES
244#include "ARMGenAsmMatcher.inc"
245
246  };
247
248  ARMAsmParser(MCSubtargetInfo &_STI, MCAsmParser &_Parser)
249    : MCTargetAsmParser(), STI(_STI), Parser(_Parser), FPReg(-1) {
250    MCAsmParserExtension::Initialize(_Parser);
251
252    // Cache the MCRegisterInfo.
253    MRI = getContext().getRegisterInfo();
254
255    // Initialize the set of available features.
256    setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits()));
257
258    // Not in an ITBlock to start with.
259    ITState.CurPosition = ~0U;
260
261    // Set ELF header flags.
262    // FIXME: This should eventually end up somewhere else where more
263    // intelligent flag decisions can be made. For now we are just maintaining
264    // the statu/parseDirects quo for ARM and setting EF_ARM_EABI_VER5 as the default.
265    if (MCELFStreamer *MES = dyn_cast<MCELFStreamer>(&Parser.getStreamer()))
266      MES->getAssembler().setELFHeaderEFlags(ELF::EF_ARM_EABI_VER5);
267  }
268
269  // Implementation of the MCTargetAsmParser interface:
270  bool ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc);
271  bool ParseInstruction(ParseInstructionInfo &Info, StringRef Name,
272                        SMLoc NameLoc,
273                        SmallVectorImpl<MCParsedAsmOperand*> &Operands);
274  bool ParseDirective(AsmToken DirectiveID);
275
276  unsigned validateTargetOperandClass(MCParsedAsmOperand *Op, unsigned Kind);
277  unsigned checkTargetMatchPredicate(MCInst &Inst);
278
279  bool MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
280                               SmallVectorImpl<MCParsedAsmOperand*> &Operands,
281                               MCStreamer &Out, unsigned &ErrorInfo,
282                               bool MatchingInlineAsm);
283};
284} // end anonymous namespace
285
286namespace {
287
288/// ARMOperand - Instances of this class represent a parsed ARM machine
289/// operand.
290class ARMOperand : public MCParsedAsmOperand {
291  enum KindTy {
292    k_CondCode,
293    k_CCOut,
294    k_ITCondMask,
295    k_CoprocNum,
296    k_CoprocReg,
297    k_CoprocOption,
298    k_Immediate,
299    k_MemBarrierOpt,
300    k_InstSyncBarrierOpt,
301    k_Memory,
302    k_PostIndexRegister,
303    k_MSRMask,
304    k_ProcIFlags,
305    k_VectorIndex,
306    k_Register,
307    k_RegisterList,
308    k_DPRRegisterList,
309    k_SPRRegisterList,
310    k_VectorList,
311    k_VectorListAllLanes,
312    k_VectorListIndexed,
313    k_ShiftedRegister,
314    k_ShiftedImmediate,
315    k_ShifterImmediate,
316    k_RotateImmediate,
317    k_BitfieldDescriptor,
318    k_Token
319  } Kind;
320
321  SMLoc StartLoc, EndLoc;
322  SmallVector<unsigned, 8> Registers;
323
324  struct CCOp {
325    ARMCC::CondCodes Val;
326  };
327
328  struct CopOp {
329    unsigned Val;
330  };
331
332  struct CoprocOptionOp {
333    unsigned Val;
334  };
335
336  struct ITMaskOp {
337    unsigned Mask:4;
338  };
339
340  struct MBOptOp {
341    ARM_MB::MemBOpt Val;
342  };
343
344  struct ISBOptOp {
345    ARM_ISB::InstSyncBOpt Val;
346  };
347
348  struct IFlagsOp {
349    ARM_PROC::IFlags Val;
350  };
351
352  struct MMaskOp {
353    unsigned Val;
354  };
355
356  struct TokOp {
357    const char *Data;
358    unsigned Length;
359  };
360
361  struct RegOp {
362    unsigned RegNum;
363  };
364
365  // A vector register list is a sequential list of 1 to 4 registers.
366  struct VectorListOp {
367    unsigned RegNum;
368    unsigned Count;
369    unsigned LaneIndex;
370    bool isDoubleSpaced;
371  };
372
373  struct VectorIndexOp {
374    unsigned Val;
375  };
376
377  struct ImmOp {
378    const MCExpr *Val;
379  };
380
381  /// Combined record for all forms of ARM address expressions.
382  struct MemoryOp {
383    unsigned BaseRegNum;
384    // Offset is in OffsetReg or OffsetImm. If both are zero, no offset
385    // was specified.
386    const MCConstantExpr *OffsetImm;  // Offset immediate value
387    unsigned OffsetRegNum;    // Offset register num, when OffsetImm == NULL
388    ARM_AM::ShiftOpc ShiftType; // Shift type for OffsetReg
389    unsigned ShiftImm;        // shift for OffsetReg.
390    unsigned Alignment;       // 0 = no alignment specified
391    // n = alignment in bytes (2, 4, 8, 16, or 32)
392    unsigned isNegative : 1;  // Negated OffsetReg? (~'U' bit)
393  };
394
395  struct PostIdxRegOp {
396    unsigned RegNum;
397    bool isAdd;
398    ARM_AM::ShiftOpc ShiftTy;
399    unsigned ShiftImm;
400  };
401
402  struct ShifterImmOp {
403    bool isASR;
404    unsigned Imm;
405  };
406
407  struct RegShiftedRegOp {
408    ARM_AM::ShiftOpc ShiftTy;
409    unsigned SrcReg;
410    unsigned ShiftReg;
411    unsigned ShiftImm;
412  };
413
414  struct RegShiftedImmOp {
415    ARM_AM::ShiftOpc ShiftTy;
416    unsigned SrcReg;
417    unsigned ShiftImm;
418  };
419
420  struct RotImmOp {
421    unsigned Imm;
422  };
423
424  struct BitfieldOp {
425    unsigned LSB;
426    unsigned Width;
427  };
428
429  union {
430    struct CCOp CC;
431    struct CopOp Cop;
432    struct CoprocOptionOp CoprocOption;
433    struct MBOptOp MBOpt;
434    struct ISBOptOp ISBOpt;
435    struct ITMaskOp ITMask;
436    struct IFlagsOp IFlags;
437    struct MMaskOp MMask;
438    struct TokOp Tok;
439    struct RegOp Reg;
440    struct VectorListOp VectorList;
441    struct VectorIndexOp VectorIndex;
442    struct ImmOp Imm;
443    struct MemoryOp Memory;
444    struct PostIdxRegOp PostIdxReg;
445    struct ShifterImmOp ShifterImm;
446    struct RegShiftedRegOp RegShiftedReg;
447    struct RegShiftedImmOp RegShiftedImm;
448    struct RotImmOp RotImm;
449    struct BitfieldOp Bitfield;
450  };
451
452  ARMOperand(KindTy K) : MCParsedAsmOperand(), Kind(K) {}
453public:
454  ARMOperand(const ARMOperand &o) : MCParsedAsmOperand() {
455    Kind = o.Kind;
456    StartLoc = o.StartLoc;
457    EndLoc = o.EndLoc;
458    switch (Kind) {
459    case k_CondCode:
460      CC = o.CC;
461      break;
462    case k_ITCondMask:
463      ITMask = o.ITMask;
464      break;
465    case k_Token:
466      Tok = o.Tok;
467      break;
468    case k_CCOut:
469    case k_Register:
470      Reg = o.Reg;
471      break;
472    case k_RegisterList:
473    case k_DPRRegisterList:
474    case k_SPRRegisterList:
475      Registers = o.Registers;
476      break;
477    case k_VectorList:
478    case k_VectorListAllLanes:
479    case k_VectorListIndexed:
480      VectorList = o.VectorList;
481      break;
482    case k_CoprocNum:
483    case k_CoprocReg:
484      Cop = o.Cop;
485      break;
486    case k_CoprocOption:
487      CoprocOption = o.CoprocOption;
488      break;
489    case k_Immediate:
490      Imm = o.Imm;
491      break;
492    case k_MemBarrierOpt:
493      MBOpt = o.MBOpt;
494      break;
495    case k_InstSyncBarrierOpt:
496      ISBOpt = o.ISBOpt;
497    case k_Memory:
498      Memory = o.Memory;
499      break;
500    case k_PostIndexRegister:
501      PostIdxReg = o.PostIdxReg;
502      break;
503    case k_MSRMask:
504      MMask = o.MMask;
505      break;
506    case k_ProcIFlags:
507      IFlags = o.IFlags;
508      break;
509    case k_ShifterImmediate:
510      ShifterImm = o.ShifterImm;
511      break;
512    case k_ShiftedRegister:
513      RegShiftedReg = o.RegShiftedReg;
514      break;
515    case k_ShiftedImmediate:
516      RegShiftedImm = o.RegShiftedImm;
517      break;
518    case k_RotateImmediate:
519      RotImm = o.RotImm;
520      break;
521    case k_BitfieldDescriptor:
522      Bitfield = o.Bitfield;
523      break;
524    case k_VectorIndex:
525      VectorIndex = o.VectorIndex;
526      break;
527    }
528  }
529
530  /// getStartLoc - Get the location of the first token of this operand.
531  SMLoc getStartLoc() const { return StartLoc; }
532  /// getEndLoc - Get the location of the last token of this operand.
533  SMLoc getEndLoc() const { return EndLoc; }
534  /// getLocRange - Get the range between the first and last token of this
535  /// operand.
536  SMRange getLocRange() const { return SMRange(StartLoc, EndLoc); }
537
538  ARMCC::CondCodes getCondCode() const {
539    assert(Kind == k_CondCode && "Invalid access!");
540    return CC.Val;
541  }
542
543  unsigned getCoproc() const {
544    assert((Kind == k_CoprocNum || Kind == k_CoprocReg) && "Invalid access!");
545    return Cop.Val;
546  }
547
548  StringRef getToken() const {
549    assert(Kind == k_Token && "Invalid access!");
550    return StringRef(Tok.Data, Tok.Length);
551  }
552
553  unsigned getReg() const {
554    assert((Kind == k_Register || Kind == k_CCOut) && "Invalid access!");
555    return Reg.RegNum;
556  }
557
558  const SmallVectorImpl<unsigned> &getRegList() const {
559    assert((Kind == k_RegisterList || Kind == k_DPRRegisterList ||
560            Kind == k_SPRRegisterList) && "Invalid access!");
561    return Registers;
562  }
563
564  const MCExpr *getImm() const {
565    assert(isImm() && "Invalid access!");
566    return Imm.Val;
567  }
568
569  unsigned getVectorIndex() const {
570    assert(Kind == k_VectorIndex && "Invalid access!");
571    return VectorIndex.Val;
572  }
573
574  ARM_MB::MemBOpt getMemBarrierOpt() const {
575    assert(Kind == k_MemBarrierOpt && "Invalid access!");
576    return MBOpt.Val;
577  }
578
579  ARM_ISB::InstSyncBOpt getInstSyncBarrierOpt() const {
580    assert(Kind == k_InstSyncBarrierOpt && "Invalid access!");
581    return ISBOpt.Val;
582  }
583
584  ARM_PROC::IFlags getProcIFlags() const {
585    assert(Kind == k_ProcIFlags && "Invalid access!");
586    return IFlags.Val;
587  }
588
589  unsigned getMSRMask() const {
590    assert(Kind == k_MSRMask && "Invalid access!");
591    return MMask.Val;
592  }
593
594  bool isCoprocNum() const { return Kind == k_CoprocNum; }
595  bool isCoprocReg() const { return Kind == k_CoprocReg; }
596  bool isCoprocOption() const { return Kind == k_CoprocOption; }
597  bool isCondCode() const { return Kind == k_CondCode; }
598  bool isCCOut() const { return Kind == k_CCOut; }
599  bool isITMask() const { return Kind == k_ITCondMask; }
600  bool isITCondCode() const { return Kind == k_CondCode; }
601  bool isImm() const { return Kind == k_Immediate; }
602  // checks whether this operand is an unsigned offset which fits is a field
603  // of specified width and scaled by a specific number of bits
604  template<unsigned width, unsigned scale>
605  bool isUnsignedOffset() const {
606    if (!isImm()) return false;
607    if (isa<MCSymbolRefExpr>(Imm.Val)) return true;
608    if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val)) {
609      int64_t Val = CE->getValue();
610      int64_t Align = 1LL << scale;
611      int64_t Max = Align * ((1LL << width) - 1);
612      return ((Val % Align) == 0) && (Val >= 0) && (Val <= Max);
613    }
614    return false;
615  }
616  // checks whether this operand is an signed offset which fits is a field
617  // of specified width and scaled by a specific number of bits
618  template<unsigned width, unsigned scale>
619  bool isSignedOffset() const {
620    if (!isImm()) return false;
621    if (isa<MCSymbolRefExpr>(Imm.Val)) return true;
622    if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val)) {
623      int64_t Val = CE->getValue();
624      int64_t Align = 1LL << scale;
625      int64_t Max = Align * ((1LL << (width-1)) - 1);
626      int64_t Min = -Align * (1LL << (width-1));
627      return ((Val % Align) == 0) && (Val >= Min) && (Val <= Max);
628    }
629    return false;
630  }
631
632  // checks whether this operand is a memory operand computed as an offset
633  // applied to PC. the offset may have 8 bits of magnitude and is represented
634  // with two bits of shift. textually it may be either [pc, #imm], #imm or
635  // relocable expression...
636  bool isThumbMemPC() const {
637    int64_t Val = 0;
638    if (isImm()) {
639      if (isa<MCSymbolRefExpr>(Imm.Val)) return true;
640      const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val);
641      if (!CE) return false;
642      Val = CE->getValue();
643    }
644    else if (isMem()) {
645      if(!Memory.OffsetImm || Memory.OffsetRegNum) return false;
646      if(Memory.BaseRegNum != ARM::PC) return false;
647      Val = Memory.OffsetImm->getValue();
648    }
649    else return false;
650    return ((Val % 4) == 0) && (Val >= 0) && (Val <= 1020);
651  }
652  bool isFPImm() const {
653    if (!isImm()) return false;
654    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
655    if (!CE) return false;
656    int Val = ARM_AM::getFP32Imm(APInt(32, CE->getValue()));
657    return Val != -1;
658  }
659  bool isFBits16() const {
660    if (!isImm()) return false;
661    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
662    if (!CE) return false;
663    int64_t Value = CE->getValue();
664    return Value >= 0 && Value <= 16;
665  }
666  bool isFBits32() const {
667    if (!isImm()) return false;
668    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
669    if (!CE) return false;
670    int64_t Value = CE->getValue();
671    return Value >= 1 && Value <= 32;
672  }
673  bool isImm8s4() const {
674    if (!isImm()) return false;
675    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
676    if (!CE) return false;
677    int64_t Value = CE->getValue();
678    return ((Value & 3) == 0) && Value >= -1020 && Value <= 1020;
679  }
680  bool isImm0_4() const {
681    if (!isImm()) return false;
682    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
683    if (!CE) return false;
684    int64_t Value = CE->getValue();
685    return Value >= 0 && Value < 5;
686  }
687  bool isImm0_1020s4() const {
688    if (!isImm()) return false;
689    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
690    if (!CE) return false;
691    int64_t Value = CE->getValue();
692    return ((Value & 3) == 0) && Value >= 0 && Value <= 1020;
693  }
694  bool isImm0_508s4() const {
695    if (!isImm()) return false;
696    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
697    if (!CE) return false;
698    int64_t Value = CE->getValue();
699    return ((Value & 3) == 0) && Value >= 0 && Value <= 508;
700  }
701  bool isImm0_508s4Neg() const {
702    if (!isImm()) return false;
703    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
704    if (!CE) return false;
705    int64_t Value = -CE->getValue();
706    // explicitly exclude zero. we want that to use the normal 0_508 version.
707    return ((Value & 3) == 0) && Value > 0 && Value <= 508;
708  }
709  bool isImm0_255() const {
710    if (!isImm()) return false;
711    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
712    if (!CE) return false;
713    int64_t Value = CE->getValue();
714    return Value >= 0 && Value < 256;
715  }
716  bool isImm0_4095() const {
717    if (!isImm()) return false;
718    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
719    if (!CE) return false;
720    int64_t Value = CE->getValue();
721    return Value >= 0 && Value < 4096;
722  }
723  bool isImm0_4095Neg() const {
724    if (!isImm()) return false;
725    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
726    if (!CE) return false;
727    int64_t Value = -CE->getValue();
728    return Value > 0 && Value < 4096;
729  }
730  bool isImm0_1() const {
731    if (!isImm()) return false;
732    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
733    if (!CE) return false;
734    int64_t Value = CE->getValue();
735    return Value >= 0 && Value < 2;
736  }
737  bool isImm0_3() const {
738    if (!isImm()) return false;
739    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
740    if (!CE) return false;
741    int64_t Value = CE->getValue();
742    return Value >= 0 && Value < 4;
743  }
744  bool isImm0_7() const {
745    if (!isImm()) return false;
746    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
747    if (!CE) return false;
748    int64_t Value = CE->getValue();
749    return Value >= 0 && Value < 8;
750  }
751  bool isImm0_15() const {
752    if (!isImm()) return false;
753    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
754    if (!CE) return false;
755    int64_t Value = CE->getValue();
756    return Value >= 0 && Value < 16;
757  }
758  bool isImm0_31() const {
759    if (!isImm()) return false;
760    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
761    if (!CE) return false;
762    int64_t Value = CE->getValue();
763    return Value >= 0 && Value < 32;
764  }
765  bool isImm0_63() const {
766    if (!isImm()) return false;
767    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
768    if (!CE) return false;
769    int64_t Value = CE->getValue();
770    return Value >= 0 && Value < 64;
771  }
772  bool isImm8() const {
773    if (!isImm()) return false;
774    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
775    if (!CE) return false;
776    int64_t Value = CE->getValue();
777    return Value == 8;
778  }
779  bool isImm16() const {
780    if (!isImm()) return false;
781    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
782    if (!CE) return false;
783    int64_t Value = CE->getValue();
784    return Value == 16;
785  }
786  bool isImm32() const {
787    if (!isImm()) return false;
788    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
789    if (!CE) return false;
790    int64_t Value = CE->getValue();
791    return Value == 32;
792  }
793  bool isShrImm8() const {
794    if (!isImm()) return false;
795    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
796    if (!CE) return false;
797    int64_t Value = CE->getValue();
798    return Value > 0 && Value <= 8;
799  }
800  bool isShrImm16() const {
801    if (!isImm()) return false;
802    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
803    if (!CE) return false;
804    int64_t Value = CE->getValue();
805    return Value > 0 && Value <= 16;
806  }
807  bool isShrImm32() const {
808    if (!isImm()) return false;
809    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
810    if (!CE) return false;
811    int64_t Value = CE->getValue();
812    return Value > 0 && Value <= 32;
813  }
814  bool isShrImm64() const {
815    if (!isImm()) return false;
816    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
817    if (!CE) return false;
818    int64_t Value = CE->getValue();
819    return Value > 0 && Value <= 64;
820  }
821  bool isImm1_7() const {
822    if (!isImm()) return false;
823    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
824    if (!CE) return false;
825    int64_t Value = CE->getValue();
826    return Value > 0 && Value < 8;
827  }
828  bool isImm1_15() const {
829    if (!isImm()) return false;
830    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
831    if (!CE) return false;
832    int64_t Value = CE->getValue();
833    return Value > 0 && Value < 16;
834  }
835  bool isImm1_31() const {
836    if (!isImm()) return false;
837    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
838    if (!CE) return false;
839    int64_t Value = CE->getValue();
840    return Value > 0 && Value < 32;
841  }
842  bool isImm1_16() const {
843    if (!isImm()) return false;
844    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
845    if (!CE) return false;
846    int64_t Value = CE->getValue();
847    return Value > 0 && Value < 17;
848  }
849  bool isImm1_32() const {
850    if (!isImm()) return false;
851    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
852    if (!CE) return false;
853    int64_t Value = CE->getValue();
854    return Value > 0 && Value < 33;
855  }
856  bool isImm0_32() const {
857    if (!isImm()) return false;
858    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
859    if (!CE) return false;
860    int64_t Value = CE->getValue();
861    return Value >= 0 && Value < 33;
862  }
863  bool isImm0_65535() const {
864    if (!isImm()) return false;
865    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
866    if (!CE) return false;
867    int64_t Value = CE->getValue();
868    return Value >= 0 && Value < 65536;
869  }
870  bool isImm0_65535Expr() const {
871    if (!isImm()) return false;
872    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
873    // If it's not a constant expression, it'll generate a fixup and be
874    // handled later.
875    if (!CE) return true;
876    int64_t Value = CE->getValue();
877    return Value >= 0 && Value < 65536;
878  }
879  bool isImm24bit() const {
880    if (!isImm()) return false;
881    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
882    if (!CE) return false;
883    int64_t Value = CE->getValue();
884    return Value >= 0 && Value <= 0xffffff;
885  }
886  bool isImmThumbSR() const {
887    if (!isImm()) return false;
888    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
889    if (!CE) return false;
890    int64_t Value = CE->getValue();
891    return Value > 0 && Value < 33;
892  }
893  bool isPKHLSLImm() const {
894    if (!isImm()) return false;
895    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
896    if (!CE) return false;
897    int64_t Value = CE->getValue();
898    return Value >= 0 && Value < 32;
899  }
900  bool isPKHASRImm() const {
901    if (!isImm()) return false;
902    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
903    if (!CE) return false;
904    int64_t Value = CE->getValue();
905    return Value > 0 && Value <= 32;
906  }
907  bool isAdrLabel() const {
908    // If we have an immediate that's not a constant, treat it as a label
909    // reference needing a fixup. If it is a constant, but it can't fit
910    // into shift immediate encoding, we reject it.
911    if (isImm() && !isa<MCConstantExpr>(getImm())) return true;
912    else return (isARMSOImm() || isARMSOImmNeg());
913  }
914  bool isARMSOImm() const {
915    if (!isImm()) return false;
916    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
917    if (!CE) return false;
918    int64_t Value = CE->getValue();
919    return ARM_AM::getSOImmVal(Value) != -1;
920  }
921  bool isARMSOImmNot() const {
922    if (!isImm()) return false;
923    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
924    if (!CE) return false;
925    int64_t Value = CE->getValue();
926    return ARM_AM::getSOImmVal(~Value) != -1;
927  }
928  bool isARMSOImmNeg() const {
929    if (!isImm()) return false;
930    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
931    if (!CE) return false;
932    int64_t Value = CE->getValue();
933    // Only use this when not representable as a plain so_imm.
934    return ARM_AM::getSOImmVal(Value) == -1 &&
935      ARM_AM::getSOImmVal(-Value) != -1;
936  }
937  bool isT2SOImm() const {
938    if (!isImm()) return false;
939    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
940    if (!CE) return false;
941    int64_t Value = CE->getValue();
942    return ARM_AM::getT2SOImmVal(Value) != -1;
943  }
944  bool isT2SOImmNot() const {
945    if (!isImm()) return false;
946    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
947    if (!CE) return false;
948    int64_t Value = CE->getValue();
949    return ARM_AM::getT2SOImmVal(Value) == -1 &&
950      ARM_AM::getT2SOImmVal(~Value) != -1;
951  }
952  bool isT2SOImmNeg() const {
953    if (!isImm()) return false;
954    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
955    if (!CE) return false;
956    int64_t Value = CE->getValue();
957    // Only use this when not representable as a plain so_imm.
958    return ARM_AM::getT2SOImmVal(Value) == -1 &&
959      ARM_AM::getT2SOImmVal(-Value) != -1;
960  }
961  bool isSetEndImm() const {
962    if (!isImm()) return false;
963    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
964    if (!CE) return false;
965    int64_t Value = CE->getValue();
966    return Value == 1 || Value == 0;
967  }
968  bool isReg() const { return Kind == k_Register; }
969  bool isRegList() const { return Kind == k_RegisterList; }
970  bool isDPRRegList() const { return Kind == k_DPRRegisterList; }
971  bool isSPRRegList() const { return Kind == k_SPRRegisterList; }
972  bool isToken() const { return Kind == k_Token; }
973  bool isMemBarrierOpt() const { return Kind == k_MemBarrierOpt; }
974  bool isInstSyncBarrierOpt() const { return Kind == k_InstSyncBarrierOpt; }
975  bool isMem() const { return Kind == k_Memory; }
976  bool isShifterImm() const { return Kind == k_ShifterImmediate; }
977  bool isRegShiftedReg() const { return Kind == k_ShiftedRegister; }
978  bool isRegShiftedImm() const { return Kind == k_ShiftedImmediate; }
979  bool isRotImm() const { return Kind == k_RotateImmediate; }
980  bool isBitfield() const { return Kind == k_BitfieldDescriptor; }
981  bool isPostIdxRegShifted() const { return Kind == k_PostIndexRegister; }
982  bool isPostIdxReg() const {
983    return Kind == k_PostIndexRegister && PostIdxReg.ShiftTy ==ARM_AM::no_shift;
984  }
985  bool isMemNoOffset(bool alignOK = false) const {
986    if (!isMem())
987      return false;
988    // No offset of any kind.
989    return Memory.OffsetRegNum == 0 && Memory.OffsetImm == 0 &&
990     (alignOK || Memory.Alignment == 0);
991  }
992  bool isMemPCRelImm12() const {
993    if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
994      return false;
995    // Base register must be PC.
996    if (Memory.BaseRegNum != ARM::PC)
997      return false;
998    // Immediate offset in range [-4095, 4095].
999    if (!Memory.OffsetImm) return true;
1000    int64_t Val = Memory.OffsetImm->getValue();
1001    return (Val > -4096 && Val < 4096) || (Val == INT32_MIN);
1002  }
1003  bool isAlignedMemory() const {
1004    return isMemNoOffset(true);
1005  }
1006  bool isAddrMode2() const {
1007    if (!isMem() || Memory.Alignment != 0) return false;
1008    // Check for register offset.
1009    if (Memory.OffsetRegNum) return true;
1010    // Immediate offset in range [-4095, 4095].
1011    if (!Memory.OffsetImm) return true;
1012    int64_t Val = Memory.OffsetImm->getValue();
1013    return Val > -4096 && Val < 4096;
1014  }
1015  bool isAM2OffsetImm() const {
1016    if (!isImm()) return false;
1017    // Immediate offset in range [-4095, 4095].
1018    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1019    if (!CE) return false;
1020    int64_t Val = CE->getValue();
1021    return (Val == INT32_MIN) || (Val > -4096 && Val < 4096);
1022  }
1023  bool isAddrMode3() const {
1024    // If we have an immediate that's not a constant, treat it as a label
1025    // reference needing a fixup. If it is a constant, it's something else
1026    // and we reject it.
1027    if (isImm() && !isa<MCConstantExpr>(getImm()))
1028      return true;
1029    if (!isMem() || Memory.Alignment != 0) return false;
1030    // No shifts are legal for AM3.
1031    if (Memory.ShiftType != ARM_AM::no_shift) return false;
1032    // Check for register offset.
1033    if (Memory.OffsetRegNum) return true;
1034    // Immediate offset in range [-255, 255].
1035    if (!Memory.OffsetImm) return true;
1036    int64_t Val = Memory.OffsetImm->getValue();
1037    // The #-0 offset is encoded as INT32_MIN, and we have to check
1038    // for this too.
1039    return (Val > -256 && Val < 256) || Val == INT32_MIN;
1040  }
1041  bool isAM3Offset() const {
1042    if (Kind != k_Immediate && Kind != k_PostIndexRegister)
1043      return false;
1044    if (Kind == k_PostIndexRegister)
1045      return PostIdxReg.ShiftTy == ARM_AM::no_shift;
1046    // Immediate offset in range [-255, 255].
1047    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1048    if (!CE) return false;
1049    int64_t Val = CE->getValue();
1050    // Special case, #-0 is INT32_MIN.
1051    return (Val > -256 && Val < 256) || Val == INT32_MIN;
1052  }
1053  bool isAddrMode5() const {
1054    // If we have an immediate that's not a constant, treat it as a label
1055    // reference needing a fixup. If it is a constant, it's something else
1056    // and we reject it.
1057    if (isImm() && !isa<MCConstantExpr>(getImm()))
1058      return true;
1059    if (!isMem() || Memory.Alignment != 0) return false;
1060    // Check for register offset.
1061    if (Memory.OffsetRegNum) return false;
1062    // Immediate offset in range [-1020, 1020] and a multiple of 4.
1063    if (!Memory.OffsetImm) return true;
1064    int64_t Val = Memory.OffsetImm->getValue();
1065    return (Val >= -1020 && Val <= 1020 && ((Val & 3) == 0)) ||
1066      Val == INT32_MIN;
1067  }
1068  bool isMemTBB() const {
1069    if (!isMem() || !Memory.OffsetRegNum || Memory.isNegative ||
1070        Memory.ShiftType != ARM_AM::no_shift || Memory.Alignment != 0)
1071      return false;
1072    return true;
1073  }
1074  bool isMemTBH() const {
1075    if (!isMem() || !Memory.OffsetRegNum || Memory.isNegative ||
1076        Memory.ShiftType != ARM_AM::lsl || Memory.ShiftImm != 1 ||
1077        Memory.Alignment != 0 )
1078      return false;
1079    return true;
1080  }
1081  bool isMemRegOffset() const {
1082    if (!isMem() || !Memory.OffsetRegNum || Memory.Alignment != 0)
1083      return false;
1084    return true;
1085  }
1086  bool isT2MemRegOffset() const {
1087    if (!isMem() || !Memory.OffsetRegNum || Memory.isNegative ||
1088        Memory.Alignment != 0)
1089      return false;
1090    // Only lsl #{0, 1, 2, 3} allowed.
1091    if (Memory.ShiftType == ARM_AM::no_shift)
1092      return true;
1093    if (Memory.ShiftType != ARM_AM::lsl || Memory.ShiftImm > 3)
1094      return false;
1095    return true;
1096  }
1097  bool isMemThumbRR() const {
1098    // Thumb reg+reg addressing is simple. Just two registers, a base and
1099    // an offset. No shifts, negations or any other complicating factors.
1100    if (!isMem() || !Memory.OffsetRegNum || Memory.isNegative ||
1101        Memory.ShiftType != ARM_AM::no_shift || Memory.Alignment != 0)
1102      return false;
1103    return isARMLowRegister(Memory.BaseRegNum) &&
1104      (!Memory.OffsetRegNum || isARMLowRegister(Memory.OffsetRegNum));
1105  }
1106  bool isMemThumbRIs4() const {
1107    if (!isMem() || Memory.OffsetRegNum != 0 ||
1108        !isARMLowRegister(Memory.BaseRegNum) || Memory.Alignment != 0)
1109      return false;
1110    // Immediate offset, multiple of 4 in range [0, 124].
1111    if (!Memory.OffsetImm) return true;
1112    int64_t Val = Memory.OffsetImm->getValue();
1113    return Val >= 0 && Val <= 124 && (Val % 4) == 0;
1114  }
1115  bool isMemThumbRIs2() const {
1116    if (!isMem() || Memory.OffsetRegNum != 0 ||
1117        !isARMLowRegister(Memory.BaseRegNum) || Memory.Alignment != 0)
1118      return false;
1119    // Immediate offset, multiple of 4 in range [0, 62].
1120    if (!Memory.OffsetImm) return true;
1121    int64_t Val = Memory.OffsetImm->getValue();
1122    return Val >= 0 && Val <= 62 && (Val % 2) == 0;
1123  }
1124  bool isMemThumbRIs1() const {
1125    if (!isMem() || Memory.OffsetRegNum != 0 ||
1126        !isARMLowRegister(Memory.BaseRegNum) || Memory.Alignment != 0)
1127      return false;
1128    // Immediate offset in range [0, 31].
1129    if (!Memory.OffsetImm) return true;
1130    int64_t Val = Memory.OffsetImm->getValue();
1131    return Val >= 0 && Val <= 31;
1132  }
1133  bool isMemThumbSPI() const {
1134    if (!isMem() || Memory.OffsetRegNum != 0 ||
1135        Memory.BaseRegNum != ARM::SP || Memory.Alignment != 0)
1136      return false;
1137    // Immediate offset, multiple of 4 in range [0, 1020].
1138    if (!Memory.OffsetImm) return true;
1139    int64_t Val = Memory.OffsetImm->getValue();
1140    return Val >= 0 && Val <= 1020 && (Val % 4) == 0;
1141  }
1142  bool isMemImm8s4Offset() const {
1143    // If we have an immediate that's not a constant, treat it as a label
1144    // reference needing a fixup. If it is a constant, it's something else
1145    // and we reject it.
1146    if (isImm() && !isa<MCConstantExpr>(getImm()))
1147      return true;
1148    if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
1149      return false;
1150    // Immediate offset a multiple of 4 in range [-1020, 1020].
1151    if (!Memory.OffsetImm) return true;
1152    int64_t Val = Memory.OffsetImm->getValue();
1153    // Special case, #-0 is INT32_MIN.
1154    return (Val >= -1020 && Val <= 1020 && (Val & 3) == 0) || Val == INT32_MIN;
1155  }
1156  bool isMemImm0_1020s4Offset() const {
1157    if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
1158      return false;
1159    // Immediate offset a multiple of 4 in range [0, 1020].
1160    if (!Memory.OffsetImm) return true;
1161    int64_t Val = Memory.OffsetImm->getValue();
1162    return Val >= 0 && Val <= 1020 && (Val & 3) == 0;
1163  }
1164  bool isMemImm8Offset() const {
1165    if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
1166      return false;
1167    // Base reg of PC isn't allowed for these encodings.
1168    if (Memory.BaseRegNum == ARM::PC) return false;
1169    // Immediate offset in range [-255, 255].
1170    if (!Memory.OffsetImm) return true;
1171    int64_t Val = Memory.OffsetImm->getValue();
1172    return (Val == INT32_MIN) || (Val > -256 && Val < 256);
1173  }
1174  bool isMemPosImm8Offset() const {
1175    if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
1176      return false;
1177    // Immediate offset in range [0, 255].
1178    if (!Memory.OffsetImm) return true;
1179    int64_t Val = Memory.OffsetImm->getValue();
1180    return Val >= 0 && Val < 256;
1181  }
1182  bool isMemNegImm8Offset() const {
1183    if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
1184      return false;
1185    // Base reg of PC isn't allowed for these encodings.
1186    if (Memory.BaseRegNum == ARM::PC) return false;
1187    // Immediate offset in range [-255, -1].
1188    if (!Memory.OffsetImm) return false;
1189    int64_t Val = Memory.OffsetImm->getValue();
1190    return (Val == INT32_MIN) || (Val > -256 && Val < 0);
1191  }
1192  bool isMemUImm12Offset() const {
1193    if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
1194      return false;
1195    // Immediate offset in range [0, 4095].
1196    if (!Memory.OffsetImm) return true;
1197    int64_t Val = Memory.OffsetImm->getValue();
1198    return (Val >= 0 && Val < 4096);
1199  }
1200  bool isMemImm12Offset() const {
1201    // If we have an immediate that's not a constant, treat it as a label
1202    // reference needing a fixup. If it is a constant, it's something else
1203    // and we reject it.
1204    if (isImm() && !isa<MCConstantExpr>(getImm()))
1205      return true;
1206
1207    if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
1208      return false;
1209    // Immediate offset in range [-4095, 4095].
1210    if (!Memory.OffsetImm) return true;
1211    int64_t Val = Memory.OffsetImm->getValue();
1212    return (Val > -4096 && Val < 4096) || (Val == INT32_MIN);
1213  }
1214  bool isPostIdxImm8() const {
1215    if (!isImm()) return false;
1216    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1217    if (!CE) return false;
1218    int64_t Val = CE->getValue();
1219    return (Val > -256 && Val < 256) || (Val == INT32_MIN);
1220  }
1221  bool isPostIdxImm8s4() const {
1222    if (!isImm()) return false;
1223    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1224    if (!CE) return false;
1225    int64_t Val = CE->getValue();
1226    return ((Val & 3) == 0 && Val >= -1020 && Val <= 1020) ||
1227      (Val == INT32_MIN);
1228  }
1229
1230  bool isMSRMask() const { return Kind == k_MSRMask; }
1231  bool isProcIFlags() const { return Kind == k_ProcIFlags; }
1232
1233  // NEON operands.
1234  bool isSingleSpacedVectorList() const {
1235    return Kind == k_VectorList && !VectorList.isDoubleSpaced;
1236  }
1237  bool isDoubleSpacedVectorList() const {
1238    return Kind == k_VectorList && VectorList.isDoubleSpaced;
1239  }
1240  bool isVecListOneD() const {
1241    if (!isSingleSpacedVectorList()) return false;
1242    return VectorList.Count == 1;
1243  }
1244
1245  bool isVecListDPair() const {
1246    if (!isSingleSpacedVectorList()) return false;
1247    return (ARMMCRegisterClasses[ARM::DPairRegClassID]
1248              .contains(VectorList.RegNum));
1249  }
1250
1251  bool isVecListThreeD() const {
1252    if (!isSingleSpacedVectorList()) return false;
1253    return VectorList.Count == 3;
1254  }
1255
1256  bool isVecListFourD() const {
1257    if (!isSingleSpacedVectorList()) return false;
1258    return VectorList.Count == 4;
1259  }
1260
1261  bool isVecListDPairSpaced() const {
1262    if (isSingleSpacedVectorList()) return false;
1263    return (ARMMCRegisterClasses[ARM::DPairSpcRegClassID]
1264              .contains(VectorList.RegNum));
1265  }
1266
1267  bool isVecListThreeQ() const {
1268    if (!isDoubleSpacedVectorList()) return false;
1269    return VectorList.Count == 3;
1270  }
1271
1272  bool isVecListFourQ() const {
1273    if (!isDoubleSpacedVectorList()) return false;
1274    return VectorList.Count == 4;
1275  }
1276
1277  bool isSingleSpacedVectorAllLanes() const {
1278    return Kind == k_VectorListAllLanes && !VectorList.isDoubleSpaced;
1279  }
1280  bool isDoubleSpacedVectorAllLanes() const {
1281    return Kind == k_VectorListAllLanes && VectorList.isDoubleSpaced;
1282  }
1283  bool isVecListOneDAllLanes() const {
1284    if (!isSingleSpacedVectorAllLanes()) return false;
1285    return VectorList.Count == 1;
1286  }
1287
1288  bool isVecListDPairAllLanes() const {
1289    if (!isSingleSpacedVectorAllLanes()) return false;
1290    return (ARMMCRegisterClasses[ARM::DPairRegClassID]
1291              .contains(VectorList.RegNum));
1292  }
1293
1294  bool isVecListDPairSpacedAllLanes() const {
1295    if (!isDoubleSpacedVectorAllLanes()) return false;
1296    return VectorList.Count == 2;
1297  }
1298
1299  bool isVecListThreeDAllLanes() const {
1300    if (!isSingleSpacedVectorAllLanes()) return false;
1301    return VectorList.Count == 3;
1302  }
1303
1304  bool isVecListThreeQAllLanes() const {
1305    if (!isDoubleSpacedVectorAllLanes()) return false;
1306    return VectorList.Count == 3;
1307  }
1308
1309  bool isVecListFourDAllLanes() const {
1310    if (!isSingleSpacedVectorAllLanes()) return false;
1311    return VectorList.Count == 4;
1312  }
1313
1314  bool isVecListFourQAllLanes() const {
1315    if (!isDoubleSpacedVectorAllLanes()) return false;
1316    return VectorList.Count == 4;
1317  }
1318
1319  bool isSingleSpacedVectorIndexed() const {
1320    return Kind == k_VectorListIndexed && !VectorList.isDoubleSpaced;
1321  }
1322  bool isDoubleSpacedVectorIndexed() const {
1323    return Kind == k_VectorListIndexed && VectorList.isDoubleSpaced;
1324  }
1325  bool isVecListOneDByteIndexed() const {
1326    if (!isSingleSpacedVectorIndexed()) return false;
1327    return VectorList.Count == 1 && VectorList.LaneIndex <= 7;
1328  }
1329
1330  bool isVecListOneDHWordIndexed() const {
1331    if (!isSingleSpacedVectorIndexed()) return false;
1332    return VectorList.Count == 1 && VectorList.LaneIndex <= 3;
1333  }
1334
1335  bool isVecListOneDWordIndexed() const {
1336    if (!isSingleSpacedVectorIndexed()) return false;
1337    return VectorList.Count == 1 && VectorList.LaneIndex <= 1;
1338  }
1339
1340  bool isVecListTwoDByteIndexed() const {
1341    if (!isSingleSpacedVectorIndexed()) return false;
1342    return VectorList.Count == 2 && VectorList.LaneIndex <= 7;
1343  }
1344
1345  bool isVecListTwoDHWordIndexed() const {
1346    if (!isSingleSpacedVectorIndexed()) return false;
1347    return VectorList.Count == 2 && VectorList.LaneIndex <= 3;
1348  }
1349
1350  bool isVecListTwoQWordIndexed() const {
1351    if (!isDoubleSpacedVectorIndexed()) return false;
1352    return VectorList.Count == 2 && VectorList.LaneIndex <= 1;
1353  }
1354
1355  bool isVecListTwoQHWordIndexed() const {
1356    if (!isDoubleSpacedVectorIndexed()) return false;
1357    return VectorList.Count == 2 && VectorList.LaneIndex <= 3;
1358  }
1359
1360  bool isVecListTwoDWordIndexed() const {
1361    if (!isSingleSpacedVectorIndexed()) return false;
1362    return VectorList.Count == 2 && VectorList.LaneIndex <= 1;
1363  }
1364
1365  bool isVecListThreeDByteIndexed() const {
1366    if (!isSingleSpacedVectorIndexed()) return false;
1367    return VectorList.Count == 3 && VectorList.LaneIndex <= 7;
1368  }
1369
1370  bool isVecListThreeDHWordIndexed() const {
1371    if (!isSingleSpacedVectorIndexed()) return false;
1372    return VectorList.Count == 3 && VectorList.LaneIndex <= 3;
1373  }
1374
1375  bool isVecListThreeQWordIndexed() const {
1376    if (!isDoubleSpacedVectorIndexed()) return false;
1377    return VectorList.Count == 3 && VectorList.LaneIndex <= 1;
1378  }
1379
1380  bool isVecListThreeQHWordIndexed() const {
1381    if (!isDoubleSpacedVectorIndexed()) return false;
1382    return VectorList.Count == 3 && VectorList.LaneIndex <= 3;
1383  }
1384
1385  bool isVecListThreeDWordIndexed() const {
1386    if (!isSingleSpacedVectorIndexed()) return false;
1387    return VectorList.Count == 3 && VectorList.LaneIndex <= 1;
1388  }
1389
1390  bool isVecListFourDByteIndexed() const {
1391    if (!isSingleSpacedVectorIndexed()) return false;
1392    return VectorList.Count == 4 && VectorList.LaneIndex <= 7;
1393  }
1394
1395  bool isVecListFourDHWordIndexed() const {
1396    if (!isSingleSpacedVectorIndexed()) return false;
1397    return VectorList.Count == 4 && VectorList.LaneIndex <= 3;
1398  }
1399
1400  bool isVecListFourQWordIndexed() const {
1401    if (!isDoubleSpacedVectorIndexed()) return false;
1402    return VectorList.Count == 4 && VectorList.LaneIndex <= 1;
1403  }
1404
1405  bool isVecListFourQHWordIndexed() const {
1406    if (!isDoubleSpacedVectorIndexed()) return false;
1407    return VectorList.Count == 4 && VectorList.LaneIndex <= 3;
1408  }
1409
1410  bool isVecListFourDWordIndexed() const {
1411    if (!isSingleSpacedVectorIndexed()) return false;
1412    return VectorList.Count == 4 && VectorList.LaneIndex <= 1;
1413  }
1414
1415  bool isVectorIndex8() const {
1416    if (Kind != k_VectorIndex) return false;
1417    return VectorIndex.Val < 8;
1418  }
1419  bool isVectorIndex16() const {
1420    if (Kind != k_VectorIndex) return false;
1421    return VectorIndex.Val < 4;
1422  }
1423  bool isVectorIndex32() const {
1424    if (Kind != k_VectorIndex) return false;
1425    return VectorIndex.Val < 2;
1426  }
1427
1428  bool isNEONi8splat() const {
1429    if (!isImm()) return false;
1430    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1431    // Must be a constant.
1432    if (!CE) return false;
1433    int64_t Value = CE->getValue();
1434    // i8 value splatted across 8 bytes. The immediate is just the 8 byte
1435    // value.
1436    return Value >= 0 && Value < 256;
1437  }
1438
1439  bool isNEONi16splat() const {
1440    if (!isImm()) return false;
1441    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1442    // Must be a constant.
1443    if (!CE) return false;
1444    int64_t Value = CE->getValue();
1445    // i16 value in the range [0,255] or [0x0100, 0xff00]
1446    return (Value >= 0 && Value < 256) || (Value >= 0x0100 && Value <= 0xff00);
1447  }
1448
1449  bool isNEONi32splat() const {
1450    if (!isImm()) return false;
1451    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1452    // Must be a constant.
1453    if (!CE) return false;
1454    int64_t Value = CE->getValue();
1455    // i32 value with set bits only in one byte X000, 0X00, 00X0, or 000X.
1456    return (Value >= 0 && Value < 256) ||
1457      (Value >= 0x0100 && Value <= 0xff00) ||
1458      (Value >= 0x010000 && Value <= 0xff0000) ||
1459      (Value >= 0x01000000 && Value <= 0xff000000);
1460  }
1461
1462  bool isNEONi32vmov() const {
1463    if (!isImm()) return false;
1464    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1465    // Must be a constant.
