ARMAsmParser.cpp revision a2b6e4151b75248f9dbf8067186cba673520f8f4
1//===-- ARMAsmParser.cpp - Parse ARM assembly to MCInst instructions ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9
10#include "ARM.h"
11#include "ARMAddressingModes.h"
12#include "ARMMCExpr.h"
13#include "ARMBaseRegisterInfo.h"
14#include "ARMSubtarget.h"
15#include "llvm/MC/MCParser/MCAsmLexer.h"
16#include "llvm/MC/MCParser/MCAsmParser.h"
17#include "llvm/MC/MCParser/MCParsedAsmOperand.h"
18#include "llvm/MC/MCContext.h"
19#include "llvm/MC/MCStreamer.h"
20#include "llvm/MC/MCExpr.h"
21#include "llvm/MC/MCInst.h"
22#include "llvm/Target/TargetRegistry.h"
23#include "llvm/Target/TargetAsmParser.h"
24#include "llvm/Support/SourceMgr.h"
25#include "llvm/Support/raw_ostream.h"
26#include "llvm/ADT/SmallVector.h"
27#include "llvm/ADT/StringExtras.h"
28#include "llvm/ADT/StringSwitch.h"
29#include "llvm/ADT/Twine.h"
30using namespace llvm;
31
32/// Shift types used for register controlled shifts in ARM memory addressing.
33enum ShiftType {
34  Lsl,
35  Lsr,
36  Asr,
37  Ror,
38  Rrx
39};
40
41namespace {
42
43class ARMOperand;
44
45class ARMAsmParser : public TargetAsmParser {
46  MCAsmParser &Parser;
47  TargetMachine &TM;
48
49  MCAsmParser &getParser() const { return Parser; }
50  MCAsmLexer &getLexer() const { return Parser.getLexer(); }
51
52  void Warning(SMLoc L, const Twine &Msg) { Parser.Warning(L, Msg); }
53  bool Error(SMLoc L, const Twine &Msg) { return Parser.Error(L, Msg); }
54
55  int TryParseRegister();
56  virtual bool ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc);
57  bool TryParseRegisterWithWriteBack(SmallVectorImpl<MCParsedAsmOperand*> &);
58  bool ParseRegisterList(SmallVectorImpl<MCParsedAsmOperand*> &);
59  bool ParseMemory(SmallVectorImpl<MCParsedAsmOperand*> &);
60  bool ParseOperand(SmallVectorImpl<MCParsedAsmOperand*> &, StringRef Mnemonic);
61  bool ParsePrefix(ARMMCExpr::VariantKind &RefKind);
62  const MCExpr *ApplyPrefixToExpr(const MCExpr *E,
63                                  MCSymbolRefExpr::VariantKind Variant);
64
65
66  bool ParseMemoryOffsetReg(bool &Negative,
67                            bool &OffsetRegShifted,
68                            enum ShiftType &ShiftType,
69                            const MCExpr *&ShiftAmount,
70                            const MCExpr *&Offset,
71                            bool &OffsetIsReg,
72                            int &OffsetRegNum,
73                            SMLoc &E);
74  bool ParseShift(enum ShiftType &St, const MCExpr *&ShiftAmount, SMLoc &E);
75  bool ParseDirectiveWord(unsigned Size, SMLoc L);
76  bool ParseDirectiveThumb(SMLoc L);
77  bool ParseDirectiveThumbFunc(SMLoc L);
78  bool ParseDirectiveCode(SMLoc L);
79  bool ParseDirectiveSyntax(SMLoc L);
80
81  bool MatchAndEmitInstruction(SMLoc IDLoc,
82                               SmallVectorImpl<MCParsedAsmOperand*> &Operands,
83                               MCStreamer &Out);
84  void GetMnemonicAcceptInfo(StringRef Mnemonic, bool &CanAcceptCarrySet,
85                             bool &CanAcceptPredicationCode);
86
87  /// @name Auto-generated Match Functions
88  /// {
89
90#define GET_ASSEMBLER_HEADER
91#include "ARMGenAsmMatcher.inc"
92
93  /// }
94
95  OperandMatchResultTy tryParseCoprocNumOperand(
96    SmallVectorImpl<MCParsedAsmOperand*>&);
97  OperandMatchResultTy tryParseCoprocRegOperand(
98    SmallVectorImpl<MCParsedAsmOperand*>&);
99  OperandMatchResultTy tryParseMemBarrierOptOperand(
100    SmallVectorImpl<MCParsedAsmOperand*> &);
101  OperandMatchResultTy tryParseProcIFlagsOperand(
102    SmallVectorImpl<MCParsedAsmOperand*> &);
103
104public:
105  ARMAsmParser(const Target &T, MCAsmParser &_Parser, TargetMachine &_TM)
106    : TargetAsmParser(T), Parser(_Parser), TM(_TM) {
107      // Initialize the set of available features.