1466    if (!CE) return false;
1467    int64_t Value = CE->getValue();
1468    // i32 value with set bits only in one byte X000, 0X00, 00X0, or 000X,
1469    // for VMOV/VMVN only, 00Xf or 0Xff are also accepted.
1470    return (Value >= 0 && Value < 256) ||
1471      (Value >= 0x0100 && Value <= 0xff00) ||
1472      (Value >= 0x010000 && Value <= 0xff0000) ||
1473      (Value >= 0x01000000 && Value <= 0xff000000) ||
1474      (Value >= 0x01ff && Value <= 0xffff && (Value & 0xff) == 0xff) ||
1475      (Value >= 0x01ffff && Value <= 0xffffff && (Value & 0xffff) == 0xffff);
1476  }
1477  bool isNEONi32vmovNeg() const {
1478    if (!isImm()) return false;
1479    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1480    // Must be a constant.
1481    if (!CE) return false;
1482    int64_t Value = ~CE->getValue();
1483    // i32 value with set bits only in one byte X000, 0X00, 00X0, or 000X,
1484    // for VMOV/VMVN only, 00Xf or 0Xff are also accepted.
1485    return (Value >= 0 && Value < 256) ||
1486      (Value >= 0x0100 && Value <= 0xff00) ||
1487      (Value >= 0x010000 && Value <= 0xff0000) ||
1488      (Value >= 0x01000000 && Value <= 0xff000000) ||
1489      (Value >= 0x01ff && Value <= 0xffff && (Value & 0xff) == 0xff) ||
1490      (Value >= 0x01ffff && Value <= 0xffffff && (Value & 0xffff) == 0xffff);
1491  }
1492
1493  bool isNEONi64splat() const {
1494    if (!isImm()) return false;
1495    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1496    // Must be a constant.
1497    if (!CE) return false;
1498    uint64_t Value = CE->getValue();
1499    // i64 value with each byte being either 0 or 0xff.
1500    for (unsigned i = 0; i < 8; ++i)
1501      if ((Value & 0xff) != 0 && (Value & 0xff) != 0xff) return false;
1502    return true;
1503  }
1504
1505  void addExpr(MCInst &Inst, const MCExpr *Expr) const {
1506    // Add as immediates when possible.  Null MCExpr = 0.
1507    if (Expr == 0)
1508      Inst.addOperand(MCOperand::CreateImm(0));
1509    else if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr))
1510      Inst.addOperand(MCOperand::CreateImm(CE->getValue()));
1511    else
1512      Inst.addOperand(MCOperand::CreateExpr(Expr));
1513  }
1514
1515  void addCondCodeOperands(MCInst &Inst, unsigned N) const {
1516    assert(N == 2 && "Invalid number of operands!");
1517    Inst.addOperand(MCOperand::CreateImm(unsigned(getCondCode())));
1518    unsigned RegNum = getCondCode() == ARMCC::AL ? 0: ARM::CPSR;
1519    Inst.addOperand(MCOperand::CreateReg(RegNum));
1520  }
1521
1522  void addCoprocNumOperands(MCInst &Inst, unsigned N) const {
1523    assert(N == 1 && "Invalid number of operands!");
1524    Inst.addOperand(MCOperand::CreateImm(getCoproc()));
1525  }
1526
1527  void addCoprocRegOperands(MCInst &Inst, unsigned N) const {
1528    assert(N == 1 && "Invalid number of operands!");
1529    Inst.addOperand(MCOperand::CreateImm(getCoproc()));
1530  }
1531
1532  void addCoprocOptionOperands(MCInst &Inst, unsigned N) const {
1533    assert(N == 1 && "Invalid number of operands!");
1534    Inst.addOperand(MCOperand::CreateImm(CoprocOption.Val));
1535  }
1536
1537  void addITMaskOperands(MCInst &Inst, unsigned N) const {
1538    assert(N == 1 && "Invalid number of operands!");
1539    Inst.addOperand(MCOperand::CreateImm(ITMask.Mask));
1540  }
1541
1542  void addITCondCodeOperands(MCInst &Inst, unsigned N) const {
1543    assert(N == 1 && "Invalid number of operands!");
1544    Inst.addOperand(MCOperand::CreateImm(unsigned(getCondCode())));
1545  }
1546
1547  void addCCOutOperands(MCInst &Inst, unsigned N) const {
1548    assert(N == 1 && "Invalid number of operands!");
1549    Inst.addOperand(MCOperand::CreateReg(getReg()));
1550  }
1551
1552  void addRegOperands(MCInst &Inst, unsigned N) const {
1553    assert(N == 1 && "Invalid number of operands!");
1554    Inst.addOperand(MCOperand::CreateReg(getReg()));
1555  }
1556
1557  void addRegShiftedRegOperands(MCInst &Inst, unsigned N) const {
1558    assert(N == 3 && "Invalid number of operands!");
1559    assert(isRegShiftedReg() &&
1560           "addRegShiftedRegOperands() on non RegShiftedReg!");
1561    Inst.addOperand(MCOperand::CreateReg(RegShiftedReg.SrcReg));
1562    Inst.addOperand(MCOperand::CreateReg(RegShiftedReg.ShiftReg));
1563    Inst.addOperand(MCOperand::CreateImm(
1564      ARM_AM::getSORegOpc(RegShiftedReg.ShiftTy, RegShiftedReg.ShiftImm)));
1565  }
1566
1567  void addRegShiftedImmOperands(MCInst &Inst, unsigned N) const {
1568    assert(N == 2 && "Invalid number of operands!");
1569    assert(isRegShiftedImm() &&
1570           "addRegShiftedImmOperands() on non RegShiftedImm!");
1571    Inst.addOperand(MCOperand::CreateReg(RegShiftedImm.SrcReg));
1572    // Shift of #32 is encoded as 0 where permitted
1573    unsigned Imm = (RegShiftedImm.ShiftImm == 32 ? 0 : RegShiftedImm.ShiftImm);
1574    Inst.addOperand(MCOperand::CreateImm(
1575      ARM_AM::getSORegOpc(RegShiftedImm.ShiftTy, Imm)));
1576  }
1577
1578  void addShifterImmOperands(MCInst &Inst, unsigned N) const {
1579    assert(N == 1 && "Invalid number of operands!");
1580    Inst.addOperand(MCOperand::CreateImm((ShifterImm.isASR << 5) |
1581                                         ShifterImm.Imm));
1582  }
1583
1584  void addRegListOperands(MCInst &Inst, unsigned N) const {
1585    assert(N == 1 && "Invalid number of operands!");
1586    const SmallVectorImpl<unsigned> &RegList = getRegList();
1587    for (SmallVectorImpl<unsigned>::const_iterator
1588           I = RegList.begin(), E = RegList.end(); I != E; ++I)
1589      Inst.addOperand(MCOperand::CreateReg(*I));
1590  }
1591
1592  void addDPRRegListOperands(MCInst &Inst, unsigned N) const {
1593    addRegListOperands(Inst, N);
1594  }
1595
1596  void addSPRRegListOperands(MCInst &Inst, unsigned N) const {
1597    addRegListOperands(Inst, N);
1598  }
1599
1600  void addRotImmOperands(MCInst &Inst, unsigned N) const {
1601    assert(N == 1 && "Invalid number of operands!");
1602    // Encoded as val>>3. The printer handles display as 8, 16, 24.
1603    Inst.addOperand(MCOperand::CreateImm(RotImm.Imm >> 3));
1604  }
1605
1606  void addBitfieldOperands(MCInst &Inst, unsigned N) const {
1607    assert(N == 1 && "Invalid number of operands!");
1608    // Munge the lsb/width into a bitfield mask.
1609    unsigned lsb = Bitfield.LSB;
1610    unsigned width = Bitfield.Width;
1611    // Make a 32-bit mask w/ the referenced bits clear and all other bits set.
1612    uint32_t Mask = ~(((uint32_t)0xffffffff >> lsb) << (32 - width) >>
1613                      (32 - (lsb + width)));
1614    Inst.addOperand(MCOperand::CreateImm(Mask));
1615  }
1616
1617  void addImmOperands(MCInst &Inst, unsigned N) const {
1618    assert(N == 1 && "Invalid number of operands!");
1619    addExpr(Inst, getImm());
1620  }
1621
1622  void addFBits16Operands(MCInst &Inst, unsigned N) const {
1623    assert(N == 1 && "Invalid number of operands!");
1624    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1625    Inst.addOperand(MCOperand::CreateImm(16 - CE->getValue()));
1626  }
1627
1628  void addFBits32Operands(MCInst &Inst, unsigned N) const {
1629    assert(N == 1 && "Invalid number of operands!");
1630    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1631    Inst.addOperand(MCOperand::CreateImm(32 - CE->getValue()));
1632  }
1633
1634  void addFPImmOperands(MCInst &Inst, unsigned N) const {
1635    assert(N == 1 && "Invalid number of operands!");
1636    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1637    int Val = ARM_AM::getFP32Imm(APInt(32, CE->getValue()));
1638    Inst.addOperand(MCOperand::CreateImm(Val));
1639  }
1640
1641  void addImm8s4Operands(MCInst &Inst, unsigned N) const {
1642    assert(N == 1 && "Invalid number of operands!");
1643    // FIXME: We really want to scale the value here, but the LDRD/STRD
1644    // instruction don't encode operands that way yet.
1645    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1646    Inst.addOperand(MCOperand::CreateImm(CE->getValue()));
1647  }
1648
1649  void addImm0_1020s4Operands(MCInst &Inst, unsigned N) const {
1650    assert(N == 1 && "Invalid number of operands!");
1651    // The immediate is scaled by four in the encoding and is stored
1652    // in the MCInst as such. Lop off the low two bits here.
1653    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1654    Inst.addOperand(MCOperand::CreateImm(CE->getValue() / 4));
1655  }
1656
1657  void addImm0_508s4NegOperands(MCInst &Inst, unsigned N) const {
1658    assert(N == 1 && "Invalid number of operands!");
1659    // The immediate is scaled by four in the encoding and is stored
1660    // in the MCInst as such. Lop off the low two bits here.
1661    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1662    Inst.addOperand(MCOperand::CreateImm(-(CE->getValue() / 4)));
1663  }
1664
1665  void addImm0_508s4Operands(MCInst &Inst, unsigned N) const {
1666    assert(N == 1 && "Invalid number of operands!");
1667    // The immediate is scaled by four in the encoding and is stored
1668    // in the MCInst as such. Lop off the low two bits here.
1669    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1670    Inst.addOperand(MCOperand::CreateImm(CE->getValue() / 4));
1671  }
1672
1673  void addImm1_16Operands(MCInst &Inst, unsigned N) const {
1674    assert(N == 1 && "Invalid number of operands!");
1675    // The constant encodes as the immediate-1, and we store in the instruction
1676    // the bits as encoded, so subtract off one here.
1677    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1678    Inst.addOperand(MCOperand::CreateImm(CE->getValue() - 1));
1679  }
1680
1681  void addImm1_32Operands(MCInst &Inst, unsigned N) const {
1682    assert(N == 1 && "Invalid number of operands!");
1683    // The constant encodes as the immediate-1, and we store in the instruction
1684    // the bits as encoded, so subtract off one here.
1685    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1686    Inst.addOperand(MCOperand::CreateImm(CE->getValue() - 1));
1687  }
1688
1689  void addImmThumbSROperands(MCInst &Inst, unsigned N) const {
1690    assert(N == 1 && "Invalid number of operands!");
1691    // The constant encodes as the immediate, except for 32, which encodes as
1692    // zero.
1693    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1694    unsigned Imm = CE->getValue();
1695    Inst.addOperand(MCOperand::CreateImm((Imm == 32 ? 0 : Imm)));
1696  }
1697
1698  void addPKHASRImmOperands(MCInst &Inst, unsigned N) const {
1699    assert(N == 1 && "Invalid number of operands!");
1700    // An ASR value of 32 encodes as 0, so that's how we want to add it to
1701    // the instruction as well.
1702    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1703    int Val = CE->getValue();
1704    Inst.addOperand(MCOperand::CreateImm(Val == 32 ? 0 : Val));
1705  }
1706
1707  void addT2SOImmNotOperands(MCInst &Inst, unsigned N) const {
1708    assert(N == 1 && "Invalid number of operands!");
1709    // The operand is actually a t2_so_imm, but we have its bitwise
1710    // negation in the assembly source, so twiddle it here.
1711    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1712    Inst.addOperand(MCOperand::CreateImm(~CE->getValue()));
1713  }
1714
1715  void addT2SOImmNegOperands(MCInst &Inst, unsigned N) const {
1716    assert(N == 1 && "Invalid number of operands!");
1717    // The operand is actually a t2_so_imm, but we have its
1718    // negation in the assembly source, so twiddle it here.
1719    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1720    Inst.addOperand(MCOperand::CreateImm(-CE->getValue()));
1721  }
1722
1723  void addImm0_4095NegOperands(MCInst &Inst, unsigned N) const {
1724    assert(N == 1 && "Invalid number of operands!");
1725    // The operand is actually an imm0_4095, but we have its
1726    // negation in the assembly source, so twiddle it here.
1727    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1728    Inst.addOperand(MCOperand::CreateImm(-CE->getValue()));
1729  }
1730
1731  void addUnsignedOffset_b8s2Operands(MCInst &Inst, unsigned N) const {
1732    if(const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm())) {
1733      Inst.addOperand(MCOperand::CreateImm(CE->getValue() >> 2));
1734      return;
1735    }
1736
1737    const MCSymbolRefExpr *SR = dyn_cast<MCSymbolRefExpr>(Imm.Val);
1738    assert(SR && "Unknown value type!");
1739    Inst.addOperand(MCOperand::CreateExpr(SR));
1740  }
1741
1742  void addThumbMemPCOperands(MCInst &Inst, unsigned N) const {
1743    assert(N == 1 && "Invalid number of operands!");
1744    if (isImm()) {
1745      const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1746      if (CE) {
1747        Inst.addOperand(MCOperand::CreateImm(CE->getValue()));
1748        return;
1749      }
1750
1751      const MCSymbolRefExpr *SR = dyn_cast<MCSymbolRefExpr>(Imm.Val);
1752      assert(SR && "Unknown value type!");
1753      Inst.addOperand(MCOperand::CreateExpr(SR));
1754      return;
1755    }
1756
1757    assert(isMem()  && "Unknown value type!");
1758    assert(isa<MCConstantExpr>(Memory.OffsetImm) && "Unknown value type!");
1759    Inst.addOperand(MCOperand::CreateImm(Memory.OffsetImm->getValue()));
1760  }
1761
1762  void addARMSOImmNotOperands(MCInst &Inst, unsigned N) const {
1763    assert(N == 1 && "Invalid number of operands!");
1764    // The operand is actually a so_imm, but we have its bitwise
1765    // negation in the assembly source, so twiddle it here.
1766    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1767    Inst.addOperand(MCOperand::CreateImm(~CE->getValue()));
1768  }
1769
1770  void addARMSOImmNegOperands(MCInst &Inst, unsigned N) const {
1771    assert(N == 1 && "Invalid number of operands!");
1772    // The operand is actually a so_imm, but we have its
1773    // negation in the assembly source, so twiddle it here.
1774    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1775    Inst.addOperand(MCOperand::CreateImm(-CE->getValue()));
1776  }
1777
1778  void addMemBarrierOptOperands(MCInst &Inst, unsigned N) const {
1779    assert(N == 1 && "Invalid number of operands!");
1780    Inst.addOperand(MCOperand::CreateImm(unsigned(getMemBarrierOpt())));
1781  }
1782
1783  void addInstSyncBarrierOptOperands(MCInst &Inst, unsigned N) const {
1784    assert(N == 1 && "Invalid number of operands!");
1785    Inst.addOperand(MCOperand::CreateImm(unsigned(getInstSyncBarrierOpt())));
1786  }
1787
1788  void addMemNoOffsetOperands(MCInst &Inst, unsigned N) const {
1789    assert(N == 1 && "Invalid number of operands!");
1790    Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
1791  }
1792
1793  void addMemPCRelImm12Operands(MCInst &Inst, unsigned N) const {
1794    assert(N == 1 && "Invalid number of operands!");
1795    int32_t Imm = Memory.OffsetImm->getValue();
1796    // FIXME: Handle #-0
1797    if (Imm == INT32_MIN) Imm = 0;
1798    Inst.addOperand(MCOperand::CreateImm(Imm));
1799  }
1800
1801  void addAdrLabelOperands(MCInst &Inst, unsigned N) const {
1802    assert(N == 1 && "Invalid number of operands!");
1803    assert(isImm() && "Not an immediate!");
1804
1805    // If we have an immediate that's not a constant, treat it as a label
1806    // reference needing a fixup.
1807    if (!isa<MCConstantExpr>(getImm())) {
1808      Inst.addOperand(MCOperand::CreateExpr(getImm()));
1809      return;
1810    }
1811
1812    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1813    int Val = CE->getValue();
1814    Inst.addOperand(MCOperand::CreateImm(Val));
1815  }
1816
1817  void addAlignedMemoryOperands(MCInst &Inst, unsigned N) const {
1818    assert(N == 2 && "Invalid number of operands!");
1819    Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
1820    Inst.addOperand(MCOperand::CreateImm(Memory.Alignment));
1821  }
1822
1823  void addAddrMode2Operands(MCInst &Inst, unsigned N) const {
1824    assert(N == 3 && "Invalid number of operands!");
1825    int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0;
1826    if (!Memory.OffsetRegNum) {
1827      ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add;
1828      // Special case for #-0
1829      if (Val == INT32_MIN) Val = 0;
1830      if (Val < 0) Val = -Val;
1831      Val = ARM_AM::getAM2Opc(AddSub, Val, ARM_AM::no_shift);
1832    } else {
1833      // For register offset, we encode the shift type and negation flag
1834      // here.
1835      Val = ARM_AM::getAM2Opc(Memory.isNegative ? ARM_AM::sub : ARM_AM::add,
1836                              Memory.ShiftImm, Memory.ShiftType);
1837    }
1838    Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
1839    Inst.addOperand(MCOperand::CreateReg(Memory.OffsetRegNum));
1840    Inst.addOperand(MCOperand::CreateImm(Val));
1841  }
1842
1843  void addAM2OffsetImmOperands(MCInst &Inst, unsigned N) const {
1844    assert(N == 2 && "Invalid number of operands!");
1845    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1846    assert(CE && "non-constant AM2OffsetImm operand!");
1847    int32_t Val = CE->getValue();
1848    ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add;
1849    // Special case for #-0
1850    if (Val == INT32_MIN) Val = 0;
1851    if (Val < 0) Val = -Val;
1852    Val = ARM_AM::getAM2Opc(AddSub, Val, ARM_AM::no_shift);
1853    Inst.addOperand(MCOperand::CreateReg(0));
1854    Inst.addOperand(MCOperand::CreateImm(Val));
1855  }
1856
1857  void addAddrMode3Operands(MCInst &Inst, unsigned N) const {
1858    assert(N == 3 && "Invalid number of operands!");
1859    // If we have an immediate that's not a constant, treat it as a label
1860    // reference needing a fixup. If it is a constant, it's something else
1861    // and we reject it.
1862    if (isImm()) {
1863      Inst.addOperand(MCOperand::CreateExpr(getImm()));
1864      Inst.addOperand(MCOperand::CreateReg(0));
1865      Inst.addOperand(MCOperand::CreateImm(0));
1866      return;
1867    }
1868
1869    int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0;
1870    if (!Memory.OffsetRegNum) {
1871      ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add;
1872      // Special case for #-0
1873      if (Val == INT32_MIN) Val = 0;
1874      if (Val < 0) Val = -Val;
1875      Val = ARM_AM::getAM3Opc(AddSub, Val);
1876    } else {
1877      // For register offset, we encode the shift type and negation flag
1878      // here.
1879      Val = ARM_AM::getAM3Opc(Memory.isNegative ? ARM_AM::sub : ARM_AM::add, 0);
1880    }
1881    Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
1882    Inst.addOperand(MCOperand::CreateReg(Memory.OffsetRegNum));
1883    Inst.addOperand(MCOperand::CreateImm(Val));
1884  }
1885
1886  void addAM3OffsetOperands(MCInst &Inst, unsigned N) const {
1887    assert(N == 2 && "Invalid number of operands!");
1888    if (Kind == k_PostIndexRegister) {
1889      int32_t Val =
1890        ARM_AM::getAM3Opc(PostIdxReg.isAdd ? ARM_AM::add : ARM_AM::sub, 0);
1891      Inst.addOperand(MCOperand::CreateReg(PostIdxReg.RegNum));
1892      Inst.addOperand(MCOperand::CreateImm(Val));
1893      return;
1894    }
1895
1896    // Constant offset.
1897    const MCConstantExpr *CE = static_cast<const MCConstantExpr*>(getImm());
1898    int32_t Val = CE->getValue();
1899    ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add;
1900    // Special case for #-0
1901    if (Val == INT32_MIN) Val = 0;
1902    if (Val < 0) Val = -Val;
1903    Val = ARM_AM::getAM3Opc(AddSub, Val);
1904    Inst.addOperand(MCOperand::CreateReg(0));
1905    Inst.addOperand(MCOperand::CreateImm(Val));
1906  }
1907
1908  void addAddrMode5Operands(MCInst &Inst, unsigned N) const {
1909    assert(N == 2 && "Invalid number of operands!");
1910    // If we have an immediate that's not a constant, treat it as a label
1911    // reference needing a fixup. If it is a constant, it's something else
1912    // and we reject it.
1913    if (isImm()) {
1914      Inst.addOperand(MCOperand::CreateExpr(getImm()));
1915      Inst.addOperand(MCOperand::CreateImm(0));
1916      return;
1917    }
1918
1919    // The lower two bits are always zero and as such are not encoded.
1920    int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() / 4 : 0;
1921    ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add;
1922    // Special case for #-0
1923    if (Val == INT32_MIN) Val = 0;
1924    if (Val < 0) Val = -Val;
1925    Val = ARM_AM::getAM5Opc(AddSub, Val);
1926    Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
1927    Inst.addOperand(MCOperand::CreateImm(Val));
1928  }
1929
1930  void addMemImm8s4OffsetOperands(MCInst &Inst, unsigned N) const {
1931    assert(N == 2 && "Invalid number of operands!");
1932    // If we have an immediate that's not a constant, treat it as a label
1933    // reference needing a fixup. If it is a constant, it's something else
1934    // and we reject it.
1935    if (isImm()) {
1936      Inst.addOperand(MCOperand::CreateExpr(getImm()));
1937      Inst.addOperand(MCOperand::CreateImm(0));
1938      return;
1939    }
1940
1941    int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0;
1942    Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
1943    Inst.addOperand(MCOperand::CreateImm(Val));
1944  }
1945
1946  void addMemImm0_1020s4OffsetOperands(MCInst &Inst, unsigned N) const {
1947    assert(N == 2 && "Invalid number of operands!");
1948    // The lower two bits are always zero and as such are not encoded.
1949    int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() / 4 : 0;
1950    Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
1951    Inst.addOperand(MCOperand::CreateImm(Val));
1952  }
1953
1954  void addMemImm8OffsetOperands(MCInst &Inst, unsigned N) const {
1955    assert(N == 2 && "Invalid number of operands!");
1956    int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0;
1957    Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
1958    Inst.addOperand(MCOperand::CreateImm(Val));
1959  }
1960
1961  void addMemPosImm8OffsetOperands(MCInst &Inst, unsigned N) const {
1962    addMemImm8OffsetOperands(Inst, N);
1963  }
1964
1965  void addMemNegImm8OffsetOperands(MCInst &Inst, unsigned N) const {
1966    addMemImm8OffsetOperands(Inst, N);
1967  }
1968
1969  void addMemUImm12OffsetOperands(MCInst &Inst, unsigned N) const {
1970    assert(N == 2 && "Invalid number of operands!");
1971    // If this is an immediate, it's a label reference.
1972    if (isImm()) {
1973      addExpr(Inst, getImm());
1974      Inst.addOperand(MCOperand::CreateImm(0));
1975      return;
1976    }
1977
1978    // Otherwise, it's a normal memory reg+offset.
1979    int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0;
1980    Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
1981    Inst.addOperand(MCOperand::CreateImm(Val));
1982  }
1983
1984  void addMemImm12OffsetOperands(MCInst &Inst, unsigned N) const {
1985    assert(N == 2 && "Invalid number of operands!");
1986    // If this is an immediate, it's a label reference.
1987    if (isImm()) {
1988      addExpr(Inst, getImm());
1989      Inst.addOperand(MCOperand::CreateImm(0));
1990      return;
1991    }
1992
1993    // Otherwise, it's a normal memory reg+offset.
1994    int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0;
1995    Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
1996    Inst.addOperand(MCOperand::CreateImm(Val));
1997  }
1998
1999  void addMemTBBOperands(MCInst &Inst, unsigned N) const {
2000    assert(N == 2 && "Invalid number of operands!");
2001    Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
2002    Inst.addOperand(MCOperand::CreateReg(Memory.OffsetRegNum));
2003  }
2004
2005  void addMemTBHOperands(MCInst &Inst, unsigned N) const {
2006    assert(N == 2 && "Invalid number of operands!");
2007    Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
2008    Inst.addOperand(MCOperand::CreateReg(Memory.OffsetRegNum));
2009  }
2010
2011  void addMemRegOffsetOperands(MCInst &Inst, unsigned N) const {
2012    assert(N == 3 && "Invalid number of operands!");
2013    unsigned Val =
2014      ARM_AM::getAM2Opc(Memory.isNegative ? ARM_AM::sub : ARM_AM::add,
2015                        Memory.ShiftImm, Memory.ShiftType);
2016    Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
2017    Inst.addOperand(MCOperand::CreateReg(Memory.OffsetRegNum));
2018    Inst.addOperand(MCOperand::CreateImm(Val));
2019  }
2020
2021  void addT2MemRegOffsetOperands(MCInst &Inst, unsigned N) const {
2022    assert(N == 3 && "Invalid number of operands!");
2023    Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
2024    Inst.addOperand(MCOperand::CreateReg(Memory.OffsetRegNum));
2025    Inst.addOperand(MCOperand::CreateImm(Memory.ShiftImm));
2026  }
2027
2028  void addMemThumbRROperands(MCInst &Inst, unsigned N) const {
2029    assert(N == 2 && "Invalid number of operands!");
2030    Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
2031    Inst.addOperand(MCOperand::CreateReg(Memory.OffsetRegNum));
2032  }
2033
2034  void addMemThumbRIs4Operands(MCInst &Inst, unsigned N) const {
2035    assert(N == 2 && "Invalid number of operands!");
2036    int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue() / 4) : 0;
2037    Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
2038    Inst.addOperand(MCOperand::CreateImm(Val));
2039  }
2040
2041  void addMemThumbRIs2Operands(MCInst &Inst, unsigned N) const {
2042    assert(N == 2 && "Invalid number of operands!");
2043    int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue() / 2) : 0;
2044    Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
2045    Inst.addOperand(MCOperand::CreateImm(Val));
2046  }
2047
2048  void addMemThumbRIs1Operands(MCInst &Inst, unsigned N) const {
2049    assert(N == 2 && "Invalid number of operands!");
2050    int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue()) : 0;
2051    Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
2052    Inst.addOperand(MCOperand::CreateImm(Val));
2053  }
2054
2055  void addMemThumbSPIOperands(MCInst &Inst, unsigned N) const {
2056    assert(N == 2 && "Invalid number of operands!");
2057    int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue() / 4) : 0;
2058    Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
2059    Inst.addOperand(MCOperand::CreateImm(Val));
2060  }
2061
2062  void addPostIdxImm8Operands(MCInst &Inst, unsigned N) const {
2063    assert(N == 1 && "Invalid number of operands!");
2064    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2065    assert(CE && "non-constant post-idx-imm8 operand!");
2066    int Imm = CE->getValue();
2067    bool isAdd = Imm >= 0;
2068    if (Imm == INT32_MIN) Imm = 0;
2069    Imm = (Imm < 0 ? -Imm : Imm) | (int)isAdd << 8;
2070    Inst.addOperand(MCOperand::CreateImm(Imm));
2071  }
2072
2073  void addPostIdxImm8s4Operands(MCInst &Inst, unsigned N) const {
2074    assert(N == 1 && "Invalid number of operands!");
2075    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2076    assert(CE && "non-constant post-idx-imm8s4 operand!");
2077    int Imm = CE->getValue();
2078    bool isAdd = Imm >= 0;
2079    if (Imm == INT32_MIN) Imm = 0;
2080    // Immediate is scaled by 4.
2081    Imm = ((Imm < 0 ? -Imm : Imm) / 4) | (int)isAdd << 8;
2082    Inst.addOperand(MCOperand::CreateImm(Imm));
2083  }
2084
2085  void addPostIdxRegOperands(MCInst &Inst, unsigned N) const {
2086    assert(N == 2 && "Invalid number of operands!");
2087    Inst.addOperand(MCOperand::CreateReg(PostIdxReg.RegNum));
2088    Inst.addOperand(MCOperand::CreateImm(PostIdxReg.isAdd));
2089  }
2090
2091  void addPostIdxRegShiftedOperands(MCInst &Inst, unsigned N) const {
2092    assert(N == 2 && "Invalid number of operands!");
2093    Inst.addOperand(MCOperand::CreateReg(PostIdxReg.RegNum));
2094    // The sign, shift type, and shift amount are encoded in a single operand
2095    // using the AM2 encoding helpers.
2096    ARM_AM::AddrOpc opc = PostIdxReg.isAdd ? ARM_AM::add : ARM_AM::sub;
2097    unsigned Imm = ARM_AM::getAM2Opc(opc, PostIdxReg.ShiftImm,
2098                                     PostIdxReg.ShiftTy);
2099    Inst.addOperand(MCOperand::CreateImm(Imm));
2100  }
2101
2102  void addMSRMaskOperands(MCInst &Inst, unsigned N) const {
2103    assert(N == 1 && "Invalid number of operands!");
2104    Inst.addOperand(MCOperand::CreateImm(unsigned(getMSRMask())));
2105  }
2106
2107  void addProcIFlagsOperands(MCInst &Inst, unsigned N) const {
2108    assert(N == 1 && "Invalid number of operands!");
2109    Inst.addOperand(MCOperand::CreateImm(unsigned(getProcIFlags())));
2110  }
2111
2112  void addVecListOperands(MCInst &Inst, unsigned N) const {
2113    assert(N == 1 && "Invalid number of operands!");
2114    Inst.addOperand(MCOperand::CreateReg(VectorList.RegNum));
2115  }
2116
2117  void addVecListIndexedOperands(MCInst &Inst, unsigned N) const {
2118    assert(N == 2 && "Invalid number of operands!");
2119    Inst.addOperand(MCOperand::CreateReg(VectorList.RegNum));
2120    Inst.addOperand(MCOperand::CreateImm(VectorList.LaneIndex));
2121  }
2122
2123  void addVectorIndex8Operands(MCInst &Inst, unsigned N) const {
2124    assert(N == 1 && "Invalid number of operands!");
2125    Inst.addOperand(MCOperand::CreateImm(getVectorIndex()));
2126  }
2127
2128  void addVectorIndex16Operands(MCInst &Inst, unsigned N) const {
2129    assert(N == 1 && "Invalid number of operands!");
2130    Inst.addOperand(MCOperand::CreateImm(getVectorIndex()));
2131  }
2132
2133  void addVectorIndex32Operands(MCInst &Inst, unsigned N) const {
2134    assert(N == 1 && "Invalid number of operands!");
2135    Inst.addOperand(MCOperand::CreateImm(getVectorIndex()));
2136  }
2137
2138  void addNEONi8splatOperands(MCInst &Inst, unsigned N) const {
2139    assert(N == 1 && "Invalid number of operands!");
2140    // The immediate encodes the type of constant as well as the value.
2141    // Mask in that this is an i8 splat.
2142    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2143    Inst.addOperand(MCOperand::CreateImm(CE->getValue() | 0xe00));
2144  }
2145
2146  void addNEONi16splatOperands(MCInst &Inst, unsigned N) const {
2147    assert(N == 1 && "Invalid number of operands!");
2148    // The immediate encodes the type of constant as well as the value.
2149    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2150    unsigned Value = CE->getValue();
2151    if (Value >= 256)
2152      Value = (Value >> 8) | 0xa00;
2153    else
2154      Value |= 0x800;
2155    Inst.addOperand(MCOperand::CreateImm(Value));
2156  }
2157
2158  void addNEONi32splatOperands(MCInst &Inst, unsigned N) const {
2159    assert(N == 1 && "Invalid number of operands!");
2160    // The immediate encodes the type of constant as well as the value.
2161    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2162    unsigned Value = CE->getValue();
2163    if (Value >= 256 && Value <= 0xff00)
2164      Value = (Value >> 8) | 0x200;
2165    else if (Value > 0xffff && Value <= 0xff0000)
2166      Value = (Value >> 16) | 0x400;
2167    else if (Value > 0xffffff)
2168      Value = (Value >> 24) | 0x600;
2169    Inst.addOperand(MCOperand::CreateImm(Value));
2170  }
2171
2172  void addNEONi32vmovOperands(MCInst &Inst, unsigned N) const {
2173    assert(N == 1 && "Invalid number of operands!");
2174    // The immediate encodes the type of constant as well as the value.
2175    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2176    unsigned Value = CE->getValue();
2177    if (Value >= 256 && Value <= 0xffff)
2178      Value = (Value >> 8) | ((Value & 0xff) ? 0xc00 : 0x200);
2179    else if (Value > 0xffff && Value <= 0xffffff)
2180      Value = (Value >> 16) | ((Value & 0xff) ? 0xd00 : 0x400);
2181    else if (Value > 0xffffff)
2182      Value = (Value >> 24) | 0x600;
2183    Inst.addOperand(MCOperand::CreateImm(Value));
2184  }
2185
2186  void addNEONi32vmovNegOperands(MCInst &Inst, unsigned N) const {
2187    assert(N == 1 && "Invalid number of operands!");
2188    // The immediate encodes the type of constant as well as the value.
2189    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2190    unsigned Value = ~CE->getValue();
2191    if (Value >= 256 && Value <= 0xffff)
2192      Value = (Value >> 8) | ((Value & 0xff) ? 0xc00 : 0x200);
2193    else if (Value > 0xffff && Value <= 0xffffff)
2194      Value = (Value >> 16) | ((Value & 0xff) ? 0xd00 : 0x400);
2195    else if (Value > 0xffffff)
2196      Value = (Value >> 24) | 0x600;
2197    Inst.addOperand(MCOperand::CreateImm(Value));
2198  }
2199
2200  void addNEONi64splatOperands(MCInst &Inst, unsigned N) const {
2201    assert(N == 1 && "Invalid number of operands!");
2202    // The immediate encodes the type of constant as well as the value.
2203    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2204    uint64_t Value = CE->getValue();
2205    unsigned Imm = 0;
2206    for (unsigned i = 0; i < 8; ++i, Value >>= 8) {
2207      Imm |= (Value & 1) << i;
2208    }
2209    Inst.addOperand(MCOperand::CreateImm(Imm | 0x1e00));
2210  }
2211
2212  virtual void print(raw_ostream &OS) const;
2213
2214  static ARMOperand *CreateITMask(unsigned Mask, SMLoc S) {
2215    ARMOperand *Op = new ARMOperand(k_ITCondMask);
2216    Op->ITMask.Mask = Mask;
2217    Op->StartLoc = S;
2218    Op->EndLoc = S;
2219    return Op;
2220  }
2221
2222  static ARMOperand *CreateCondCode(ARMCC::CondCodes CC, SMLoc S) {
2223    ARMOperand *Op = new ARMOperand(k_CondCode);
2224    Op->CC.Val = CC;
2225    Op->StartLoc = S;
2226    Op->EndLoc = S;
2227    return Op;
2228  }
2229
2230  static ARMOperand *CreateCoprocNum(unsigned CopVal, SMLoc S) {
2231    ARMOperand *Op = new ARMOperand(k_CoprocNum);
2232    Op->Cop.Val = CopVal;
2233    Op->StartLoc = S;
2234    Op->EndLoc = S;
2235    return Op;
2236  }
2237
2238  static ARMOperand *CreateCoprocReg(unsigned CopVal, SMLoc S) {
2239    ARMOperand *Op = new ARMOperand(k_CoprocReg);
2240    Op->Cop.Val = CopVal;
2241    Op->StartLoc = S;
2242    Op->EndLoc = S;
2243    return Op;
2244  }
2245
2246  static ARMOperand *CreateCoprocOption(unsigned Val, SMLoc S, SMLoc E) {
2247    ARMOperand *Op = new ARMOperand(k_CoprocOption);
2248    Op->Cop.Val = Val;
2249    Op->StartLoc = S;
2250    Op->EndLoc = E;
2251    return Op;
2252  }
2253
2254  static ARMOperand *CreateCCOut(unsigned RegNum, SMLoc S) {
2255    ARMOperand *Op = new ARMOperand(k_CCOut);
2256    Op->Reg.RegNum = RegNum;
2257    Op->StartLoc = S;
2258    Op->EndLoc = S;
2259    return Op;
2260  }
2261
2262  static ARMOperand *CreateToken(StringRef Str, SMLoc S) {
2263    ARMOperand *Op = new ARMOperand(k_Token);
2264    Op->Tok.Data = Str.data();
2265    Op->Tok.Length = Str.size();
2266    Op->StartLoc = S;
2267    Op->EndLoc = S;
2268    return Op;
2269  }
2270
2271  static ARMOperand *CreateReg(unsigned RegNum, SMLoc S, SMLoc E) {
2272    ARMOperand *Op = new ARMOperand(k_Register);
2273    Op->Reg.RegNum = RegNum;
2274    Op->StartLoc = S;
2275    Op->EndLoc = E;
2276    return Op;
2277  }
2278
2279  static ARMOperand *CreateShiftedRegister(ARM_AM::ShiftOpc ShTy,
2280                                           unsigned SrcReg,
2281                                           unsigned ShiftReg,
2282                                           unsigned ShiftImm,
2283                                           SMLoc S, SMLoc E) {
2284    ARMOperand *Op = new ARMOperand(k_ShiftedRegister);
2285    Op->RegShiftedReg.ShiftTy = ShTy;
2286    Op->RegShiftedReg.SrcReg = SrcReg;
2287    Op->RegShiftedReg.ShiftReg = ShiftReg;
2288    Op->RegShiftedReg.ShiftImm = ShiftImm;
2289    Op->StartLoc = S;
2290    Op->EndLoc = E;
2291    return Op;
2292  }
2293
2294  static ARMOperand *CreateShiftedImmediate(ARM_AM::ShiftOpc ShTy,
2295                                            unsigned SrcReg,
2296                                            unsigned ShiftImm,
2297                                            SMLoc S, SMLoc E) {
2298    ARMOperand *Op = new ARMOperand(k_ShiftedImmediate);
2299    Op->RegShiftedImm.ShiftTy = ShTy;
2300    Op->RegShiftedImm.SrcReg = SrcReg;
2301    Op->RegShiftedImm.ShiftImm = ShiftImm;
2302    Op->StartLoc = S;
2303    Op->EndLoc = E;
2304    return Op;
2305  }
2306
2307  static ARMOperand *CreateShifterImm(bool isASR, unsigned Imm,
2308                                   SMLoc S, SMLoc E) {
2309    ARMOperand *Op = new ARMOperand(k_ShifterImmediate);
2310    Op->ShifterImm.isASR = isASR;
2311    Op->ShifterImm.Imm = Imm;
2312    Op->StartLoc = S;
2313    Op->EndLoc = E;
2314    return Op;
2315  }
2316
2317  static ARMOperand *CreateRotImm(unsigned Imm, SMLoc S, SMLoc E) {
2318    ARMOperand *Op = new ARMOperand(k_RotateImmediate);
2319    Op->RotImm.Imm = Imm;
2320    Op->StartLoc = S;
2321    Op->EndLoc = E;
2322    return Op;
2323  }
2324
2325  static ARMOperand *CreateBitfield(unsigned LSB, unsigned Width,
2326                                    SMLoc S, SMLoc E) {
2327    ARMOperand *Op = new ARMOperand(k_BitfieldDescriptor);
2328    Op->Bitfield.LSB = LSB;
2329    Op->Bitfield.Width = Width;
2330    Op->StartLoc = S;
2331    Op->EndLoc = E;
2332    return Op;
2333  }
2334
2335  static ARMOperand *
2336  CreateRegList(SmallVectorImpl<std::pair<unsigned, unsigned> > &Regs,
2337                SMLoc StartLoc, SMLoc EndLoc) {
2338    assert (Regs.size() > 0 && "RegList contains no registers?");
2339    KindTy Kind = k_RegisterList;
2340
2341    if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Regs.front().second))
2342      Kind = k_DPRRegisterList;
2343    else if (ARMMCRegisterClasses[ARM::SPRRegClassID].
2344             contains(Regs.front().second))
2345      Kind = k_SPRRegisterList;
2346
2347    // Sort based on the register encoding values.
2348    array_pod_sort(Regs.begin(), Regs.end());
2349
2350    ARMOperand *Op = new ARMOperand(Kind);
2351    for (SmallVectorImpl<std::pair<unsigned, unsigned> >::const_iterator
2352           I = Regs.begin(), E = Regs.end(); I != E; ++I)
2353      Op->Registers.push_back(I->second);
2354    Op->StartLoc = StartLoc;
2355    Op->EndLoc = EndLoc;
2356    return Op;
2357  }
2358
2359  static ARMOperand *CreateVectorList(unsigned RegNum, unsigned Count,
2360                                      bool isDoubleSpaced, SMLoc S, SMLoc E) {
2361    ARMOperand *Op = new ARMOperand(k_VectorList);
2362    Op->VectorList.RegNum = RegNum;
2363    Op->VectorList.Count = Count;
2364    Op->VectorList.isDoubleSpaced = isDoubleSpaced;
2365    Op->StartLoc = S;
2366    Op->EndLoc = E;
2367    return Op;
2368  }
2369
2370  static ARMOperand *CreateVectorListAllLanes(unsigned RegNum, unsigned Count,
2371                                              bool isDoubleSpaced,
2372                                              SMLoc S, SMLoc E) {
2373    ARMOperand *Op = new ARMOperand(k_VectorListAllLanes);
2374    Op->VectorList.RegNum = RegNum;
2375    Op->VectorList.Count = Count;
2376    Op->VectorList.isDoubleSpaced = isDoubleSpaced;
2377    Op->StartLoc = S;
2378    Op->EndLoc = E;
2379    return Op;
2380  }
2381
2382  static ARMOperand *CreateVectorListIndexed(unsigned RegNum, unsigned Count,
2383                                             unsigned Index,
2384                                             bool isDoubleSpaced,
2385                                             SMLoc S, SMLoc E) {
2386    ARMOperand *Op = new ARMOperand(k_VectorListIndexed);
2387    Op->VectorList.RegNum = RegNum;
2388    Op->VectorList.Count = Count;
2389    Op->VectorList.LaneIndex = Index;
2390    Op->VectorList.isDoubleSpaced = isDoubleSpaced;
2391    Op->StartLoc = S;
2392    Op->EndLoc = E;
2393    return Op;
2394  }
2395
2396  static ARMOperand *CreateVectorIndex(unsigned Idx, SMLoc S, SMLoc E,
2397                                       MCContext &Ctx) {
2398    ARMOperand *Op = new ARMOperand(k_VectorIndex);
2399    Op->VectorIndex.Val = Idx;
2400    Op->StartLoc = S;
2401    Op->EndLoc = E;
2402    return Op;
2403  }
2404
2405  static ARMOperand *CreateImm(const MCExpr *Val, SMLoc S, SMLoc E) {
2406    ARMOperand *Op = new ARMOperand(k_Immediate);
2407    Op->Imm.Val = Val;
2408    Op->StartLoc = S;
2409    Op->EndLoc = E;
2410    return Op;
2411  }
2412
2413  static ARMOperand *CreateMem(unsigned BaseRegNum,
2414                               const MCConstantExpr *OffsetImm,
2415                               unsigned OffsetRegNum,
2416                               ARM_AM::ShiftOpc ShiftType,
2417                               unsigned ShiftImm,
2418                               unsigned Alignment,
2419                               bool isNegative,
2420                               SMLoc S, SMLoc E) {
2421    ARMOperand *Op = new ARMOperand(k_Memory);
2422    Op->Memory.BaseRegNum = BaseRegNum;
2423    Op->Memory.OffsetImm = OffsetImm;
2424    Op->Memory.OffsetRegNum = OffsetRegNum;
2425    Op->Memory.ShiftType = ShiftType;
2426    Op->Memory.ShiftImm = ShiftImm;
2427    Op->Memory.Alignment = Alignment;
2428    Op->Memory.isNegative = isNegative;
2429    Op->StartLoc = S;
2430    Op->EndLoc = E;
2431    return Op;
2432  }
2433
2434  static ARMOperand *CreatePostIdxReg(unsigned RegNum, bool isAdd,
2435                                      ARM_AM::ShiftOpc ShiftTy,
2436                                      unsigned ShiftImm,
2437                                      SMLoc S, SMLoc E) {
2438    ARMOperand *Op = new ARMOperand(k_PostIndexRegister);
2439    Op->PostIdxReg.RegNum = RegNum;
2440    Op->PostIdxReg.isAdd = isAdd;
2441    Op->PostIdxReg.ShiftTy = ShiftTy;
2442    Op->PostIdxReg.ShiftImm = ShiftImm;
2443    Op->StartLoc = S;
2444    Op->EndLoc = E;
2445    return Op;
2446  }
2447
2448  static ARMOperand *CreateMemBarrierOpt(ARM_MB::MemBOpt Opt, SMLoc S) {
2449    ARMOperand *Op = new ARMOperand(k_MemBarrierOpt);
2450    Op->MBOpt.Val = Opt;
2451    Op->StartLoc = S;
2452    Op->EndLoc = S;
2453    return Op;
2454  }
2455
2456  static ARMOperand *CreateInstSyncBarrierOpt(ARM_ISB::InstSyncBOpt Opt,
2457                                              SMLoc S) {
2458    ARMOperand *Op = new ARMOperand(k_InstSyncBarrierOpt);
2459    Op->ISBOpt.Val = Opt;
2460    Op->StartLoc = S;
2461    Op->EndLoc = S;
2462    return Op;
2463  }
2464
2465  static ARMOperand *CreateProcIFlags(ARM_PROC::IFlags IFlags, SMLoc S) {
2466    ARMOperand *Op = new ARMOperand(k_ProcIFlags);
2467    Op->IFlags.Val = IFlags;
2468    Op->StartLoc = S;
2469    Op->EndLoc = S;
2470    return Op;
2471  }
2472
2473  static ARMOperand *CreateMSRMask(unsigned MMask, SMLoc S) {
2474    ARMOperand *Op = new ARMOperand(k_MSRMask);
2475    Op->MMask.Val = MMask;
2476    Op->StartLoc = S;
2477    Op->EndLoc = S;
2478    return Op;
2479  }
2480};
2481
2482} // end anonymous namespace.
2483
2484void ARMOperand::print(raw_ostream &OS) const {
2485  switch (Kind) {
2486  case k_CondCode:
2487    OS << "<ARMCC::" << ARMCondCodeToString(getCondCode()) << ">";
2488    break;
2489  case k_CCOut:
2490    OS << "<ccout " << getReg() << ">";
2491    break;
2492  case k_ITCondMask: {
2493    static const char *const MaskStr[] = {
2494      "()", "(t)", "(e)", "(tt)", "(et)", "(te)", "(ee)", "(ttt)", "(ett)",
2495      "(tet)", "(eet)", "(tte)", "(ete)", "(tee)", "(eee)"
2496    };
2497    assert((ITMask.Mask & 0xf) == ITMask.Mask);
2498    OS << "<it-mask " << MaskStr[ITMask.Mask] << ">";
2499    break;
2500  }
2501  case k_CoprocNum:
2502    OS << "<coprocessor number: " << getCoproc() << ">";
2503    break;
2504  case k_CoprocReg:
2505    OS << "<coprocessor register: " << getCoproc() << ">";
2506    break;
2507  case k_CoprocOption:
2508    OS << "<coprocessor option: " << CoprocOption.Val << ">";
2509    break;
2510  case k_MSRMask:
2511    OS << "<mask: " << getMSRMask() << ">";
2512    break;
2513  case k_Immediate:
2514    getImm()->print(OS);
2515    break;
2516  case k_MemBarrierOpt:
2517    OS << "<ARM_MB::" << MemBOptToString(getMemBarrierOpt()) << ">";
2518    break;
2519  case k_InstSyncBarrierOpt:
2520    OS << "<ARM_ISB::" << InstSyncBOptToString(getInstSyncBarrierOpt()) << ">";
2521    break;
2522  case k_Memory:
2523    OS << "<memory "
2524       << " base:" << Memory.BaseRegNum;
2525    OS << ">";
2526    break;
2527  case k_PostIndexRegister:
2528    OS << "post-idx register " << (PostIdxReg.isAdd ? "" : "-")
2529       << PostIdxReg.RegNum;
2530    if (PostIdxReg.ShiftTy != ARM_AM::no_shift)
2531      OS << ARM_AM::getShiftOpcStr(PostIdxReg.ShiftTy) << " "
2532         << PostIdxReg.ShiftImm;
2533    OS << ">";
2534    break;
2535  case k_ProcIFlags: {
2536    OS << "<ARM_PROC::";
2537    unsigned IFlags = getProcIFlags();
2538    for (int i=2; i >= 0; --i)
2539      if (IFlags & (1 << i))
2540        OS << ARM_PROC::IFlagsToString(1 << i);
2541    OS << ">";
2542    break;
2543  }
2544  case k_Register:
2545    OS << "<register " << getReg() << ">";
2546    break;
2547  case k_ShifterImmediate:
2548    OS << "<shift " << (ShifterImm.isASR ? "asr" : "lsl")
2549       << " #" << ShifterImm.Imm << ">";
2550    break;
2551  case k_ShiftedRegister:
2552    OS << "<so_reg_reg "
2553       << RegShiftedReg.SrcReg << " "
2554       << ARM_AM::getShiftOpcStr(RegShiftedReg.ShiftTy)
2555       << " " << RegShiftedReg.ShiftReg << ">";
2556    break;
2557  case k_ShiftedImmediate:
2558    OS << "<so_reg_imm "
2559       << RegShiftedImm.SrcReg << " "
2560       << ARM_AM::getShiftOpcStr(RegShiftedImm.ShiftTy)
2561       << " #" << RegShiftedImm.ShiftImm << ">";
2562    break;
2563  case k_RotateImmediate:
2564    OS << "<ror " << " #" << (RotImm.Imm * 8) << ">";
2565    break;
2566  case k_BitfieldDescriptor:
2567    OS << "<bitfield " << "lsb: " << Bitfield.LSB
2568       << ", width: " << Bitfield.Width << ">";
2569    break;
2570  case k_RegisterList:
2571  case k_DPRRegisterList:
2572  case k_SPRRegisterList: {
2573    OS << "<register_list ";
2574
2575    const SmallVectorImpl<unsigned> &RegList = getRegList();
2576    for (SmallVectorImpl<unsigned>::const_iterator
2577           I = RegList.begin(), E = RegList.end(); I != E; ) {
2578      OS << *I;
2579      if (++I < E) OS << ", ";
2580    }
2581
2582    OS << ">";
2583    break;
2584  }
2585  case k_VectorList:
2586    OS << "<vector_list " << VectorList.Count << " * "
2587       << VectorList.RegNum << ">";
2588    break;
2589  case k_VectorListAllLanes:
2590    OS << "<vector_list(all lanes) " << VectorList.Count << " * "
2591       << VectorList.RegNum << ">";
2592    break;
2593  case k_VectorListIndexed:
2594    OS << "<vector_list(lane " << VectorList.LaneIndex << ") "
2595       << VectorList.Count << " * " << VectorList.RegNum << ">";
2596    break;
2597  case k_Token:
2598    OS << "'" << getToken() << "'";
2599    break;
2600  case k_VectorIndex:
2601    OS << "<vectorindex " << getVectorIndex() << ">";
2602    break;
2603  }
2604}
2605
2606/// @name Auto-generated Match Functions
2607/// {
2608
2609static unsigned MatchRegisterName(StringRef Name);
2610
2611/// }
2612
2613bool ARMAsmParser::ParseRegister(unsigned &RegNo,
2614                                 SMLoc &StartLoc, SMLoc &EndLoc) {
2615  StartLoc = Parser.getTok().getLoc();
2616  EndLoc = Parser.getTok().getEndLoc();
2617  RegNo = tryParseRegister();
2618
2619  return (RegNo == (unsigned)-1);
2620}
2621
2622/// Try to parse a register name.  The token must be an Identifier when called,
2623/// and if it is a register name the token is eaten and the register number is
2624/// returned.  Otherwise return -1.
2625///
2626int ARMAsmParser::tryParseRegister() {
2627  const AsmToken &Tok = Parser.getTok();
2628  if (Tok.isNot(AsmToken::Identifier)) return -1;
2629
2630  std::string lowerCase = Tok.getString().lower();
2631  unsigned RegNum = MatchRegisterName(lowerCase);
2632  if (!RegNum) {
2633    RegNum = StringSwitch<unsigned>(lowerCase)
2634      .Case("r13", ARM::SP)
2635      .Case("r14", ARM::LR)
2636      .Case("r15", ARM::PC)
2637      .Case("ip", ARM::R12)
2638      // Additional register name aliases for 'gas' compatibility.
2639      .Case("a1", ARM::R0)
2640      .Case("a2", ARM::R1)
2641      .Case("a3", ARM::R2)
2642      .Case("a4", ARM::R3)
2643      .Case("v1", ARM::R4)
2644      .Case("v2", ARM::R5)
2645      .Case("v3", ARM::R6)
2646      .Case("v4", ARM::R7)
2647      .Case("v5", ARM::R8)
2648      .Case("v6", ARM::R9)
2649      .Case("v7", ARM::R10)
2650      .Case("v8", ARM::R11)
2651      .Case("sb", ARM::R9)
2652      .Case("sl", ARM::R10)
2653      .Case("fp", ARM::R11)
2654      .Default(0);
2655  }
2656  if (!RegNum) {
2657    // Check for aliases registered via .req. Canonicalize to lower case.
2658    // That's more consistent since register names are case insensitive, and
2659    // it's how the original entry was passed in from MC/MCParser/AsmParser.
2660    StringMap<unsigned>::const_iterator Entry = RegisterReqs.find(lowerCase);
2661    // If no match, return failure.
2662    if (Entry == RegisterReqs.end())
2663      return -1;
2664    Parser.Lex(); // Eat identifier token.
2665    return Entry->getValue();
2666  }
2667
2668  Parser.Lex(); // Eat identifier token.
2669
2670  return RegNum;
2671}
2672
2673// Try to parse a shifter  (e.g., "lsl <amt>"). On success, return 0.
2674// If a recoverable error occurs, return 1. If an irrecoverable error
2675// occurs, return -1. An irrecoverable error is one where tokens have been
2676// consumed in the process of trying to parse the shifter (i.e., when it is
2677// indeed a shifter operand, but malformed).
2678int ARMAsmParser::tryParseShiftRegister(
2679                               SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
2680  SMLoc S = Parser.getTok().getLoc();
2681  const AsmToken &Tok = Parser.getTok();
2682  assert(Tok.is(AsmToken::Identifier) && "Token is not an Identifier");
2683
2684  std::string lowerCase = Tok.getString().lower();
2685  ARM_AM::ShiftOpc ShiftTy = StringSwitch<ARM_AM::ShiftOpc>(lowerCase)
2686      .Case("asl", ARM_AM::lsl)
2687      .Case("lsl", ARM_AM::lsl)
2688      .Case("lsr", ARM_AM::lsr)
2689      .Case("asr", ARM_AM::asr)
2690      .Case("ror", ARM_AM::ror)
2691      .Case("rrx", ARM_AM::rrx)
2692      .Default(ARM_AM::no_shift);
2693
2694  if (ShiftTy == ARM_AM::no_shift)
2695    return 1;
2696
2697  Parser.Lex(); // Eat the operator.
2698
2699  // The source register for the shift has already been added to the
2700  // operand list, so we need to pop it off and combine it into the shifted
2701  // register operand instead.
2702  OwningPtr<ARMOperand> PrevOp((ARMOperand*)Operands.pop_back_val());
2703  if (!PrevOp->isReg())
2704    return Error(PrevOp->getStartLoc(), "shift must be of a register");
2705  int SrcReg = PrevOp->getReg();
2706
2707  SMLoc EndLoc;
2708  int64_t Imm = 0;
2709  int ShiftReg = 0;
2710  if (ShiftTy == ARM_AM::rrx) {
2711    // RRX Doesn't have an explicit shift amount. The encoder expects
2712    // the shift register to be the same as the source register. Seems odd,
2713    // but OK.
2714    ShiftReg = SrcReg;
2715  } else {
2716    // Figure out if this is shifted by a constant or a register (for non-RRX).
2717    if (Parser.getTok().is(AsmToken::Hash) ||
2718        Parser.getTok().is(AsmToken::Dollar)) {
2719      Parser.Lex(); // Eat hash.
2720      SMLoc ImmLoc = Parser.getTok().getLoc();
2721      const MCExpr *ShiftExpr = 0;
2722      if (getParser().parseExpression(ShiftExpr, EndLoc)) {
2723        Error(ImmLoc, "invalid immediate shift value");
2724        return -1;
2725      }
2726      // The expression must be evaluatable as an immediate.
2727      const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftExpr);
2728      if (!CE) {
2729        Error(ImmLoc, "invalid immediate shift value");
2730        return -1;
2731      }
2732      // Range check the immediate.
2733      // lsl, ror: 0 <= imm <= 31
2734      // lsr, asr: 0 <= imm <= 32
2735      Imm = CE->getValue();
2736      if (Imm < 0 ||
2737          ((ShiftTy == ARM_AM::lsl || ShiftTy == ARM_AM::ror) && Imm > 31) ||
2738          ((ShiftTy == ARM_AM::lsr || ShiftTy == ARM_AM::asr) && Imm > 32)) {
2739        Error(ImmLoc, "immediate shift value out of range");
2740        return -1;
2741      }
2742      // shift by zero is a nop. Always send it through as lsl.
2743      // ('as' compatibility)
2744      if (Imm == 0)
2745        ShiftTy = ARM_AM::lsl;
2746    } else if (Parser.getTok().is(AsmToken::Identifier)) {
2747      SMLoc L = Parser.getTok().getLoc();
2748      EndLoc = Parser.getTok().getEndLoc();
2749      ShiftReg = tryParseRegister();
2750      if (ShiftReg == -1) {
2751        Error (L, "expected immediate or register in shift operand");
2752        return -1;
2753      }
2754    } else {
2755      Error (Parser.getTok().getLoc(),
2756                    "expected immediate or register in shift operand");
2757      return -1;
2758    }
2759  }
2760
2761  if (ShiftReg && ShiftTy != ARM_AM::rrx)
2762    Operands.push_back(ARMOperand::CreateShiftedRegister(ShiftTy, SrcReg,
2763                                                         ShiftReg, Imm,
2764                                                         S, EndLoc));
2765  else
2766    Operands.push_back(ARMOperand::CreateShiftedImmediate(ShiftTy, SrcReg, Imm,
2767                                                          S, EndLoc));
2768
2769  return 0;
2770}
2771
2772
2773/// Try to parse a register name.  The token must be an Identifier when called.
2774/// If it's a register, an AsmOperand is created. Another AsmOperand is created
2775/// if there is a "writeback". 'true' if it's not a register.
2776///
2777/// TODO this is likely to change to allow different register types and or to
2778/// parse for a specific register type.
2779bool ARMAsmParser::
2780tryParseRegisterWithWriteBack(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
2781  const AsmToken &RegTok = Parser.getTok();
2782  int RegNo = tryParseRegister();
2783  if (RegNo == -1)
2784    return true;
2785
2786  Operands.push_back(ARMOperand::CreateReg(RegNo, RegTok.getLoc(),
2787                                           RegTok.getEndLoc()));
2788
2789  const AsmToken &ExclaimTok = Parser.getTok();
2790  if (ExclaimTok.is(AsmToken::Exclaim)) {
2791    Operands.push_back(ARMOperand::CreateToken(ExclaimTok.getString(),
2792                                               ExclaimTok.getLoc()));
2793    Parser.Lex(); // Eat exclaim token
2794    return false;
2795  }
2796
2797  // Also check for an index operand. This is only legal for vector registers,
2798  // but that'll get caught OK in operand matching, so we don't need to
2799  // explicitly filter everything else out here.
2800  if (Parser.getTok().is(AsmToken::LBrac)) {
2801    SMLoc SIdx = Parser.getTok().getLoc();
2802    Parser.Lex(); // Eat left bracket token.
2803
2804    const MCExpr *ImmVal;
2805    if (getParser().parseExpression(ImmVal))
2806      return true;
2807    const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(ImmVal);
2808    if (!MCE)
2809      return TokError("immediate value expected for vector index");
2810
2811    if (Parser.getTok().isNot(AsmToken::RBrac))
2812      return Error(Parser.getTok().getLoc(), "']' expected");
2813
2814    SMLoc E = Parser.getTok().getEndLoc();
2815    Parser.Lex(); // Eat right bracket token.
2816
2817    Operands.push_back(ARMOperand::CreateVectorIndex(MCE->getValue(),
2818                                                     SIdx, E,
2819                                                     getContext()));
2820  }
2821
2822  return false;
2823}
2824
2825/// MatchCoprocessorOperandName - Try to parse an coprocessor related
2826/// instruction with a symbolic operand name. Example: "p1", "p7", "c3",
2827/// "c5", ...
2828static int MatchCoprocessorOperandName(StringRef Name, char CoprocOp) {
2829  // Use the same layout as the tablegen'erated register name matcher. Ugly,
2830  // but efficient.
2831  switch (Name.size()) {
2832  default: return -1;
2833  case 2:
2834    if (Name[0] != CoprocOp)
2835      return -1;
2836    switch (Name[1]) {
2837    default:  return -1;
2838    case '0': return 0;
2839    case '1': return 1;
2840    case '2': return 2;
2841    case '3': return 3;
2842    case '4': return 4;
2843    case '5': return 5;
2844    case '6': return 6;
2845    case '7': return 7;
2846    case '8': return 8;
2847    case '9': return 9;
2848    }
2849  case 3:
2850    if (Name[0] != CoprocOp || Name[1] != '1')
2851      return -1;
2852    switch (Name[2]) {
2853    default:  return -1;
2854    case '0': return 10;
2855    case '1': return 11;
2856    case '2': return 12;
2857    case '3': return 13;
2858    case '4': return 14;
2859    case '5': return 15;
2860    }
2861  }
2862}
2863
2864/// parseITCondCode - Try to parse a condition code for an IT instruction.
2865ARMAsmParser::OperandMatchResultTy ARMAsmParser::
2866parseITCondCode(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
2867  SMLoc S = Parser.getTok().getLoc();
2868  const AsmToken &Tok = Parser.getTok();
2869  if (!Tok.is(AsmToken::Identifier))
2870    return MatchOperand_NoMatch;
2871  unsigned CC = StringSwitch<unsigned>(Tok.getString().lower())
2872    .Case("eq", ARMCC::EQ)
2873    .Case("ne", ARMCC::NE)
2874    .Case("hs", ARMCC::HS)
2875    .Case("cs", ARMCC::HS)
2876    .Case("lo", ARMCC::LO)
2877    .Case("cc", ARMCC::LO)
2878    .Case("mi", ARMCC::MI)
2879    .Case("pl", ARMCC::PL)
2880    .Case("vs", ARMCC::VS)
2881    .Case("vc", ARMCC::VC)
2882    .Case("hi", ARMCC::HI)
2883    .Case("ls", ARMCC::LS)
2884    .Case("ge", ARMCC::GE)
2885    .Case("lt", ARMCC::LT)
2886    .Case("gt", ARMCC::GT)
2887    .Case("le", ARMCC::LE)
2888    .Case("al", ARMCC::AL)
2889    .Default(~0U);
2890  if (CC == ~0U)
2891    return MatchOperand_NoMatch;
2892  Parser.Lex(); // Eat the token.
2893
2894  Operands.push_back(ARMOperand::CreateCondCode(ARMCC::CondCodes(CC), S));
2895
2896  return MatchOperand_Success;
2897}
2898
2899/// parseCoprocNumOperand - Try to parse an coprocessor number operand. The
2900/// token must be an Identifier when called, and if it is a coprocessor
2901/// number, the token is eaten and the operand is added to the operand list.
2902ARMAsmParser::OperandMatchResultTy ARMAsmParser::
2903parseCoprocNumOperand(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
2904  SMLoc S = Parser.getTok().getLoc();
2905  const AsmToken &Tok = Parser.getTok();
2906  if (Tok.isNot(AsmToken::Identifier))
2907    return MatchOperand_NoMatch;
2908
2909  int Num = MatchCoprocessorOperandName(Tok.getString(), 'p');
2910  if (Num == -1)
2911    return MatchOperand_NoMatch;
2912
2913  Parser.Lex(); // Eat identifier token.
2914  Operands.push_back(ARMOperand::CreateCoprocNum(Num, S));
2915  return MatchOperand_Success;
2916}
2917
2918/// parseCoprocRegOperand - Try to parse an coprocessor register operand. The
2919/// token must be an Identifier when called, and if it is a coprocessor
2920/// number, the token is eaten and the operand is added to the operand list.
2921ARMAsmParser::OperandMatchResultTy ARMAsmParser::
2922parseCoprocRegOperand(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
2923  SMLoc S = Parser.getTok().getLoc();
2924  const AsmToken &Tok = Parser.getTok();
2925  if (Tok.isNot(AsmToken::Identifier))
2926    return MatchOperand_NoMatch;
2927
2928  int Reg = MatchCoprocessorOperandName(Tok.getString(), 'c');
2929  if (Reg == -1)
2930    return MatchOperand_NoMatch;
2931
2932  Parser.Lex(); // Eat identifier token.
2933  Operands.push_back(ARMOperand::CreateCoprocReg(Reg, S));
2934  return MatchOperand_Success;
2935}
2936
2937/// parseCoprocOptionOperand - Try to parse an coprocessor option operand.
2938/// coproc_option : '{' imm0_255 '}'
2939ARMAsmParser::OperandMatchResultTy ARMAsmParser::
2940parseCoprocOptionOperand(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
2941  SMLoc S = Parser.getTok().getLoc();
2942
2943  // If this isn't a '{', this isn't a coprocessor immediate operand.
2944  if (Parser.getTok().isNot(AsmToken::LCurly))
2945    return MatchOperand_NoMatch;
2946  Parser.Lex(); // Eat the '{'
2947
2948  const MCExpr *Expr;
2949  SMLoc Loc = Parser.getTok().getLoc();
2950  if (getParser().parseExpression(Expr)) {
2951    Error(Loc, "illegal expression");
2952    return MatchOperand_ParseFail;
2953  }
2954  const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr);
2955  if (!CE || CE->getValue() < 0 || CE->getValue() > 255) {
2956    Error(Loc, "coprocessor option must be an immediate in range [0, 255]");
2957    return MatchOperand_ParseFail;
2958  }
2959  int Val = CE->getValue();
2960
2961  // Check for and consume the closing '}'
2962  if (Parser.getTok().isNot(AsmToken::RCurly))
2963    return MatchOperand_ParseFail;
2964  SMLoc E = Parser.getTok().getEndLoc();
2965  Parser.Lex(); // Eat the '}'
2966
2967  Operands.push_back(ARMOperand::CreateCoprocOption(Val, S, E));
2968  return MatchOperand_Success;
2969}
2970
2971// For register list parsing, we need to map from raw GPR register numbering
2972// to the enumeration values. The enumeration values aren't sorted by
2973// register number due to our using "sp", "lr" and "pc" as canonical names.
2974static unsigned getNextRegister(unsigned Reg) {
2975  // If this is a GPR, we need to do it manually, otherwise we can rely
2976  // on the sort ordering of the enumeration since the other reg-classes
2977  // are sane.
2978  if (!ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg))
2979    return Reg + 1;
2980  switch(Reg) {
2981  default: llvm_unreachable("Invalid GPR number!");
2982  case ARM::R0:  return ARM::R1;  case ARM::R1:  return ARM::R2;
2983  case ARM::R2:  return ARM::R3;  case ARM::R3:  return ARM::R4;
2984  case ARM::R4:  return ARM::R5;  case ARM::R5:  return ARM::R6;
2985  case ARM::R6:  return ARM::R7;  case ARM::R7:  return ARM::R8;
2986  case ARM::R8:  return ARM::R9;  case ARM::R9:  return ARM::R10;
2987  case ARM::R10: return ARM::R11; case ARM::R11: return ARM::R12;
2988  case ARM::R12: return ARM::SP;  case ARM::SP:  return ARM::LR;
2989  case ARM::LR:  return ARM::PC;  case ARM::PC:  return ARM::R0;
2990  }
2991}
2992
2993// Return the low-subreg of a given Q register.
2994static unsigned getDRegFromQReg(unsigned QReg) {
2995  switch (QReg) {
2996  default: llvm_unreachable("expected a Q register!");
2997  case ARM::Q0:  return ARM::D0;
2998  case ARM::Q1:  return ARM::D2;
2999  case ARM::Q2:  return ARM::D4;
3000  case ARM::Q3:  return ARM::D6;
3001  case ARM::Q4:  return ARM::D8;
3002  case ARM::Q5:  return ARM::D10;
3003  case ARM::Q6:  return ARM::D12;
3004  case ARM::Q7:  return ARM::D14;
3005  case ARM::Q8:  return ARM::D16;
3006  case ARM::Q9:  return ARM::D18;
3007  case ARM::Q10: return ARM::D20;
3008  case ARM::Q11: return ARM::D22;
3009  case ARM::Q12: return ARM::D24;
3010  case ARM::Q13: return ARM::D26;
3011  case ARM::Q14: return ARM::D28;
3012  case ARM::Q15: return ARM::D30;
3013  }
3014}
3015
3016/// Parse a register list.
3017bool ARMAsmParser::
3018parseRegisterList(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
3019  assert(Parser.getTok().is(AsmToken::LCurly) &&
3020         "Token is not a Left Curly Brace");
3021  SMLoc S = Parser.getTok().getLoc();
3022  Parser.Lex(); // Eat '{' token.
3023  SMLoc RegLoc = Parser.getTok().getLoc();
3024
3025  // Check the first register in the list to see what register class
3026  // this is a list of.
3027  int Reg = tryParseRegister();
3028  if (Reg == -1)
3029    return Error(RegLoc, "register expected");
3030
3031  // The reglist instructions have at most 16 registers, so reserve
3032  // space for that many.
3033  int EReg = 0;
3034  SmallVector<std::pair<unsigned, unsigned>, 16> Registers;
3035
3036  // Allow Q regs and just interpret them as the two D sub-registers.
3037  if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) {
3038    Reg = getDRegFromQReg(Reg);
3039    EReg = MRI->getEncodingValue(Reg);
3040    Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg));
3041    ++Reg;
3042  }
3043  const MCRegisterClass *RC;
3044  if (ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg))
3045    RC = &ARMMCRegisterClasses[ARM::GPRRegClassID];
3046  else if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Reg))
3047    RC = &ARMMCRegisterClasses[ARM::DPRRegClassID];
3048  else if (ARMMCRegisterClasses[ARM::SPRRegClassID].contains(Reg))
3049    RC = &ARMMCRegisterClasses[ARM::SPRRegClassID];
3050  else
3051    return Error(RegLoc, "invalid register in register list");
3052
3053  // Store the register.
3054  EReg = MRI->getEncodingValue(Reg);
3055  Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg));
3056
3057  // This starts immediately after the first register token in the list,
3058  // so we can see either a comma or a minus (range separator) as a legal
3059  // next token.
3060  while (Parser.getTok().is(AsmToken::Comma) ||
3061         Parser.getTok().is(AsmToken::Minus)) {
3062    if (Parser.getTok().is(AsmToken::Minus)) {
3063      Parser.Lex(); // Eat the minus.
3064      SMLoc AfterMinusLoc = Parser.getTok().getLoc();
3065      int EndReg = tryParseRegister();
3066      if (EndReg == -1)
3067        return Error(AfterMinusLoc, "register expected");
3068      // Allow Q regs and just interpret them as the two D sub-registers.
3069      if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(EndReg))
3070        EndReg = getDRegFromQReg(EndReg) + 1;
3071      // If the register is the same as the start reg, there's nothing
3072      // more to do.
3073      if (Reg == EndReg)
3074        continue;
3075      // The register must be in the same register class as the first.
3076      if (!RC->contains(EndReg))
3077        return Error(AfterMinusLoc, "invalid register in register list");
3078      // Ranges must go from low to high.
3079      if (MRI->getEncodingValue(Reg) > MRI->getEncodingValue(EndReg))
3080        return Error(AfterMinusLoc, "bad range in register list");
3081
3082      // Add all the registers in the range to the register list.
3083      while (Reg != EndReg) {
3084        Reg = getNextRegister(Reg);
3085        EReg = MRI->getEncodingValue(Reg);
3086        Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg));
3087      }
3088      continue;
3089    }
3090    Parser.Lex(); // Eat the comma.
3091    RegLoc = Parser.getTok().getLoc();
3092    int OldReg = Reg;
3093    const AsmToken RegTok = Parser.getTok();
3094    Reg = tryParseRegister();
3095    if (Reg == -1)
3096      return Error(RegLoc, "register expected");
3097    // Allow Q regs and just interpret them as the two D sub-registers.
3098    bool isQReg = false;
3099    if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) {
3100      Reg = getDRegFromQReg(Reg);
3101      isQReg = true;
3102    }
3103    // The register must be in the same register class as the first.
3104    if (!RC->contains(Reg))
3105      return Error(RegLoc, "invalid register in register list");
3106    // List must be monotonically increasing.
3107    if (MRI->getEncodingValue(Reg) < MRI->getEncodingValue(OldReg)) {
3108      if (ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg))
3109        Warning(RegLoc, "register list not in ascending order");
3110      else
3111        return Error(RegLoc, "register list not in ascending order");
3112    }
3113    if (MRI->getEncodingValue(Reg) == MRI->getEncodingValue(OldReg)) {
3114      Warning(RegLoc, "duplicated register (" + RegTok.getString() +
3115              ") in register list");
3116      continue;
3117    }
3118    // VFP register lists must also be contiguous.
3119    if (RC != &ARMMCRegisterClasses[ARM::GPRRegClassID] &&
3120        Reg != OldReg + 1)
3121      return Error(RegLoc, "non-contiguous register range");
3122    EReg = MRI->getEncodingValue(Reg);
3123    Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg));
3124    if (isQReg) {
3125      EReg = MRI->getEncodingValue(++Reg);
3126      Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg));
3127    }
3128  }
3129
3130  if (Parser.getTok().isNot(AsmToken::RCurly))
3131    return Error(Parser.getTok().getLoc(), "'}' expected");
3132  SMLoc E = Parser.getTok().getEndLoc();
3133  Parser.Lex(); // Eat '}' token.
3134
3135  // Push the register list operand.
3136  Operands.push_back(ARMOperand::CreateRegList(Registers, S, E));
3137
3138  // The ARM system instruction variants for LDM/STM have a '^' token here.
3139  if (Parser.getTok().is(AsmToken::Caret)) {
3140    Operands.push_back(ARMOperand::CreateToken("^",Parser.getTok().getLoc()));
3141    Parser.Lex(); // Eat '^' token.
3142  }
3143
3144  return false;
3145}
3146
3147// Helper function to parse the lane index for vector lists.
3148ARMAsmParser::OperandMatchResultTy ARMAsmParser::
3149parseVectorLane(VectorLaneTy &LaneKind, unsigned &Index, SMLoc &EndLoc) {
3150  Index = 0; // Always return a defined index value.
3151  if (Parser.getTok().is(AsmToken::LBrac)) {
3152    Parser.Lex(); // Eat the '['.
3153    if (Parser.getTok().is(AsmToken::RBrac)) {
3154      // "Dn[]" is the 'all lanes' syntax.
3155      LaneKind = AllLanes;
3156      EndLoc = Parser.getTok().getEndLoc();
3157      Parser.Lex(); // Eat the ']'.
3158      return MatchOperand_Success;
3159    }
3160
3161    // There's an optional '#' token here. Normally there wouldn't be, but
3162    // inline assemble puts one in, and it's friendly to accept that.
3163    if (Parser.getTok().is(AsmToken::Hash))
3164      Parser.Lex(); // Eat '#' or '$'.
3165
3166    const MCExpr *LaneIndex;
3167    SMLoc Loc = Parser.getTok().getLoc();
3168    if (getParser().parseExpression(LaneIndex)) {
3169      Error(Loc, "illegal expression");
3170      return MatchOperand_ParseFail;
3171    }
3172    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(LaneIndex);
3173    if (!CE) {
3174      Error(Loc, "lane index must be empty or an integer");
3175      return MatchOperand_ParseFail;
3176    }
3177    if (Parser.getTok().isNot(AsmToken::RBrac)) {
3178      Error(Parser.getTok().getLoc(), "']' expected");
3179      return MatchOperand_ParseFail;
3180    }
3181    EndLoc = Parser.getTok().getEndLoc();
3182    Parser.Lex(); // Eat the ']'.
3183    int64_t Val = CE->getValue();
3184
3185    // FIXME: Make this range check context sensitive for .8, .16, .32.
3186    if (Val < 0 || Val > 7) {
3187      Error(Parser.getTok().getLoc(), "lane index out of range");
3188      return MatchOperand_ParseFail;
3189    }
3190    Index = Val;
3191    LaneKind = IndexedLane;
3192    return MatchOperand_Success;
3193  }
3194  LaneKind = NoLanes;
3195  return MatchOperand_Success;
3196}
3197
3198// parse a vector register list
3199ARMAsmParser::OperandMatchResultTy ARMAsmParser::
3200parseVectorList(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
3201  VectorLaneTy LaneKind;
3202  unsigned LaneIndex;
3203  SMLoc S = Parser.getTok().getLoc();
3204  // As an extension (to match gas), support a plain D register or Q register
3205  // (without encosing curly braces) as a single or double entry list,
3206  // respectively.
3207  if (Parser.getTok().is(AsmToken::Identifier)) {
3208    SMLoc E = Parser.getTok().getEndLoc();
3209    int Reg = tryParseRegister();
3210    if (Reg == -1)
3211      return MatchOperand_NoMatch;
3212    if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Reg)) {
3213      OperandMatchResultTy Res = parseVectorLane(LaneKind, LaneIndex, E);
3214      if (Res != MatchOperand_Success)
3215        return Res;
3216      switch (LaneKind) {
3217      case NoLanes:
3218        Operands.push_back(ARMOperand::CreateVectorList(Reg, 1, false, S, E));
3219        break;
3220      case AllLanes:
3221        Operands.push_back(ARMOperand::CreateVectorListAllLanes(Reg, 1, false,
3222                                                                S, E));
3223        break;
3224      case IndexedLane:
3225        Operands.push_back(ARMOperand::CreateVectorListIndexed(Reg, 1,
3226                                                               LaneIndex,
3227                                                               false, S, E));
3228        break;
3229      }
3230      return MatchOperand_Success;
3231    }
3232    if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) {
3233      Reg = getDRegFromQReg(Reg);
3234      OperandMatchResultTy Res = parseVectorLane(LaneKind, LaneIndex, E);
3235      if (Res != MatchOperand_Success)
3236        return Res;
3237      switch (LaneKind) {
3238      case NoLanes:
3239        Reg = MRI->getMatchingSuperReg(Reg, ARM::dsub_0,
3240                                   &ARMMCRegisterClasses[ARM::DPairRegClassID]);
3241        Operands.push_back(ARMOperand::CreateVectorList(Reg, 2, false, S, E));
3242        break;
3243      case AllLanes:
3244        Reg = MRI->getMatchingSuperReg(Reg, ARM::dsub_0,
3245                                   &ARMMCRegisterClasses[ARM::DPairRegClassID]);
3246        Operands.push_back(ARMOperand::CreateVectorListAllLanes(Reg, 2, false,
3247                                                                S, E));
3248        break;
3249      case IndexedLane:
3250        Operands.push_back(ARMOperand::CreateVectorListIndexed(Reg, 2,
3251                                                               LaneIndex,
3252                                                               false, S, E));
3253        break;
3254      }
3255      return MatchOperand_Success;
3256    }
3257    Error(S, "vector register expected");
3258    return MatchOperand_ParseFail;
3259  }
3260
3261  if (Parser.getTok().isNot(AsmToken::LCurly))
3262    return MatchOperand_NoMatch;
3263
3264  Parser.Lex(); // Eat '{' token.
3265  SMLoc RegLoc = Parser.getTok().getLoc();
3266
3267  int Reg = tryParseRegister();
3268  if (Reg == -1) {
3269    Error(RegLoc, "register expected");
3270    return MatchOperand_ParseFail;
3271  }
3272  unsigned Count = 1;
3273  int Spacing = 0;
3274  unsigned FirstReg = Reg;
3275  // The list is of D registers, but we also allow Q regs and just interpret
3276  // them as the two D sub-registers.
3277  if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) {
3278    FirstReg = Reg = getDRegFromQReg(Reg);
3279    Spacing = 1; // double-spacing requires explicit D registers, otherwise
3280                 // it's ambiguous with four-register single spaced.
3281    ++Reg;
3282    ++Count;
3283  }
3284
3285  SMLoc E;
3286  if (parseVectorLane(LaneKind, LaneIndex, E) != MatchOperand_Success)
3287    return MatchOperand_ParseFail;
3288
3289  while (Parser.getTok().is(AsmToken::Comma) ||
3290         Parser.getTok().is(AsmToken::Minus)) {
3291    if (Parser.getTok().is(AsmToken::Minus)) {
3292      if (!Spacing)
3293        Spacing = 1; // Register range implies a single spaced list.
3294      else if (Spacing == 2) {
3295        Error(Parser.getTok().getLoc(),
3296              "sequential registers in double spaced list");
3297        return MatchOperand_ParseFail;
3298      }
3299      Parser.Lex(); // Eat the minus.
3300      SMLoc AfterMinusLoc = Parser.getTok().getLoc();
3301      int EndReg = tryParseRegister();
3302      if (EndReg == -1) {
3303        Error(AfterMinusLoc, "register expected");
3304        return MatchOperand_ParseFail;
3305      }
3306      // Allow Q regs and just interpret them as the two D sub-registers.
3307      if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(EndReg))
3308        EndReg = getDRegFromQReg(EndReg) + 1;
3309      // If the register is the same as the start reg, there's nothing
3310      // more to do.
3311      if (Reg == EndReg)
3312        continue;
3313      // The register must be in the same register class as the first.
3314      if (!ARMMCRegisterClasses[ARM::DPRRegClassID].contains(EndReg)) {
3315        Error(AfterMinusLoc, "invalid register in register list");
3316        return MatchOperand_ParseFail;
3317      }
3318      // Ranges must go from low to high.
3319      if (Reg > EndReg) {
3320        Error(AfterMinusLoc, "bad range in register list");
3321        return MatchOperand_ParseFail;
3322      }
3323      // Parse the lane specifier if present.
3324      VectorLaneTy NextLaneKind;
3325      unsigned NextLaneIndex;
3326      if (parseVectorLane(NextLaneKind, NextLaneIndex, E) !=
3327          MatchOperand_Success)
3328        return MatchOperand_ParseFail;
3329      if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) {
3330        Error(AfterMinusLoc, "mismatched lane index in register list");
3331        return MatchOperand_ParseFail;
3332      }
3333
3334      // Add all the registers in the range to the register list.
3335      Count += EndReg - Reg;
3336      Reg = EndReg;
3337      continue;
3338    }
3339    Parser.Lex(); // Eat the comma.
3340    RegLoc = Parser.getTok().getLoc();
3341    int OldReg = Reg;
3342    Reg = tryParseRegister();
3343    if (Reg == -1) {
3344      Error(RegLoc, "register expected");
3345      return MatchOperand_ParseFail;
3346    }
3347    // vector register lists must be contiguous.
3348    // It's OK to use the enumeration values directly here rather, as the
3349    // VFP register classes have the enum sorted properly.
3350    //
3351    // The list is of D registers, but we also allow Q regs and just interpret
3352    // them as the two D sub-registers.
3353    if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) {
3354      if (!Spacing)
3355        Spacing = 1; // Register range implies a single spaced list.
3356      else if (Spacing == 2) {
3357        Error(RegLoc,
3358              "invalid register in double-spaced list (must be 'D' register')");
3359        return MatchOperand_ParseFail;
3360      }
3361      Reg = getDRegFromQReg(Reg);
3362      if (Reg != OldReg + 1) {
3363        Error(RegLoc, "non-contiguous register range");
3364        return MatchOperand_ParseFail;
3365      }
3366      ++Reg;
3367      Count += 2;
3368      // Parse the lane specifier if present.
3369      VectorLaneTy NextLaneKind;
3370      unsigned NextLaneIndex;
3371      SMLoc LaneLoc = Parser.getTok().getLoc();
3372      if (parseVectorLane(NextLaneKind, NextLaneIndex, E) !=
3373          MatchOperand_Success)
3374        return MatchOperand_ParseFail;
3375      if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) {
3376        Error(LaneLoc, "mismatched lane index in register list");
3377        return MatchOperand_ParseFail;
3378      }
3379      continue;
3380    }
3381    // Normal D register.
3382    // Figure out the register spacing (single or double) of the list if
3383    // we don't know it already.
3384    if (!Spacing)
3385      Spacing = 1 + (Reg == OldReg + 2);
3386
3387    // Just check that it's contiguous and keep going.
3388    if (Reg != OldReg + Spacing) {
3389      Error(RegLoc, "non-contiguous register range");
3390      return MatchOperand_ParseFail;
3391    }
3392    ++Count;
3393    // Parse the lane specifier if present.
3394    VectorLaneTy NextLaneKind;
3395    unsigned NextLaneIndex;
3396    SMLoc EndLoc = Parser.getTok().getLoc();
3397    if (parseVectorLane(NextLaneKind, NextLaneIndex, E) != MatchOperand_Success)
3398      return MatchOperand_ParseFail;
3399    if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) {
3400      Error(EndLoc, "mismatched lane index in register list");
3401      return MatchOperand_ParseFail;
3402    }
3403  }
3404
3405  if (Parser.getTok().isNot(AsmToken::RCurly)) {
3406    Error(Parser.getTok().getLoc(), "'}' expected");
3407    return MatchOperand_ParseFail;
3408  }
3409  E = Parser.getTok().getEndLoc();
3410  Parser.Lex(); // Eat '}' token.
3411
3412  switch (LaneKind) {
3413  case NoLanes:
3414    // Two-register operands have been converted to the
3415    // composite register classes.
3416    if (Count == 2) {
3417      const MCRegisterClass *RC = (Spacing == 1) ?
3418        &ARMMCRegisterClasses[ARM::DPairRegClassID] :
3419        &ARMMCRegisterClasses[ARM::DPairSpcRegClassID];
3420      FirstReg = MRI->getMatchingSuperReg(FirstReg, ARM::dsub_0, RC);
3421    }
3422
3423    Operands.push_back(ARMOperand::CreateVectorList(FirstReg, Count,
3424                                                    (Spacing == 2), S, E));
3425    break;
3426  case AllLanes:
3427    // Two-register operands have been converted to the
3428    // composite register classes.
3429    if (Count == 2) {
3430      const MCRegisterClass *RC = (Spacing == 1) ?
3431        &ARMMCRegisterClasses[ARM::DPairRegClassID] :
3432        &ARMMCRegisterClasses[ARM::DPairSpcRegClassID];
3433      FirstReg = MRI->getMatchingSuperReg(FirstReg, ARM::dsub_0, RC);
3434    }
3435    Operands.push_back(ARMOperand::CreateVectorListAllLanes(FirstReg, Count,
3436                                                            (Spacing == 2),
3437                                                            S, E));
3438    break;
3439  case IndexedLane:
3440    Operands.push_back(ARMOperand::CreateVectorListIndexed(FirstReg, Count,
3441                                                           LaneIndex,
3442                                                           (Spacing == 2),
3443                                                           S, E));
3444    break;
3445  }
3446  return MatchOperand_Success;
3447}
3448
3449/// parseMemBarrierOptOperand - Try to parse DSB/DMB data barrier options.
3450ARMAsmParser::OperandMatchResultTy ARMAsmParser::
3451parseMemBarrierOptOperand(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
3452  SMLoc S = Parser.getTok().getLoc();
3453  const AsmToken &Tok = Parser.getTok();
3454  unsigned Opt;
3455
3456  if (Tok.is(AsmToken::Identifier)) {
3457    StringRef OptStr = Tok.getString();
3458
3459    Opt = StringSwitch<unsigned>(OptStr.slice(0, OptStr.size()).lower())
3460      .Case("sy",    ARM_MB::SY)
3461      .Case("st",    ARM_MB::ST)
3462      .Case("sh",    ARM_MB::ISH)
3463      .Case("ish",   ARM_MB::ISH)
3464      .Case("shst",  ARM_MB::ISHST)
3465      .Case("ishst", ARM_MB::ISHST)
3466      .Case("nsh",   ARM_MB::NSH)
3467      .Case("un",    ARM_MB::NSH)
3468      .Case("nshst", ARM_MB::NSHST)
3469      .Case("unst",  ARM_MB::NSHST)
3470      .Case("osh",   ARM_MB::OSH)
3471      .Case("oshst", ARM_MB::OSHST)
3472      .Default(~0U);
3473
3474    if (Opt == ~0U)
3475      return MatchOperand_NoMatch;
3476
3477    Parser.Lex(); // Eat identifier token.
3478  } else if (Tok.is(AsmToken::Hash) ||
3479             Tok.is(AsmToken::Dollar) ||
3480             Tok.is(AsmToken::Integer)) {
3481    if (Parser.getTok().isNot(AsmToken::Integer))
3482      Parser.Lex(); // Eat '#' or '$'.
3483    SMLoc Loc = Parser.getTok().getLoc();
3484
3485    const MCExpr *MemBarrierID;
3486    if (getParser().parseExpression(MemBarrierID)) {
3487      Error(Loc, "illegal expression");
3488      return MatchOperand_ParseFail;
3489    }
3490
3491    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(MemBarrierID);
3492    if (!CE) {
3493      Error(Loc, "constant expression expected");
3494      return MatchOperand_ParseFail;
3495    }
3496
3497    int Val = CE->getValue();
3498    if (Val & ~0xf) {
3499      Error(Loc, "immediate value out of range");
3500      return MatchOperand_ParseFail;
3501    }
3502
3503    Opt = ARM_MB::RESERVED_0 + Val;
3504  } else
3505    return MatchOperand_ParseFail;
3506
3507  Operands.push_back(ARMOperand::CreateMemBarrierOpt((ARM_MB::MemBOpt)Opt, S));
3508  return MatchOperand_Success;
3509}
3510
3511/// parseInstSyncBarrierOptOperand - Try to parse ISB inst sync barrier options.