108      setAvailableFeatures(ComputeAvailableFeatures(
109          &TM.getSubtarget<ARMSubtarget>()));
110    }
111
112  virtual bool ParseInstruction(StringRef Name, SMLoc NameLoc,
113                                SmallVectorImpl<MCParsedAsmOperand*> &Operands);
114  virtual bool ParseDirective(AsmToken DirectiveID);
115};
116} // end anonymous namespace
117
118namespace {
119
120/// ARMOperand - Instances of this class represent a parsed ARM machine
121/// instruction.
122class ARMOperand : public MCParsedAsmOperand {
123  enum KindTy {
124    CondCode,
125    CCOut,
126    CoprocNum,
127    CoprocReg,
128    Immediate,
129    MemBarrierOpt,
130    Memory,
131    ProcIFlags,
132    Register,
133    RegisterList,
134    DPRRegisterList,
135    SPRRegisterList,
136    Token
137  } Kind;
138
139  SMLoc StartLoc, EndLoc;
140  SmallVector<unsigned, 8> Registers;
141
142  union {
143    struct {
144      ARMCC::CondCodes Val;
145    } CC;
146
147    struct {
148      ARM_MB::MemBOpt Val;
149    } MBOpt;
150
151    struct {
152      unsigned Val;
153    } Cop;
154
155    struct {
156      ARM_PROC::IFlags Val;
157    } IFlags;
158
159    struct {
160      const char *Data;
161      unsigned Length;
162    } Tok;
163
164    struct {
165      unsigned RegNum;
166    } Reg;
167
168    struct {
169      const MCExpr *Val;
170    } Imm;
171
172    /// Combined record for all forms of ARM address expressions.
173    struct {
174      unsigned BaseRegNum;
175      union {
176        unsigned RegNum;     ///< Offset register num, when OffsetIsReg.
177        const MCExpr *Value; ///< Offset value, when !OffsetIsReg.
178      } Offset;
179      const MCExpr *ShiftAmount;     // used when OffsetRegShifted is true
180      enum ShiftType ShiftType;      // used when OffsetRegShifted is true
181      unsigned OffsetRegShifted : 1; // only used when OffsetIsReg is true
182      unsigned Preindexed       : 1;
183      unsigned Postindexed      : 1;
184      unsigned OffsetIsReg      : 1;
185      unsigned Negative         : 1; // only used when OffsetIsReg is true
186      unsigned Writeback        : 1;
187    } Mem;
188  };
189
190  ARMOperand(KindTy K) : MCParsedAsmOperand(), Kind(K) {}
191public:
192  ARMOperand(const ARMOperand &o) : MCParsedAsmOperand() {
193    Kind = o.Kind;
194    StartLoc = o.StartLoc;
195    EndLoc = o.EndLoc;
196    switch (Kind) {
197    case CondCode:
198      CC = o.CC;
199      break;
200    case Token:
201      Tok = o.Tok;
202      break;
203    case CCOut:
204    case Register:
205      Reg = o.Reg;
206      break;
207    case RegisterList:
208    case DPRRegisterList:
209    case SPRRegisterList:
210      Registers = o.Registers;
211      break;
212    case CoprocNum:
213    case CoprocReg:
214      Cop = o.Cop;
215      break;
216    case Immediate:
217      Imm = o.Imm;
218      break;
219    case MemBarrierOpt:
220      MBOpt = o.MBOpt;
221      break;
222    case Memory:
223      Mem = o.Mem;
224      break;
225    case ProcIFlags:
226      IFlags = o.IFlags;
227    }
228  }
229
230  /// getStartLoc - Get the location of the first token of this operand.
231  SMLoc getStartLoc() const { return StartLoc; }
232  /// getEndLoc - Get the location of the last token of this operand.