3512ARMAsmParser::OperandMatchResultTy ARMAsmParser::
3513parseInstSyncBarrierOptOperand(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
3514  SMLoc S = Parser.getTok().getLoc();
3515  const AsmToken &Tok = Parser.getTok();
3516  unsigned Opt;
3517
3518  if (Tok.is(AsmToken::Identifier)) {
3519    StringRef OptStr = Tok.getString();
3520
3521    if (OptStr.lower() == "sy")
3522      Opt = ARM_ISB::SY;
3523    else
3524      return MatchOperand_NoMatch;
3525
3526    Parser.Lex(); // Eat identifier token.
3527  } else if (Tok.is(AsmToken::Hash) ||
3528             Tok.is(AsmToken::Dollar) ||
3529             Tok.is(AsmToken::Integer)) {
3530    if (Parser.getTok().isNot(AsmToken::Integer))
3531      Parser.Lex(); // Eat '#' or '$'.
3532    SMLoc Loc = Parser.getTok().getLoc();
3533
3534    const MCExpr *ISBarrierID;
3535    if (getParser().parseExpression(ISBarrierID)) {
3536      Error(Loc, "illegal expression");
3537      return MatchOperand_ParseFail;
3538    }
3539
3540    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ISBarrierID);
3541    if (!CE) {
3542      Error(Loc, "constant expression expected");
3543      return MatchOperand_ParseFail;
3544    }
3545
3546    int Val = CE->getValue();
3547    if (Val & ~0xf) {
3548      Error(Loc, "immediate value out of range");
3549      return MatchOperand_ParseFail;
3550    }
3551
3552    Opt = ARM_ISB::RESERVED_0 + Val;
3553  } else
3554    return MatchOperand_ParseFail;
3555
3556  Operands.push_back(ARMOperand::CreateInstSyncBarrierOpt(
3557          (ARM_ISB::InstSyncBOpt)Opt, S));
3558  return MatchOperand_Success;
3559}
3560
3561
3562/// parseProcIFlagsOperand - Try to parse iflags from CPS instruction.
3563ARMAsmParser::OperandMatchResultTy ARMAsmParser::
3564parseProcIFlagsOperand(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
3565  SMLoc S = Parser.getTok().getLoc();
3566  const AsmToken &Tok = Parser.getTok();
3567  if (!Tok.is(AsmToken::Identifier))
3568    return MatchOperand_NoMatch;
3569  StringRef IFlagsStr = Tok.getString();
3570
3571  // An iflags string of "none" is interpreted to mean that none of the AIF
3572  // bits are set.  Not a terribly useful instruction, but a valid encoding.
3573  unsigned IFlags = 0;
3574  if (IFlagsStr != "none") {
3575        for (int i = 0, e = IFlagsStr.size(); i != e; ++i) {
3576      unsigned Flag = StringSwitch<unsigned>(IFlagsStr.substr(i, 1))
3577        .Case("a", ARM_PROC::A)
3578        .Case("i", ARM_PROC::I)
3579        .Case("f", ARM_PROC::F)
3580        .Default(~0U);
3581
3582      // If some specific iflag is already set, it means that some letter is
3583      // present more than once, this is not acceptable.
3584      if (Flag == ~0U || (IFlags & Flag))
3585        return MatchOperand_NoMatch;
3586
3587      IFlags |= Flag;
3588    }
3589  }
3590
3591  Parser.Lex(); // Eat identifier token.
3592  Operands.push_back(ARMOperand::CreateProcIFlags((ARM_PROC::IFlags)IFlags, S));
3593  return MatchOperand_Success;
3594}
3595
3596/// parseMSRMaskOperand - Try to parse mask flags from MSR instruction.
3597ARMAsmParser::OperandMatchResultTy ARMAsmParser::
3598parseMSRMaskOperand(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
3599  SMLoc S = Parser.getTok().getLoc();
3600  const AsmToken &Tok = Parser.getTok();
3601  if (!Tok.is(AsmToken::Identifier))
3602    return MatchOperand_NoMatch;
3603  StringRef Mask = Tok.getString();
3604
3605  if (isMClass()) {
3606    // See ARMv6-M 10.1.1
3607    std::string Name = Mask.lower();
3608    unsigned FlagsVal = StringSwitch<unsigned>(Name)
3609      // Note: in the documentation:
3610      //  ARM deprecates using MSR APSR without a _<bits> qualifier as an alias
3611      //  for MSR APSR_nzcvq.
3612      // but we do make it an alias here.  This is so to get the "mask encoding"
3613      // bits correct on MSR APSR writes.
3614      //
3615      // FIXME: Note the 0xc00 "mask encoding" bits version of the registers
3616      // should really only be allowed when writing a special register.  Note
3617      // they get dropped in the MRS instruction reading a special register as
3618      // the SYSm field is only 8 bits.
3619      //
3620      // FIXME: the _g and _nzcvqg versions are only allowed if the processor
3621      // includes the DSP extension but that is not checked.
3622      .Case("apsr", 0x800)
3623      .Case("apsr_nzcvq", 0x800)
3624      .Case("apsr_g", 0x400)
3625      .Case("apsr_nzcvqg", 0xc00)
3626      .Case("iapsr", 0x801)
3627      .Case("iapsr_nzcvq", 0x801)
3628      .Case("iapsr_g", 0x401)
3629      .Case("iapsr_nzcvqg", 0xc01)
3630      .Case("eapsr", 0x802)
3631      .Case("eapsr_nzcvq", 0x802)
3632      .Case("eapsr_g", 0x402)
3633      .Case("eapsr_nzcvqg", 0xc02)
3634      .Case("xpsr", 0x803)
3635      .Case("xpsr_nzcvq", 0x803)
3636      .Case("xpsr_g", 0x403)
3637      .Case("xpsr_nzcvqg", 0xc03)
3638      .Case("ipsr", 0x805)
3639      .Case("epsr", 0x806)
3640      .Case("iepsr", 0x807)
3641      .Case("msp", 0x808)
3642      .Case("psp", 0x809)
3643      .Case("primask", 0x810)
3644      .Case("basepri", 0x811)
3645      .Case("basepri_max", 0x812)
3646      .Case("faultmask", 0x813)
3647      .Case("control", 0x814)
3648      .Default(~0U);
3649
3650    if (FlagsVal == ~0U)
3651      return MatchOperand_NoMatch;
3652
3653    if (!hasV7Ops() && FlagsVal >= 0x811 && FlagsVal <= 0x813)
3654      // basepri, basepri_max and faultmask only valid for V7m.
3655      return MatchOperand_NoMatch;
3656
3657    Parser.Lex(); // Eat identifier token.
3658    Operands.push_back(ARMOperand::CreateMSRMask(FlagsVal, S));
3659    return MatchOperand_Success;
3660  }
3661
3662  // Split spec_reg from flag, example: CPSR_sxf => "CPSR" and "sxf"
3663  size_t Start = 0, Next = Mask.find('_');
3664  StringRef Flags = "";
3665  std::string SpecReg = Mask.slice(Start, Next).lower();
3666  if (Next != StringRef::npos)
3667    Flags = Mask.slice(Next+1, Mask.size());
3668
3669  // FlagsVal contains the complete mask:
3670  // 3-0: Mask
3671  // 4: Special Reg (cpsr, apsr => 0; spsr => 1)
3672  unsigned FlagsVal = 0;
3673
3674  if (SpecReg == "apsr") {
3675    FlagsVal = StringSwitch<unsigned>(Flags)
3676    .Case("nzcvq",  0x8) // same as CPSR_f
3677    .Case("g",      0x4) // same as CPSR_s
3678    .Case("nzcvqg", 0xc) // same as CPSR_fs
3679    .Default(~0U);
3680
3681    if (FlagsVal == ~0U) {
3682      if (!Flags.empty())
3683        return MatchOperand_NoMatch;
3684      else
3685        FlagsVal = 8; // No flag
3686    }
3687  } else if (SpecReg == "cpsr" || SpecReg == "spsr") {
3688    // cpsr_all is an alias for cpsr_fc, as is plain cpsr.
3689    if (Flags == "all" || Flags == "")
3690      Flags = "fc";
3691    for (int i = 0, e = Flags.size(); i != e; ++i) {
3692      unsigned Flag = StringSwitch<unsigned>(Flags.substr(i, 1))
3693      .Case("c", 1)
3694      .Case("x", 2)
3695      .Case("s", 4)
3696      .Case("f", 8)
3697      .Default(~0U);
3698
3699      // If some specific flag is already set, it means that some letter is
3700      // present more than once, this is not acceptable.
3701      if (FlagsVal == ~0U || (FlagsVal & Flag))
3702        return MatchOperand_NoMatch;
3703      FlagsVal |= Flag;
3704    }
3705  } else // No match for special register.
3706    return MatchOperand_NoMatch;
3707
3708  // Special register without flags is NOT equivalent to "fc" flags.
3709  // NOTE: This is a divergence from gas' behavior.  Uncommenting the following
3710  // two lines would enable gas compatibility at the expense of breaking
3711  // round-tripping.
3712  //
3713  // if (!FlagsVal)
3714  //  FlagsVal = 0x9;
3715
3716  // Bit 4: Special Reg (cpsr, apsr => 0; spsr => 1)
3717  if (SpecReg == "spsr")
3718    FlagsVal |= 16;
3719
3720  Parser.Lex(); // Eat identifier token.
3721  Operands.push_back(ARMOperand::CreateMSRMask(FlagsVal, S));
3722  return MatchOperand_Success;
3723}
3724
3725ARMAsmParser::OperandMatchResultTy ARMAsmParser::
3726parsePKHImm(SmallVectorImpl<MCParsedAsmOperand*> &Operands, StringRef Op,
3727            int Low, int High) {
3728  const AsmToken &Tok = Parser.getTok();
3729  if (Tok.isNot(AsmToken::Identifier)) {
3730    Error(Parser.getTok().getLoc(), Op + " operand expected.");
3731    return MatchOperand_ParseFail;
3732  }
3733  StringRef ShiftName = Tok.getString();
3734  std::string LowerOp = Op.lower();
3735  std::string UpperOp = Op.upper();
3736  if (ShiftName != LowerOp && ShiftName != UpperOp) {
3737    Error(Parser.getTok().getLoc(), Op + " operand expected.");
3738    return MatchOperand_ParseFail;
3739  }
3740  Parser.Lex(); // Eat shift type token.
3741
3742  // There must be a '#' and a shift amount.
3743  if (Parser.getTok().isNot(AsmToken::Hash) &&
3744      Parser.getTok().isNot(AsmToken::Dollar)) {
3745    Error(Parser.getTok().getLoc(), "'#' expected");
3746    return MatchOperand_ParseFail;
3747  }
3748  Parser.Lex(); // Eat hash token.
3749
3750  const MCExpr *ShiftAmount;
3751  SMLoc Loc = Parser.getTok().getLoc();
3752  SMLoc EndLoc;
3753  if (getParser().parseExpression(ShiftAmount, EndLoc)) {
3754    Error(Loc, "illegal expression");
3755    return MatchOperand_ParseFail;
3756  }
3757  const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftAmount);
3758  if (!CE) {
3759    Error(Loc, "constant expression expected");
3760    return MatchOperand_ParseFail;
3761  }
3762  int Val = CE->getValue();
3763  if (Val < Low || Val > High) {
3764    Error(Loc, "immediate value out of range");
3765    return MatchOperand_ParseFail;
3766  }
3767
3768  Operands.push_back(ARMOperand::CreateImm(CE, Loc, EndLoc));
3769
3770  return MatchOperand_Success;
3771}
3772
3773ARMAsmParser::OperandMatchResultTy ARMAsmParser::
3774parseSetEndImm(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
3775  const AsmToken &Tok = Parser.getTok();
3776  SMLoc S = Tok.getLoc();
3777  if (Tok.isNot(AsmToken::Identifier)) {
3778    Error(S, "'be' or 'le' operand expected");
3779    return MatchOperand_ParseFail;
3780  }
3781  int Val = StringSwitch<int>(Tok.getString().lower())
3782    .Case("be", 1)
3783    .Case("le", 0)
3784    .Default(-1);
3785  Parser.Lex(); // Eat the token.
3786
3787  if (Val == -1) {
3788    Error(S, "'be' or 'le' operand expected");
3789    return MatchOperand_ParseFail;
3790  }
3791  Operands.push_back(ARMOperand::CreateImm(MCConstantExpr::Create(Val,
3792                                                                  getContext()),
3793                                           S, Tok.getEndLoc()));
3794  return MatchOperand_Success;
3795}
3796
3797/// parseShifterImm - Parse the shifter immediate operand for SSAT/USAT
3798/// instructions. Legal values are:
3799///     lsl #n  'n' in [0,31]
3800///     asr #n  'n' in [1,32]
3801///             n == 32 encoded as n == 0.
3802ARMAsmParser::OperandMatchResultTy ARMAsmParser::
3803parseShifterImm(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
3804  const AsmToken &Tok = Parser.getTok();
3805  SMLoc S = Tok.getLoc();
3806  if (Tok.isNot(AsmToken::Identifier)) {
3807    Error(S, "shift operator 'asr' or 'lsl' expected");
3808    return MatchOperand_ParseFail;
3809  }
3810  StringRef ShiftName = Tok.getString();
3811  bool isASR;
3812  if (ShiftName == "lsl" || ShiftName == "LSL")
3813    isASR = false;
3814  else if (ShiftName == "asr" || ShiftName == "ASR")
3815    isASR = true;
3816  else {
3817    Error(S, "shift operator 'asr' or 'lsl' expected");
3818    return MatchOperand_ParseFail;
3819  }
3820  Parser.Lex(); // Eat the operator.
3821
3822  // A '#' and a shift amount.
3823  if (Parser.getTok().isNot(AsmToken::Hash) &&
3824      Parser.getTok().isNot(AsmToken::Dollar)) {
3825    Error(Parser.getTok().getLoc(), "'#' expected");
3826    return MatchOperand_ParseFail;
3827  }
3828  Parser.Lex(); // Eat hash token.
3829  SMLoc ExLoc = Parser.getTok().getLoc();
3830
3831  const MCExpr *ShiftAmount;
3832  SMLoc EndLoc;
3833  if (getParser().parseExpression(ShiftAmount, EndLoc)) {
3834    Error(ExLoc, "malformed shift expression");
3835    return MatchOperand_ParseFail;
3836  }
3837  const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftAmount);
3838  if (!CE) {
3839    Error(ExLoc, "shift amount must be an immediate");
3840    return MatchOperand_ParseFail;
3841  }
3842
3843  int64_t Val = CE->getValue();
3844  if (isASR) {
3845    // Shift amount must be in [1,32]
3846    if (Val < 1 || Val > 32) {
3847      Error(ExLoc, "'asr' shift amount must be in range [1,32]");
3848      return MatchOperand_ParseFail;
3849    }
3850    // asr #32 encoded as asr #0, but is not allowed in Thumb2 mode.
3851    if (isThumb() && Val == 32) {
3852      Error(ExLoc, "'asr #32' shift amount not allowed in Thumb mode");
3853      return MatchOperand_ParseFail;
3854    }
3855    if (Val == 32) Val = 0;
3856  } else {
3857    // Shift amount must be in [1,32]
3858    if (Val < 0 || Val > 31) {
3859      Error(ExLoc, "'lsr' shift amount must be in range [0,31]");
3860      return MatchOperand_ParseFail;
3861    }
3862  }
3863
3864  Operands.push_back(ARMOperand::CreateShifterImm(isASR, Val, S, EndLoc));
3865
3866  return MatchOperand_Success;
3867}
3868
3869/// parseRotImm - Parse the shifter immediate operand for SXTB/UXTB family
3870/// of instructions. Legal values are:
3871///     ror #n  'n' in {0, 8, 16, 24}
3872ARMAsmParser::OperandMatchResultTy ARMAsmParser::
3873parseRotImm(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
3874  const AsmToken &Tok = Parser.getTok();
3875  SMLoc S = Tok.getLoc();
3876  if (Tok.isNot(AsmToken::Identifier))
3877    return MatchOperand_NoMatch;
3878  StringRef ShiftName = Tok.getString();
3879  if (ShiftName != "ror" && ShiftName != "ROR")
3880    return MatchOperand_NoMatch;
3881  Parser.Lex(); // Eat the operator.
3882
3883  // A '#' and a rotate amount.
3884  if (Parser.getTok().isNot(AsmToken::Hash) &&
3885      Parser.getTok().isNot(AsmToken::Dollar)) {
3886    Error(Parser.getTok().getLoc(), "'#' expected");
3887    return MatchOperand_ParseFail;
3888  }
3889  Parser.Lex(); // Eat hash token.
3890  SMLoc ExLoc = Parser.getTok().getLoc();
3891
3892  const MCExpr *ShiftAmount;
3893  SMLoc EndLoc;
3894  if (getParser().parseExpression(ShiftAmount, EndLoc)) {
3895    Error(ExLoc, "malformed rotate expression");
3896    return MatchOperand_ParseFail;
3897  }
3898  const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftAmount);
3899  if (!CE) {
3900    Error(ExLoc, "rotate amount must be an immediate");
3901    return MatchOperand_ParseFail;
3902  }
3903
3904  int64_t Val = CE->getValue();
3905  // Shift amount must be in {0, 8, 16, 24} (0 is undocumented extension)
3906  // normally, zero is represented in asm by omitting the rotate operand
3907  // entirely.
3908  if (Val != 8 && Val != 16 && Val != 24 && Val != 0) {
3909    Error(ExLoc, "'ror' rotate amount must be 8, 16, or 24");
3910    return MatchOperand_ParseFail;
3911  }
3912
3913  Operands.push_back(ARMOperand::CreateRotImm(Val, S, EndLoc));
3914
3915  return MatchOperand_Success;
3916}
3917
3918ARMAsmParser::OperandMatchResultTy ARMAsmParser::
3919parseBitfield(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
3920  SMLoc S = Parser.getTok().getLoc();
3921  // The bitfield descriptor is really two operands, the LSB and the width.
3922  if (Parser.getTok().isNot(AsmToken::Hash) &&
3923      Parser.getTok().isNot(AsmToken::Dollar)) {
3924    Error(Parser.getTok().getLoc(), "'#' expected");
3925    return MatchOperand_ParseFail;
3926  }
3927  Parser.Lex(); // Eat hash token.
3928
3929  const MCExpr *LSBExpr;
3930  SMLoc E = Parser.getTok().getLoc();
3931  if (getParser().parseExpression(LSBExpr)) {
3932    Error(E, "malformed immediate expression");
3933    return MatchOperand_ParseFail;
3934  }
3935  const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(LSBExpr);
3936  if (!CE) {
3937    Error(E, "'lsb' operand must be an immediate");
3938    return MatchOperand_ParseFail;
3939  }
3940
3941  int64_t LSB = CE->getValue();
3942  // The LSB must be in the range [0,31]
3943  if (LSB < 0 || LSB > 31) {
3944    Error(E, "'lsb' operand must be in the range [0,31]");
3945    return MatchOperand_ParseFail;
3946  }
3947  E = Parser.getTok().getLoc();
3948
3949  // Expect another immediate operand.
3950  if (Parser.getTok().isNot(AsmToken::Comma)) {
3951    Error(Parser.getTok().getLoc(), "too few operands");
3952    return MatchOperand_ParseFail;
3953  }
3954  Parser.Lex(); // Eat hash token.
3955  if (Parser.getTok().isNot(AsmToken::Hash) &&
3956      Parser.getTok().isNot(AsmToken::Dollar)) {
3957    Error(Parser.getTok().getLoc(), "'#' expected");
3958    return MatchOperand_ParseFail;
3959  }
3960  Parser.Lex(); // Eat hash token.
3961
3962  const MCExpr *WidthExpr;
3963  SMLoc EndLoc;
3964  if (getParser().parseExpression(WidthExpr, EndLoc)) {
3965    Error(E, "malformed immediate expression");
3966    return MatchOperand_ParseFail;
3967  }
3968  CE = dyn_cast<MCConstantExpr>(WidthExpr);
3969  if (!CE) {
3970    Error(E, "'width' operand must be an immediate");
3971    return MatchOperand_ParseFail;
3972  }
3973
3974  int64_t Width = CE->getValue();
3975  // The LSB must be in the range [1,32-lsb]
3976  if (Width < 1 || Width > 32 - LSB) {
3977    Error(E, "'width' operand must be in the range [1,32-lsb]");
3978    return MatchOperand_ParseFail;
3979  }
3980
3981  Operands.push_back(ARMOperand::CreateBitfield(LSB, Width, S, EndLoc));
3982
3983  return MatchOperand_Success;
3984}
3985
3986ARMAsmParser::OperandMatchResultTy ARMAsmParser::
3987parsePostIdxReg(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
3988  // Check for a post-index addressing register operand. Specifically:
3989  // postidx_reg := '+' register {, shift}
3990  //              | '-' register {, shift}
3991  //              | register {, shift}
3992
3993  // This method must return MatchOperand_NoMatch without consuming any tokens
3994  // in the case where there is no match, as other alternatives take other
3995  // parse methods.
3996  AsmToken Tok = Parser.getTok();
3997  SMLoc S = Tok.getLoc();
3998  bool haveEaten = false;
3999  bool isAdd = true;
4000  if (Tok.is(AsmToken::Plus)) {
4001    Parser.Lex(); // Eat the '+' token.
4002    haveEaten = true;
4003  } else if (Tok.is(AsmToken::Minus)) {
4004    Parser.Lex(); // Eat the '-' token.
4005    isAdd = false;
4006    haveEaten = true;
4007  }
4008
4009  SMLoc E = Parser.getTok().getEndLoc();
4010  int Reg = tryParseRegister();
4011  if (Reg == -1) {
4012    if (!haveEaten)
4013      return MatchOperand_NoMatch;
4014    Error(Parser.getTok().getLoc(), "register expected");
4015    return MatchOperand_ParseFail;
4016  }
4017
4018  ARM_AM::ShiftOpc ShiftTy = ARM_AM::no_shift;
4019  unsigned ShiftImm = 0;
4020  if (Parser.getTok().is(AsmToken::Comma)) {
4021    Parser.Lex(); // Eat the ','.
4022    if (parseMemRegOffsetShift(ShiftTy, ShiftImm))
4023      return MatchOperand_ParseFail;
4024
4025    // FIXME: Only approximates end...may include intervening whitespace.
4026    E = Parser.getTok().getLoc();
4027  }
4028
4029  Operands.push_back(ARMOperand::CreatePostIdxReg(Reg, isAdd, ShiftTy,
4030                                                  ShiftImm, S, E));
4031
4032  return MatchOperand_Success;
4033}
4034
4035ARMAsmParser::OperandMatchResultTy ARMAsmParser::
4036parseAM3Offset(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
4037  // Check for a post-index addressing register operand. Specifically:
4038  // am3offset := '+' register
4039  //              | '-' register
4040  //              | register
4041  //              | # imm
4042  //              | # + imm
4043  //              | # - imm
4044
4045  // This method must return MatchOperand_NoMatch without consuming any tokens
4046  // in the case where there is no match, as other alternatives take other
4047  // parse methods.
4048  AsmToken Tok = Parser.getTok();
4049  SMLoc S = Tok.getLoc();
4050
4051  // Do immediates first, as we always parse those if we have a '#'.
4052  if (Parser.getTok().is(AsmToken::Hash) ||
4053      Parser.getTok().is(AsmToken::Dollar)) {
4054    Parser.Lex(); // Eat '#' or '$'.
4055    // Explicitly look for a '-', as we need to encode negative zero
4056    // differently.
4057    bool isNegative = Parser.getTok().is(AsmToken::Minus);
4058    const MCExpr *Offset;
4059    SMLoc E;
4060    if (getParser().parseExpression(Offset, E))
4061      return MatchOperand_ParseFail;
4062    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Offset);
4063    if (!CE) {
4064      Error(S, "constant expression expected");
4065      return MatchOperand_ParseFail;
4066    }
4067    // Negative zero is encoded as the flag value INT32_MIN.
4068    int32_t Val = CE->getValue();
4069    if (isNegative && Val == 0)
4070      Val = INT32_MIN;
4071
4072    Operands.push_back(
4073      ARMOperand::CreateImm(MCConstantExpr::Create(Val, getContext()), S, E));
4074
4075    return MatchOperand_Success;
4076  }
4077
4078
4079  bool haveEaten = false;
4080  bool isAdd = true;
4081  if (Tok.is(AsmToken::Plus)) {
4082    Parser.Lex(); // Eat the '+' token.
4083    haveEaten = true;
4084  } else if (Tok.is(AsmToken::Minus)) {
4085    Parser.Lex(); // Eat the '-' token.
4086    isAdd = false;
4087    haveEaten = true;
4088  }
4089
4090  Tok = Parser.getTok();
4091  int Reg = tryParseRegister();
4092  if (Reg == -1) {
4093    if (!haveEaten)
4094      return MatchOperand_NoMatch;
4095    Error(Tok.getLoc(), "register expected");
4096    return MatchOperand_ParseFail;
4097  }
4098
4099  Operands.push_back(ARMOperand::CreatePostIdxReg(Reg, isAdd, ARM_AM::no_shift,
4100                                                  0, S, Tok.getEndLoc()));
4101
4102  return MatchOperand_Success;
4103}
4104
4105/// Convert parsed operands to MCInst.  Needed here because this instruction
4106/// only has two register operands, but multiplication is commutative so
4107/// assemblers should accept both "mul rD, rN, rD" and "mul rD, rD, rN".
4108void ARMAsmParser::
4109cvtThumbMultiply(MCInst &Inst,
4110           const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
4111  ((ARMOperand*)Operands[3])->addRegOperands(Inst, 1);
4112  ((ARMOperand*)Operands[1])->addCCOutOperands(Inst, 1);
4113  // If we have a three-operand form, make sure to set Rn to be the operand
4114  // that isn't the same as Rd.
4115  unsigned RegOp = 4;
4116  if (Operands.size() == 6 &&
4117      ((ARMOperand*)Operands[4])->getReg() ==
4118        ((ARMOperand*)Operands[3])->getReg())
4119    RegOp = 5;
4120  ((ARMOperand*)Operands[RegOp])->addRegOperands(Inst, 1);
4121  Inst.addOperand(Inst.getOperand(0));
4122  ((ARMOperand*)Operands[2])->addCondCodeOperands(Inst, 2);
4123}
4124
4125void ARMAsmParser::
4126cvtThumbBranches(MCInst &Inst,
4127           const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
4128  int CondOp = -1, ImmOp = -1;
4129  switch(Inst.getOpcode()) {
4130    case ARM::tB:
4131    case ARM::tBcc:  CondOp = 1; ImmOp = 2; break;
4132
4133    case ARM::t2B:
4134    case ARM::t2Bcc: CondOp = 1; ImmOp = 3; break;
4135
4136    default: llvm_unreachable("Unexpected instruction in cvtThumbBranches");
4137  }
4138  // first decide whether or not the branch should be conditional
4139  // by looking at it's location relative to an IT block
4140  if(inITBlock()) {
4141    // inside an IT block we cannot have any conditional branches. any
4142    // such instructions needs to be converted to unconditional form
4143    switch(Inst.getOpcode()) {
4144      case ARM::tBcc: Inst.setOpcode(ARM::tB); break;
4145      case ARM::t2Bcc: Inst.setOpcode(ARM::t2B); break;
4146    }
4147  } else {
4148    // outside IT blocks we can only have unconditional branches with AL
4149    // condition code or conditional branches with non-AL condition code
4150    unsigned Cond = static_cast<ARMOperand*>(Operands[CondOp])->getCondCode();
4151    switch(Inst.getOpcode()) {
4152      case ARM::tB:
4153      case ARM::tBcc:
4154        Inst.setOpcode(Cond == ARMCC::AL ? ARM::tB : ARM::tBcc);
4155        break;
4156      case ARM::t2B:
4157      case ARM::t2Bcc:
4158        Inst.setOpcode(Cond == ARMCC::AL ? ARM::t2B : ARM::t2Bcc);
4159        break;
4160    }
4161  }
4162
4163  // now decide on encoding size based on branch target range
4164  switch(Inst.getOpcode()) {
4165    // classify tB as either t2B or t1B based on range of immediate operand
4166    case ARM::tB: {
4167      ARMOperand* op = static_cast<ARMOperand*>(Operands[ImmOp]);
4168      if(!op->isSignedOffset<11, 1>() && isThumbTwo())
4169        Inst.setOpcode(ARM::t2B);
4170      break;
4171    }
4172    // classify tBcc as either t2Bcc or t1Bcc based on range of immediate operand
4173    case ARM::tBcc: {
4174      ARMOperand* op = static_cast<ARMOperand*>(Operands[ImmOp]);
4175      if(!op->isSignedOffset<8, 1>() && isThumbTwo())
4176        Inst.setOpcode(ARM::t2Bcc);
4177      break;
4178    }
4179  }
4180  ((ARMOperand*)Operands[ImmOp])->addImmOperands(Inst, 1);
4181  ((ARMOperand*)Operands[CondOp])->addCondCodeOperands(Inst, 2);
4182}
4183
4184/// Parse an ARM memory expression, return false if successful else return true
4185/// or an error.  The first token must be a '[' when called.
4186bool ARMAsmParser::
4187parseMemory(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
4188  SMLoc S, E;
4189  assert(Parser.getTok().is(AsmToken::LBrac) &&
4190         "Token is not a Left Bracket");
4191  S = Parser.getTok().getLoc();
4192  Parser.Lex(); // Eat left bracket token.
4193
4194  const AsmToken &BaseRegTok = Parser.getTok();
4195  int BaseRegNum = tryParseRegister();
4196  if (BaseRegNum == -1)
4197    return Error(BaseRegTok.getLoc(), "register expected");
4198
4199  // The next token must either be a comma, a colon or a closing bracket.
4200  const AsmToken &Tok = Parser.getTok();
4201  if (!Tok.is(AsmToken::Colon) && !Tok.is(AsmToken::Comma) &&
4202      !Tok.is(AsmToken::RBrac))
4203    return Error(Tok.getLoc(), "malformed memory operand");
4204
4205  if (Tok.is(AsmToken::RBrac)) {
4206    E = Tok.getEndLoc();
4207    Parser.Lex(); // Eat right bracket token.
4208
4209    Operands.push_back(ARMOperand::CreateMem(BaseRegNum, 0, 0, ARM_AM::no_shift,
4210                                             0, 0, false, S, E));
4211
4212    // If there's a pre-indexing writeback marker, '!', just add it as a token
4213    // operand. It's rather odd, but syntactically valid.
4214    if (Parser.getTok().is(AsmToken::Exclaim)) {
4215      Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc()));
4216      Parser.Lex(); // Eat the '!'.
4217    }
4218
4219    return false;
4220  }
4221
4222  assert((Tok.is(AsmToken::Colon) || Tok.is(AsmToken::Comma)) &&
4223         "Lost colon or comma in memory operand?!");
4224  if (Tok.is(AsmToken::Comma)) {
4225    Parser.Lex(); // Eat the comma.
4226  }
4227
4228  // If we have a ':', it's an alignment specifier.
4229  if (Parser.getTok().is(AsmToken::Colon)) {
4230    Parser.Lex(); // Eat the ':'.
4231    E = Parser.getTok().getLoc();
4232
4233    const MCExpr *Expr;
4234    if (getParser().parseExpression(Expr))
4235     return true;
4236
4237    // The expression has to be a constant. Memory references with relocations
4238    // don't come through here, as they use the <label> forms of the relevant
4239    // instructions.
4240    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr);
4241    if (!CE)
4242      return Error (E, "constant expression expected");
4243
4244    unsigned Align = 0;
4245    switch (CE->getValue()) {
4246    default:
4247      return Error(E,
4248                   "alignment specifier must be 16, 32, 64, 128, or 256 bits");
4249    case 16:  Align = 2; break;
4250    case 32:  Align = 4; break;
4251    case 64:  Align = 8; break;
4252    case 128: Align = 16; break;
4253    case 256: Align = 32; break;
4254    }
4255
4256    // Now we should have the closing ']'
4257    if (Parser.getTok().isNot(AsmToken::RBrac))
4258      return Error(Parser.getTok().getLoc(), "']' expected");
4259    E = Parser.getTok().getEndLoc();
4260    Parser.Lex(); // Eat right bracket token.
4261
4262    // Don't worry about range checking the value here. That's handled by
4263    // the is*() predicates.
4264    Operands.push_back(ARMOperand::CreateMem(BaseRegNum, 0, 0,
4265                                             ARM_AM::no_shift, 0, Align,
4266                                             false, S, E));
4267
4268    // If there's a pre-indexing writeback marker, '!', just add it as a token
4269    // operand.
4270    if (Parser.getTok().is(AsmToken::Exclaim)) {
4271      Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc()));
4272      Parser.Lex(); // Eat the '!'.
4273    }
4274
4275    return false;
4276  }
4277
4278  // If we have a '#', it's an immediate offset, else assume it's a register
4279  // offset. Be friendly and also accept a plain integer (without a leading
4280  // hash) for gas compatibility.
4281  if (Parser.getTok().is(AsmToken::Hash) ||
4282      Parser.getTok().is(AsmToken::Dollar) ||
4283      Parser.getTok().is(AsmToken::Integer)) {
4284    if (Parser.getTok().isNot(AsmToken::Integer))
4285      Parser.Lex(); // Eat '#' or '$'.
4286    E = Parser.getTok().getLoc();
4287
4288    bool isNegative = getParser().getTok().is(AsmToken::Minus);
4289    const MCExpr *Offset;
4290    if (getParser().parseExpression(Offset))
4291     return true;
4292
4293    // The expression has to be a constant. Memory references with relocations
4294    // don't come through here, as they use the <label> forms of the relevant
4295    // instructions.
4296    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Offset);
4297    if (!CE)
4298      return Error (E, "constant expression expected");
4299
4300    // If the constant was #-0, represent it as INT32_MIN.
4301    int32_t Val = CE->getValue();
4302    if (isNegative && Val == 0)
4303      CE = MCConstantExpr::Create(INT32_MIN, getContext());
4304
4305    // Now we should have the closing ']'
4306    if (Parser.getTok().isNot(AsmToken::RBrac))
4307      return Error(Parser.getTok().getLoc(), "']' expected");
4308    E = Parser.getTok().getEndLoc();
4309    Parser.Lex(); // Eat right bracket token.
4310
4311    // Don't worry about range checking the value here. That's handled by
4312    // the is*() predicates.
4313    Operands.push_back(ARMOperand::CreateMem(BaseRegNum, CE, 0,
4314                                             ARM_AM::no_shift, 0, 0,
4315                                             false, S, E));
4316
4317    // If there's a pre-indexing writeback marker, '!', just add it as a token
4318    // operand.
4319    if (Parser.getTok().is(AsmToken::Exclaim)) {
4320      Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc()));
4321      Parser.Lex(); // Eat the '!'.
4322    }
4323
4324    return false;
4325  }
4326
4327  // The register offset is optionally preceded by a '+' or '-'
4328  bool isNegative = false;
4329  if (Parser.getTok().is(AsmToken::Minus)) {
4330    isNegative = true;
4331    Parser.Lex(); // Eat the '-'.
4332  } else if (Parser.getTok().is(AsmToken::Plus)) {
4333    // Nothing to do.
4334    Parser.Lex(); // Eat the '+'.
4335  }
4336
4337  E = Parser.getTok().getLoc();
4338  int OffsetRegNum = tryParseRegister();
4339  if (OffsetRegNum == -1)
4340    return Error(E, "register expected");
4341
4342  // If there's a shift operator, handle it.
4343  ARM_AM::ShiftOpc ShiftType = ARM_AM::no_shift;
4344  unsigned ShiftImm = 0;
4345  if (Parser.getTok().is(AsmToken::Comma)) {
4346    Parser.Lex(); // Eat the ','.
4347    if (parseMemRegOffsetShift(ShiftType, ShiftImm))
4348      return true;
4349  }
4350
4351  // Now we should have the closing ']'
4352  if (Parser.getTok().isNot(AsmToken::RBrac))
4353    return Error(Parser.getTok().getLoc(), "']' expected");
4354  E = Parser.getTok().getEndLoc();
4355  Parser.Lex(); // Eat right bracket token.
4356
4357  Operands.push_back(ARMOperand::CreateMem(BaseRegNum, 0, OffsetRegNum,
4358                                           ShiftType, ShiftImm, 0, isNegative,
4359                                           S, E));
4360
4361  // If there's a pre-indexing writeback marker, '!', just add it as a token
4362  // operand.
4363  if (Parser.getTok().is(AsmToken::Exclaim)) {
4364    Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc()));
4365    Parser.Lex(); // Eat the '!'.
4366  }
4367
4368  return false;
4369}
4370
4371/// parseMemRegOffsetShift - one of these two:
4372///   ( lsl | lsr | asr | ror ) , # shift_amount
4373///   rrx
4374/// return true if it parses a shift otherwise it returns false.
4375bool ARMAsmParser::parseMemRegOffsetShift(ARM_AM::ShiftOpc &St,
4376                                          unsigned &Amount) {
4377  SMLoc Loc = Parser.getTok().getLoc();
4378  const AsmToken &Tok = Parser.getTok();
4379  if (Tok.isNot(AsmToken::Identifier))
4380    return true;
4381  StringRef ShiftName = Tok.getString();
4382  if (ShiftName == "lsl" || ShiftName == "LSL" ||
4383      ShiftName == "asl" || ShiftName == "ASL")
4384    St = ARM_AM::lsl;
4385  else if (ShiftName == "lsr" || ShiftName == "LSR")
4386    St = ARM_AM::lsr;
4387  else if (ShiftName == "asr" || ShiftName == "ASR")
4388    St = ARM_AM::asr;
4389  else if (ShiftName == "ror" || ShiftName == "ROR")
4390    St = ARM_AM::ror;
4391  else if (ShiftName == "rrx" || ShiftName == "RRX")
4392    St = ARM_AM::rrx;
4393  else
4394    return Error(Loc, "illegal shift operator");
4395  Parser.Lex(); // Eat shift type token.
4396
4397  // rrx stands alone.
4398  Amount = 0;
4399  if (St != ARM_AM::rrx) {
4400    Loc = Parser.getTok().getLoc();
4401    // A '#' and a shift amount.
4402    const AsmToken &HashTok = Parser.getTok();
4403    if (HashTok.isNot(AsmToken::Hash) &&
4404        HashTok.isNot(AsmToken::Dollar))
4405      return Error(HashTok.getLoc(), "'#' expected");
4406    Parser.Lex(); // Eat hash token.
4407
4408    const MCExpr *Expr;
4409    if (getParser().parseExpression(Expr))
4410      return true;
4411    // Range check the immediate.
4412    // lsl, ror: 0 <= imm <= 31
4413    // lsr, asr: 0 <= imm <= 32
4414    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr);
4415    if (!CE)
4416      return Error(Loc, "shift amount must be an immediate");
4417    int64_t Imm = CE->getValue();
4418    if (Imm < 0 ||
4419        ((St == ARM_AM::lsl || St == ARM_AM::ror) && Imm > 31) ||
4420        ((St == ARM_AM::lsr || St == ARM_AM::asr) && Imm > 32))
4421      return Error(Loc, "immediate shift value out of range");
4422    // If <ShiftTy> #0, turn it into a no_shift.
4423    if (Imm == 0)
4424      St = ARM_AM::lsl;
4425    // For consistency, treat lsr #32 and asr #32 as having immediate value 0.
4426    if (Imm == 32)
4427      Imm = 0;
4428    Amount = Imm;
4429  }
4430
4431  return false;
4432}
4433
4434/// parseFPImm - A floating point immediate expression operand.
4435ARMAsmParser::OperandMatchResultTy ARMAsmParser::
4436parseFPImm(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
4437  // Anything that can accept a floating point constant as an operand
4438  // needs to go through here, as the regular parseExpression is
4439  // integer only.
4440  //
4441  // This routine still creates a generic Immediate operand, containing
4442  // a bitcast of the 64-bit floating point value. The various operands
4443  // that accept floats can check whether the value is valid for them
4444  // via the standard is*() predicates.
4445
4446  SMLoc S = Parser.getTok().getLoc();
4447
4448  if (Parser.getTok().isNot(AsmToken::Hash) &&
4449      Parser.getTok().isNot(AsmToken::Dollar))
4450    return MatchOperand_NoMatch;
4451
4452  // Disambiguate the VMOV forms that can accept an FP immediate.
4453  // vmov.f32 <sreg>, #imm
4454  // vmov.f64 <dreg>, #imm
4455  // vmov.f32 <dreg>, #imm  @ vector f32x2
4456  // vmov.f32 <qreg>, #imm  @ vector f32x4
4457  //
4458  // There are also the NEON VMOV instructions which expect an
4459  // integer constant. Make sure we don't try to parse an FPImm
4460  // for these:
4461  // vmov.i{8|16|32|64} <dreg|qreg>, #imm
4462  ARMOperand *TyOp = static_cast<ARMOperand*>(Operands[2]);
4463  if (!TyOp->isToken() || (TyOp->getToken() != ".f32" &&
4464                           TyOp->getToken() != ".f64"))
4465    return MatchOperand_NoMatch;
4466
4467  Parser.Lex(); // Eat '#' or '$'.
4468
4469  // Handle negation, as that still comes through as a separate token.
4470  bool isNegative = false;
4471  if (Parser.getTok().is(AsmToken::Minus)) {
4472    isNegative = true;
4473    Parser.Lex();
4474  }
4475  const AsmToken &Tok = Parser.getTok();
4476  SMLoc Loc = Tok.getLoc();
4477  if (Tok.is(AsmToken::Real)) {
4478    APFloat RealVal(APFloat::IEEEsingle, Tok.getString());
4479    uint64_t IntVal = RealVal.bitcastToAPInt().getZExtValue();
4480    // If we had a '-' in front, toggle the sign bit.
4481    IntVal ^= (uint64_t)isNegative << 31;
4482    Parser.Lex(); // Eat the token.
4483    Operands.push_back(ARMOperand::CreateImm(
4484          MCConstantExpr::Create(IntVal, getContext()),
4485          S, Parser.getTok().getLoc()));
4486    return MatchOperand_Success;
4487  }
4488  // Also handle plain integers. Instructions which allow floating point
4489  // immediates also allow a raw encoded 8-bit value.
4490  if (Tok.is(AsmToken::Integer)) {
4491    int64_t Val = Tok.getIntVal();
4492    Parser.Lex(); // Eat the token.
4493    if (Val > 255 || Val < 0) {
4494      Error(Loc, "encoded floating point value out of range");
4495      return MatchOperand_ParseFail;
4496    }
4497    double RealVal = ARM_AM::getFPImmFloat(Val);
4498    Val = APFloat(APFloat::IEEEdouble, RealVal).bitcastToAPInt().getZExtValue();
4499    Operands.push_back(ARMOperand::CreateImm(
4500        MCConstantExpr::Create(Val, getContext()), S,
4501        Parser.getTok().getLoc()));
4502    return MatchOperand_Success;
4503  }
4504
4505  Error(Loc, "invalid floating point immediate");
4506  return MatchOperand_ParseFail;
4507}
4508
4509/// Parse a arm instruction operand.  For now this parses the operand regardless
4510/// of the mnemonic.
4511bool ARMAsmParser::parseOperand(SmallVectorImpl<MCParsedAsmOperand*> &Operands,
4512                                StringRef Mnemonic) {
4513  SMLoc S, E;
4514
4515  // Check if the current operand has a custom associated parser, if so, try to
4516  // custom parse the operand, or fallback to the general approach.
4517  OperandMatchResultTy ResTy = MatchOperandParserImpl(Operands, Mnemonic);
4518  if (ResTy == MatchOperand_Success)
4519    return false;
4520  // If there wasn't a custom match, try the generic matcher below. Otherwise,
4521  // there was a match, but an error occurred, in which case, just return that
4522  // the operand parsing failed.
4523  if (ResTy == MatchOperand_ParseFail)
4524    return true;
4525
4526  switch (getLexer().getKind()) {
4527  default:
4528    Error(Parser.getTok().getLoc(), "unexpected token in operand");
4529    return true;
4530  case AsmToken::Identifier: {
4531    // If we've seen a branch mnemonic, the next operand must be a label.  This
4532    // is true even if the label is a register name.  So "br r1" means branch to
4533    // label "r1".
4534    bool ExpectLabel = Mnemonic == "b" || Mnemonic == "bl";
4535    if (!ExpectLabel) {
4536      if (!tryParseRegisterWithWriteBack(Operands))
4537        return false;
4538      int Res = tryParseShiftRegister(Operands);
4539      if (Res == 0) // success
4540        return false;
4541      else if (Res == -1) // irrecoverable error
4542        return true;
4543      // If this is VMRS, check for the apsr_nzcv operand.
4544      if (Mnemonic == "vmrs" &&
4545          Parser.getTok().getString().equals_lower("apsr_nzcv")) {
4546        S = Parser.getTok().getLoc();
4547        Parser.Lex();
4548        Operands.push_back(ARMOperand::CreateToken("APSR_nzcv", S));
4549        return false;
4550      }
4551    }
4552
4553    // Fall though for the Identifier case that is not a register or a
4554    // special name.
4555  }
4556  case AsmToken::LParen:  // parenthesized expressions like (_strcmp-4)
4557  case AsmToken::Integer: // things like 1f and 2b as a branch targets
4558  case AsmToken::String:  // quoted label names.
4559  case AsmToken::Dot: {   // . as a branch target
4560    // This was not a register so parse other operands that start with an
4561    // identifier (like labels) as expressions and create them as immediates.
4562    const MCExpr *IdVal;
4563    S = Parser.getTok().getLoc();
4564    if (getParser().parseExpression(IdVal))
4565      return true;
4566    E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
4567    Operands.push_back(ARMOperand::CreateImm(IdVal, S, E));
4568    return false;
4569  }
4570  case AsmToken::LBrac:
4571    return parseMemory(Operands);
4572  case AsmToken::LCurly:
4573    return parseRegisterList(Operands);
4574  case AsmToken::Dollar:
4575  case AsmToken::Hash: {
4576    // #42 -> immediate.
4577    S = Parser.getTok().getLoc();
4578    Parser.Lex();
4579
4580    if (Parser.getTok().isNot(AsmToken::Colon)) {
4581      bool isNegative = Parser.getTok().is(AsmToken::Minus);
4582      const MCExpr *ImmVal;
4583      if (getParser().parseExpression(ImmVal))
4584        return true;
4585      const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ImmVal);
4586      if (CE) {
4587        int32_t Val = CE->getValue();
4588        if (isNegative && Val == 0)
4589          ImmVal = MCConstantExpr::Create(INT32_MIN, getContext());
4590      }
4591      E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
4592      Operands.push_back(ARMOperand::CreateImm(ImmVal, S, E));
4593
4594      // There can be a trailing '!' on operands that we want as a separate
4595      // '!' Token operand. Handle that here. For example, the compatibilty
4596      // alias for 'srsdb sp!, #imm' is 'srsdb #imm!'.
4597      if (Parser.getTok().is(AsmToken::Exclaim)) {
4598        Operands.push_back(ARMOperand::CreateToken(Parser.getTok().getString(),
4599                                                   Parser.getTok().getLoc()));
4600        Parser.Lex(); // Eat exclaim token
4601      }
4602      return false;
4603    }
4604    // w/ a ':' after the '#', it's just like a plain ':'.
4605    // FALLTHROUGH
4606  }
4607  case AsmToken::Colon: {
4608    // ":lower16:" and ":upper16:" expression prefixes
4609    // FIXME: Check it's an expression prefix,
4610    // e.g. (FOO - :lower16:BAR) isn't legal.
4611    ARMMCExpr::VariantKind RefKind;
4612    if (parsePrefix(RefKind))
4613      return true;
4614
4615    const MCExpr *SubExprVal;
4616    if (getParser().parseExpression(SubExprVal))
4617      return true;
4618
4619    const MCExpr *ExprVal = ARMMCExpr::Create(RefKind, SubExprVal,
4620                                              getContext());
4621    E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
4622    Operands.push_back(ARMOperand::CreateImm(ExprVal, S, E));
4623    return false;
4624  }
4625  }
4626}
4627
4628// parsePrefix - Parse ARM 16-bit relocations expression prefix, i.e.
4629//  :lower16: and :upper16:.
4630bool ARMAsmParser::parsePrefix(ARMMCExpr::VariantKind &RefKind) {
4631  RefKind = ARMMCExpr::VK_ARM_None;
4632
4633  // :lower16: and :upper16: modifiers
4634  assert(getLexer().is(AsmToken::Colon) && "expected a :");
4635  Parser.Lex(); // Eat ':'
4636
4637  if (getLexer().isNot(AsmToken::Identifier)) {
4638    Error(Parser.getTok().getLoc(), "expected prefix identifier in operand");
4639    return true;
4640  }
4641
4642  StringRef IDVal = Parser.getTok().getIdentifier();
4643  if (IDVal == "lower16") {
4644    RefKind = ARMMCExpr::VK_ARM_LO16;
4645  } else if (IDVal == "upper16") {
4646    RefKind = ARMMCExpr::VK_ARM_HI16;
4647  } else {
4648    Error(Parser.getTok().getLoc(), "unexpected prefix in operand");
4649    return true;
4650  }
4651  Parser.Lex();
4652
4653  if (getLexer().isNot(AsmToken::Colon)) {
4654    Error(Parser.getTok().getLoc(), "unexpected token after prefix");
4655    return true;
4656  }
4657  Parser.Lex(); // Eat the last ':'
4658  return false;
4659}
4660
4661/// \brief Given a mnemonic, split out possible predication code and carry
4662/// setting letters to form a canonical mnemonic and flags.
4663//
4664// FIXME: Would be nice to autogen this.
4665// FIXME: This is a bit of a maze of special cases.
4666StringRef ARMAsmParser::splitMnemonic(StringRef Mnemonic,
4667                                      unsigned &PredicationCode,
4668                                      bool &CarrySetting,
4669                                      unsigned &ProcessorIMod,
4670                                      StringRef &ITMask) {
4671  PredicationCode = ARMCC::AL;
4672  CarrySetting = false;
4673  ProcessorIMod = 0;
4674
4675  // Ignore some mnemonics we know aren't predicated forms.
4676  //
4677  // FIXME: Would be nice to autogen this.
4678  if ((Mnemonic == "movs" && isThumb()) ||
4679      Mnemonic == "teq"   || Mnemonic == "vceq"   || Mnemonic == "svc"   ||
4680      Mnemonic == "mls"   || Mnemonic == "smmls"  || Mnemonic == "vcls"  ||
4681      Mnemonic == "vmls"  || Mnemonic == "vnmls"  || Mnemonic == "vacge" ||
4682      Mnemonic == "vcge"  || Mnemonic == "vclt"   || Mnemonic == "vacgt" ||
4683      Mnemonic == "vaclt" || Mnemonic == "vacle"  ||
4684      Mnemonic == "vcgt"  || Mnemonic == "vcle"   || Mnemonic == "smlal" ||
4685      Mnemonic == "umaal" || Mnemonic == "umlal"  || Mnemonic == "vabal" ||
4686      Mnemonic == "vmlal" || Mnemonic == "vpadal" || Mnemonic == "vqdmlal" ||
4687      Mnemonic == "fmuls" || Mnemonic == "vmaxnm" || Mnemonic == "vminnm" ||
4688      Mnemonic == "vcvta" || Mnemonic == "vcvtn"  || Mnemonic == "vcvtp" ||
4689      Mnemonic == "vcvtm" || Mnemonic == "vrinta" || Mnemonic == "vrintn" ||
4690      Mnemonic == "vrintp" || Mnemonic == "vrintm" || Mnemonic.startswith("vsel"))
4691    return Mnemonic;
4692
4693  // First, split out any predication code. Ignore mnemonics we know aren't
4694  // predicated but do have a carry-set and so weren't caught above.
4695  if (Mnemonic != "adcs" && Mnemonic != "bics" && Mnemonic != "movs" &&
4696      Mnemonic != "muls" && Mnemonic != "smlals" && Mnemonic != "smulls" &&
4697      Mnemonic != "umlals" && Mnemonic != "umulls" && Mnemonic != "lsls" &&
4698      Mnemonic != "sbcs" && Mnemonic != "rscs") {
4699    unsigned CC = StringSwitch<unsigned>(Mnemonic.substr(Mnemonic.size()-2))
4700      .Case("eq", ARMCC::EQ)
4701      .Case("ne", ARMCC::NE)
4702      .Case("hs", ARMCC::HS)
4703      .Case("cs", ARMCC::HS)
4704      .Case("lo", ARMCC::LO)
4705      .Case("cc", ARMCC::LO)
4706      .Case("mi", ARMCC::MI)
4707      .Case("pl", ARMCC::PL)
4708      .Case("vs", ARMCC::VS)
4709      .Case("vc", ARMCC::VC)
4710      .Case("hi", ARMCC::HI)
4711      .Case("ls", ARMCC::LS)
4712      .Case("ge", ARMCC::GE)
4713      .Case("lt", ARMCC::LT)
4714      .Case("gt", ARMCC::GT)
4715      .Case("le", ARMCC::LE)
4716      .Case("al", ARMCC::AL)
4717      .Default(~0U);
4718    if (CC != ~0U) {
4719      Mnemonic = Mnemonic.slice(0, Mnemonic.size() - 2);
4720      PredicationCode = CC;
4721    }
4722  }
4723
4724  // Next, determine if we have a carry setting bit. We explicitly ignore all
4725  // the instructions we know end in 's'.
4726  if (Mnemonic.endswith("s") &&
4727      !(Mnemonic == "cps" || Mnemonic == "mls" ||
4728        Mnemonic == "mrs" || Mnemonic == "smmls" || Mnemonic == "vabs" ||
4729        Mnemonic == "vcls" || Mnemonic == "vmls" || Mnemonic == "vmrs" ||
4730        Mnemonic == "vnmls" || Mnemonic == "vqabs" || Mnemonic == "vrecps" ||
4731        Mnemonic == "vrsqrts" || Mnemonic == "srs" || Mnemonic == "flds" ||
4732        Mnemonic == "fmrs" || Mnemonic == "fsqrts" || Mnemonic == "fsubs" ||
4733        Mnemonic == "fsts" || Mnemonic == "fcpys" || Mnemonic == "fdivs" ||
4734        Mnemonic == "fmuls" || Mnemonic == "fcmps" || Mnemonic == "fcmpzs" ||
4735        Mnemonic == "vfms" || Mnemonic == "vfnms" ||
4736        (Mnemonic == "movs" && isThumb()))) {
4737    Mnemonic = Mnemonic.slice(0, Mnemonic.size() - 1);
4738    CarrySetting = true;
4739  }
4740
4741  // The "cps" instruction can have a interrupt mode operand which is glued into
4742  // the mnemonic. Check if this is the case, split it and parse the imod op
4743  if (Mnemonic.startswith("cps")) {
4744    // Split out any imod code.
4745    unsigned IMod =
4746      StringSwitch<unsigned>(Mnemonic.substr(Mnemonic.size()-2, 2))
4747      .Case("ie", ARM_PROC::IE)
4748      .Case("id", ARM_PROC::ID)
4749      .Default(~0U);
4750    if (IMod != ~0U) {
4751      Mnemonic = Mnemonic.slice(0, Mnemonic.size()-2);
4752      ProcessorIMod = IMod;
4753    }
4754  }
4755
4756  // The "it" instruction has the condition mask on the end of the mnemonic.
4757  if (Mnemonic.startswith("it")) {
4758    ITMask = Mnemonic.slice(2, Mnemonic.size());
4759    Mnemonic = Mnemonic.slice(0, 2);
4760  }
4761
4762  return Mnemonic;
4763}
4764
4765/// \brief Given a canonical mnemonic, determine if the instruction ever allows
4766/// inclusion of carry set or predication code operands.
4767//
4768// FIXME: It would be nice to autogen this.
4769void ARMAsmParser::
4770getMnemonicAcceptInfo(StringRef Mnemonic, bool &CanAcceptCarrySet,
4771                      bool &CanAcceptPredicationCode) {
4772  if (Mnemonic == "and" || Mnemonic == "lsl" || Mnemonic == "lsr" ||
4773      Mnemonic == "rrx" || Mnemonic == "ror" || Mnemonic == "sub" ||
4774      Mnemonic == "add" || Mnemonic == "adc" ||
4775      Mnemonic == "mul" || Mnemonic == "bic" || Mnemonic == "asr" ||
4776      Mnemonic == "orr" || Mnemonic == "mvn" ||
4777      Mnemonic == "rsb" || Mnemonic == "rsc" || Mnemonic == "orn" ||
4778      Mnemonic == "sbc" || Mnemonic == "eor" || Mnemonic == "neg" ||
4779      Mnemonic == "vfm" || Mnemonic == "vfnm" ||
4780      (!isThumb() && (Mnemonic == "smull" || Mnemonic == "mov" ||
4781                      Mnemonic == "mla" || Mnemonic == "smlal" ||
4782                      Mnemonic == "umlal" || Mnemonic == "umull"))) {
4783    CanAcceptCarrySet = true;
4784  } else
4785    CanAcceptCarrySet = false;
4786
4787  if (Mnemonic == "bkpt" || Mnemonic == "cbnz" || Mnemonic == "setend" ||
4788      Mnemonic == "cps" ||  Mnemonic == "it" ||  Mnemonic == "cbz" ||
4789      Mnemonic == "trap" || Mnemonic == "setend" ||
4790      Mnemonic.startswith("cps") || Mnemonic.startswith("vsel") ||
4791      Mnemonic == "vmaxnm" || Mnemonic == "vminnm" || Mnemonic == "vcvta" ||
4792      Mnemonic == "vcvtn" || Mnemonic == "vcvtp" || Mnemonic == "vcvtm" ||
4793      Mnemonic == "vrinta" || Mnemonic == "vrintn" || Mnemonic == "vrintp" ||
4794      Mnemonic == "vrintm") {
4795    // These mnemonics are never predicable
4796    CanAcceptPredicationCode = false;
4797  } else if (!isThumb()) {
4798    // Some instructions are only predicable in Thumb mode
4799    CanAcceptPredicationCode
4800      = Mnemonic != "cdp2" && Mnemonic != "clrex" && Mnemonic != "mcr2" &&
4801        Mnemonic != "mcrr2" && Mnemonic != "mrc2" && Mnemonic != "mrrc2" &&
4802        Mnemonic != "dmb" && Mnemonic != "dsb" && Mnemonic != "isb" &&
4803        Mnemonic != "pld" && Mnemonic != "pli" && Mnemonic != "pldw" &&
4804        Mnemonic != "ldc2" && Mnemonic != "ldc2l" &&
4805        Mnemonic != "stc2" && Mnemonic != "stc2l" &&
4806        !Mnemonic.startswith("rfe") && !Mnemonic.startswith("srs");
4807  } else if (isThumbOne()) {
4808    CanAcceptPredicationCode = Mnemonic != "nop" && Mnemonic != "movs";
4809  } else
4810    CanAcceptPredicationCode = true;
4811}
4812
4813bool ARMAsmParser::shouldOmitCCOutOperand(StringRef Mnemonic,
4814                               SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
4815  // FIXME: This is all horribly hacky. We really need a better way to deal
4816  // with optional operands like this in the matcher table.
4817
4818  // The 'mov' mnemonic is special. One variant has a cc_out operand, while
4819  // another does not. Specifically, the MOVW instruction does not. So we
4820  // special case it here and remove the defaulted (non-setting) cc_out
4821  // operand if that's the instruction we're trying to match.
4822  //
4823  // We do this as post-processing of the explicit operands rather than just
4824  // conditionally adding the cc_out in the first place because we need
4825  // to check the type of the parsed immediate operand.
4826  if (Mnemonic == "mov" && Operands.size() > 4 && !isThumb() &&
4827      !static_cast<ARMOperand*>(Operands[4])->isARMSOImm() &&
4828      static_cast<ARMOperand*>(Operands[4])->isImm0_65535Expr() &&
4829      static_cast<ARMOperand*>(Operands[1])->getReg() == 0)
4830    return true;
4831
4832  // Register-register 'add' for thumb does not have a cc_out operand
4833  // when there are only two register operands.
4834  if (isThumb() && Mnemonic == "add" && Operands.size() == 5 &&
4835      static_cast<ARMOperand*>(Operands[3])->isReg() &&
4836      static_cast<ARMOperand*>(Operands[4])->isReg() &&
4837      static_cast<ARMOperand*>(Operands[1])->getReg() == 0)
4838    return true;
4839  // Register-register 'add' for thumb does not have a cc_out operand
4840  // when it's an ADD Rdm, SP, {Rdm|#imm0_255} instruction. We do
4841  // have to check the immediate range here since Thumb2 has a variant
4842  // that can handle a different range and has a cc_out operand.
4843  if (((isThumb() && Mnemonic == "add") ||
4844       (isThumbTwo() && Mnemonic == "sub")) &&
4845      Operands.size() == 6 &&
4846      static_cast<ARMOperand*>(Operands[3])->isReg() &&
4847      static_cast<ARMOperand*>(Operands[4])->isReg() &&
4848      static_cast<ARMOperand*>(Operands[4])->getReg() == ARM::SP &&
4849      static_cast<ARMOperand*>(Operands[1])->getReg() == 0 &&
4850      ((Mnemonic == "add" &&static_cast<ARMOperand*>(Operands[5])->isReg()) ||
4851       static_cast<ARMOperand*>(Operands[5])->isImm0_1020s4()))
4852    return true;
4853  // For Thumb2, add/sub immediate does not have a cc_out operand for the
4854  // imm0_4095 variant. That's the least-preferred variant when
4855  // selecting via the generic "add" mnemonic, so to know that we
4856  // should remove the cc_out operand, we have to explicitly check that
4857  // it's not one of the other variants. Ugh.
4858  if (isThumbTwo() && (Mnemonic == "add" || Mnemonic == "sub") &&
4859      Operands.size() == 6 &&
4860      static_cast<ARMOperand*>(Operands[3])->isReg() &&
4861      static_cast<ARMOperand*>(Operands[4])->isReg() &&
4862      static_cast<ARMOperand*>(Operands[5])->isImm()) {
4863    // Nest conditions rather than one big 'if' statement for readability.
4864    //
4865    // If both registers are low, we're in an IT block, and the immediate is
4866    // in range, we should use encoding T1 instead, which has a cc_out.
4867    if (inITBlock() &&
4868        isARMLowRegister(static_cast<ARMOperand*>(Operands[3])->getReg()) &&
4869        isARMLowRegister(static_cast<ARMOperand*>(Operands[4])->getReg()) &&
4870        static_cast<ARMOperand*>(Operands[5])->isImm0_7())
4871      return false;
4872    // Check against T3. If the second register is the PC, this is an
4873    // alternate form of ADR, which uses encoding T4, so check for that too.
4874    if (static_cast<ARMOperand*>(Operands[4])->getReg() != ARM::PC &&
4875        static_cast<ARMOperand*>(Operands[5])->isT2SOImm())
4876      return false;
4877
4878    // Otherwise, we use encoding T4, which does not have a cc_out
4879    // operand.
4880    return true;
4881  }
4882
4883  // The thumb2 multiply instruction doesn't have a CCOut register, so
4884  // if we have a "mul" mnemonic in Thumb mode, check if we'll be able to
4885  // use the 16-bit encoding or not.
4886  if (isThumbTwo() && Mnemonic == "mul" && Operands.size() == 6 &&
4887      static_cast<ARMOperand*>(Operands[1])->getReg() == 0 &&
4888      static_cast<ARMOperand*>(Operands[3])->isReg() &&
4889      static_cast<ARMOperand*>(Operands[4])->isReg() &&
4890      static_cast<ARMOperand*>(Operands[5])->isReg() &&
4891      // If the registers aren't low regs, the destination reg isn't the
4892      // same as one of the source regs, or the cc_out operand is zero
4893      // outside of an IT block, we have to use the 32-bit encoding, so
4894      // remove the cc_out operand.
4895      (!isARMLowRegister(static_cast<ARMOperand*>(Operands[3])->getReg()) ||
4896       !isARMLowRegister(static_cast<ARMOperand*>(Operands[4])->getReg()) ||
4897       !isARMLowRegister(static_cast<ARMOperand*>(Operands[5])->getReg()) ||
4898       !inITBlock() ||
4899       (static_cast<ARMOperand*>(Operands[3])->getReg() !=
4900        static_cast<ARMOperand*>(Operands[5])->getReg() &&
4901        static_cast<ARMOperand*>(Operands[3])->getReg() !=
4902        static_cast<ARMOperand*>(Operands[4])->getReg())))
4903    return true;
4904
4905  // Also check the 'mul' syntax variant that doesn't specify an explicit
4906  // destination register.
4907  if (isThumbTwo() && Mnemonic == "mul" && Operands.size() == 5 &&
4908      static_cast<ARMOperand*>(Operands[1])->getReg() == 0 &&
4909      static_cast<ARMOperand*>(Operands[3])->isReg() &&
4910      static_cast<ARMOperand*>(Operands[4])->isReg() &&
4911      // If the registers aren't low regs  or the cc_out operand is zero
4912      // outside of an IT block, we have to use the 32-bit encoding, so
4913      // remove the cc_out operand.
4914      (!isARMLowRegister(static_cast<ARMOperand*>(Operands[3])->getReg()) ||
4915       !isARMLowRegister(static_cast<ARMOperand*>(Operands[4])->getReg()) ||
4916       !inITBlock()))
4917    return true;
4918
4919
4920
4921  // Register-register 'add/sub' for thumb does not have a cc_out operand
4922  // when it's an ADD/SUB SP, #imm. Be lenient on count since there's also
4923  // the "add/sub SP, SP, #imm" version. If the follow-up operands aren't
4924  // right, this will result in better diagnostics (which operand is off)
4925  // anyway.
4926  if (isThumb() && (Mnemonic == "add" || Mnemonic == "sub") &&
4927      (Operands.size() == 5 || Operands.size() == 6) &&
4928      static_cast<ARMOperand*>(Operands[3])->isReg() &&
4929      static_cast<ARMOperand*>(Operands[3])->getReg() == ARM::SP &&
4930      static_cast<ARMOperand*>(Operands[1])->getReg() == 0 &&
4931      (static_cast<ARMOperand*>(Operands[4])->isImm() ||
4932       (Operands.size() == 6 &&
4933        static_cast<ARMOperand*>(Operands[5])->isImm())))
4934    return true;
4935
4936  return false;
4937}
4938
4939bool ARMAsmParser::shouldOmitPredicateOperand(
4940    StringRef Mnemonic, SmallVectorImpl<MCParsedAsmOperand *> &Operands) {
4941  // VRINT{Z, R, X} have a predicate operand in VFP, but not in NEON
4942  unsigned RegIdx = 3;
4943  if ((Mnemonic == "vrintz" || Mnemonic == "vrintx" || Mnemonic == "vrintr") &&
4944      static_cast<ARMOperand *>(Operands[2])->getToken() == ".f32") {
4945    if (static_cast<ARMOperand *>(Operands[3])->isToken() &&
4946        static_cast<ARMOperand *>(Operands[3])->getToken() == ".f32")
4947      RegIdx = 4;
4948
4949    if (static_cast<ARMOperand *>(Operands[RegIdx])->isReg() &&
4950        (ARMMCRegisterClasses[ARM::DPRRegClassID]
4951             .contains(static_cast<ARMOperand *>(Operands[RegIdx])->getReg()) ||
4952         ARMMCRegisterClasses[ARM::QPRRegClassID]
4953             .contains(static_cast<ARMOperand *>(Operands[RegIdx])->getReg())))
4954      return true;
4955  }
4956  return false;
4957}
4958
4959bool ARMAsmParser::isDeprecated(MCInst &Inst, StringRef &Info) {
4960  if (hasV8Ops() && Inst.getOpcode() == ARM::SETEND) {
4961    Info = "armv8";
4962    return true;
4963  }
4964  return false;
4965}
4966
4967static bool isDataTypeToken(StringRef Tok) {
4968  return Tok == ".8" || Tok == ".16" || Tok == ".32" || Tok == ".64" ||
4969    Tok == ".i8" || Tok == ".i16" || Tok == ".i32" || Tok == ".i64" ||
4970    Tok == ".u8" || Tok == ".u16" || Tok == ".u32" || Tok == ".u64" ||
4971    Tok == ".s8" || Tok == ".s16" || Tok == ".s32" || Tok == ".s64" ||
4972    Tok == ".p8" || Tok == ".p16" || Tok == ".f32" || Tok == ".f64" ||
4973    Tok == ".f" || Tok == ".d";
4974}
4975
4976// FIXME: This bit should probably be handled via an explicit match class
4977// in the .td files that matches the suffix instead of having it be
4978// a literal string token the way it is now.
4979static bool doesIgnoreDataTypeSuffix(StringRef Mnemonic, StringRef DT) {
4980  return Mnemonic.startswith("vldm") || Mnemonic.startswith("vstm");
4981}
4982static void applyMnemonicAliases(StringRef &Mnemonic, unsigned Features,
4983                                 unsigned VariantID);
4984/// Parse an arm instruction mnemonic followed by its operands.
4985bool ARMAsmParser::ParseInstruction(ParseInstructionInfo &Info, StringRef Name,
4986                                    SMLoc NameLoc,
4987                               SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
4988  // Apply mnemonic aliases before doing anything else, as the destination
4989  // mnemnonic may include suffices and we want to handle them normally.
4990  // The generic tblgen'erated code does this later, at the start of
4991  // MatchInstructionImpl(), but that's too late for aliases that include
4992  // any sort of suffix.
4993  unsigned AvailableFeatures = getAvailableFeatures();
4994  unsigned AssemblerDialect = getParser().getAssemblerDialect();
4995  applyMnemonicAliases(Name, AvailableFeatures, AssemblerDialect);
4996
4997  // First check for the ARM-specific .req directive.
4998  if (Parser.getTok().is(AsmToken::Identifier) &&
4999      Parser.getTok().getIdentifier() == ".req") {
5000    parseDirectiveReq(Name, NameLoc);
5001    // We always return 'error' for this, as we're done with this
5002    // statement and don't need to match the 'instruction."
5003    return true;
5004  }
5005
5006  // Create the leading tokens for the mnemonic, split by '.' characters.
5007  size_t Start = 0, Next = Name.find('.');
5008  StringRef Mnemonic = Name.slice(Start, Next);
5009
5010  // Split out the predication code and carry setting flag from the mnemonic.
5011  unsigned PredicationCode;
5012  unsigned ProcessorIMod;
5013  bool CarrySetting;
5014  StringRef ITMask;
5015  Mnemonic = splitMnemonic(Mnemonic, PredicationCode, CarrySetting,
5016                           ProcessorIMod, ITMask);
5017
5018  // In Thumb1, only the branch (B) instruction can be predicated.
5019  if (isThumbOne() && PredicationCode != ARMCC::AL && Mnemonic != "b") {
5020    Parser.eatToEndOfStatement();
5021    return Error(NameLoc, "conditional execution not supported in Thumb1");
5022  }
5023
5024  Operands.push_back(ARMOperand::CreateToken(Mnemonic, NameLoc));
5025
5026  // Handle the IT instruction ITMask. Convert it to a bitmask. This
5027  // is the mask as it will be for the IT encoding if the conditional
5028  // encoding has a '1' as it's bit0 (i.e. 't' ==> '1'). In the case
5029  // where the conditional bit0 is zero, the instruction post-processing
5030  // will adjust the mask accordingly.
5031  if (Mnemonic == "it") {
5032    SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + 2);
5033    if (ITMask.size() > 3) {
5034      Parser.eatToEndOfStatement();
5035      return Error(Loc, "too many conditions on IT instruction");
5036    }
5037    unsigned Mask = 8;
5038    for (unsigned i = ITMask.size(); i != 0; --i) {
5039      char pos = ITMask[i - 1];
5040      if (pos != 't' && pos != 'e') {
5041        Parser.eatToEndOfStatement();
5042        return Error(Loc, "illegal IT block condition mask '" + ITMask + "'");
5043      }
5044      Mask >>= 1;
5045      if (ITMask[i - 1] == 't')
5046        Mask |= 8;
5047    }
5048    Operands.push_back(ARMOperand::CreateITMask(Mask, Loc));
5049  }
5050
5051  // FIXME: This is all a pretty gross hack. We should automatically handle
5052  // optional operands like this via tblgen.
5053
5054  // Next, add the CCOut and ConditionCode operands, if needed.
5055  //
5056  // For mnemonics which can ever incorporate a carry setting bit or predication
5057  // code, our matching model involves us always generating CCOut and
5058  // ConditionCode operands to match the mnemonic "as written" and then we let
5059  // the matcher deal with finding the right instruction or generating an
5060  // appropriate error.
5061  bool CanAcceptCarrySet, CanAcceptPredicationCode;
5062  getMnemonicAcceptInfo(Mnemonic, CanAcceptCarrySet, CanAcceptPredicationCode);
5063
5064  // If we had a carry-set on an instruction that can't do that, issue an
5065  // error.
5066  if (!CanAcceptCarrySet && CarrySetting) {
5067    Parser.eatToEndOfStatement();
5068    return Error(NameLoc, "instruction '" + Mnemonic +
5069                 "' can not set flags, but 's' suffix specified");
5070  }
5071  // If we had a predication code on an instruction that can't do that, issue an
5072  // error.
5073  if (!CanAcceptPredicationCode && PredicationCode != ARMCC::AL) {
5074    Parser.eatToEndOfStatement();
5075    return Error(NameLoc, "instruction '" + Mnemonic +
5076                 "' is not predicable, but condition code specified");
5077  }
5078
5079  // Add the carry setting operand, if necessary.
5080  if (CanAcceptCarrySet) {
5081    SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Mnemonic.size());
5082    Operands.push_back(ARMOperand::CreateCCOut(CarrySetting ? ARM::CPSR : 0,
5083                                               Loc));
5084  }
5085
5086  // Add the predication code operand, if necessary.
5087  if (CanAcceptPredicationCode) {
5088    SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Mnemonic.size() +
5089                                      CarrySetting);
5090    Operands.push_back(ARMOperand::CreateCondCode(
5091                         ARMCC::CondCodes(PredicationCode), Loc));
5092  }
5093
5094  // Add the processor imod operand, if necessary.
5095  if (ProcessorIMod) {
5096    Operands.push_back(ARMOperand::CreateImm(
5097          MCConstantExpr::Create(ProcessorIMod, getContext()),
5098                                 NameLoc, NameLoc));
5099  }
5100
5101  // Add the remaining tokens in the mnemonic.
5102  while (Next != StringRef::npos) {
5103    Start = Next;
5104    Next = Name.find('.', Start + 1);
5105    StringRef ExtraToken = Name.slice(Start, Next);
5106
5107    // Some NEON instructions have an optional datatype suffix that is
5108    // completely ignored. Check for that.
5109    if (isDataTypeToken(ExtraToken) &&
5110        doesIgnoreDataTypeSuffix(Mnemonic, ExtraToken))
5111      continue;
5112
5113    // For for ARM mode generate an error if the .n qualifier is used.
5114    if (ExtraToken == ".n" && !isThumb()) {
5115      SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Start);
5116      return Error(Loc, "instruction with .n (narrow) qualifier not allowed in "
5117                   "arm mode");
5118    }
5119
5120    // The .n qualifier is always discarded as that is what the tables
5121    // and matcher expect.  In ARM mode the .w qualifier has no effect,
5122    // so discard it to avoid errors that can be caused by the matcher.
5123    if (ExtraToken != ".n" && (isThumb() || ExtraToken != ".w")) {
5124      SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Start);
5125      Operands.push_back(ARMOperand::CreateToken(ExtraToken, Loc));
5126    }
5127  }
5128
5129  // Read the remaining operands.
5130  if (getLexer().isNot(AsmToken::EndOfStatement)) {
5131    // Read the first operand.
5132    if (parseOperand(Operands, Mnemonic)) {
5133      Parser.eatToEndOfStatement();
5134      return true;
5135    }
5136
5137    while (getLexer().is(AsmToken::Comma)) {
5138      Parser.Lex();  // Eat the comma.
5139
5140      // Parse and remember the operand.
5141      if (parseOperand(Operands, Mnemonic)) {
5142        Parser.eatToEndOfStatement();
5143        return true;
5144      }
5145    }
5146  }
5147
5148  if (getLexer().isNot(AsmToken::EndOfStatement)) {
5149    SMLoc Loc = getLexer().getLoc();
5150    Parser.eatToEndOfStatement();
5151    return Error(Loc, "unexpected token in argument list");
5152  }
5153
5154  Parser.Lex(); // Consume the EndOfStatement
5155
5156  // Some instructions, mostly Thumb, have forms for the same mnemonic that
5157  // do and don't have a cc_out optional-def operand. With some spot-checks
5158  // of the operand list, we can figure out which variant we're trying to
5159  // parse and adjust accordingly before actually matching. We shouldn't ever
5160  // try to remove a cc_out operand that was explicitly set on the the
5161  // mnemonic, of course (CarrySetting == true). Reason number #317 the
5162  // table driven matcher doesn't fit well with the ARM instruction set.
5163  if (!CarrySetting && shouldOmitCCOutOperand(Mnemonic, Operands)) {
5164    ARMOperand *Op = static_cast<ARMOperand*>(Operands[1]);
5165    Operands.erase(Operands.begin() + 1);
5166    delete Op;
5167  }
5168
5169  // Some instructions have the same mnemonic, but don't always
5170  // have a predicate. Distinguish them here and delete the
5171  // predicate if needed.
5172  if (shouldOmitPredicateOperand(Mnemonic, Operands)) {
5173    ARMOperand *Op = static_cast<ARMOperand*>(Operands[1]);
5174    Operands.erase(Operands.begin() + 1);
5175    delete Op;
5176  }
5177
5178  // ARM mode 'blx' need special handling, as the register operand version
5179  // is predicable, but the label operand version is not. So, we can't rely
5180  // on the Mnemonic based checking to correctly figure out when to put
5181  // a k_CondCode operand in the list. If we're trying to match the label
5182  // version, remove the k_CondCode operand here.
5183  if (!isThumb() && Mnemonic == "blx" && Operands.size() == 3 &&
5184      static_cast<ARMOperand*>(Operands[2])->isImm()) {
5185    ARMOperand *Op = static_cast<ARMOperand*>(Operands[1]);
5186    Operands.erase(Operands.begin() + 1);
5187    delete Op;
5188  }
5189
5190  // Adjust operands of ldrexd/strexd to MCK_GPRPair.
5191  // ldrexd/strexd require even/odd GPR pair. To enforce this constraint,
5192  // a single GPRPair reg operand is used in the .td file to replace the two
5193  // GPRs. However, when parsing from asm, the two GRPs cannot be automatically
5194  // expressed as a GPRPair, so we have to manually merge them.
5195  // FIXME: We would really like to be able to tablegen'erate this.
5196  if (!isThumb() && Operands.size() > 4 &&
5197      (Mnemonic == "ldrexd" || Mnemonic == "strexd")) {
5198    bool isLoad = (Mnemonic == "ldrexd");
5199    unsigned Idx = isLoad ? 2 : 3;
5200    ARMOperand* Op1 = static_cast<ARMOperand*>(Operands[Idx]);
5201    ARMOperand* Op2 = static_cast<ARMOperand*>(Operands[Idx+1]);
5202
5203    const MCRegisterClass& MRC = MRI->getRegClass(ARM::GPRRegClassID);
5204    // Adjust only if Op1 and Op2 are GPRs.
5205    if (Op1->isReg() && Op2->isReg() && MRC.contains(Op1->getReg()) &&
5206        MRC.contains(Op2->getReg())) {
5207      unsigned Reg1 = Op1->getReg();
5208      unsigned Reg2 = Op2->getReg();
5209      unsigned Rt = MRI->getEncodingValue(Reg1);
5210      unsigned Rt2 = MRI->getEncodingValue(Reg2);
5211
5212      // Rt2 must be Rt + 1 and Rt must be even.
5213      if (Rt + 1 != Rt2 || (Rt & 1)) {
5214        Error(Op2->getStartLoc(), isLoad ?
5215            "destination operands must be sequential" :
5216            "source operands must be sequential");
5217        return true;
5218      }
5219      unsigned NewReg = MRI->getMatchingSuperReg(Reg1, ARM::gsub_0,
5220          &(MRI->getRegClass(ARM::GPRPairRegClassID)));
5221      Operands.erase(Operands.begin() + Idx, Operands.begin() + Idx + 2);
5222      Operands.insert(Operands.begin() + Idx, ARMOperand::CreateReg(
5223            NewReg, Op1->getStartLoc(), Op2->getEndLoc()));
5224      delete Op1;
5225      delete Op2;
5226    }
5227  }
5228
5229  // FIXME: As said above, this is all a pretty gross hack.  This instruction
5230  // does not fit with other "subs" and tblgen.
5231  // Adjust operands of B9.3.19 SUBS PC, LR, #imm (Thumb2) system instruction
5232  // so the Mnemonic is the original name "subs" and delete the predicate
5233  // operand so it will match the table entry.
5234  if (isThumbTwo() && Mnemonic == "sub" && Operands.size() == 6 &&
5235      static_cast<ARMOperand*>(Operands[3])->isReg() &&
5236      static_cast<ARMOperand*>(Operands[3])->getReg() == ARM::PC &&
5237      static_cast<ARMOperand*>(Operands[4])->isReg() &&
5238      static_cast<ARMOperand*>(Operands[4])->getReg() == ARM::LR &&
5239      static_cast<ARMOperand*>(Operands[5])->isImm()) {
5240    ARMOperand *Op0 = static_cast<ARMOperand*>(Operands[0]);
5241    Operands.erase(Operands.begin());
5242    delete Op0;
5243    Operands.insert(Operands.begin(), ARMOperand::CreateToken(Name, NameLoc));
5244
5245    ARMOperand *Op1 = static_cast<ARMOperand*>(Operands[1]);
5246    Operands.erase(Operands.begin() + 1);
5247    delete Op1;
5248  }
5249  return false;
5250}
5251
5252// Validate context-sensitive operand constraints.
5253
5254// return 'true' if register list contains non-low GPR registers,
5255// 'false' otherwise. If Reg is in the register list or is HiReg, set
5256// 'containsReg' to true.
5257static bool checkLowRegisterList(MCInst Inst, unsigned OpNo, unsigned Reg,
5258                                 unsigned HiReg, bool &containsReg) {
5259  containsReg = false;
5260  for (unsigned i = OpNo; i < Inst.getNumOperands(); ++i) {
5261    unsigned OpReg = Inst.getOperand(i).getReg();
5262    if (OpReg == Reg)
5263      containsReg = true;
5264    // Anything other than a low register isn't legal here.
5265    if (!isARMLowRegister(OpReg) && (!HiReg || OpReg != HiReg))
5266      return true;
5267  }
5268  return false;
5269}
5270
5271// Check if the specified regisgter is in the register list of the inst,
5272// starting at the indicated operand number.
5273static bool listContainsReg(MCInst &Inst, unsigned OpNo, unsigned Reg) {
5274  for (unsigned i = OpNo; i < Inst.getNumOperands(); ++i) {
5275    unsigned OpReg = Inst.getOperand(i).getReg();
5276    if (OpReg == Reg)
5277      return true;
5278  }
5279  return false;
5280}
5281
5282// FIXME: We would really prefer to have MCInstrInfo (the wrapper around
5283// the ARMInsts array) instead. Getting that here requires awkward
5284// API changes, though. Better way?
5285namespace llvm {
5286extern const MCInstrDesc ARMInsts[];
5287}
5288static const MCInstrDesc &getInstDesc(unsigned Opcode) {
5289  return ARMInsts[Opcode];
5290}
5291
5292// FIXME: We would really like to be able to tablegen'erate this.
5293bool ARMAsmParser::
5294validateInstruction(MCInst &Inst,
5295                    const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
5296  const MCInstrDesc &MCID = getInstDesc(Inst.getOpcode());
5297  SMLoc Loc = Operands[0]->getStartLoc();
5298
5299  // Check the IT block state first.
5300  // NOTE: BKPT instruction has the interesting property of being
5301  // allowed in IT blocks, but not being predicable.  It just always
5302  // executes.
5303  if (inITBlock() && Inst.getOpcode() != ARM::tBKPT &&
5304      Inst.getOpcode() != ARM::BKPT) {
5305    unsigned bit = 1;
5306    if (ITState.FirstCond)
5307      ITState.FirstCond = false;
5308    else
5309      bit = (ITState.Mask >> (5 - ITState.CurPosition)) & 1;
5310    // The instruction must be predicable.
5311    if (!MCID.isPredicable())
5312      return Error(Loc, "instructions in IT block must be predicable");
5313    unsigned Cond = Inst.getOperand(MCID.findFirstPredOperandIdx()).getImm();
5314    unsigned ITCond = bit ? ITState.Cond :
5315      ARMCC::getOppositeCondition(ITState.Cond);
5316    if (Cond != ITCond) {
5317      // Find the condition code Operand to get its SMLoc information.
5318      SMLoc CondLoc;
5319      for (unsigned i = 1; i < Operands.size(); ++i)
5320        if (static_cast<ARMOperand*>(Operands[i])->isCondCode())
5321          CondLoc = Operands[i]->getStartLoc();
5322      return Error(CondLoc, "incorrect condition in IT block; got '" +
5323                   StringRef(ARMCondCodeToString(ARMCC::CondCodes(Cond))) +
5324                   "', but expected '" +
5325                   ARMCondCodeToString(ARMCC::CondCodes(ITCond)) + "'");
5326    }
5327  // Check for non-'al' condition codes outside of the IT block.
5328  } else if (isThumbTwo() && MCID.isPredicable() &&
5329             Inst.getOperand(MCID.findFirstPredOperandIdx()).getImm() !=
5330             ARMCC::AL && Inst.getOpcode() != ARM::tBcc &&
5331             Inst.getOpcode() != ARM::t2Bcc)
5332    return Error(Loc, "predicated instructions must be in IT block");
5333
5334  switch (Inst.getOpcode()) {
5335  case ARM::LDRD:
5336  case ARM::LDRD_PRE:
5337  case ARM::LDRD_POST: {
5338    // Rt2 must be Rt + 1.
5339    unsigned Rt = MRI->getEncodingValue(Inst.getOperand(0).getReg());
5340    unsigned Rt2 = MRI->getEncodingValue(Inst.getOperand(1).getReg());
5341    if (Rt2 != Rt + 1)
5342      return Error(Operands[3]->getStartLoc(),
5343                   "destination operands must be sequential");
5344    return false;
5345  }
5346  case ARM::STRD: {
5347    // Rt2 must be Rt + 1.
5348    unsigned Rt = MRI->getEncodingValue(Inst.getOperand(0).getReg());
5349    unsigned Rt2 = MRI->getEncodingValue(Inst.getOperand(1).getReg());
5350    if (Rt2 != Rt + 1)
5351      return Error(Operands[3]->getStartLoc(),
5352                   "source operands must be sequential");
5353    return false;
5354  }
5355  case ARM::STRD_PRE:
5356  case ARM::STRD_POST: {
5357    // Rt2 must be Rt + 1.
5358    unsigned Rt = MRI->getEncodingValue(Inst.getOperand(1).getReg());
5359    unsigned Rt2 = MRI->getEncodingValue(Inst.getOperand(2).getReg());
5360    if (Rt2 != Rt + 1)
5361      return Error(Operands[3]->getStartLoc(),
5362                   "source operands must be sequential");
5363    return false;
5364  }
5365  case ARM::SBFX:
5366  case ARM::UBFX: {
5367    // width must be in range [1, 32-lsb]
5368    unsigned lsb = Inst.getOperand(2).getImm();
5369    unsigned widthm1 = Inst.getOperand(3).getImm();
5370    if (widthm1 >= 32 - lsb)
5371      return Error(Operands[5]->getStartLoc(),
5372                   "bitfield width must be in range [1,32-lsb]");
5373    return false;
5374  }
5375  case ARM::tLDMIA: {
5376    // If we're parsing Thumb2, the .w variant is available and handles
5377    // most cases that are normally illegal for a Thumb1 LDM
5378    // instruction. We'll make the transformation in processInstruction()
5379    // if necessary.
5380    //
5381    // Thumb LDM instructions are writeback iff the base register is not
5382    // in the register list.
5383    unsigned Rn = Inst.getOperand(0).getReg();
5384    bool hasWritebackToken =
5385      (static_cast<ARMOperand*>(Operands[3])->isToken() &&
5386       static_cast<ARMOperand*>(Operands[3])->getToken() == "!");
5387    bool listContainsBase;
5388    if (checkLowRegisterList(Inst, 3, Rn, 0, listContainsBase) && !isThumbTwo())
5389      return Error(Operands[3 + hasWritebackToken]->getStartLoc(),
5390                   "registers must be in range r0-r7");
5391    // If we should have writeback, then there should be a '!' token.
5392    if (!listContainsBase && !hasWritebackToken && !isThumbTwo())
5393      return Error(Operands[2]->getStartLoc(),
5394                   "writeback operator '!' expected");
5395    // If we should not have writeback, there must not be a '!'. This is
5396    // true even for the 32-bit wide encodings.
5397    if (listContainsBase && hasWritebackToken)
5398      return Error(Operands[3]->getStartLoc(),
5399                   "writeback operator '!' not allowed when base register "
5400                   "in register list");
5401
5402    break;
5403  }
5404  case ARM::t2LDMIA_UPD: {
5405    if (listContainsReg(Inst, 3, Inst.getOperand(0).getReg()))
5406      return Error(Operands[4]->getStartLoc(),
5407                   "writeback operator '!' not allowed when base register "
5408                   "in register list");
5409    break;
5410  }
5411  case ARM::tMUL: {
5412    // The second source operand must be the same register as the destination
5413    // operand.
5414    //
5415    // In this case, we must directly check the parsed operands because the
5416    // cvtThumbMultiply() function is written in such a way that it guarantees
5417    // this first statement is always true for the new Inst.  Essentially, the
5418    // destination is unconditionally copied into the second source operand
5419    // without checking to see if it matches what we actually parsed.
5420    if (Operands.size() == 6 &&
5421        (((ARMOperand*)Operands[3])->getReg() !=
5422         ((ARMOperand*)Operands[5])->getReg()) &&
5423        (((ARMOperand*)Operands[3])->getReg() !=
5424         ((ARMOperand*)Operands[4])->getReg())) {
5425      return Error(Operands[3]->getStartLoc(),
5426                   "destination register must match source register");
5427    }
5428    break;
5429  }
5430  // Like for ldm/stm, push and pop have hi-reg handling version in Thumb2,
5431  // so only issue a diagnostic for thumb1. The instructions will be
5432  // switched to the t2 encodings in processInstruction() if necessary.