233  SMLoc getEndLoc() const { return EndLoc; }
234
235  ARMCC::CondCodes getCondCode() const {
236    assert(Kind == CondCode && "Invalid access!");
237    return CC.Val;
238  }
239
240  unsigned getCoproc() const {
241    assert((Kind == CoprocNum || Kind == CoprocReg) && "Invalid access!");
242    return Cop.Val;
243  }
244
245  StringRef getToken() const {
246    assert(Kind == Token && "Invalid access!");
247    return StringRef(Tok.Data, Tok.Length);
248  }
249
250  unsigned getReg() const {
251    assert((Kind == Register || Kind == CCOut) && "Invalid access!");
252    return Reg.RegNum;
253  }
254
255  const SmallVectorImpl<unsigned> &getRegList() const {
256    assert((Kind == RegisterList || Kind == DPRRegisterList ||
257            Kind == SPRRegisterList) && "Invalid access!");
258    return Registers;
259  }
260
261  const MCExpr *getImm() const {
262    assert(Kind == Immediate && "Invalid access!");
263    return Imm.Val;
264  }
265
266  ARM_MB::MemBOpt getMemBarrierOpt() const {
267    assert(Kind == MemBarrierOpt && "Invalid access!");
268    return MBOpt.Val;
269  }
270
271  ARM_PROC::IFlags getProcIFlags() const {
272    assert(Kind == ProcIFlags && "Invalid access!");
273    return IFlags.Val;
274  }
275
276  /// @name Memory Operand Accessors
277  /// @{
278
279  unsigned getMemBaseRegNum() const {
280    return Mem.BaseRegNum;
281  }
282  unsigned getMemOffsetRegNum() const {
283    assert(Mem.OffsetIsReg && "Invalid access!");
284    return Mem.Offset.RegNum;
285  }
286  const MCExpr *getMemOffset() const {
287    assert(!Mem.OffsetIsReg && "Invalid access!");
288    return Mem.Offset.Value;
289  }
290  unsigned getMemOffsetRegShifted() const {
291    assert(Mem.OffsetIsReg && "Invalid access!");
292    return Mem.OffsetRegShifted;
293  }
294  const MCExpr *getMemShiftAmount() const {
295    assert(Mem.OffsetIsReg && Mem.OffsetRegShifted && "Invalid access!");
296    return Mem.ShiftAmount;
297  }
298  enum ShiftType getMemShiftType() const {
299    assert(Mem.OffsetIsReg && Mem.OffsetRegShifted && "Invalid access!");
300    return Mem.ShiftType;
301  }
302  bool getMemPreindexed() const { return Mem.Preindexed; }
303  bool getMemPostindexed() const { return Mem.Postindexed; }
304  bool getMemOffsetIsReg() const { return Mem.OffsetIsReg; }
305  bool getMemNegative() const { return Mem.Negative; }
306  bool getMemWriteback() const { return Mem.Writeback; }
307
308  /// @}
309
310  bool isCoprocNum() const { return Kind == CoprocNum; }
311  bool isCoprocReg() const { return Kind == CoprocReg; }
312  bool isCondCode() const { return Kind == CondCode; }
313  bool isCCOut() const { return Kind == CCOut; }
314  bool isImm() const { return Kind == Immediate; }
315  bool isReg() const { return Kind == Register; }
316  bool isRegList() const { return Kind == RegisterList; }
317  bool isDPRRegList() const { return Kind == DPRRegisterList; }
318  bool isSPRRegList() const { return Kind == SPRRegisterList; }
319  bool isToken() const { return Kind == Token; }
320  bool isMemBarrierOpt() const { return Kind == MemBarrierOpt; }
321  bool isMemory() const { return Kind == Memory; }
322  bool isMemMode5() const {
323    if (!isMemory() || getMemOffsetIsReg() || getMemWriteback() ||
324        getMemNegative())
325      return false;
326
327    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getMemOffset());
328    if (!CE) return false;
329
330    // The offset must be a multiple of 4 in the range 0-1020.
331    int64_t Value = CE->getValue();
332    return ((Value & 0x3) == 0 && Value <= 1020 && Value >= -1020);
333  }
334  bool isMemModeRegThumb() const {
335    if (!isMemory() || !getMemOffsetIsReg() || getMemWriteback())
336      return false;
337    return true;
338  }
339  bool isMemModeImmThumb() const {
340    if (!isMemory() || getMemOffsetIsReg() || getMemWriteback())
341      return false;
342
343    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getMemOffset());
344    if (!CE) return false;
345
346    // The offset must be a multiple of 4 in the range 0-124.
347    uint64_t Value = CE->getValue();
348    return ((Value & 0x3) == 0 && Value <= 124);
349  }
350  bool isProcIFlags() const { return Kind == ProcIFlags; }
351
352  void addExpr(MCInst &Inst, const MCExpr *Expr) const {
353    // Add as immediates when possible.  Null MCExpr = 0.