5433  case ARM::tPOP: {
5434    bool listContainsBase;
5435    if (checkLowRegisterList(Inst, 2, 0, ARM::PC, listContainsBase) &&
5436        !isThumbTwo())
5437      return Error(Operands[2]->getStartLoc(),
5438                   "registers must be in range r0-r7 or pc");
5439    break;
5440  }
5441  case ARM::tPUSH: {
5442    bool listContainsBase;
5443    if (checkLowRegisterList(Inst, 2, 0, ARM::LR, listContainsBase) &&
5444        !isThumbTwo())
5445      return Error(Operands[2]->getStartLoc(),
5446                   "registers must be in range r0-r7 or lr");
5447    break;
5448  }
5449  case ARM::tSTMIA_UPD: {
5450    bool listContainsBase;
5451    if (checkLowRegisterList(Inst, 4, 0, 0, listContainsBase) && !isThumbTwo())
5452      return Error(Operands[4]->getStartLoc(),
5453                   "registers must be in range r0-r7");
5454    break;
5455  }
5456  case ARM::tADDrSP: {
5457    // If the non-SP source operand and the destination operand are not the
5458    // same, we need thumb2 (for the wide encoding), or we have an error.
5459    if (!isThumbTwo() &&
5460        Inst.getOperand(0).getReg() != Inst.getOperand(2).getReg()) {
5461      return Error(Operands[4]->getStartLoc(),
5462                   "source register must be the same as destination");
5463    }
5464    break;
5465  }
5466  // final range checking for Thumb unconditional branch instructions
5467  case ARM::tB:
5468    if(!(static_cast<ARMOperand*>(Operands[2]))->isSignedOffset<11, 1>())
5469      return Error(Operands[2]->getStartLoc(), "Branch target out of range");
5470    break;
5471  case ARM::t2B: {
5472    int op = (Operands[2]->isImm()) ? 2 : 3;
5473    if(!(static_cast<ARMOperand*>(Operands[op]))->isSignedOffset<24, 1>())
5474      return Error(Operands[op]->getStartLoc(), "Branch target out of range");
5475    break;
5476  }
5477  // final range checking for Thumb conditional branch instructions
5478  case ARM::tBcc:
5479    if(!(static_cast<ARMOperand*>(Operands[2]))->isSignedOffset<8, 1>())
5480      return Error(Operands[2]->getStartLoc(), "Branch target out of range");
5481    break;
5482  case ARM::t2Bcc: {
5483    int op = (Operands[2]->isImm()) ? 2 : 3;
5484    if(!(static_cast<ARMOperand*>(Operands[op]))->isSignedOffset<20, 1>())
5485      return Error(Operands[op]->getStartLoc(), "Branch target out of range");
5486    break;
5487  }
5488  }
5489
5490  StringRef DepInfo;
5491  if (isDeprecated(Inst, DepInfo))
5492    Warning(Loc, "deprecated on " + DepInfo);
5493
5494  return false;
5495}
5496
5497static unsigned getRealVSTOpcode(unsigned Opc, unsigned &Spacing) {
5498  switch(Opc) {
5499  default: llvm_unreachable("unexpected opcode!");
5500  // VST1LN
5501  case ARM::VST1LNdWB_fixed_Asm_8:  Spacing = 1; return ARM::VST1LNd8_UPD;
5502  case ARM::VST1LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST1LNd16_UPD;
5503  case ARM::VST1LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST1LNd32_UPD;
5504  case ARM::VST1LNdWB_register_Asm_8:  Spacing = 1; return ARM::VST1LNd8_UPD;
5505  case ARM::VST1LNdWB_register_Asm_16: Spacing = 1; return ARM::VST1LNd16_UPD;
5506  case ARM::VST1LNdWB_register_Asm_32: Spacing = 1; return ARM::VST1LNd32_UPD;
5507  case ARM::VST1LNdAsm_8:  Spacing = 1; return ARM::VST1LNd8;
5508  case ARM::VST1LNdAsm_16: Spacing = 1; return ARM::VST1LNd16;
5509  case ARM::VST1LNdAsm_32: Spacing = 1; return ARM::VST1LNd32;
5510
5511  // VST2LN
5512  case ARM::VST2LNdWB_fixed_Asm_8:  Spacing = 1; return ARM::VST2LNd8_UPD;
5513  case ARM::VST2LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST2LNd16_UPD;
5514  case ARM::VST2LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST2LNd32_UPD;
5515  case ARM::VST2LNqWB_fixed_Asm_16: Spacing = 2; return ARM::VST2LNq16_UPD;
5516  case ARM::VST2LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VST2LNq32_UPD;
5517
5518  case ARM::VST2LNdWB_register_Asm_8:  Spacing = 1; return ARM::VST2LNd8_UPD;
5519  case ARM::VST2LNdWB_register_Asm_16: Spacing = 1; return ARM::VST2LNd16_UPD;
5520  case ARM::VST2LNdWB_register_Asm_32: Spacing = 1; return ARM::VST2LNd32_UPD;
5521  case ARM::VST2LNqWB_register_Asm_16: Spacing = 2; return ARM::VST2LNq16_UPD;
5522  case ARM::VST2LNqWB_register_Asm_32: Spacing = 2; return ARM::VST2LNq32_UPD;
5523
5524  case ARM::VST2LNdAsm_8:  Spacing = 1; return ARM::VST2LNd8;
5525  case ARM::VST2LNdAsm_16: Spacing = 1; return ARM::VST2LNd16;
5526  case ARM::VST2LNdAsm_32: Spacing = 1; return ARM::VST2LNd32;
5527  case ARM::VST2LNqAsm_16: Spacing = 2; return ARM::VST2LNq16;
5528  case ARM::VST2LNqAsm_32: Spacing = 2; return ARM::VST2LNq32;
5529
5530  // VST3LN
5531  case ARM::VST3LNdWB_fixed_Asm_8:  Spacing = 1; return ARM::VST3LNd8_UPD;
5532  case ARM::VST3LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST3LNd16_UPD;
5533  case ARM::VST3LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST3LNd32_UPD;
5534  case ARM::VST3LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VST3LNq16_UPD;
5535  case ARM::VST3LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VST3LNq32_UPD;
5536  case ARM::VST3LNdWB_register_Asm_8:  Spacing = 1; return ARM::VST3LNd8_UPD;
5537  case ARM::VST3LNdWB_register_Asm_16: Spacing = 1; return ARM::VST3LNd16_UPD;
5538  case ARM::VST3LNdWB_register_Asm_32: Spacing = 1; return ARM::VST3LNd32_UPD;
5539  case ARM::VST3LNqWB_register_Asm_16: Spacing = 2; return ARM::VST3LNq16_UPD;
5540  case ARM::VST3LNqWB_register_Asm_32: Spacing = 2; return ARM::VST3LNq32_UPD;
5541  case ARM::VST3LNdAsm_8:  Spacing = 1; return ARM::VST3LNd8;
5542  case ARM::VST3LNdAsm_16: Spacing = 1; return ARM::VST3LNd16;
5543  case ARM::VST3LNdAsm_32: Spacing = 1; return ARM::VST3LNd32;
5544  case ARM::VST3LNqAsm_16: Spacing = 2; return ARM::VST3LNq16;
5545  case ARM::VST3LNqAsm_32: Spacing = 2; return ARM::VST3LNq32;
5546
5547  // VST3
5548  case ARM::VST3dWB_fixed_Asm_8:  Spacing = 1; return ARM::VST3d8_UPD;
5549  case ARM::VST3dWB_fixed_Asm_16: Spacing = 1; return ARM::VST3d16_UPD;
5550  case ARM::VST3dWB_fixed_Asm_32: Spacing = 1; return ARM::VST3d32_UPD;
5551  case ARM::VST3qWB_fixed_Asm_8:  Spacing = 2; return ARM::VST3q8_UPD;
5552  case ARM::VST3qWB_fixed_Asm_16: Spacing = 2; return ARM::VST3q16_UPD;
5553  case ARM::VST3qWB_fixed_Asm_32: Spacing = 2; return ARM::VST3q32_UPD;
5554  case ARM::VST3dWB_register_Asm_8:  Spacing = 1; return ARM::VST3d8_UPD;
5555  case ARM::VST3dWB_register_Asm_16: Spacing = 1; return ARM::VST3d16_UPD;
5556  case ARM::VST3dWB_register_Asm_32: Spacing = 1; return ARM::VST3d32_UPD;
5557  case ARM::VST3qWB_register_Asm_8:  Spacing = 2; return ARM::VST3q8_UPD;
5558  case ARM::VST3qWB_register_Asm_16: Spacing = 2; return ARM::VST3q16_UPD;
5559  case ARM::VST3qWB_register_Asm_32: Spacing = 2; return ARM::VST3q32_UPD;
5560  case ARM::VST3dAsm_8:  Spacing = 1; return ARM::VST3d8;
5561  case ARM::VST3dAsm_16: Spacing = 1; return ARM::VST3d16;
5562  case ARM::VST3dAsm_32: Spacing = 1; return ARM::VST3d32;
5563  case ARM::VST3qAsm_8:  Spacing = 2; return ARM::VST3q8;
5564  case ARM::VST3qAsm_16: Spacing = 2; return ARM::VST3q16;
5565  case ARM::VST3qAsm_32: Spacing = 2; return ARM::VST3q32;
5566
5567  // VST4LN
5568  case ARM::VST4LNdWB_fixed_Asm_8:  Spacing = 1; return ARM::VST4LNd8_UPD;
5569  case ARM::VST4LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST4LNd16_UPD;
5570  case ARM::VST4LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST4LNd32_UPD;
5571  case ARM::VST4LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VST4LNq16_UPD;
5572  case ARM::VST4LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VST4LNq32_UPD;
5573  case ARM::VST4LNdWB_register_Asm_8:  Spacing = 1; return ARM::VST4LNd8_UPD;
5574  case ARM::VST4LNdWB_register_Asm_16: Spacing = 1; return ARM::VST4LNd16_UPD;
5575  case ARM::VST4LNdWB_register_Asm_32: Spacing = 1; return ARM::VST4LNd32_UPD;
5576  case ARM::VST4LNqWB_register_Asm_16: Spacing = 2; return ARM::VST4LNq16_UPD;
5577  case ARM::VST4LNqWB_register_Asm_32: Spacing = 2; return ARM::VST4LNq32_UPD;
5578  case ARM::VST4LNdAsm_8:  Spacing = 1; return ARM::VST4LNd8;
5579  case ARM::VST4LNdAsm_16: Spacing = 1; return ARM::VST4LNd16;
5580  case ARM::VST4LNdAsm_32: Spacing = 1; return ARM::VST4LNd32;
5581  case ARM::VST4LNqAsm_16: Spacing = 2; return ARM::VST4LNq16;
5582  case ARM::VST4LNqAsm_32: Spacing = 2; return ARM::VST4LNq32;
5583
5584  // VST4
5585  case ARM::VST4dWB_fixed_Asm_8:  Spacing = 1; return ARM::VST4d8_UPD;
5586  case ARM::VST4dWB_fixed_Asm_16: Spacing = 1; return ARM::VST4d16_UPD;
5587  case ARM::VST4dWB_fixed_Asm_32: Spacing = 1; return ARM::VST4d32_UPD;
5588  case ARM::VST4qWB_fixed_Asm_8:  Spacing = 2; return ARM::VST4q8_UPD;
5589  case ARM::VST4qWB_fixed_Asm_16: Spacing = 2; return ARM::VST4q16_UPD;
5590  case ARM::VST4qWB_fixed_Asm_32: Spacing = 2; return ARM::VST4q32_UPD;
5591  case ARM::VST4dWB_register_Asm_8:  Spacing = 1; return ARM::VST4d8_UPD;
5592  case ARM::VST4dWB_register_Asm_16: Spacing = 1; return ARM::VST4d16_UPD;
5593  case ARM::VST4dWB_register_Asm_32: Spacing = 1; return ARM::VST4d32_UPD;
5594  case ARM::VST4qWB_register_Asm_8:  Spacing = 2; return ARM::VST4q8_UPD;
5595  case ARM::VST4qWB_register_Asm_16: Spacing = 2; return ARM::VST4q16_UPD;
5596  case ARM::VST4qWB_register_Asm_32: Spacing = 2; return ARM::VST4q32_UPD;
5597  case ARM::VST4dAsm_8:  Spacing = 1; return ARM::VST4d8;
5598  case ARM::VST4dAsm_16: Spacing = 1; return ARM::VST4d16;
5599  case ARM::VST4dAsm_32: Spacing = 1; return ARM::VST4d32;
5600  case ARM::VST4qAsm_8:  Spacing = 2; return ARM::VST4q8;
5601  case ARM::VST4qAsm_16: Spacing = 2; return ARM::VST4q16;
5602  case ARM::VST4qAsm_32: Spacing = 2; return ARM::VST4q32;
5603  }
5604}
5605
5606static unsigned getRealVLDOpcode(unsigned Opc, unsigned &Spacing) {
5607  switch(Opc) {
5608  default: llvm_unreachable("unexpected opcode!");
5609  // VLD1LN
5610  case ARM::VLD1LNdWB_fixed_Asm_8:  Spacing = 1; return ARM::VLD1LNd8_UPD;
5611  case ARM::VLD1LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD1LNd16_UPD;
5612  case ARM::VLD1LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD1LNd32_UPD;
5613  case ARM::VLD1LNdWB_register_Asm_8:  Spacing = 1; return ARM::VLD1LNd8_UPD;
5614  case ARM::VLD1LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD1LNd16_UPD;
5615  case ARM::VLD1LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD1LNd32_UPD;
5616  case ARM::VLD1LNdAsm_8:  Spacing = 1; return ARM::VLD1LNd8;
5617  case ARM::VLD1LNdAsm_16: Spacing = 1; return ARM::VLD1LNd16;
5618  case ARM::VLD1LNdAsm_32: Spacing = 1; return ARM::VLD1LNd32;
5619
5620  // VLD2LN
5621  case ARM::VLD2LNdWB_fixed_Asm_8:  Spacing = 1; return ARM::VLD2LNd8_UPD;
5622  case ARM::VLD2LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD2LNd16_UPD;
5623  case ARM::VLD2LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD2LNd32_UPD;
5624  case ARM::VLD2LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD2LNq16_UPD;
5625  case ARM::VLD2LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD2LNq32_UPD;
5626  case ARM::VLD2LNdWB_register_Asm_8:  Spacing = 1; return ARM::VLD2LNd8_UPD;
5627  case ARM::VLD2LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD2LNd16_UPD;
5628  case ARM::VLD2LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD2LNd32_UPD;
5629  case ARM::VLD2LNqWB_register_Asm_16: Spacing = 2; return ARM::VLD2LNq16_UPD;
5630  case ARM::VLD2LNqWB_register_Asm_32: Spacing = 2; return ARM::VLD2LNq32_UPD;
5631  case ARM::VLD2LNdAsm_8:  Spacing = 1; return ARM::VLD2LNd8;
5632  case ARM::VLD2LNdAsm_16: Spacing = 1; return ARM::VLD2LNd16;
5633  case ARM::VLD2LNdAsm_32: Spacing = 1; return ARM::VLD2LNd32;
5634  case ARM::VLD2LNqAsm_16: Spacing = 2; return ARM::VLD2LNq16;
5635  case ARM::VLD2LNqAsm_32: Spacing = 2; return ARM::VLD2LNq32;
5636
5637  // VLD3DUP
5638  case ARM::VLD3DUPdWB_fixed_Asm_8:  Spacing = 1; return ARM::VLD3DUPd8_UPD;
5639  case ARM::VLD3DUPdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3DUPd16_UPD;
5640  case ARM::VLD3DUPdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD3DUPd32_UPD;
5641  case ARM::VLD3DUPqWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3DUPq8_UPD;
5642  case ARM::VLD3DUPqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3DUPq16_UPD;
5643  case ARM::VLD3DUPqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD3DUPq32_UPD;
5644  case ARM::VLD3DUPdWB_register_Asm_8:  Spacing = 1; return ARM::VLD3DUPd8_UPD;
5645  case ARM::VLD3DUPdWB_register_Asm_16: Spacing = 1; return ARM::VLD3DUPd16_UPD;
5646  case ARM::VLD3DUPdWB_register_Asm_32: Spacing = 1; return ARM::VLD3DUPd32_UPD;
5647  case ARM::VLD3DUPqWB_register_Asm_8: Spacing = 2; return ARM::VLD3DUPq8_UPD;
5648  case ARM::VLD3DUPqWB_register_Asm_16: Spacing = 2; return ARM::VLD3DUPq16_UPD;
5649  case ARM::VLD3DUPqWB_register_Asm_32: Spacing = 2; return ARM::VLD3DUPq32_UPD;
5650  case ARM::VLD3DUPdAsm_8:  Spacing = 1; return ARM::VLD3DUPd8;
5651  case ARM::VLD3DUPdAsm_16: Spacing = 1; return ARM::VLD3DUPd16;
5652  case ARM::VLD3DUPdAsm_32: Spacing = 1; return ARM::VLD3DUPd32;
5653  case ARM::VLD3DUPqAsm_8: Spacing = 2; return ARM::VLD3DUPq8;
5654  case ARM::VLD3DUPqAsm_16: Spacing = 2; return ARM::VLD3DUPq16;
5655  case ARM::VLD3DUPqAsm_32: Spacing = 2; return ARM::VLD3DUPq32;
5656
5657  // VLD3LN
5658  case ARM::VLD3LNdWB_fixed_Asm_8:  Spacing = 1; return ARM::VLD3LNd8_UPD;
5659  case ARM::VLD3LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3LNd16_UPD;
5660  case ARM::VLD3LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD3LNd32_UPD;
5661  case ARM::VLD3LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3LNq16_UPD;
5662  case ARM::VLD3LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD3LNq32_UPD;
5663  case ARM::VLD3LNdWB_register_Asm_8:  Spacing = 1; return ARM::VLD3LNd8_UPD;
5664  case ARM::VLD3LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD3LNd16_UPD;
5665  case ARM::VLD3LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD3LNd32_UPD;
5666  case ARM::VLD3LNqWB_register_Asm_16: Spacing = 2; return ARM::VLD3LNq16_UPD;
5667  case ARM::VLD3LNqWB_register_Asm_32: Spacing = 2; return ARM::VLD3LNq32_UPD;
5668  case ARM::VLD3LNdAsm_8:  Spacing = 1; return ARM::VLD3LNd8;
5669  case ARM::VLD3LNdAsm_16: Spacing = 1; return ARM::VLD3LNd16;
5670  case ARM::VLD3LNdAsm_32: Spacing = 1; return ARM::VLD3LNd32;
5671  case ARM::VLD3LNqAsm_16: Spacing = 2; return ARM::VLD3LNq16;
5672  case ARM::VLD3LNqAsm_32: Spacing = 2; return ARM::VLD3LNq32;
5673
5674  // VLD3
5675  case ARM::VLD3dWB_fixed_Asm_8:  Spacing = 1; return ARM::VLD3d8_UPD;
5676  case ARM::VLD3dWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3d16_UPD;
5677  case ARM::VLD3dWB_fixed_Asm_32: Spacing = 1; return ARM::VLD3d32_UPD;
5678  case ARM::VLD3qWB_fixed_Asm_8:  Spacing = 2; return ARM::VLD3q8_UPD;
5679  case ARM::VLD3qWB_fixed_Asm_16: Spacing = 2; return ARM::VLD3q16_UPD;
5680  case ARM::VLD3qWB_fixed_Asm_32: Spacing = 2; return ARM::VLD3q32_UPD;
5681  case ARM::VLD3dWB_register_Asm_8:  Spacing = 1; return ARM::VLD3d8_UPD;
5682  case ARM::VLD3dWB_register_Asm_16: Spacing = 1; return ARM::VLD3d16_UPD;
5683  case ARM::VLD3dWB_register_Asm_32: Spacing = 1; return ARM::VLD3d32_UPD;
5684  case ARM::VLD3qWB_register_Asm_8:  Spacing = 2; return ARM::VLD3q8_UPD;
5685  case ARM::VLD3qWB_register_Asm_16: Spacing = 2; return ARM::VLD3q16_UPD;
5686  case ARM::VLD3qWB_register_Asm_32: Spacing = 2; return ARM::VLD3q32_UPD;
5687  case ARM::VLD3dAsm_8:  Spacing = 1; return ARM::VLD3d8;
5688  case ARM::VLD3dAsm_16: Spacing = 1; return ARM::VLD3d16;
5689  case ARM::VLD3dAsm_32: Spacing = 1; return ARM::VLD3d32;
5690  case ARM::VLD3qAsm_8:  Spacing = 2; return ARM::VLD3q8;
5691  case ARM::VLD3qAsm_16: Spacing = 2; return ARM::VLD3q16;
5692  case ARM::VLD3qAsm_32: Spacing = 2; return ARM::VLD3q32;
5693
5694  // VLD4LN
5695  case ARM::VLD4LNdWB_fixed_Asm_8:  Spacing = 1; return ARM::VLD4LNd8_UPD;
5696  case ARM::VLD4LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4LNd16_UPD;
5697  case ARM::VLD4LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD4LNd32_UPD;
5698  case ARM::VLD4LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4LNq16_UPD;
5699  case ARM::VLD4LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD4LNq32_UPD;
5700  case ARM::VLD4LNdWB_register_Asm_8:  Spacing = 1; return ARM::VLD4LNd8_UPD;
5701  case ARM::VLD4LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD4LNd16_UPD;
5702  case ARM::VLD4LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD4LNd32_UPD;
5703  case ARM::VLD4LNqWB_register_Asm_16: Spacing = 2; return ARM::VLD4LNq16_UPD;
5704  case ARM::VLD4LNqWB_register_Asm_32: Spacing = 2; return ARM::VLD4LNq32_UPD;
5705  case ARM::VLD4LNdAsm_8:  Spacing = 1; return ARM::VLD4LNd8;
5706  case ARM::VLD4LNdAsm_16: Spacing = 1; return ARM::VLD4LNd16;
5707  case ARM::VLD4LNdAsm_32: Spacing = 1; return ARM::VLD4LNd32;
5708  case ARM::VLD4LNqAsm_16: Spacing = 2; return ARM::VLD4LNq16;
5709  case ARM::VLD4LNqAsm_32: Spacing = 2; return ARM::VLD4LNq32;
5710
5711  // VLD4DUP
5712  case ARM::VLD4DUPdWB_fixed_Asm_8:  Spacing = 1; return ARM::VLD4DUPd8_UPD;
5713  case ARM::VLD4DUPdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4DUPd16_UPD;
5714  case ARM::VLD4DUPdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD4DUPd32_UPD;
5715  case ARM::VLD4DUPqWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4DUPq8_UPD;
5716  case ARM::VLD4DUPqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4DUPq16_UPD;
5717  case ARM::VLD4DUPqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD4DUPq32_UPD;
5718  case ARM::VLD4DUPdWB_register_Asm_8:  Spacing = 1; return ARM::VLD4DUPd8_UPD;
5719  case ARM::VLD4DUPdWB_register_Asm_16: Spacing = 1; return ARM::VLD4DUPd16_UPD;
5720  case ARM::VLD4DUPdWB_register_Asm_32: Spacing = 1; return ARM::VLD4DUPd32_UPD;
5721  case ARM::VLD4DUPqWB_register_Asm_8: Spacing = 2; return ARM::VLD4DUPq8_UPD;
5722  case ARM::VLD4DUPqWB_register_Asm_16: Spacing = 2; return ARM::VLD4DUPq16_UPD;
5723  case ARM::VLD4DUPqWB_register_Asm_32: Spacing = 2; return ARM::VLD4DUPq32_UPD;
5724  case ARM::VLD4DUPdAsm_8:  Spacing = 1; return ARM::VLD4DUPd8;
5725  case ARM::VLD4DUPdAsm_16: Spacing = 1; return ARM::VLD4DUPd16;
5726  case ARM::VLD4DUPdAsm_32: Spacing = 1; return ARM::VLD4DUPd32;
5727  case ARM::VLD4DUPqAsm_8: Spacing = 2; return ARM::VLD4DUPq8;
5728  case ARM::VLD4DUPqAsm_16: Spacing = 2; return ARM::VLD4DUPq16;
5729  case ARM::VLD4DUPqAsm_32: Spacing = 2; return ARM::VLD4DUPq32;
5730
5731  // VLD4
5732  case ARM::VLD4dWB_fixed_Asm_8:  Spacing = 1; return ARM::VLD4d8_UPD;
5733  case ARM::VLD4dWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4d16_UPD;
5734  case ARM::VLD4dWB_fixed_Asm_32: Spacing = 1; return ARM::VLD4d32_UPD;
5735  case ARM::VLD4qWB_fixed_Asm_8:  Spacing = 2; return ARM::VLD4q8_UPD;
5736  case ARM::VLD4qWB_fixed_Asm_16: Spacing = 2; return ARM::VLD4q16_UPD;
5737  case ARM::VLD4qWB_fixed_Asm_32: Spacing = 2; return ARM::VLD4q32_UPD;
5738  case ARM::VLD4dWB_register_Asm_8:  Spacing = 1; return ARM::VLD4d8_UPD;
5739  case ARM::VLD4dWB_register_Asm_16: Spacing = 1; return ARM::VLD4d16_UPD;
5740  case ARM::VLD4dWB_register_Asm_32: Spacing = 1; return ARM::VLD4d32_UPD;
5741  case ARM::VLD4qWB_register_Asm_8:  Spacing = 2; return ARM::VLD4q8_UPD;
5742  case ARM::VLD4qWB_register_Asm_16: Spacing = 2; return ARM::VLD4q16_UPD;
5743  case ARM::VLD4qWB_register_Asm_32: Spacing = 2; return ARM::VLD4q32_UPD;
5744  case ARM::VLD4dAsm_8:  Spacing = 1; return ARM::VLD4d8;
5745  case ARM::VLD4dAsm_16: Spacing = 1; return ARM::VLD4d16;
5746  case ARM::VLD4dAsm_32: Spacing = 1; return ARM::VLD4d32;
5747  case ARM::VLD4qAsm_8:  Spacing = 2; return ARM::VLD4q8;
5748  case ARM::VLD4qAsm_16: Spacing = 2; return ARM::VLD4q16;
5749  case ARM::VLD4qAsm_32: Spacing = 2; return ARM::VLD4q32;
5750  }
5751}
5752
5753bool ARMAsmParser::
5754processInstruction(MCInst &Inst,
5755                   const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
5756  switch (Inst.getOpcode()) {
5757  // Alias for alternate form of 'ADR Rd, #imm' instruction.
5758  case ARM::ADDri: {
5759    if (Inst.getOperand(1).getReg() != ARM::PC ||
5760        Inst.getOperand(5).getReg() != 0)
5761      return false;
5762    MCInst TmpInst;
5763    TmpInst.setOpcode(ARM::ADR);
5764    TmpInst.addOperand(Inst.getOperand(0));
5765    TmpInst.addOperand(Inst.getOperand(2));
5766    TmpInst.addOperand(Inst.getOperand(3));
5767    TmpInst.addOperand(Inst.getOperand(4));
5768    Inst = TmpInst;
5769    return true;
5770  }
5771  // Aliases for alternate PC+imm syntax of LDR instructions.
5772  case ARM::t2LDRpcrel:
5773    // Select the narrow version if the immediate will fit.
5774    if (Inst.getOperand(1).getImm() > 0 &&
5775        Inst.getOperand(1).getImm() <= 0xff &&
5776        !(static_cast<ARMOperand*>(Operands[2])->isToken() &&
5777         static_cast<ARMOperand*>(Operands[2])->getToken() == ".w"))
5778      Inst.setOpcode(ARM::tLDRpci);
5779    else
5780      Inst.setOpcode(ARM::t2LDRpci);
5781    return true;
5782  case ARM::t2LDRBpcrel:
5783    Inst.setOpcode(ARM::t2LDRBpci);
5784    return true;
5785  case ARM::t2LDRHpcrel:
5786    Inst.setOpcode(ARM::t2LDRHpci);
5787    return true;
5788  case ARM::t2LDRSBpcrel:
5789    Inst.setOpcode(ARM::t2LDRSBpci);
5790    return true;
5791  case ARM::t2LDRSHpcrel:
5792    Inst.setOpcode(ARM::t2LDRSHpci);
5793    return true;
5794  // Handle NEON VST complex aliases.
5795  case ARM::VST1LNdWB_register_Asm_8:
5796  case ARM::VST1LNdWB_register_Asm_16:
5797  case ARM::VST1LNdWB_register_Asm_32: {
5798    MCInst TmpInst;
5799    // Shuffle the operands around so the lane index operand is in the
5800    // right place.
5801    unsigned Spacing;
5802    TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
5803    TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
5804    TmpInst.addOperand(Inst.getOperand(2)); // Rn
5805    TmpInst.addOperand(Inst.getOperand(3)); // alignment
5806    TmpInst.addOperand(Inst.getOperand(4)); // Rm
5807    TmpInst.addOperand(Inst.getOperand(0)); // Vd
5808    TmpInst.addOperand(Inst.getOperand(1)); // lane
5809    TmpInst.addOperand(Inst.getOperand(5)); // CondCode
5810    TmpInst.addOperand(Inst.getOperand(6));
5811    Inst = TmpInst;
5812    return true;
5813  }
5814
5815  case ARM::VST2LNdWB_register_Asm_8:
5816  case ARM::VST2LNdWB_register_Asm_16:
5817  case ARM::VST2LNdWB_register_Asm_32:
5818  case ARM::VST2LNqWB_register_Asm_16:
5819  case ARM::VST2LNqWB_register_Asm_32: {
5820    MCInst TmpInst;
5821    // Shuffle the operands around so the lane index operand is in the
5822    // right place.
5823    unsigned Spacing;
5824    TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
5825    TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
5826    TmpInst.addOperand(Inst.getOperand(2)); // Rn
5827    TmpInst.addOperand(Inst.getOperand(3)); // alignment
5828    TmpInst.addOperand(Inst.getOperand(4)); // Rm
5829    TmpInst.addOperand(Inst.getOperand(0)); // Vd
5830    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
5831                                            Spacing));
5832    TmpInst.addOperand(Inst.getOperand(1)); // lane
5833    TmpInst.addOperand(Inst.getOperand(5)); // CondCode
5834    TmpInst.addOperand(Inst.getOperand(6));
5835    Inst = TmpInst;
5836    return true;
5837  }
5838
5839  case ARM::VST3LNdWB_register_Asm_8:
5840  case ARM::VST3LNdWB_register_Asm_16:
5841  case ARM::VST3LNdWB_register_Asm_32:
5842  case ARM::VST3LNqWB_register_Asm_16:
5843  case ARM::VST3LNqWB_register_Asm_32: {
5844    MCInst TmpInst;
5845    // Shuffle the operands around so the lane index operand is in the
5846    // right place.
5847    unsigned Spacing;
5848    TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
5849    TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
5850    TmpInst.addOperand(Inst.getOperand(2)); // Rn
5851    TmpInst.addOperand(Inst.getOperand(3)); // alignment
5852    TmpInst.addOperand(Inst.getOperand(4)); // Rm
5853    TmpInst.addOperand(Inst.getOperand(0)); // Vd
5854    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
5855                                            Spacing));
5856    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
5857                                            Spacing * 2));
5858    TmpInst.addOperand(Inst.getOperand(1)); // lane
5859    TmpInst.addOperand(Inst.getOperand(5)); // CondCode
5860    TmpInst.addOperand(Inst.getOperand(6));
5861    Inst = TmpInst;
5862    return true;
5863  }
5864
5865  case ARM::VST4LNdWB_register_Asm_8:
5866  case ARM::VST4LNdWB_register_Asm_16:
5867  case ARM::VST4LNdWB_register_Asm_32:
5868  case ARM::VST4LNqWB_register_Asm_16:
5869  case ARM::VST4LNqWB_register_Asm_32: {
5870    MCInst TmpInst;
5871    // Shuffle the operands around so the lane index operand is in the
5872    // right place.
5873    unsigned Spacing;
5874    TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
5875    TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
5876    TmpInst.addOperand(Inst.getOperand(2)); // Rn
5877    TmpInst.addOperand(Inst.getOperand(3)); // alignment
5878    TmpInst.addOperand(Inst.getOperand(4)); // Rm
5879    TmpInst.addOperand(Inst.getOperand(0)); // Vd
5880    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
5881                                            Spacing));
5882    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
5883                                            Spacing * 2));
5884    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
5885                                            Spacing * 3));
5886    TmpInst.addOperand(Inst.getOperand(1)); // lane
5887    TmpInst.addOperand(Inst.getOperand(5)); // CondCode
5888    TmpInst.addOperand(Inst.getOperand(6));
5889    Inst = TmpInst;
5890    return true;
5891  }
5892
5893  case ARM::VST1LNdWB_fixed_Asm_8:
5894  case ARM::VST1LNdWB_fixed_Asm_16:
5895  case ARM::VST1LNdWB_fixed_Asm_32: {
5896    MCInst TmpInst;
5897    // Shuffle the operands around so the lane index operand is in the
5898    // right place.
5899    unsigned Spacing;
5900    TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
5901    TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
5902    TmpInst.addOperand(Inst.getOperand(2)); // Rn
5903    TmpInst.addOperand(Inst.getOperand(3)); // alignment
5904    TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm
5905    TmpInst.addOperand(Inst.getOperand(0)); // Vd
5906    TmpInst.addOperand(Inst.getOperand(1)); // lane
5907    TmpInst.addOperand(Inst.getOperand(4)); // CondCode
5908    TmpInst.addOperand(Inst.getOperand(5));
5909    Inst = TmpInst;
5910    return true;
5911  }
5912
5913  case ARM::VST2LNdWB_fixed_Asm_8:
5914  case ARM::VST2LNdWB_fixed_Asm_16:
5915  case ARM::VST2LNdWB_fixed_Asm_32:
5916  case ARM::VST2LNqWB_fixed_Asm_16:
5917  case ARM::VST2LNqWB_fixed_Asm_32: {
5918    MCInst TmpInst;
5919    // Shuffle the operands around so the lane index operand is in the
5920    // right place.
5921    unsigned Spacing;
5922    TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
5923    TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
5924    TmpInst.addOperand(Inst.getOperand(2)); // Rn
5925    TmpInst.addOperand(Inst.getOperand(3)); // alignment
5926    TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm
5927    TmpInst.addOperand(Inst.getOperand(0)); // Vd
5928    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
5929                                            Spacing));
5930    TmpInst.addOperand(Inst.getOperand(1)); // lane
5931    TmpInst.addOperand(Inst.getOperand(4)); // CondCode
5932    TmpInst.addOperand(Inst.getOperand(5));
5933    Inst = TmpInst;
5934    return true;
5935  }
5936
5937  case ARM::VST3LNdWB_fixed_Asm_8:
5938  case ARM::VST3LNdWB_fixed_Asm_16:
5939  case ARM::VST3LNdWB_fixed_Asm_32:
5940  case ARM::VST3LNqWB_fixed_Asm_16:
5941  case ARM::VST3LNqWB_fixed_Asm_32: {
5942    MCInst TmpInst;
5943    // Shuffle the operands around so the lane index operand is in the
5944    // right place.
5945    unsigned Spacing;
5946    TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
5947    TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
5948    TmpInst.addOperand(Inst.getOperand(2)); // Rn
5949    TmpInst.addOperand(Inst.getOperand(3)); // alignment
5950    TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm
5951    TmpInst.addOperand(Inst.getOperand(0)); // Vd
5952    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
5953                                            Spacing));
5954    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
5955                                            Spacing * 2));
5956    TmpInst.addOperand(Inst.getOperand(1)); // lane
5957    TmpInst.addOperand(Inst.getOperand(4)); // CondCode
5958    TmpInst.addOperand(Inst.getOperand(5));
5959    Inst = TmpInst;
5960    return true;
5961  }
5962
5963  case ARM::VST4LNdWB_fixed_Asm_8:
5964  case ARM::VST4LNdWB_fixed_Asm_16:
5965  case ARM::VST4LNdWB_fixed_Asm_32:
5966  case ARM::VST4LNqWB_fixed_Asm_16:
5967  case ARM::VST4LNqWB_fixed_Asm_32: {
5968    MCInst TmpInst;
5969    // Shuffle the operands around so the lane index operand is in the
5970    // right place.
5971    unsigned Spacing;
5972    TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
5973    TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
5974    TmpInst.addOperand(Inst.getOperand(2)); // Rn
5975    TmpInst.addOperand(Inst.getOperand(3)); // alignment
5976    TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm
5977    TmpInst.addOperand(Inst.getOperand(0)); // Vd
5978    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
5979                                            Spacing));
5980    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
5981                                            Spacing * 2));
5982    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
5983                                            Spacing * 3));
5984    TmpInst.addOperand(Inst.getOperand(1)); // lane
5985    TmpInst.addOperand(Inst.getOperand(4)); // CondCode
5986    TmpInst.addOperand(Inst.getOperand(5));
5987    Inst = TmpInst;
5988    return true;
5989  }
5990
5991  case ARM::VST1LNdAsm_8:
5992  case ARM::VST1LNdAsm_16:
5993  case ARM::VST1LNdAsm_32: {
5994    MCInst TmpInst;
5995    // Shuffle the operands around so the lane index operand is in the
5996    // right place.
5997    unsigned Spacing;
5998    TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
5999    TmpInst.addOperand(Inst.getOperand(2)); // Rn
6000    TmpInst.addOperand(Inst.getOperand(3)); // alignment
6001    TmpInst.addOperand(Inst.getOperand(0)); // Vd
6002    TmpInst.addOperand(Inst.getOperand(1)); // lane
6003    TmpInst.addOperand(Inst.getOperand(4)); // CondCode
6004    TmpInst.addOperand(Inst.getOperand(5));
6005    Inst = TmpInst;
6006    return true;
6007  }
6008
6009  case ARM::VST2LNdAsm_8:
6010  case ARM::VST2LNdAsm_16:
6011  case ARM::VST2LNdAsm_32:
6012  case ARM::VST2LNqAsm_16:
6013  case ARM::VST2LNqAsm_32: {
6014    MCInst TmpInst;
6015    // Shuffle the operands around so the lane index operand is in the
6016    // right place.
6017    unsigned Spacing;
6018    TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
6019    TmpInst.addOperand(Inst.getOperand(2)); // Rn
6020    TmpInst.addOperand(Inst.getOperand(3)); // alignment
6021    TmpInst.addOperand(Inst.getOperand(0)); // Vd
6022    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6023                                            Spacing));
6024    TmpInst.addOperand(Inst.getOperand(1)); // lane
6025    TmpInst.addOperand(Inst.getOperand(4)); // CondCode
6026    TmpInst.addOperand(Inst.getOperand(5));
6027    Inst = TmpInst;
6028    return true;
6029  }
6030
6031  case ARM::VST3LNdAsm_8:
6032  case ARM::VST3LNdAsm_16:
6033  case ARM::VST3LNdAsm_32:
6034  case ARM::VST3LNqAsm_16:
6035  case ARM::VST3LNqAsm_32: {
6036    MCInst TmpInst;
6037    // Shuffle the operands around so the lane index operand is in the
6038    // right place.
6039    unsigned Spacing;
6040    TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
6041    TmpInst.addOperand(Inst.getOperand(2)); // Rn
6042    TmpInst.addOperand(Inst.getOperand(3)); // alignment
6043    TmpInst.addOperand(Inst.getOperand(0)); // Vd
6044    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6045                                            Spacing));
6046    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6047                                            Spacing * 2));
6048    TmpInst.addOperand(Inst.getOperand(1)); // lane
6049    TmpInst.addOperand(Inst.getOperand(4)); // CondCode
6050    TmpInst.addOperand(Inst.getOperand(5));
6051    Inst = TmpInst;
6052    return true;
6053  }
6054
6055  case ARM::VST4LNdAsm_8:
6056  case ARM::VST4LNdAsm_16:
6057  case ARM::VST4LNdAsm_32:
6058  case ARM::VST4LNqAsm_16:
6059  case ARM::VST4LNqAsm_32: {
6060    MCInst TmpInst;
6061    // Shuffle the operands around so the lane index operand is in the
6062    // right place.
6063    unsigned Spacing;
6064    TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
6065    TmpInst.addOperand(Inst.getOperand(2)); // Rn
6066    TmpInst.addOperand(Inst.getOperand(3)); // alignment
6067    TmpInst.addOperand(Inst.getOperand(0)); // Vd
6068    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6069                                            Spacing));
6070    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6071                                            Spacing * 2));
6072    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6073                                            Spacing * 3));
6074    TmpInst.addOperand(Inst.getOperand(1)); // lane
6075    TmpInst.addOperand(Inst.getOperand(4)); // CondCode
6076    TmpInst.addOperand(Inst.getOperand(5));
6077    Inst = TmpInst;
6078    return true;
6079  }
6080
6081  // Handle NEON VLD complex aliases.
6082  case ARM::VLD1LNdWB_register_Asm_8:
6083  case ARM::VLD1LNdWB_register_Asm_16:
6084  case ARM::VLD1LNdWB_register_Asm_32: {
6085    MCInst TmpInst;
6086    // Shuffle the operands around so the lane index operand is in the
6087    // right place.
6088    unsigned Spacing;
6089    TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
6090    TmpInst.addOperand(Inst.getOperand(0)); // Vd
6091    TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
6092    TmpInst.addOperand(Inst.getOperand(2)); // Rn
6093    TmpInst.addOperand(Inst.getOperand(3)); // alignment
6094    TmpInst.addOperand(Inst.getOperand(4)); // Rm
6095    TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
6096    TmpInst.addOperand(Inst.getOperand(1)); // lane
6097    TmpInst.addOperand(Inst.getOperand(5)); // CondCode
6098    TmpInst.addOperand(Inst.getOperand(6));
6099    Inst = TmpInst;
6100    return true;
6101  }
6102
6103  case ARM::VLD2LNdWB_register_Asm_8:
6104  case ARM::VLD2LNdWB_register_Asm_16:
6105  case ARM::VLD2LNdWB_register_Asm_32:
6106  case ARM::VLD2LNqWB_register_Asm_16:
6107  case ARM::VLD2LNqWB_register_Asm_32: {
6108    MCInst TmpInst;
6109    // Shuffle the operands around so the lane index operand is in the
6110    // right place.
6111    unsigned Spacing;
6112    TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
6113    TmpInst.addOperand(Inst.getOperand(0)); // Vd
6114    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6115                                            Spacing));
6116    TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
6117    TmpInst.addOperand(Inst.getOperand(2)); // Rn
6118    TmpInst.addOperand(Inst.getOperand(3)); // alignment
6119    TmpInst.addOperand(Inst.getOperand(4)); // Rm
6120    TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
6121    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6122                                            Spacing));
6123    TmpInst.addOperand(Inst.getOperand(1)); // lane
6124    TmpInst.addOperand(Inst.getOperand(5)); // CondCode
6125    TmpInst.addOperand(Inst.getOperand(6));
6126    Inst = TmpInst;
6127    return true;
6128  }
6129
6130  case ARM::VLD3LNdWB_register_Asm_8:
6131  case ARM::VLD3LNdWB_register_Asm_16:
6132  case ARM::VLD3LNdWB_register_Asm_32:
6133  case ARM::VLD3LNqWB_register_Asm_16:
6134  case ARM::VLD3LNqWB_register_Asm_32: {
6135    MCInst TmpInst;
6136    // Shuffle the operands around so the lane index operand is in the
6137    // right place.
6138    unsigned Spacing;
6139    TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
6140    TmpInst.addOperand(Inst.getOperand(0)); // Vd
6141    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6142                                            Spacing));
6143    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6144                                            Spacing * 2));
6145    TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
6146    TmpInst.addOperand(Inst.getOperand(2)); // Rn
6147    TmpInst.addOperand(Inst.getOperand(3)); // alignment
6148    TmpInst.addOperand(Inst.getOperand(4)); // Rm
6149    TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
6150    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6151                                            Spacing));
6152    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6153                                            Spacing * 2));
6154    TmpInst.addOperand(Inst.getOperand(1)); // lane
6155    TmpInst.addOperand(Inst.getOperand(5)); // CondCode
6156    TmpInst.addOperand(Inst.getOperand(6));
6157    Inst = TmpInst;
6158    return true;
6159  }
6160
6161  case ARM::VLD4LNdWB_register_Asm_8:
6162  case ARM::VLD4LNdWB_register_Asm_16:
6163  case ARM::VLD4LNdWB_register_Asm_32:
6164  case ARM::VLD4LNqWB_register_Asm_16:
6165  case ARM::VLD4LNqWB_register_Asm_32: {
6166    MCInst TmpInst;
6167    // Shuffle the operands around so the lane index operand is in the
6168    // right place.
6169    unsigned Spacing;
6170    TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
6171    TmpInst.addOperand(Inst.getOperand(0)); // Vd
6172    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6173                                            Spacing));
6174    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6175                                            Spacing * 2));
6176    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6177                                            Spacing * 3));
6178    TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
6179    TmpInst.addOperand(Inst.getOperand(2)); // Rn
6180    TmpInst.addOperand(Inst.getOperand(3)); // alignment
6181    TmpInst.addOperand(Inst.getOperand(4)); // Rm
6182    TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
6183    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6184                                            Spacing));
6185    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6186                                            Spacing * 2));
6187    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6188                                            Spacing * 3));
6189    TmpInst.addOperand(Inst.getOperand(1)); // lane
6190    TmpInst.addOperand(Inst.getOperand(5)); // CondCode
6191    TmpInst.addOperand(Inst.getOperand(6));
6192    Inst = TmpInst;
6193    return true;
6194  }
6195
6196  case ARM::VLD1LNdWB_fixed_Asm_8:
6197  case ARM::VLD1LNdWB_fixed_Asm_16:
6198  case ARM::VLD1LNdWB_fixed_Asm_32: {
6199    MCInst TmpInst;
6200    // Shuffle the operands around so the lane index operand is in the
6201    // right place.
6202    unsigned Spacing;
6203    TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
6204    TmpInst.addOperand(Inst.getOperand(0)); // Vd
6205    TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
6206    TmpInst.addOperand(Inst.getOperand(2)); // Rn
6207    TmpInst.addOperand(Inst.getOperand(3)); // alignment
6208    TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm
6209    TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
6210    TmpInst.addOperand(Inst.getOperand(1)); // lane
6211    TmpInst.addOperand(Inst.getOperand(4)); // CondCode
6212    TmpInst.addOperand(Inst.getOperand(5));
6213    Inst = TmpInst;
6214    return true;
6215  }
6216
6217  case ARM::VLD2LNdWB_fixed_Asm_8:
6218  case ARM::VLD2LNdWB_fixed_Asm_16:
6219  case ARM::VLD2LNdWB_fixed_Asm_32:
6220  case ARM::VLD2LNqWB_fixed_Asm_16:
6221  case ARM::VLD2LNqWB_fixed_Asm_32: {
6222    MCInst TmpInst;
6223    // Shuffle the operands around so the lane index operand is in the
6224    // right place.
6225    unsigned Spacing;
6226    TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
6227    TmpInst.addOperand(Inst.getOperand(0)); // Vd
6228    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6229                                            Spacing));
6230    TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
6231    TmpInst.addOperand(Inst.getOperand(2)); // Rn
6232    TmpInst.addOperand(Inst.getOperand(3)); // alignment
6233    TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm
6234    TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
6235    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6236                                            Spacing));
6237    TmpInst.addOperand(Inst.getOperand(1)); // lane
6238    TmpInst.addOperand(Inst.getOperand(4)); // CondCode
6239    TmpInst.addOperand(Inst.getOperand(5));
6240    Inst = TmpInst;
6241    return true;
6242  }
6243
6244  case ARM::VLD3LNdWB_fixed_Asm_8:
6245  case ARM::VLD3LNdWB_fixed_Asm_16:
6246  case ARM::VLD3LNdWB_fixed_Asm_32:
6247  case ARM::VLD3LNqWB_fixed_Asm_16:
6248  case ARM::VLD3LNqWB_fixed_Asm_32: {
6249    MCInst TmpInst;
6250    // Shuffle the operands around so the lane index operand is in the
6251    // right place.
6252    unsigned Spacing;
6253    TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
6254    TmpInst.addOperand(Inst.getOperand(0)); // Vd
6255    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6256                                            Spacing));
6257    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6258                                            Spacing * 2));
6259    TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
6260    TmpInst.addOperand(Inst.getOperand(2)); // Rn
6261    TmpInst.addOperand(Inst.getOperand(3)); // alignment
6262    TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm
6263    TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
6264    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6265                                            Spacing));
6266    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6267                                            Spacing * 2));
6268    TmpInst.addOperand(Inst.getOperand(1)); // lane
6269    TmpInst.addOperand(Inst.getOperand(4)); // CondCode
6270    TmpInst.addOperand(Inst.getOperand(5));
6271    Inst = TmpInst;
6272    return true;
6273  }
6274
6275  case ARM::VLD4LNdWB_fixed_Asm_8:
6276  case ARM::VLD4LNdWB_fixed_Asm_16:
6277  case ARM::VLD4LNdWB_fixed_Asm_32:
6278  case ARM::VLD4LNqWB_fixed_Asm_16:
6279  case ARM::VLD4LNqWB_fixed_Asm_32: {
6280    MCInst TmpInst;
6281    // Shuffle the operands around so the lane index operand is in the
6282    // right place.
6283    unsigned Spacing;
6284    TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
6285    TmpInst.addOperand(Inst.getOperand(0)); // Vd
6286    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6287                                            Spacing));
6288    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6289                                            Spacing * 2));
6290    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6291                                            Spacing * 3));
6292    TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
6293    TmpInst.addOperand(Inst.getOperand(2)); // Rn
6294    TmpInst.addOperand(Inst.getOperand(3)); // alignment
6295    TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm
6296    TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
6297    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6298                                            Spacing));
6299    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6300                                            Spacing * 2));
6301    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6302                                            Spacing * 3));
6303    TmpInst.addOperand(Inst.getOperand(1)); // lane
6304    TmpInst.addOperand(Inst.getOperand(4)); // CondCode
6305    TmpInst.addOperand(Inst.getOperand(5));
6306    Inst = TmpInst;
6307    return true;
6308  }
6309
6310  case ARM::VLD1LNdAsm_8:
6311  case ARM::VLD1LNdAsm_16:
6312  case ARM::VLD1LNdAsm_32: {
6313    MCInst TmpInst;
6314    // Shuffle the operands around so the lane index operand is in the
6315    // right place.
6316    unsigned Spacing;
6317    TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
6318    TmpInst.addOperand(Inst.getOperand(0)); // Vd
6319    TmpInst.addOperand(Inst.getOperand(2)); // Rn
6320    TmpInst.addOperand(Inst.getOperand(3)); // alignment
6321    TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
6322    TmpInst.addOperand(Inst.getOperand(1)); // lane
6323    TmpInst.addOperand(Inst.getOperand(4)); // CondCode
6324    TmpInst.addOperand(Inst.getOperand(5));
6325    Inst = TmpInst;
6326    return true;
6327  }
6328
6329  case ARM::VLD2LNdAsm_8:
6330  case ARM::VLD2LNdAsm_16:
6331  case ARM::VLD2LNdAsm_32:
6332  case ARM::VLD2LNqAsm_16:
6333  case ARM::VLD2LNqAsm_32: {
6334    MCInst TmpInst;
6335    // Shuffle the operands around so the lane index operand is in the
6336    // right place.
6337    unsigned Spacing;
6338    TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
6339    TmpInst.addOperand(Inst.getOperand(0)); // Vd
6340    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6341                                            Spacing));
6342    TmpInst.addOperand(Inst.getOperand(2)); // Rn
6343    TmpInst.addOperand(Inst.getOperand(3)); // alignment
6344    TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
6345    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6346                                            Spacing));
6347    TmpInst.addOperand(Inst.getOperand(1)); // lane
6348    TmpInst.addOperand(Inst.getOperand(4)); // CondCode
6349    TmpInst.addOperand(Inst.getOperand(5));
6350    Inst = TmpInst;
6351    return true;
6352  }
6353
6354  case ARM::VLD3LNdAsm_8:
6355  case ARM::VLD3LNdAsm_16:
6356  case ARM::VLD3LNdAsm_32:
6357  case ARM::VLD3LNqAsm_16:
6358  case ARM::VLD3LNqAsm_32: {
6359    MCInst TmpInst;
6360    // Shuffle the operands around so the lane index operand is in the
6361    // right place.
6362    unsigned Spacing;
6363    TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
6364    TmpInst.addOperand(Inst.getOperand(0)); // Vd
6365    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6366                                            Spacing));
6367    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6368                                            Spacing * 2));
6369    TmpInst.addOperand(Inst.getOperand(2)); // Rn
6370    TmpInst.addOperand(Inst.getOperand(3)); // alignment
6371    TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
6372    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6373                                            Spacing));
6374    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6375                                            Spacing * 2));
6376    TmpInst.addOperand(Inst.getOperand(1)); // lane
6377    TmpInst.addOperand(Inst.getOperand(4)); // CondCode
6378    TmpInst.addOperand(Inst.getOperand(5));
6379    Inst = TmpInst;
6380    return true;
6381  }
6382
6383  case ARM::VLD4LNdAsm_8:
6384  case ARM::VLD4LNdAsm_16:
6385  case ARM::VLD4LNdAsm_32:
6386  case ARM::VLD4LNqAsm_16:
6387  case ARM::VLD4LNqAsm_32: {
6388    MCInst TmpInst;
6389    // Shuffle the operands around so the lane index operand is in the
6390    // right place.
6391    unsigned Spacing;
6392    TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
6393    TmpInst.addOperand(Inst.getOperand(0)); // Vd
6394    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6395                                            Spacing));
6396    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6397                                            Spacing * 2));
6398    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6399                                            Spacing * 3));
6400    TmpInst.addOperand(Inst.getOperand(2)); // Rn
6401    TmpInst.addOperand(Inst.getOperand(3)); // alignment
6402    TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
6403    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6404                                            Spacing));
6405    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6406                                            Spacing * 2));
6407    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6408                                            Spacing * 3));
6409    TmpInst.addOperand(Inst.getOperand(1)); // lane
6410    TmpInst.addOperand(Inst.getOperand(4)); // CondCode
6411    TmpInst.addOperand(Inst.getOperand(5));
6412    Inst = TmpInst;
6413    return true;
6414  }
6415
6416  // VLD3DUP single 3-element structure to all lanes instructions.
6417  case ARM::VLD3DUPdAsm_8:
6418  case ARM::VLD3DUPdAsm_16:
6419  case ARM::VLD3DUPdAsm_32:
6420  case ARM::VLD3DUPqAsm_8:
6421  case ARM::VLD3DUPqAsm_16:
6422  case ARM::VLD3DUPqAsm_32: {
6423    MCInst TmpInst;
6424    unsigned Spacing;
6425    TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
6426    TmpInst.addOperand(Inst.getOperand(0)); // Vd
6427    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6428                                            Spacing));
6429    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6430                                            Spacing * 2));
6431    TmpInst.addOperand(Inst.getOperand(1)); // Rn
6432    TmpInst.addOperand(Inst.getOperand(2)); // alignment
6433    TmpInst.addOperand(Inst.getOperand(3)); // CondCode
6434    TmpInst.addOperand(Inst.getOperand(4));
6435    Inst = TmpInst;
6436    return true;
6437  }
6438
6439  case ARM::VLD3DUPdWB_fixed_Asm_8:
6440  case ARM::VLD3DUPdWB_fixed_Asm_16:
6441  case ARM::VLD3DUPdWB_fixed_Asm_32:
6442  case ARM::VLD3DUPqWB_fixed_Asm_8:
6443  case ARM::VLD3DUPqWB_fixed_Asm_16:
6444  case ARM::VLD3DUPqWB_fixed_Asm_32: {
6445    MCInst TmpInst;
6446    unsigned Spacing;
6447    TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
6448    TmpInst.addOperand(Inst.getOperand(0)); // Vd
6449    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6450                                            Spacing));
6451    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6452                                            Spacing * 2));
6453    TmpInst.addOperand(Inst.getOperand(1)); // Rn
6454    TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
6455    TmpInst.addOperand(Inst.getOperand(2)); // alignment
6456    TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm
6457    TmpInst.addOperand(Inst.getOperand(3)); // CondCode
6458    TmpInst.addOperand(Inst.getOperand(4));
6459    Inst = TmpInst;
6460    return true;
6461  }
6462
6463  case ARM::VLD3DUPdWB_register_Asm_8:
6464  case ARM::VLD3DUPdWB_register_Asm_16:
6465  case ARM::VLD3DUPdWB_register_Asm_32:
6466  case ARM::VLD3DUPqWB_register_Asm_8:
6467  case ARM::VLD3DUPqWB_register_Asm_16:
6468  case ARM::VLD3DUPqWB_register_Asm_32: {
6469    MCInst TmpInst;
6470    unsigned Spacing;
6471    TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
6472    TmpInst.addOperand(Inst.getOperand(0)); // Vd
6473    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6474                                            Spacing));
6475    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6476                                            Spacing * 2));
6477    TmpInst.addOperand(Inst.getOperand(1)); // Rn
6478    TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
6479    TmpInst.addOperand(Inst.getOperand(2)); // alignment
6480    TmpInst.addOperand(Inst.getOperand(3)); // Rm
6481    TmpInst.addOperand(Inst.getOperand(4)); // CondCode
6482    TmpInst.addOperand(Inst.getOperand(5));
6483    Inst = TmpInst;
6484    return true;
6485  }
6486
6487  // VLD3 multiple 3-element structure instructions.
6488  case ARM::VLD3dAsm_8:
6489  case ARM::VLD3dAsm_16:
6490  case ARM::VLD3dAsm_32:
6491  case ARM::VLD3qAsm_8:
6492  case ARM::VLD3qAsm_16:
6493  case ARM::VLD3qAsm_32: {
6494    MCInst TmpInst;
6495    unsigned Spacing;
6496    TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
6497    TmpInst.addOperand(Inst.getOperand(0)); // Vd
6498    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6499                                            Spacing));
6500    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6501                                            Spacing * 2));
6502    TmpInst.addOperand(Inst.getOperand(1)); // Rn
6503    TmpInst.addOperand(Inst.getOperand(2)); // alignment
6504    TmpInst.addOperand(Inst.getOperand(3)); // CondCode
6505    TmpInst.addOperand(Inst.getOperand(4));
6506    Inst = TmpInst;
6507    return true;
6508  }
6509
6510  case ARM::VLD3dWB_fixed_Asm_8:
6511  case ARM::VLD3dWB_fixed_Asm_16:
6512  case ARM::VLD3dWB_fixed_Asm_32:
6513  case ARM::VLD3qWB_fixed_Asm_8:
6514  case ARM::VLD3qWB_fixed_Asm_16:
6515  case ARM::VLD3qWB_fixed_Asm_32: {
6516    MCInst TmpInst;
6517    unsigned Spacing;
6518    TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
6519    TmpInst.addOperand(Inst.getOperand(0)); // Vd
6520    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6521                                            Spacing));
6522    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6523                                            Spacing * 2));
6524    TmpInst.addOperand(Inst.getOperand(1)); // Rn
6525    TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
6526    TmpInst.addOperand(Inst.getOperand(2)); // alignment
6527    TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm
6528    TmpInst.addOperand(Inst.getOperand(3)); // CondCode
6529    TmpInst.addOperand(Inst.getOperand(4));
6530    Inst = TmpInst;
6531    return true;
6532  }
6533
6534  case ARM::VLD3dWB_register_Asm_8:
6535  case ARM::VLD3dWB_register_Asm_16:
6536  case ARM::VLD3dWB_register_Asm_32:
6537  case ARM::VLD3qWB_register_Asm_8:
6538  case ARM::VLD3qWB_register_Asm_16:
6539  case ARM::VLD3qWB_register_Asm_32: {
6540    MCInst TmpInst;
6541    unsigned Spacing;
6542    TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
6543    TmpInst.addOperand(Inst.getOperand(0)); // Vd
6544    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6545                                            Spacing));
6546    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6547                                            Spacing * 2));
6548    TmpInst.addOperand(Inst.getOperand(1)); // Rn
6549    TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
6550    TmpInst.addOperand(Inst.getOperand(2)); // alignment
6551    TmpInst.addOperand(Inst.getOperand(3)); // Rm
6552    TmpInst.addOperand(Inst.getOperand(4)); // CondCode
6553    TmpInst.addOperand(Inst.getOperand(5));
6554    Inst = TmpInst;
6555    return true;
6556  }
6557
6558  // VLD4DUP single 3-element structure to all lanes instructions.
6559  case ARM::VLD4DUPdAsm_8:
6560  case ARM::VLD4DUPdAsm_16:
6561  case ARM::VLD4DUPdAsm_32:
6562  case ARM::VLD4DUPqAsm_8:
6563  case ARM::VLD4DUPqAsm_16:
6564  case ARM::VLD4DUPqAsm_32: {
6565    MCInst TmpInst;
6566    unsigned Spacing;
6567    TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
6568    TmpInst.addOperand(Inst.getOperand(0)); // Vd
6569    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6570                                            Spacing));
6571    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6572                                            Spacing * 2));
6573    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6574                                            Spacing * 3));
6575    TmpInst.addOperand(Inst.getOperand(1)); // Rn
6576    TmpInst.addOperand(Inst.getOperand(2)); // alignment
6577    TmpInst.addOperand(Inst.getOperand(3)); // CondCode
6578    TmpInst.addOperand(Inst.getOperand(4));
6579    Inst = TmpInst;
6580    return true;
6581  }
6582
6583  case ARM::VLD4DUPdWB_fixed_Asm_8:
6584  case ARM::VLD4DUPdWB_fixed_Asm_16:
6585  case ARM::VLD4DUPdWB_fixed_Asm_32:
6586  case ARM::VLD4DUPqWB_fixed_Asm_8:
6587  case ARM::VLD4DUPqWB_fixed_Asm_16:
6588  case ARM::VLD4DUPqWB_fixed_Asm_32: {
6589    MCInst TmpInst;
6590    unsigned Spacing;
6591    TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
6592    TmpInst.addOperand(Inst.getOperand(0)); // Vd
6593    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6594                                            Spacing));
6595    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6596                                            Spacing * 2));
6597    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6598                                            Spacing * 3));
6599    TmpInst.addOperand(Inst.getOperand(1)); // Rn
6600    TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
6601    TmpInst.addOperand(Inst.getOperand(2)); // alignment
6602    TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm
6603    TmpInst.addOperand(Inst.getOperand(3)); // CondCode
6604    TmpInst.addOperand(Inst.getOperand(4));
6605    Inst = TmpInst;
6606    return true;
6607  }
6608
6609  case ARM::VLD4DUPdWB_register_Asm_8:
6610  case ARM::VLD4DUPdWB_register_Asm_16:
6611  case ARM::VLD4DUPdWB_register_Asm_32:
6612  case ARM::VLD4DUPqWB_register_Asm_8:
6613  case ARM::VLD4DUPqWB_register_Asm_16:
6614  case ARM::VLD4DUPqWB_register_Asm_32: {
6615    MCInst TmpInst;
6616    unsigned Spacing;
6617    TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
6618    TmpInst.addOperand(Inst.getOperand(0)); // Vd
6619    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6620                                            Spacing));
6621    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6622                                            Spacing * 2));
6623    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6624                                            Spacing * 3));
6625    TmpInst.addOperand(Inst.getOperand(1)); // Rn
6626    TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
6627    TmpInst.addOperand(Inst.getOperand(2)); // alignment
6628    TmpInst.addOperand(Inst.getOperand(3)); // Rm
6629    TmpInst.addOperand(Inst.getOperand(4)); // CondCode
6630    TmpInst.addOperand(Inst.getOperand(5));
6631    Inst = TmpInst;
6632    return true;
6633  }
6634
6635  // VLD4 multiple 4-element structure instructions.
6636  case ARM::VLD4dAsm_8:
6637  case ARM::VLD4dAsm_16:
6638  case ARM::VLD4dAsm_32:
6639  case ARM::VLD4qAsm_8:
6640  case ARM::VLD4qAsm_16:
6641  case ARM::VLD4qAsm_32: {
6642    MCInst TmpInst;
6643    unsigned Spacing;
6644    TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
6645    TmpInst.addOperand(Inst.getOperand(0)); // Vd
6646    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6647                                            Spacing));
6648    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6649                                            Spacing * 2));
6650    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6651                                            Spacing * 3));
6652    TmpInst.addOperand(Inst.getOperand(1)); // Rn
6653    TmpInst.addOperand(Inst.getOperand(2)); // alignment
6654    TmpInst.addOperand(Inst.getOperand(3)); // CondCode
6655    TmpInst.addOperand(Inst.getOperand(4));
6656    Inst = TmpInst;
6657    return true;
6658  }
6659
6660  case ARM::VLD4dWB_fixed_Asm_8:
6661  case ARM::VLD4dWB_fixed_Asm_16:
6662  case ARM::VLD4dWB_fixed_Asm_32:
6663  case ARM::VLD4qWB_fixed_Asm_8:
6664  case ARM::VLD4qWB_fixed_Asm_16:
6665  case ARM::VLD4qWB_fixed_Asm_32: {
6666    MCInst TmpInst;
6667    unsigned Spacing;
6668    TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
6669    TmpInst.addOperand(Inst.getOperand(0)); // Vd
6670    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6671                                            Spacing));
6672    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6673                                            Spacing * 2));
6674    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6675                                            Spacing * 3));
6676    TmpInst.addOperand(Inst.getOperand(1)); // Rn
6677    TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
6678    TmpInst.addOperand(Inst.getOperand(2)); // alignment
6679    TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm
6680    TmpInst.addOperand(Inst.getOperand(3)); // CondCode
6681    TmpInst.addOperand(Inst.getOperand(4));
6682    Inst = TmpInst;
6683    return true;
6684  }
6685
6686  case ARM::VLD4dWB_register_Asm_8:
6687  case ARM::VLD4dWB_register_Asm_16:
6688  case ARM::VLD4dWB_register_Asm_32:
6689  case ARM::VLD4qWB_register_Asm_8:
6690  case ARM::VLD4qWB_register_Asm_16:
6691  case ARM::VLD4qWB_register_Asm_32: {
6692    MCInst TmpInst;
6693    unsigned Spacing;
6694    TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
6695    TmpInst.addOperand(Inst.getOperand(0)); // Vd
6696    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6697                                            Spacing));
6698    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6699                                            Spacing * 2));
6700    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6701                                            Spacing * 3));
6702    TmpInst.addOperand(Inst.getOperand(1)); // Rn
6703    TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
6704    TmpInst.addOperand(Inst.getOperand(2)); // alignment
6705    TmpInst.addOperand(Inst.getOperand(3)); // Rm
6706    TmpInst.addOperand(Inst.getOperand(4)); // CondCode
6707    TmpInst.addOperand(Inst.getOperand(5));
6708    Inst = TmpInst;
6709    return true;
6710  }
6711
6712  // VST3 multiple 3-element structure instructions.
6713  case ARM::VST3dAsm_8:
6714  case ARM::VST3dAsm_16:
6715  case ARM::VST3dAsm_32:
6716  case ARM::VST3qAsm_8:
6717  case ARM::VST3qAsm_16:
6718  case ARM::VST3qAsm_32: {
6719    MCInst TmpInst;
6720    unsigned Spacing;
6721    TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
6722    TmpInst.addOperand(Inst.getOperand(1)); // Rn
6723    TmpInst.addOperand(Inst.getOperand(2)); // alignment
6724    TmpInst.addOperand(Inst.getOperand(0)); // Vd
6725    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6726                                            Spacing));
6727    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6728                                            Spacing * 2));
6729    TmpInst.addOperand(Inst.getOperand(3)); // CondCode
6730    TmpInst.addOperand(Inst.getOperand(4));
6731    Inst = TmpInst;
6732    return true;
6733  }
6734
6735  case ARM::VST3dWB_fixed_Asm_8:
6736  case ARM::VST3dWB_fixed_Asm_16:
6737  case ARM::VST3dWB_fixed_Asm_32:
6738  case ARM::VST3qWB_fixed_Asm_8:
6739  case ARM::VST3qWB_fixed_Asm_16:
6740  case ARM::VST3qWB_fixed_Asm_32: {
6741    MCInst TmpInst;
6742    unsigned Spacing;
6743    TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
6744    TmpInst.addOperand(Inst.getOperand(1)); // Rn
6745    TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
6746    TmpInst.addOperand(Inst.getOperand(2)); // alignment
6747    TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm
6748    TmpInst.addOperand(Inst.getOperand(0)); // Vd
6749    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6750                                            Spacing));
6751    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6752                                            Spacing * 2));
6753    TmpInst.addOperand(Inst.getOperand(3)); // CondCode
6754    TmpInst.addOperand(Inst.getOperand(4));
6755    Inst = TmpInst;
6756    return true;
6757  }
6758
6759  case ARM::VST3dWB_register_Asm_8:
6760  case ARM::VST3dWB_register_Asm_16:
6761  case ARM::VST3dWB_register_Asm_32:
6762  case ARM::VST3qWB_register_Asm_8:
6763  case ARM::VST3qWB_register_Asm_16:
6764  case ARM::VST3qWB_register_Asm_32: {
6765    MCInst TmpInst;
6766    unsigned Spacing;
6767    TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
6768    TmpInst.addOperand(Inst.getOperand(1)); // Rn
6769    TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
6770    TmpInst.addOperand(Inst.getOperand(2)); // alignment
6771    TmpInst.addOperand(Inst.getOperand(3)); // Rm
6772    TmpInst.addOperand(Inst.getOperand(0)); // Vd
6773    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6774                                            Spacing));
6775    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6776                                            Spacing * 2));
6777    TmpInst.addOperand(Inst.getOperand(4)); // CondCode
6778    TmpInst.addOperand(Inst.getOperand(5));
6779    Inst = TmpInst;
6780    return true;
6781  }
6782
6783  // VST4 multiple 3-element structure instructions.
6784  case ARM::VST4dAsm_8:
6785  case ARM::VST4dAsm_16:
6786  case ARM::VST4dAsm_32:
6787  case ARM::VST4qAsm_8:
6788  case ARM::VST4qAsm_16:
6789  case ARM::VST4qAsm_32: {
6790    MCInst TmpInst;
6791    unsigned Spacing;
6792    TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
6793    TmpInst.addOperand(Inst.getOperand(1)); // Rn
6794    TmpInst.addOperand(Inst.getOperand(2)); // alignment
6795    TmpInst.addOperand(Inst.getOperand(0)); // Vd
6796    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6797                                            Spacing));
6798    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6799                                            Spacing * 2));
6800    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6801                                            Spacing * 3));
6802    TmpInst.addOperand(Inst.getOperand(3)); // CondCode
6803    TmpInst.addOperand(Inst.getOperand(4));
6804    Inst = TmpInst;
6805    return true;
6806  }
6807
6808  case ARM::VST4dWB_fixed_Asm_8:
6809  case ARM::VST4dWB_fixed_Asm_16:
6810  case ARM::VST4dWB_fixed_Asm_32:
6811  case ARM::VST4qWB_fixed_Asm_8:
6812  case ARM::VST4qWB_fixed_Asm_16:
6813  case ARM::VST4qWB_fixed_Asm_32: {
6814    MCInst TmpInst;
6815    unsigned Spacing;
6816    TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
6817    TmpInst.addOperand(Inst.getOperand(1)); // Rn
6818    TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
6819    TmpInst.addOperand(Inst.getOperand(2)); // alignment
6820    TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm
6821    TmpInst.addOperand(Inst.getOperand(0)); // Vd
6822    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6823                                            Spacing));
6824    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6825                                            Spacing * 2));
6826    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6827                                            Spacing * 3));
6828    TmpInst.addOperand(Inst.getOperand(3)); // CondCode
6829    TmpInst.addOperand(Inst.getOperand(4));
6830    Inst = TmpInst;
6831    return true;
6832  }
6833
6834  case ARM::VST4dWB_register_Asm_8:
6835  case ARM::VST4dWB_register_Asm_16:
6836  case ARM::VST4dWB_register_Asm_32:
6837  case ARM::VST4qWB_register_Asm_8:
6838  case ARM::VST4qWB_register_Asm_16:
6839  case ARM::VST4qWB_register_Asm_32: {
6840    MCInst TmpInst;
6841    unsigned Spacing;
6842    TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
6843    TmpInst.addOperand(Inst.getOperand(1)); // Rn
6844    TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
6845    TmpInst.addOperand(Inst.getOperand(2)); // alignment
6846    TmpInst.addOperand(Inst.getOperand(3)); // Rm
6847    TmpInst.addOperand(Inst.getOperand(0)); // Vd
6848    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6849                                            Spacing));
6850    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6851                                            Spacing * 2));
6852    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6853                                            Spacing * 3));
6854    TmpInst.addOperand(Inst.getOperand(4)); // CondCode
6855    TmpInst.addOperand(Inst.getOperand(5));
6856    Inst = TmpInst;
6857    return true;
6858  }
6859
6860  // Handle encoding choice for the shift-immediate instructions.
6861  case ARM::t2LSLri:
6862  case ARM::t2LSRri:
6863  case ARM::t2ASRri: {
6864    if (isARMLowRegister(Inst.getOperand(0).getReg()) &&
6865        Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() &&
6866        Inst.getOperand(5).getReg() == (inITBlock() ? 0 : ARM::CPSR) &&
6867        !(static_cast<ARMOperand*>(Operands[3])->isToken() &&
6868         static_cast<ARMOperand*>(Operands[3])->getToken() == ".w")) {
6869      unsigned NewOpc;
6870      switch (Inst.getOpcode()) {
6871      default: llvm_unreachable("unexpected opcode");
6872      case ARM::t2LSLri: NewOpc = ARM::tLSLri; break;
6873      case ARM::t2LSRri: NewOpc = ARM::tLSRri; break;
6874      case ARM::t2ASRri: NewOpc = ARM::tASRri; break;
6875      }
6876      // The Thumb1 operands aren't in the same order. Awesome, eh?
6877      MCInst TmpInst;
6878      TmpInst.setOpcode(NewOpc);
6879      TmpInst.addOperand(Inst.getOperand(0));
6880      TmpInst.addOperand(Inst.getOperand(5));
6881      TmpInst.addOperand(Inst.getOperand(1));
6882      TmpInst.addOperand(Inst.getOperand(2));
6883      TmpInst.addOperand(Inst.getOperand(3));
6884      TmpInst.addOperand(Inst.getOperand(4));
6885      Inst = TmpInst;
6886      return true;
6887    }
6888    return false;
6889  }
6890
6891  // Handle the Thumb2 mode MOV complex aliases.
6892  case ARM::t2MOVsr:
6893  case ARM::t2MOVSsr: {
6894    // Which instruction to expand to depends on the CCOut operand and
6895    // whether we're in an IT block if the register operands are low
6896    // registers.
6897    bool isNarrow = false;
6898    if (isARMLowRegister(Inst.getOperand(0).getReg()) &&
6899        isARMLowRegister(Inst.getOperand(1).getReg()) &&
6900        isARMLowRegister(Inst.getOperand(2).getReg()) &&
6901        Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() &&
6902        inITBlock() == (Inst.getOpcode() == ARM::t2MOVsr))
6903      isNarrow = true;
6904    MCInst TmpInst;
6905    unsigned newOpc;
6906    switch(ARM_AM::getSORegShOp(Inst.getOperand(3).getImm())) {
6907    default: llvm_unreachable("unexpected opcode!");
6908    case ARM_AM::asr: newOpc = isNarrow ? ARM::tASRrr : ARM::t2ASRrr; break;
6909    case ARM_AM::lsr: newOpc = isNarrow ? ARM::tLSRrr : ARM::t2LSRrr; break;
6910    case ARM_AM::lsl: newOpc = isNarrow ? ARM::tLSLrr : ARM::t2LSLrr; break;
6911    case ARM_AM::ror: newOpc = isNarrow ? ARM::tROR   : ARM::t2RORrr; break;
6912    }
6913    TmpInst.setOpcode(newOpc);
6914    TmpInst.addOperand(Inst.getOperand(0)); // Rd
6915    if (isNarrow)
6916      TmpInst.addOperand(MCOperand::CreateReg(
6917          Inst.getOpcode() == ARM::t2MOVSsr ? ARM::CPSR : 0));
6918    TmpInst.addOperand(Inst.getOperand(1)); // Rn
6919    TmpInst.addOperand(Inst.getOperand(2)); // Rm
6920    TmpInst.addOperand(Inst.getOperand(4)); // CondCode
6921    TmpInst.addOperand(Inst.getOperand(5));
6922    if (!isNarrow)
6923      TmpInst.addOperand(MCOperand::CreateReg(
6924          Inst.getOpcode() == ARM::t2MOVSsr ? ARM::CPSR : 0));
6925    Inst = TmpInst;
6926    return true;
6927  }
6928  case ARM::t2MOVsi:
6929  case ARM::t2MOVSsi: {
6930    // Which instruction to expand to depends on the CCOut operand and
6931    // whether we're in an IT block if the register operands are low
6932    // registers.
6933    bool isNarrow = false;
6934    if (isARMLowRegister(Inst.getOperand(0).getReg()) &&
6935        isARMLowRegister(Inst.getOperand(1).getReg()) &&
6936        inITBlock() == (Inst.getOpcode() == ARM::t2MOVsi))
6937      isNarrow = true;
6938    MCInst TmpInst;
6939    unsigned newOpc;
6940    switch(ARM_AM::getSORegShOp(Inst.getOperand(2).getImm())) {
6941    default: llvm_unreachable("unexpected opcode!");
6942    case ARM_AM::asr: newOpc = isNarrow ? ARM::tASRri : ARM::t2ASRri; break;
6943    case ARM_AM::lsr: newOpc = isNarrow ? ARM::tLSRri : ARM::t2LSRri; break;
6944    case ARM_AM::lsl: newOpc = isNarrow ? ARM::tLSLri : ARM::t2LSLri; break;
6945    case ARM_AM::ror: newOpc = ARM::t2RORri; isNarrow = false; break;
6946    case ARM_AM::rrx: isNarrow = false; newOpc = ARM::t2RRX; break;
6947    }
6948    unsigned Amount = ARM_AM::getSORegOffset(Inst.getOperand(2).getImm());
6949    if (Amount == 32) Amount = 0;
6950    TmpInst.setOpcode(newOpc);
6951    TmpInst.addOperand(Inst.getOperand(0)); // Rd
6952    if (isNarrow)
6953      TmpInst.addOperand(MCOperand::CreateReg(
6954          Inst.getOpcode() == ARM::t2MOVSsi ? ARM::CPSR : 0));
6955    TmpInst.addOperand(Inst.getOperand(1)); // Rn
6956    if (newOpc != ARM::t2RRX)
6957      TmpInst.addOperand(MCOperand::CreateImm(Amount));
6958    TmpInst.addOperand(Inst.getOperand(3)); // CondCode
6959    TmpInst.addOperand(Inst.getOperand(4));
6960    if (!isNarrow)
6961      TmpInst.addOperand(MCOperand::CreateReg(
6962          Inst.getOpcode() == ARM::t2MOVSsi ? ARM::CPSR : 0));
6963    Inst = TmpInst;
6964    return true;
6965  }
6966  // Handle the ARM mode MOV complex aliases.
6967  case ARM::ASRr:
6968  case ARM::LSRr:
6969  case ARM::LSLr:
6970  case ARM::RORr: {
6971    ARM_AM::ShiftOpc ShiftTy;
6972    switch(Inst.getOpcode()) {
6973    default: llvm_unreachable("unexpected opcode!");
6974    case ARM::ASRr: ShiftTy = ARM_AM::asr; break;
6975    case ARM::LSRr: ShiftTy = ARM_AM::lsr; break;
6976    case ARM::LSLr: ShiftTy = ARM_AM::lsl; break;
6977    case ARM::RORr: ShiftTy = ARM_AM::ror; break;
6978    }
6979    unsigned Shifter = ARM_AM::getSORegOpc(ShiftTy, 0);
6980    MCInst TmpInst;
6981    TmpInst.setOpcode(ARM::MOVsr);
6982    TmpInst.addOperand(Inst.getOperand(0)); // Rd
6983    TmpInst.addOperand(Inst.getOperand(1)); // Rn
6984    TmpInst.addOperand(Inst.getOperand(2)); // Rm
6985    TmpInst.addOperand(MCOperand::CreateImm(Shifter)); // Shift value and ty
6986    TmpInst.addOperand(Inst.getOperand(3)); // CondCode
6987    TmpInst.addOperand(Inst.getOperand(4));
6988    TmpInst.addOperand(Inst.getOperand(5)); // cc_out
6989    Inst = TmpInst;
6990    return true;
6991  }
6992  case ARM::ASRi:
6993  case ARM::LSRi:
6994  case ARM::LSLi:
6995  case ARM::RORi: {
6996    ARM_AM::ShiftOpc ShiftTy;
6997    switch(Inst.getOpcode()) {
6998    default: llvm_unreachable("unexpected opcode!");
6999    case ARM::ASRi: ShiftTy = ARM_AM::asr; break;
7000    case ARM::LSRi: ShiftTy = ARM_AM::lsr; break;
7001    case ARM::LSLi: ShiftTy = ARM_AM::lsl; break;
7002    case ARM::RORi: ShiftTy = ARM_AM::ror; break;
7003    }
7004    // A shift by zero is a plain MOVr, not a MOVsi.
7005    unsigned Amt = Inst.getOperand(2).getImm();
7006    unsigned Opc = Amt == 0 ? ARM::MOVr : ARM::MOVsi;
7007    // A shift by 32 should be encoded as 0 when permitted
7008    if (Amt == 32 && (ShiftTy == ARM_AM::lsr || ShiftTy == ARM_AM::asr))
7009      Amt = 0;
7010    unsigned Shifter = ARM_AM::getSORegOpc(ShiftTy, Amt);
7011    MCInst TmpInst;
7012    TmpInst.setOpcode(Opc);
7013    TmpInst.addOperand(Inst.getOperand(0)); // Rd
7014    TmpInst.addOperand(Inst.getOperand(1)); // Rn
7015    if (Opc == ARM::MOVsi)
7016      TmpInst.addOperand(MCOperand::CreateImm(Shifter)); // Shift value and ty
7017    TmpInst.addOperand(Inst.getOperand(3)); // CondCode
7018    TmpInst.addOperand(Inst.getOperand(4));
7019    TmpInst.addOperand(Inst.getOperand(5)); // cc_out
7020    Inst = TmpInst;
7021    return true;
7022  }
7023  case ARM::RRXi: {
7024    unsigned Shifter = ARM_AM::getSORegOpc(ARM_AM::rrx, 0);
7025    MCInst TmpInst;
7026    TmpInst.setOpcode(ARM::MOVsi);
7027    TmpInst.addOperand(Inst.getOperand(0)); // Rd
7028    TmpInst.addOperand(Inst.getOperand(1)); // Rn
7029    TmpInst.addOperand(MCOperand::CreateImm(Shifter)); // Shift value and ty
7030    TmpInst.addOperand(Inst.getOperand(2)); // CondCode
7031    TmpInst.addOperand(Inst.getOperand(3));
7032    TmpInst.addOperand(Inst.getOperand(4)); // cc_out
7033    Inst = TmpInst;
7034    return true;
7035  }
7036  case ARM::t2LDMIA_UPD: {
7037    // If this is a load of a single register, then we should use
7038    // a post-indexed LDR instruction instead, per the ARM ARM.
7039    if (Inst.getNumOperands() != 5)
7040      return false;
7041    MCInst TmpInst;
7042    TmpInst.setOpcode(ARM::t2LDR_POST);
7043    TmpInst.addOperand(Inst.getOperand(4)); // Rt
7044    TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb
7045    TmpInst.addOperand(Inst.getOperand(1)); // Rn
7046    TmpInst.addOperand(MCOperand::CreateImm(4));
7047    TmpInst.addOperand(Inst.getOperand(2)); // CondCode
7048    TmpInst.addOperand(Inst.getOperand(3));
7049    Inst = TmpInst;
7050    return true;
7051  }
7052  case ARM::t2STMDB_UPD: {
7053    // If this is a store of a single register, then we should use
7054    // a pre-indexed STR instruction instead, per the ARM ARM.
7055    if (Inst.getNumOperands() != 5)
7056      return false;
7057    MCInst TmpInst;
7058    TmpInst.setOpcode(ARM::t2STR_PRE);
7059    TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb
7060    TmpInst.addOperand(Inst.getOperand(4)); // Rt
7061    TmpInst.addOperand(Inst.getOperand(1)); // Rn
7062    TmpInst.addOperand(MCOperand::CreateImm(-4));
7063    TmpInst.addOperand(Inst.getOperand(2)); // CondCode
7064    TmpInst.addOperand(Inst.getOperand(3));
7065    Inst = TmpInst;
7066    return true;
7067  }
7068  case ARM::LDMIA_UPD:
7069    // If this is a load of a single register via a 'pop', then we should use
7070    // a post-indexed LDR instruction instead, per the ARM ARM.
7071    if (static_cast<ARMOperand*>(Operands[0])->getToken() == "pop" &&
7072        Inst.getNumOperands() == 5) {
7073      MCInst TmpInst;
7074      TmpInst.setOpcode(ARM::LDR_POST_IMM);
7075      TmpInst.addOperand(Inst.getOperand(4)); // Rt
7076      TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb
7077      TmpInst.addOperand(Inst.getOperand(1)); // Rn
7078      TmpInst.addOperand(MCOperand::CreateReg(0));  // am2offset
7079      TmpInst.addOperand(MCOperand::CreateImm(4));
7080      TmpInst.addOperand(Inst.getOperand(2)); // CondCode
7081      TmpInst.addOperand(Inst.getOperand(3));
7082      Inst = TmpInst;
7083      return true;
7084    }
7085    break;
7086  case ARM::STMDB_UPD:
7087    // If this is a store of a single register via a 'push', then we should use
7088    // a pre-indexed STR instruction instead, per the ARM ARM.
7089    if (static_cast<ARMOperand*>(Operands[0])->getToken() == "push" &&
7090        Inst.getNumOperands() == 5) {
7091      MCInst TmpInst;
7092      TmpInst.setOpcode(ARM::STR_PRE_IMM);
7093      TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb
7094      TmpInst.addOperand(Inst.getOperand(4)); // Rt
7095      TmpInst.addOperand(Inst.getOperand(1)); // addrmode_imm12
7096      TmpInst.addOperand(MCOperand::CreateImm(-4));
7097      TmpInst.addOperand(Inst.getOperand(2)); // CondCode
7098      TmpInst.addOperand(Inst.getOperand(3));
7099      Inst = TmpInst;
7100    }
7101    break;
7102  case ARM::t2ADDri12:
7103    // If the immediate fits for encoding T3 (t2ADDri) and the generic "add"
7104    // mnemonic was used (not "addw"), encoding T3 is preferred.
7105    if (static_cast<ARMOperand*>(Operands[0])->getToken() != "add" ||
7106        ARM_AM::getT2SOImmVal(Inst.getOperand(2).getImm()) == -1)
7107      break;
7108    Inst.setOpcode(ARM::t2ADDri);
7109    Inst.addOperand(MCOperand::CreateReg(0)); // cc_out
7110    break;
7111  case ARM::t2SUBri12:
7112    // If the immediate fits for encoding T3 (t2SUBri) and the generic "sub"
7113    // mnemonic was used (not "subw"), encoding T3 is preferred.
7114    if (static_cast<ARMOperand*>(Operands[0])->getToken() != "sub" ||
7115        ARM_AM::getT2SOImmVal(Inst.getOperand(2).getImm()) == -1)
7116      break;
7117    Inst.setOpcode(ARM::t2SUBri);
7118    Inst.addOperand(MCOperand::CreateReg(0)); // cc_out
7119    break;
7120  case ARM::tADDi8:
7121    // If the immediate is in the range 0-7, we want tADDi3 iff Rd was
7122    // explicitly specified. From the ARM ARM: "Encoding T1 is preferred
7123    // to encoding T2 if <Rd> is specified and encoding T2 is preferred
7124    // to encoding T1 if <Rd> is omitted."
7125    if ((unsigned)Inst.getOperand(3).getImm() < 8 && Operands.size() == 6) {
7126      Inst.setOpcode(ARM::tADDi3);
7127      return true;
7128    }
7129    break;
7130  case ARM::tSUBi8:
7131    // If the immediate is in the range 0-7, we want tADDi3 iff Rd was
7132    // explicitly specified. From the ARM ARM: "Encoding T1 is preferred
7133    // to encoding T2 if <Rd> is specified and encoding T2 is preferred
7134    // to encoding T1 if <Rd> is omitted."
7135    if ((unsigned)Inst.getOperand(3).getImm() < 8 && Operands.size() == 6) {
7136      Inst.setOpcode(ARM::tSUBi3);
7137      return true;
7138    }
7139    break;
7140  case ARM::t2ADDri:
7141  case ARM::t2SUBri: {
7142    // If the destination and first source operand are the same, and
7143    // the flags are compatible with the current IT status, use encoding T2
7144    // instead of T3. For compatibility with the system 'as'. Make sure the
7145    // wide encoding wasn't explicit.
7146    if (Inst.getOperand(0).getReg() != Inst.getOperand(1).getReg() ||
7147        !isARMLowRegister(Inst.getOperand(0).getReg()) ||
7148        (unsigned)Inst.getOperand(2).getImm() > 255 ||
7149        ((!inITBlock() && Inst.getOperand(5).getReg() != ARM::CPSR) ||
7150        (inITBlock() && Inst.getOperand(5).getReg() != 0)) ||
7151        (static_cast<ARMOperand*>(Operands[3])->isToken() &&
7152         static_cast<ARMOperand*>(Operands[3])->getToken() == ".w"))
7153      break;
7154    MCInst TmpInst;
7155    TmpInst.setOpcode(Inst.getOpcode() == ARM::t2ADDri ?
7156                      ARM::tADDi8 : ARM::tSUBi8);
7157    TmpInst.addOperand(Inst.getOperand(0));
7158    TmpInst.addOperand(Inst.getOperand(5));
7159    TmpInst.addOperand(Inst.getOperand(0));
7160    TmpInst.addOperand(Inst.getOperand(2));
7161    TmpInst.addOperand(Inst.getOperand(3));
7162    TmpInst.addOperand(Inst.getOperand(4));
7163    Inst = TmpInst;
7164    return true;
7165  }
7166  case ARM::t2ADDrr: {
7167    // If the destination and first source operand are the same, and
7168    // there's no setting of the flags, use encoding T2 instead of T3.
7169    // Note that this is only for ADD, not SUB. This mirrors the system
7170    // 'as' behaviour. Make sure the wide encoding wasn't explicit.
7171    if (Inst.getOperand(0).getReg() != Inst.getOperand(1).getReg() ||
7172        Inst.getOperand(5).getReg() != 0 ||
7173        (static_cast<ARMOperand*>(Operands[3])->isToken() &&
7174         static_cast<ARMOperand*>(Operands[3])->getToken() == ".w"))
7175      break;
7176    MCInst TmpInst;
7177    TmpInst.setOpcode(ARM::tADDhirr);
7178    TmpInst.addOperand(Inst.getOperand(0));
7179    TmpInst.addOperand(Inst.getOperand(0));
7180    TmpInst.addOperand(Inst.getOperand(2));
7181    TmpInst.addOperand(Inst.getOperand(3));
7182    TmpInst.addOperand(Inst.getOperand(4));
7183    Inst = TmpInst;
7184    return true;
7185  }
7186  case ARM::tADDrSP: {
7187    // If the non-SP source operand and the destination operand are not the
7188    // same, we need to use the 32-bit encoding if it's available.
7189    if (Inst.getOperand(0).getReg() != Inst.getOperand(2).getReg()) {
7190      Inst.setOpcode(ARM::t2ADDrr);
7191      Inst.addOperand(MCOperand::CreateReg(0)); // cc_out
7192      return true;
7193    }
7194    break;
7195  }
7196  case ARM::tB:
7197    // A Thumb conditional branch outside of an IT block is a tBcc.
7198    if (Inst.getOperand(1).getImm() != ARMCC::AL && !inITBlock()) {
7199      Inst.setOpcode(ARM::tBcc);
7200      return true;
7201    }
7202    break;
7203  case ARM::t2B:
7204    // A Thumb2 conditional branch outside of an IT block is a t2Bcc.
7205    if (Inst.getOperand(1).getImm() != ARMCC::AL && !inITBlock()){
7206      Inst.setOpcode(ARM::t2Bcc);
7207      return true;
7208    }
7209    break;
7210  case ARM::t2Bcc:
7211    // If the conditional is AL or we're in an IT block, we really want t2B.
7212    if (Inst.getOperand(1).getImm() == ARMCC::AL || inITBlock()) {
7213      Inst.setOpcode(ARM::t2B);
7214      return true;
7215    }
7216    break;
7217  case ARM::tBcc:
7218    // If the conditional is AL, we really want tB.
7219    if (Inst.getOperand(1).getImm() == ARMCC::AL) {
7220      Inst.setOpcode(ARM::tB);
7221      return true;
7222    }
7223    break;
7224  case ARM::tLDMIA: {
7225    // If the register list contains any high registers, or if the writeback
7226    // doesn't match what tLDMIA can do, we need to use the 32-bit encoding
7227    // instead if we're in Thumb2. Otherwise, this should have generated
7228    // an error in validateInstruction().
7229    unsigned Rn = Inst.getOperand(0).getReg();
7230    bool hasWritebackToken =
7231      (static_cast<ARMOperand*>(Operands[3])->isToken() &&
7232       static_cast<ARMOperand*>(Operands[3])->getToken() == "!");
7233    bool listContainsBase;
7234    if (checkLowRegisterList(Inst, 3, Rn, 0, listContainsBase) ||
7235        (!listContainsBase && !hasWritebackToken) ||
7236        (listContainsBase && hasWritebackToken)) {
7237      // 16-bit encoding isn't sufficient. Switch to the 32-bit version.
7238      assert (isThumbTwo());
7239      Inst.setOpcode(hasWritebackToken ? ARM::t2LDMIA_UPD : ARM::t2LDMIA);
7240      // If we're switching to the updating version, we need to insert
7241      // the writeback tied operand.
7242      if (hasWritebackToken)
7243        Inst.insert(Inst.begin(),
7244                    MCOperand::CreateReg(Inst.getOperand(0).getReg()));
7245      return true;
7246    }
7247    break;
7248  }
7249  case ARM::tSTMIA_UPD: {
7250    // If the register list contains any high registers, we need to use
7251    // the 32-bit encoding instead if we're in Thumb2. Otherwise, this
7252    // should have generated an error in validateInstruction().
7253    unsigned Rn = Inst.getOperand(0).getReg();
7254    bool listContainsBase;
7255    if (checkLowRegisterList(Inst, 4, Rn, 0, listContainsBase)) {
7256      // 16-bit encoding isn't sufficient. Switch to the 32-bit version.
7257      assert (isThumbTwo());
7258      Inst.setOpcode(ARM::t2STMIA_UPD);
7259      return true;
7260    }
7261    break;
7262  }
7263  case ARM::tPOP: {
7264    bool listContainsBase;
7265    // If the register list contains any high registers, we need to use
7266    // the 32-bit encoding instead if we're in Thumb2. Otherwise, this
7267    // should have generated an error in validateInstruction().
7268    if (!checkLowRegisterList(Inst, 2, 0, ARM::PC, listContainsBase))
7269      return false;
7270    assert (isThumbTwo());
7271    Inst.setOpcode(ARM::t2LDMIA_UPD);
7272    // Add the base register and writeback operands.
7273    Inst.insert(Inst.begin(), MCOperand::CreateReg(ARM::SP));
7274    Inst.insert(Inst.begin(), MCOperand::CreateReg(ARM::SP));
7275    return true;
7276  }
7277  case ARM::tPUSH: {
7278    bool listContainsBase;
7279    if (!checkLowRegisterList(Inst, 2, 0, ARM::LR, listContainsBase))
7280      return false;
7281    assert (isThumbTwo());
7282    Inst.setOpcode(ARM::t2STMDB_UPD);
7283    // Add the base register and writeback operands.
7284    Inst.insert(Inst.begin(), MCOperand::CreateReg(ARM::SP));
7285    Inst.insert(Inst.begin(), MCOperand::CreateReg(ARM::SP));
7286    return true;
7287  }
7288  case ARM::t2MOVi: {
7289    // If we can use the 16-bit encoding and the user didn't explicitly
7290    // request the 32-bit variant, transform it here.
7291    if (isARMLowRegister(Inst.getOperand(0).getReg()) &&
7292        (unsigned)Inst.getOperand(1).getImm() <= 255 &&
7293        ((!inITBlock() && Inst.getOperand(2).getImm() == ARMCC::AL &&
7294         Inst.getOperand(4).getReg() == ARM::CPSR) ||
7295        (inITBlock() && Inst.getOperand(4).getReg() == 0)) &&
7296        (!static_cast<ARMOperand*>(Operands[2])->isToken() ||
7297         static_cast<ARMOperand*>(Operands[2])->getToken() != ".w")) {
7298      // The operands aren't in the same order for tMOVi8...
7299      MCInst TmpInst;
7300      TmpInst.setOpcode(ARM::tMOVi8);
7301      TmpInst.addOperand(Inst.getOperand(0));
7302      TmpInst.addOperand(Inst.getOperand(4));
7303      TmpInst.addOperand(Inst.getOperand(1));
7304      TmpInst.addOperand(Inst.getOperand(2));
7305      TmpInst.addOperand(Inst.getOperand(3));
7306      Inst = TmpInst;
7307      return true;
7308    }
7309    break;
7310  }
7311  case ARM::t2MOVr: {
7312    // If we can use the 16-bit encoding and the user didn't explicitly
7313    // request the 32-bit variant, transform it here.
7314    if (isARMLowRegister(Inst.getOperand(0).getReg()) &&
7315        isARMLowRegister(Inst.getOperand(1).getReg()) &&
7316        Inst.getOperand(2).getImm() == ARMCC::AL &&
7317        Inst.getOperand(4).getReg() == ARM::CPSR &&
7318        (!static_cast<ARMOperand*>(Operands[2])->isToken() ||
7319         static_cast<ARMOperand*>(Operands[2])->getToken() != ".w")) {
7320      // The operands aren't the same for tMOV[S]r... (no cc_out)
7321      MCInst TmpInst;
7322      TmpInst.setOpcode(Inst.getOperand(4).getReg() ? ARM::tMOVSr : ARM::tMOVr);
7323      TmpInst.addOperand(Inst.getOperand(0));
7324      TmpInst.addOperand(Inst.getOperand(1));
7325      TmpInst.addOperand(Inst.getOperand(2));
7326      TmpInst.addOperand(Inst.getOperand(3));
7327      Inst = TmpInst;
7328      return true;
7329    }
7330    break;
7331  }
7332  case ARM::t2SXTH:
7333  case ARM::t2SXTB:
7334  case ARM::t2UXTH:
7335  case ARM::t2UXTB: {
7336    // If we can use the 16-bit encoding and the user didn't explicitly
7337    // request the 32-bit variant, transform it here.
7338    if (isARMLowRegister(Inst.getOperand(0).getReg()) &&
7339        isARMLowRegister(Inst.getOperand(1).getReg()) &&
7340        Inst.getOperand(2).getImm() == 0 &&
7341        (!static_cast<ARMOperand*>(Operands[2])->isToken() ||
7342         static_cast<ARMOperand*>(Operands[2])->getToken() != ".w")) {
7343      unsigned NewOpc;
7344      switch (Inst.getOpcode()) {
7345      default: llvm_unreachable("Illegal opcode!");
7346      case ARM::t2SXTH: NewOpc = ARM::tSXTH; break;
7347      case ARM::t2SXTB: NewOpc = ARM::tSXTB; break;
7348      case ARM::t2UXTH: NewOpc = ARM::tUXTH; break;
7349      case ARM::t2UXTB: NewOpc = ARM::tUXTB; break;
7350      }
7351      // The operands aren't the same for thumb1 (no rotate operand).
7352      MCInst TmpInst;
7353      TmpInst.setOpcode(NewOpc);
7354      TmpInst.addOperand(Inst.getOperand(0));
7355      TmpInst.addOperand(Inst.getOperand(1));
7356      TmpInst.addOperand(Inst.getOperand(3));
7357      TmpInst.addOperand(Inst.getOperand(4));
7358      Inst = TmpInst;
7359      return true;
7360    }
7361    break;
7362  }
7363  case ARM::MOVsi: {
7364    ARM_AM::ShiftOpc SOpc = ARM_AM::getSORegShOp(Inst.getOperand(2).getImm());
7365    // rrx shifts and asr/lsr of #32 is encoded as 0
7366    if (SOpc == ARM_AM::rrx || SOpc == ARM_AM::asr || SOpc == ARM_AM::lsr)
7367      return false;
7368    if (ARM_AM::getSORegOffset(Inst.getOperand(2).getImm()) == 0) {
7369      // Shifting by zero is accepted as a vanilla 'MOVr'
7370      MCInst TmpInst;
7371      TmpInst.setOpcode(ARM::MOVr);
7372      TmpInst.addOperand(Inst.getOperand(0));
7373      TmpInst.addOperand(Inst.getOperand(1));
7374      TmpInst.addOperand(Inst.getOperand(3));
7375      TmpInst.addOperand(Inst.getOperand(4));
7376      TmpInst.addOperand(Inst.getOperand(5));
7377      Inst = TmpInst;
7378      return true;
7379    }
7380    return false;
7381  }
7382  case ARM::ANDrsi:
7383  case ARM::ORRrsi:
7384  case ARM::EORrsi:
7385  case ARM::BICrsi:
7386  case ARM::SUBrsi:
7387  case ARM::ADDrsi: {
7388    unsigned newOpc;
7389    ARM_AM::ShiftOpc SOpc = ARM_AM::getSORegShOp(Inst.getOperand(3).getImm());
7390    if (SOpc == ARM_AM::rrx) return false;
7391    switch (Inst.getOpcode()) {
7392    default: llvm_unreachable("unexpected opcode!");
7393    case ARM::ANDrsi: newOpc = ARM::ANDrr; break;
7394    case ARM::ORRrsi: newOpc = ARM::ORRrr; break;
7395    case ARM::EORrsi: newOpc = ARM::EORrr; break;
7396    case ARM::BICrsi: newOpc = ARM::BICrr; break;
7397    case ARM::SUBrsi: newOpc = ARM::SUBrr; break;
7398    case ARM::ADDrsi: newOpc = ARM::ADDrr; break;
7399    }
7400    // If the shift is by zero, use the non-shifted instruction definition.
7401    // The exception is for right shifts, where 0 == 32
7402    if (ARM_AM::getSORegOffset(Inst.getOperand(3).getImm()) == 0 &&
7403        !(SOpc == ARM_AM::lsr || SOpc == ARM_AM::asr)) {
7404      MCInst TmpInst;
7405      TmpInst.setOpcode(newOpc);
7406      TmpInst.addOperand(Inst.getOperand(0));
7407      TmpInst.addOperand(Inst.getOperand(1));
7408      TmpInst.addOperand(Inst.getOperand(2));
7409      TmpInst.addOperand(Inst.getOperand(4));
7410      TmpInst.addOperand(Inst.getOperand(5));
7411      TmpInst.addOperand(Inst.getOperand(6));
7412      Inst = TmpInst;
7413      return true;
7414    }
7415    return false;
7416  }
7417  case ARM::ITasm:
7418  case ARM::t2IT: {
7419    // The mask bits for all but the first condition are represented as
7420    // the low bit of the condition code value implies 't'. We currently
7421    // always have 1 implies 't', so XOR toggle the bits if the low bit
7422    // of the condition code is zero.
7423    MCOperand &MO = Inst.getOperand(1);
7424    unsigned Mask = MO.getImm();
7425    unsigned OrigMask = Mask;
7426    unsigned TZ = countTrailingZeros(Mask);
7427    if ((Inst.getOperand(0).getImm() & 1) == 0) {
7428      assert(Mask && TZ <= 3 && "illegal IT mask value!");
7429      Mask ^= (0xE << TZ) & 0xF;
7430    }
7431    MO.setImm(Mask);
7432
7433    // Set up the IT block state according to the IT instruction we just
7434    // matched.
7435    assert(!inITBlock() && "nested IT blocks?!");
7436    ITState.Cond = ARMCC::CondCodes(Inst.getOperand(0).getImm());
7437    ITState.Mask = OrigMask; // Use the original mask, not the updated one.
7438    ITState.CurPosition = 0;
7439    ITState.FirstCond = true;
7440    break;
7441  }
7442  case ARM::t2LSLrr:
7443  case ARM::t2LSRrr:
7444  case ARM::t2ASRrr:
7445  case ARM::t2SBCrr:
7446  case ARM::t2RORrr:
7447  case ARM::t2BICrr:
7448  {
7449    // Assemblers should use the narrow encodings of these instructions when permissible.
7450    if ((isARMLowRegister(Inst.getOperand(1).getReg()) &&
7451         isARMLowRegister(Inst.getOperand(2).getReg())) &&
7452        Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() &&
7453        ((!inITBlock() && Inst.getOperand(5).getReg() == ARM::CPSR) ||
7454         (inITBlock() && Inst.getOperand(5).getReg() != ARM::CPSR)) &&
7455        (!static_cast<ARMOperand*>(Operands[3])->isToken() ||
7456         !static_cast<ARMOperand*>(Operands[3])->getToken().equals_lower(".w"))) {
7457      unsigned NewOpc;
7458      switch (Inst.getOpcode()) {
7459        default: llvm_unreachable("unexpected opcode");
7460        case ARM::t2LSLrr: NewOpc = ARM::tLSLrr; break;
7461        case ARM::t2LSRrr: NewOpc = ARM::tLSRrr; break;
7462        case ARM::t2ASRrr: NewOpc = ARM::tASRrr; break;
7463        case ARM::t2SBCrr: NewOpc = ARM::tSBC; break;
7464        case ARM::t2RORrr: NewOpc = ARM::tROR; break;
7465        case ARM::t2BICrr: NewOpc = ARM::tBIC; break;
7466      }
7467      MCInst TmpInst;
7468      TmpInst.setOpcode(NewOpc);
7469      TmpInst.addOperand(Inst.getOperand(0));
7470      TmpInst.addOperand(Inst.getOperand(5));
7471      TmpInst.addOperand(Inst.getOperand(1));
7472      TmpInst.addOperand(Inst.getOperand(2));
7473      TmpInst.addOperand(Inst.getOperand(3));
7474      TmpInst.addOperand(Inst.getOperand(4));
7475      Inst = TmpInst;
7476      return true;
7477    }
7478    return false;
7479  }
7480  case ARM::t2ANDrr:
7481  case ARM::t2EORrr:
7482  case ARM::t2ADCrr:
7483  case ARM::t2ORRrr:
7484  {
7485    // Assemblers should use the narrow encodings of these instructions when permissible.
7486    // These instructions are special in that they are commutable, so shorter encodings
7487    // are available more often.
7488    if ((isARMLowRegister(Inst.getOperand(1).getReg()) &&
7489         isARMLowRegister(Inst.getOperand(2).getReg())) &&
7490        (Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() ||
7491         Inst.getOperand(0).getReg() == Inst.getOperand(2).getReg()) &&
7492        ((!inITBlock() && Inst.getOperand(5).getReg() == ARM::CPSR) ||
7493         (inITBlock() && Inst.getOperand(5).getReg() != ARM::CPSR)) &&
7494        (!static_cast<ARMOperand*>(Operands[3])->isToken() ||
7495         !static_cast<ARMOperand*>(Operands[3])->getToken().equals_lower(".w"))) {
7496      unsigned NewOpc;
7497      switch (Inst.getOpcode()) {
7498        default: llvm_unreachable("unexpected opcode");
7499        case ARM::t2ADCrr: NewOpc = ARM::tADC; break;
7500        case ARM::t2ANDrr: NewOpc = ARM::tAND; break;
7501        case ARM::t2EORrr: NewOpc = ARM::tEOR; break;
7502        case ARM::t2ORRrr: NewOpc = ARM::tORR; break;
7503      }
7504      MCInst TmpInst;
7505      TmpInst.setOpcode(NewOpc);
7506      TmpInst.addOperand(Inst.getOperand(0));
7507      TmpInst.addOperand(Inst.getOperand(5));
7508      if (Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg()) {
7509        TmpInst.addOperand(Inst.getOperand(1));
7510        TmpInst.addOperand(Inst.getOperand(2));
7511      } else {
7512        TmpInst.addOperand(Inst.getOperand(2));
7513        TmpInst.addOperand(Inst.getOperand(1));
7514      }
7515      TmpInst.addOperand(Inst.getOperand(3));
7516      TmpInst.addOperand(Inst.getOperand(4));
7517      Inst = TmpInst;
7518      return true;
7519    }
7520    return false;
7521  }
7522  }
7523  return false;
7524}
7525
7526unsigned ARMAsmParser::checkTargetMatchPredicate(MCInst &Inst) {
7527  // 16-bit thumb arithmetic instructions either require or preclude the 'S'
7528  // suffix depending on whether they're in an IT block or not.
7529  unsigned Opc = Inst.getOpcode();
7530  const MCInstrDesc &MCID = getInstDesc(Opc);
7531  if (MCID.TSFlags & ARMII::ThumbArithFlagSetting) {
7532    assert(MCID.hasOptionalDef() &&
7533           "optionally flag setting instruction missing optional def operand");
7534    assert(MCID.NumOperands == Inst.getNumOperands() &&
7535           "operand count mismatch!");
7536    // Find the optional-def operand (cc_out).
7537    unsigned OpNo;
7538    for (OpNo = 0;
7539         !MCID.OpInfo[OpNo].isOptionalDef() && OpNo < MCID.NumOperands;
7540         ++OpNo)
7541      ;
7542    // If we're parsing Thumb1, reject it completely.
7543    if (isThumbOne() && Inst.getOperand(OpNo).getReg() != ARM::CPSR)
7544      return Match_MnemonicFail;
7545    // If we're parsing Thumb2, which form is legal depends on whether we're
7546    // in an IT block.
7547    if (isThumbTwo() && Inst.getOperand(OpNo).getReg() != ARM::CPSR &&
7548        !inITBlock())
7549      return Match_RequiresITBlock;
7550    if (isThumbTwo() && Inst.getOperand(OpNo).getReg() == ARM::CPSR &&
7551        inITBlock())
7552      return Match_RequiresNotITBlock;
7553  }
7554  // Some high-register supporting Thumb1 encodings only allow both registers
7555  // to be from r0-r7 when in Thumb2.
7556  else if (Opc == ARM::tADDhirr && isThumbOne() &&
7557           isARMLowRegister(Inst.getOperand(1).getReg()) &&
7558           isARMLowRegister(Inst.getOperand(2).getReg()))
7559    return Match_RequiresThumb2;
7560  // Others only require ARMv6 or later.
7561  else if (Opc == ARM::tMOVr && isThumbOne() && !hasV6Ops() &&
7562           isARMLowRegister(Inst.getOperand(0).getReg()) &&
7563           isARMLowRegister(Inst.getOperand(1).getReg()))
7564    return Match_RequiresV6;
7565  return Match_Success;
7566}
7567
7568static const char *getSubtargetFeatureName(unsigned Val);
7569bool ARMAsmParser::
7570MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
7571                        SmallVectorImpl<MCParsedAsmOperand*> &Operands,
7572                        MCStreamer &Out, unsigned &ErrorInfo,
7573                        bool MatchingInlineAsm) {
7574  MCInst Inst;
7575  unsigned MatchResult;
7576
7577  MatchResult = MatchInstructionImpl(Operands, Inst, ErrorInfo,
7578                                     MatchingInlineAsm);
7579  switch (MatchResult) {
7580  default: break;
7581  case Match_Success:
7582    // Context sensitive operand constraints aren't handled by the matcher,
7583    // so check them here.
7584    if (validateInstruction(Inst, Operands)) {
7585      // Still progress the IT block, otherwise one wrong condition causes
7586      // nasty cascading errors.
7587      forwardITPosition();
7588      return true;
7589    }
7590
7591    // Some instructions need post-processing to, for example, tweak which
7592    // encoding is selected. Loop on it while changes happen so the
7593    // individual transformations can chain off each other. E.g.,
7594    // tPOP(r8)->t2LDMIA_UPD(sp,r8)->t2STR_POST(sp,r8)
7595    while (processInstruction(Inst, Operands))
7596      ;
7597
7598    // Only move forward at the very end so that everything in validate
7599    // and process gets a consistent answer about whether we're in an IT
7600    // block.
7601    forwardITPosition();
7602
7603    // ITasm is an ARM mode pseudo-instruction that just sets the ITblock and
7604    // doesn't actually encode.
7605    if (Inst.getOpcode() == ARM::ITasm)
7606      return false;
7607
7608    Inst.setLoc(IDLoc);
7609    Out.EmitInstruction(Inst);
7610    return false;
7611  case Match_MissingFeature: {
7612    assert(ErrorInfo && "Unknown missing feature!");
7613    // Special case the error message for the very common case where only
7614    // a single subtarget feature is missing (Thumb vs. ARM, e.g.).
7615    std::string Msg = "instruction requires:";
7616    unsigned Mask = 1;
7617    for (unsigned i = 0; i < (sizeof(ErrorInfo)*8-1); ++i) {
7618      if (ErrorInfo & Mask) {
7619        Msg += " ";
7620        Msg += getSubtargetFeatureName(ErrorInfo & Mask);
7621      }
7622      Mask <<= 1;
7623    }
7624    return Error(IDLoc, Msg);
7625  }
7626  case Match_InvalidOperand: {
7627    SMLoc ErrorLoc = IDLoc;
7628    if (ErrorInfo != ~0U) {
7629      if (ErrorInfo >= Operands.size())
7630        return Error(IDLoc, "too few operands for instruction");
7631
7632      ErrorLoc = ((ARMOperand*)Operands[ErrorInfo])->getStartLoc();
7633      if (ErrorLoc == SMLoc()) ErrorLoc = IDLoc;
7634    }
7635
7636    return Error(ErrorLoc, "invalid operand for instruction");
7637  }
7638  case Match_MnemonicFail:
7639    return Error(IDLoc, "invalid instruction",
7640                 ((ARMOperand*)Operands[0])->getLocRange());
7641  case Match_RequiresNotITBlock:
7642    return Error(IDLoc, "flag setting instruction only valid outside IT block");
7643  case Match_RequiresITBlock:
7644    return Error(IDLoc, "instruction only valid inside IT block");
7645  case Match_RequiresV6:
7646    return Error(IDLoc, "instruction variant requires ARMv6 or later");
7647  case Match_RequiresThumb2:
7648    return Error(IDLoc, "instruction variant requires Thumb2");
7649  case Match_ImmRange0_4: {
7650    SMLoc ErrorLoc = ((ARMOperand*)Operands[ErrorInfo])->getStartLoc();
7651    if (ErrorLoc == SMLoc()) ErrorLoc = IDLoc;
7652    return Error(ErrorLoc, "immediate operand must be in the range [0,4]");
7653  }
7654  case Match_ImmRange0_15: {
7655    SMLoc ErrorLoc = ((ARMOperand*)Operands[ErrorInfo])->getStartLoc();
7656    if (ErrorLoc == SMLoc()) ErrorLoc = IDLoc;
7657    return Error(ErrorLoc, "immediate operand must be in the range [0,15]");
7658  }
7659  }
7660
7661  llvm_unreachable("Implement any new match types added!");
7662}
7663
7664/// parseDirective parses the arm specific directives
7665bool ARMAsmParser::ParseDirective(AsmToken DirectiveID) {
7666  StringRef IDVal = DirectiveID.getIdentifier();
7667  if (IDVal == ".word")
7668    return parseDirectiveWord(4, DirectiveID.getLoc());
7669  else if (IDVal == ".thumb")
7670    return parseDirectiveThumb(DirectiveID.getLoc());
7671  else if (IDVal == ".arm")
7672    return parseDirectiveARM(DirectiveID.getLoc());
7673  else if (IDVal == ".thumb_func")
7674    return parseDirectiveThumbFunc(DirectiveID.getLoc());
7675  else if (IDVal == ".code")
7676    return parseDirectiveCode(DirectiveID.getLoc());
7677  else if (IDVal == ".syntax")
7678    return parseDirectiveSyntax(DirectiveID.getLoc());
7679  else if (IDVal == ".unreq")
7680    return parseDirectiveUnreq(DirectiveID.getLoc());
7681  else if (IDVal == ".arch")
7682    return parseDirectiveArch(DirectiveID.getLoc());
7683  else if (IDVal == ".eabi_attribute")
7684    return parseDirectiveEabiAttr(DirectiveID.getLoc());
7685  else if (IDVal == ".fnstart")
7686    return parseDirectiveFnStart(DirectiveID.getLoc());
7687  else if (IDVal == ".fnend")
7688    return parseDirectiveFnEnd(DirectiveID.getLoc());
7689  else if (IDVal == ".cantunwind")
7690    return parseDirectiveCantUnwind(DirectiveID.getLoc());
7691  else if (IDVal == ".personality")
7692    return parseDirectivePersonality(DirectiveID.getLoc());
7693  else if (IDVal == ".handlerdata")
7694    return parseDirectiveHandlerData(DirectiveID.getLoc());
7695  else if (IDVal == ".setfp")
7696    return parseDirectiveSetFP(DirectiveID.getLoc());
7697  else if (IDVal == ".pad")
7698    return parseDirectivePad(DirectiveID.getLoc());
7699  else if (IDVal == ".save")
7700    return parseDirectiveRegSave(DirectiveID.getLoc(), false);
7701  else if (IDVal == ".vsave")
7702    return parseDirectiveRegSave(DirectiveID.getLoc(), true);
7703  return true;
7704}
7705
7706/// parseDirectiveWord
7707///  ::= .word [ expression (, expression)* ]
7708bool ARMAsmParser::parseDirectiveWord(unsigned Size, SMLoc L) {
7709  if (getLexer().isNot(AsmToken::EndOfStatement)) {
7710    for (;;) {
7711      const MCExpr *Value;
7712      if (getParser().parseExpression(Value))
7713        return true;
7714
7715      getParser().getStreamer().EmitValue(Value, Size);
7716
7717      if (getLexer().is(AsmToken::EndOfStatement))
7718        break;
7719
7720      // FIXME: Improve diagnostic.
7721      if (getLexer().isNot(AsmToken::Comma))
7722        return Error(L, "unexpected token in directive");
7723      Parser.Lex();
7724    }
7725  }
7726
7727  Parser.Lex();
7728  return false;
7729}
7730
7731/// parseDirectiveThumb
7732///  ::= .thumb
7733bool ARMAsmParser::parseDirectiveThumb(SMLoc L) {
7734  if (getLexer().isNot(AsmToken::EndOfStatement))
7735    return Error(L, "unexpected token in directive");
7736  Parser.Lex();
7737
7738  if (!hasThumb())
7739    return Error(L, "target does not support Thumb mode");
7740
7741  if (!isThumb())
7742    SwitchMode();
7743  getParser().getStreamer().EmitAssemblerFlag(MCAF_Code16);
7744  return false;
7745}
7746
7747/// parseDirectiveARM
7748///  ::= .arm
7749bool ARMAsmParser::parseDirectiveARM(SMLoc L) {
7750  if (getLexer().isNot(AsmToken::EndOfStatement))
7751    return Error(L, "unexpected token in directive");
7752  Parser.Lex();
7753
7754  if (!hasARM())
7755    return Error(L, "target does not support ARM mode");
7756
7757  if (isThumb())
7758    SwitchMode();
7759  getParser().getStreamer().EmitAssemblerFlag(MCAF_Code32);
7760  return false;
7761}
7762
7763/// parseDirectiveThumbFunc
7764///  ::= .thumbfunc symbol_name
7765bool ARMAsmParser::parseDirectiveThumbFunc(SMLoc L) {
7766  const MCAsmInfo *MAI = getParser().getStreamer().getContext().getAsmInfo();
7767  bool isMachO = MAI->hasSubsectionsViaSymbols();
7768  StringRef Name;
7769  bool needFuncName = true;
7770
7771  // Darwin asm has (optionally) function name after .thumb_func direction
7772  // ELF doesn't
7773  if (isMachO) {
7774    const AsmToken &Tok = Parser.getTok();
7775    if (Tok.isNot(AsmToken::EndOfStatement)) {
7776      if (Tok.isNot(AsmToken::Identifier) && Tok.isNot(AsmToken::String))
7777        return Error(L, "unexpected token in .thumb_func directive");
7778      Name = Tok.getIdentifier();
7779      Parser.Lex(); // Consume the identifier token.
7780      needFuncName = false;
7781    }
7782  }
7783
7784  if (getLexer().isNot(AsmToken::EndOfStatement))
7785    return Error(L, "unexpected token in directive");
7786
7787  // Eat the end of statement and any blank lines that follow.
7788  while (getLexer().is(AsmToken::EndOfStatement))
7789    Parser.Lex();
7790
7791  // FIXME: assuming function name will be the line following .thumb_func
7792  // We really should be checking the next symbol definition even if there's
7793  // stuff in between.
7794  if (needFuncName) {
7795    Name = Parser.getTok().getIdentifier();
7796  }
7797
7798  // Mark symbol as a thumb symbol.
7799  MCSymbol *Func = getParser().getContext().GetOrCreateSymbol(Name);
7800  getParser().getStreamer().EmitThumbFunc(Func);
7801  return false;
7802}
7803
7804/// parseDirectiveSyntax
7805///  ::= .syntax unified | divided
7806bool ARMAsmParser::parseDirectiveSyntax(SMLoc L) {
7807  const AsmToken &Tok = Parser.getTok();
7808  if (Tok.isNot(AsmToken::Identifier))
7809    return Error(L, "unexpected token in .syntax directive");
7810  StringRef Mode = Tok.getString();
7811  if (Mode == "unified" || Mode == "UNIFIED")
7812    Parser.Lex();
7813  else if (Mode == "divided" || Mode == "DIVIDED")
7814    return Error(L, "'.syntax divided' arm asssembly not supported");
7815  else
7816    return Error(L, "unrecognized syntax mode in .syntax directive");
7817
7818  if (getLexer().isNot(AsmToken::EndOfStatement))
7819    return Error(Parser.getTok().getLoc(), "unexpected token in directive");
7820  Parser.Lex();
7821
7822  // TODO tell the MC streamer the mode
7823  // getParser().getStreamer().Emit???();
7824  return false;
7825}
7826
7827/// parseDirectiveCode
7828///  ::= .code 16 | 32
7829bool ARMAsmParser::parseDirectiveCode(SMLoc L) {
7830  const AsmToken &Tok = Parser.getTok();
7831  if (Tok.isNot(AsmToken::Integer))
7832    return Error(L, "unexpected token in .code directive");
7833  int64_t Val = Parser.getTok().getIntVal();
7834  if (Val == 16)
7835    Parser.Lex();
7836  else if (Val == 32)
7837    Parser.Lex();
7838  else
7839    return Error(L, "invalid operand to .code directive");
7840
7841  if (getLexer().isNot(AsmToken::EndOfStatement))
7842    return Error(Parser.getTok().getLoc(), "unexpected token in directive");
7843  Parser.Lex();
7844
7845  if (Val == 16) {
7846    if (!hasThumb())
7847      return Error(L, "target does not support Thumb mode");
7848
7849    if (!isThumb())
7850      SwitchMode();
7851    getParser().getStreamer().EmitAssemblerFlag(MCAF_Code16);
7852  } else {
7853    if (!hasARM())
7854      return Error(L, "target does not support ARM mode");
7855
7856    if (isThumb())
7857      SwitchMode();
7858    getParser().getStreamer().EmitAssemblerFlag(MCAF_Code32);
7859  }
7860
7861  return false;
7862}
7863
7864/// parseDirectiveReq
7865///  ::= name .req registername
7866bool ARMAsmParser::parseDirectiveReq(StringRef Name, SMLoc L) {
7867  Parser.Lex(); // Eat the '.req' token.
7868  unsigned Reg;
7869  SMLoc SRegLoc, ERegLoc;
7870  if (ParseRegister(Reg, SRegLoc, ERegLoc)) {
7871    Parser.eatToEndOfStatement();
7872    return Error(SRegLoc, "register name expected");
7873  }
7874
7875  // Shouldn't be anything else.
7876  if (Parser.getTok().isNot(AsmToken::EndOfStatement)) {
7877    Parser.eatToEndOfStatement();
7878    return Error(Parser.getTok().getLoc(),
7879                 "unexpected input in .req directive.");
7880  }
7881
7882  Parser.Lex(); // Consume the EndOfStatement
7883
7884  if (RegisterReqs.GetOrCreateValue(Name, Reg).getValue() != Reg)
7885    return Error(SRegLoc, "redefinition of '" + Name +
7886                          "' does not match original.");
7887
7888  return false;
7889}
7890
7891/// parseDirectiveUneq
7892///  ::= .unreq registername
7893bool ARMAsmParser::parseDirectiveUnreq(SMLoc L) {
7894  if (Parser.getTok().isNot(AsmToken::Identifier)) {
7895    Parser.eatToEndOfStatement();
7896    return Error(L, "unexpected input in .unreq directive.");
7897  }
7898  RegisterReqs.erase(Parser.getTok().getIdentifier());
7899  Parser.Lex(); // Eat the identifier.
7900  return false;
7901}
7902
7903/// parseDirectiveArch
7904///  ::= .arch token
7905bool ARMAsmParser::parseDirectiveArch(SMLoc L) {
7906  return true;
7907}
7908
7909/// parseDirectiveEabiAttr
7910///  ::= .eabi_attribute int, int
7911bool ARMAsmParser::parseDirectiveEabiAttr(SMLoc L) {
7912  return true;
7913}
7914
7915/// parseDirectiveFnStart
7916///  ::= .fnstart
7917bool ARMAsmParser::parseDirectiveFnStart(SMLoc L) {
7918  if (FnStartLoc.isValid()) {
7919    Error(L, ".fnstart starts before the end of previous one");
7920    Error(FnStartLoc, "previous .fnstart starts here");
7921    return true;
7922  }
7923
7924  FnStartLoc = L;
7925  getParser().getStreamer().EmitFnStart();
7926  return false;
7927}
7928
7929/// parseDirectiveFnEnd
7930///  ::= .fnend
7931bool ARMAsmParser::parseDirectiveFnEnd(SMLoc L) {
7932  // Check the ordering of unwind directives
7933  if (!FnStartLoc.isValid())
7934    return Error(L, ".fnstart must precede .fnend directive");
7935
7936  // Reset the unwind directives parser state
7937  resetUnwindDirectiveParserState();
7938
7939  getParser().getStreamer().EmitFnEnd();
7940  return false;
7941}
7942
7943/// parseDirectiveCantUnwind
7944///  ::= .cantunwind
7945bool ARMAsmParser::parseDirectiveCantUnwind(SMLoc L) {
7946  // Check the ordering of unwind directives
7947  CantUnwindLoc = L;
7948  if (!FnStartLoc.isValid())
7949    return Error(L, ".fnstart must precede .cantunwind directive");
7950  if (HandlerDataLoc.isValid()) {
7951    Error(L, ".cantunwind can't be used with .handlerdata directive");
7952    Error(HandlerDataLoc, ".handlerdata was specified here");
7953    return true;
7954  }
7955  if (PersonalityLoc.isValid()) {
7956    Error(L, ".cantunwind can't be used with .personality directive");
7957    Error(PersonalityLoc, ".personality was specified here");
7958    return true;
7959  }
7960
7961  getParser().getStreamer().EmitCantUnwind();
7962  return false;
7963}
7964
7965/// parseDirectivePersonality
7966///  ::= .personality name
7967bool ARMAsmParser::parseDirectivePersonality(SMLoc L) {
7968  // Check the ordering of unwind directives
7969  PersonalityLoc = L;
7970  if (!FnStartLoc.isValid())
7971    return Error(L, ".fnstart must precede .personality directive");
7972  if (CantUnwindLoc.isValid()) {
7973    Error(L, ".personality can't be used with .cantunwind directive");
7974    Error(CantUnwindLoc, ".cantunwind was specified here");
7975    return true;
7976  }
7977  if (HandlerDataLoc.isValid()) {
7978    Error(L, ".personality must precede .handlerdata directive");
7979    Error(HandlerDataLoc, ".handlerdata was specified here");
7980    return true;
7981  }
7982
7983  // Parse the name of the personality routine
7984  if (Parser.getTok().isNot(AsmToken::Identifier)) {
7985    Parser.eatToEndOfStatement();
7986    return Error(L, "unexpected input in .personality directive.");
7987  }
7988  StringRef Name(Parser.getTok().getIdentifier());
7989  Parser.Lex();
7990
7991  MCSymbol *PR = getParser().getContext().GetOrCreateSymbol(Name);
7992  getParser().getStreamer().EmitPersonality(PR);
7993  return false;
7994}
7995
7996/// parseDirectiveHandlerData
7997///  ::= .handlerdata
7998bool ARMAsmParser::parseDirectiveHandlerData(SMLoc L) {
7999  // Check the ordering of unwind directives
8000  HandlerDataLoc = L;
8001  if (!FnStartLoc.isValid())
8002    return Error(L, ".fnstart must precede .personality directive");
8003  if (CantUnwindLoc.isValid()) {
8004    Error(L, ".handlerdata can't be used with .cantunwind directive");
8005    Error(CantUnwindLoc, ".cantunwind was specified here");
8006    return true;
8007  }
8008
8009  getParser().getStreamer().EmitHandlerData();
8010  return false;
8011}
8012
8013/// parseDirectiveSetFP
8014///  ::= .setfp fpreg, spreg [, offset]
8015bool ARMAsmParser::parseDirectiveSetFP(SMLoc L) {
8016  // Check the ordering of unwind directives
8017  if (!FnStartLoc.isValid())
8018    return Error(L, ".fnstart must precede .setfp directive");
8019  if (HandlerDataLoc.isValid())
8020    return Error(L, ".setfp must precede .handlerdata directive");
8021
8022  // Parse fpreg
8023  SMLoc NewFPRegLoc = Parser.getTok().getLoc();
8024  int NewFPReg = tryParseRegister();
8025  if (NewFPReg == -1)
8026    return Error(NewFPRegLoc, "frame pointer register expected");
8027
8028  // Consume comma
8029  if (!Parser.getTok().is(AsmToken::Comma))
8030    return Error(Parser.getTok().getLoc(), "comma expected");
8031  Parser.Lex(); // skip comma
8032
8033  // Parse spreg
8034  SMLoc NewSPRegLoc = Parser.getTok().getLoc();
8035  int NewSPReg = tryParseRegister();
8036  if (NewSPReg == -1)
8037    return Error(NewSPRegLoc, "stack pointer register expected");
8038
8039  if (NewSPReg != ARM::SP && NewSPReg != FPReg)
8040    return Error(NewSPRegLoc,
8041                 "register should be either $sp or the latest fp register");
8042
8043  // Update the frame pointer register
8044  FPReg = NewFPReg;
8045
8046  // Parse offset
8047  int64_t Offset = 0;
8048  if (Parser.getTok().is(AsmToken::Comma)) {
8049    Parser.Lex(); // skip comma
8050
8051    if (Parser.getTok().isNot(AsmToken::Hash) &&
8052        Parser.getTok().isNot(AsmToken::Dollar)) {
8053      return Error(Parser.getTok().getLoc(), "'#' expected");
8054    }
8055    Parser.Lex(); // skip hash token.
8056
8057    const MCExpr *OffsetExpr;
8058    SMLoc ExLoc = Parser.getTok().getLoc();
8059    SMLoc EndLoc;
8060    if (getParser().parseExpression(OffsetExpr, EndLoc))
8061      return Error(ExLoc, "malformed setfp offset");
8062    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr);
8063    if (!CE)
8064      return Error(ExLoc, "setfp offset must be an immediate");
8065
8066    Offset = CE->getValue();
8067  }
8068
8069  getParser().getStreamer().EmitSetFP(static_cast<unsigned>(NewFPReg),
8070                                      static_cast<unsigned>(NewSPReg),
8071                                      Offset);
8072  return false;
8073}
8074
8075/// parseDirective
8076///  ::= .pad offset
8077bool ARMAsmParser::parseDirectivePad(SMLoc L) {
8078  // Check the ordering of unwind directives
8079  if (!FnStartLoc.isValid())
8080    return Error(L, ".fnstart must precede .pad directive");
8081  if (HandlerDataLoc.isValid())
8082    return Error(L, ".pad must precede .handlerdata directive");
8083
8084  // Parse the offset
8085  if (Parser.getTok().isNot(AsmToken::Hash) &&
8086      Parser.getTok().isNot(AsmToken::Dollar)) {
8087    return Error(Parser.getTok().getLoc(), "'#' expected");
8088  }
8089  Parser.Lex(); // skip hash token.
8090
8091  const MCExpr *OffsetExpr;
8092  SMLoc ExLoc = Parser.getTok().getLoc();
8093  SMLoc EndLoc;
8094  if (getParser().parseExpression(OffsetExpr, EndLoc))
8095    return Error(ExLoc, "malformed pad offset");
8096  const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr);
8097  if (!CE)
8098    return Error(ExLoc, "pad offset must be an immediate");
8099
8100  getParser().getStreamer().EmitPad(CE->getValue());
8101  return false;
8102}
8103
8104/// parseDirectiveRegSave
8105///  ::= .save  { registers }
8106///  ::= .vsave { registers }
8107bool ARMAsmParser::parseDirectiveRegSave(SMLoc L, bool IsVector) {
8108  // Check the ordering of unwind directives
8109  if (!FnStartLoc.isValid())
8110    return Error(L, ".fnstart must precede .save or .vsave directives");
8111  if (HandlerDataLoc.isValid())
8112    return Error(L, ".save or .vsave must precede .handlerdata directive");
8113
8114  // RAII object to make sure parsed operands are deleted.
8115  struct CleanupObject {
8116    SmallVector<MCParsedAsmOperand *, 1> Operands;
8117    ~CleanupObject() {
8118      for (unsigned I = 0, E = Operands.size(); I != E; ++I)
8119        delete Operands[I];
8120    }
8121  } CO;
8122
8123  // Parse the register list
8124  if (parseRegisterList(CO.Operands))
8125    return true;
8126  ARMOperand *Op = (ARMOperand*)CO.Operands[0];
8127  if (!IsVector && !Op->isRegList())
8128    return Error(L, ".save expects GPR registers");
8129  if (IsVector && !Op->isDPRRegList())
8130    return Error(L, ".vsave expects DPR registers");
8131
8132  getParser().getStreamer().EmitRegSave(Op->getRegList(), IsVector);
8133  return false;
8134}
8135
8136/// Force static initialization.
8137extern "C" void LLVMInitializeARMAsmParser() {
8138  RegisterMCAsmParser<ARMAsmParser> X(TheARMTarget);
8139  RegisterMCAsmParser<ARMAsmParser> Y(TheThumbTarget);
8140}
8141
8142#define GET_REGISTER_MATCHER
8143#define GET_SUBTARGET_FEATURE_NAME
8144#define GET_MATCHER_IMPLEMENTATION
8145#include "ARMGenAsmMatcher.inc"
8146
8147// Define this matcher function after the auto-generated include so we
8148// have the match class enum definitions.
8149unsigned ARMAsmParser::validateTargetOperandClass(MCParsedAsmOperand *AsmOp,
8150                                                  unsigned Kind) {
8151  ARMOperand *Op = static_cast<ARMOperand*>(AsmOp);
8152  // If the kind is a token for a literal immediate, check if our asm
8153  // operand matches. This is for InstAliases which have a fixed-value
8154  // immediate in the syntax.
8155  if (Kind == MCK__35_0 && Op->isImm()) {
8156    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Op->getImm());
8157    if (!CE)
8158      return Match_InvalidOperand;
8159    if (CE->getValue() == 0)
8160      return Match_Success;
8161  }
8162  return Match_InvalidOperand;
8163}
8164