354    if (Expr == 0)
355      Inst.addOperand(MCOperand::CreateImm(0));
356    else if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr))
357      Inst.addOperand(MCOperand::CreateImm(CE->getValue()));
358    else
359      Inst.addOperand(MCOperand::CreateExpr(Expr));
360  }
361
362  void addCondCodeOperands(MCInst &Inst, unsigned N) const {
363    assert(N == 2 && "Invalid number of operands!");
364    Inst.addOperand(MCOperand::CreateImm(unsigned(getCondCode())));
365    unsigned RegNum = getCondCode() == ARMCC::AL ? 0: ARM::CPSR;
366    Inst.addOperand(MCOperand::CreateReg(RegNum));
367  }
368
369  void addCoprocNumOperands(MCInst &Inst, unsigned N) const {
370    assert(N == 1 && "Invalid number of operands!");
371    Inst.addOperand(MCOperand::CreateImm(getCoproc()));
372  }
373
374  void addCoprocRegOperands(MCInst &Inst, unsigned N) const {
375    assert(N == 1 && "Invalid number of operands!");
376    Inst.addOperand(MCOperand::CreateImm(getCoproc()));
377  }
378
379  void addCCOutOperands(MCInst &Inst, unsigned N) const {
380    assert(N == 1 && "Invalid number of operands!");
381    Inst.addOperand(MCOperand::CreateReg(getReg()));
382  }
383
384  void addRegOperands(MCInst &Inst, unsigned N) const {
385    assert(N == 1 && "Invalid number of operands!");
386    Inst.addOperand(MCOperand::CreateReg(getReg()));
387  }
388
389  void addRegListOperands(MCInst &Inst, unsigned N) const {
390    assert(N == 1 && "Invalid number of operands!");
391    const SmallVectorImpl<unsigned> &RegList = getRegList();
392    for (SmallVectorImpl<unsigned>::const_iterator
393           I = RegList.begin(), E = RegList.end(); I != E; ++I)
394      Inst.addOperand(MCOperand::CreateReg(*I));
395  }
396
397  void addDPRRegListOperands(MCInst &Inst, unsigned N) const {
398    addRegListOperands(Inst, N);
399  }
400
401  void addSPRRegListOperands(MCInst &Inst, unsigned N) const {
402    addRegListOperands(Inst, N);
403  }
404
405  void addImmOperands(MCInst &Inst, unsigned N) const {
406    assert(N == 1 && "Invalid number of operands!");
407    addExpr(Inst, getImm());
408  }
409
410  void addMemBarrierOptOperands(MCInst &Inst, unsigned N) const {
411    assert(N == 1 && "Invalid number of operands!");
412    Inst.addOperand(MCOperand::CreateImm(unsigned(getMemBarrierOpt())));
413  }
414
415  void addMemMode5Operands(MCInst &Inst, unsigned N) const {
416    assert(N == 2 && isMemMode5() && "Invalid number of operands!");
417
418    Inst.addOperand(MCOperand::CreateReg(getMemBaseRegNum()));
419    assert(!getMemOffsetIsReg() && "Invalid mode 5 operand");
420
421    // FIXME: #-0 is encoded differently than #0. Does the parser preserve
422    // the difference?
423    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getMemOffset());
424    assert(CE && "Non-constant mode 5 offset operand!");
425
426    // The MCInst offset operand doesn't include the low two bits (like
427    // the instruction encoding).
428    int64_t Offset = CE->getValue() / 4;
429    if (Offset >= 0)
430      Inst.addOperand(MCOperand::CreateImm(ARM_AM::getAM5Opc(ARM_AM::add,
431                                                             Offset)));
432    else
433      Inst.addOperand(MCOperand::CreateImm(ARM_AM::getAM5Opc(ARM_AM::sub,
434                                                             -Offset)));
435  }
436
437  void addMemModeRegThumbOperands(MCInst &Inst, unsigned N) const {
438    assert(N == 2 && isMemModeRegThumb() && "Invalid number of operands!");
439    Inst.addOperand(MCOperand::CreateReg(getMemBaseRegNum()));
440    Inst.addOperand(MCOperand::CreateReg(getMemOffsetRegNum()));
441  }
442
443  void addMemModeImmThumbOperands(MCInst &Inst, unsigned N) const {
444    assert(N == 2 && isMemModeImmThumb() && "Invalid number of operands!");
445    Inst.addOperand(MCOperand::CreateReg(getMemBaseRegNum()));
446    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getMemOffset());
447    assert(CE && "Non-constant mode offset operand!");
448    Inst.addOperand(MCOperand::CreateImm(CE->getValue()));
449  }
450
451  void addProcIFlagsOperands(MCInst &Inst, unsigned N) const {
452    assert(N == 1 && "Invalid number of operands!");
453    Inst.addOperand(MCOperand::CreateImm(unsigned(getProcIFlags())));
454  }
455
456  virtual void dump(raw_ostream &OS) const;
457
458  static ARMOperand *CreateCondCode(ARMCC::CondCodes CC, SMLoc S) {
459    ARMOperand *Op = new ARMOperand(CondCode);
460    Op->CC.Val = CC;
461    Op->StartLoc = S;
462    Op->EndLoc = S;
463    return Op;
464  }
465
466  static ARMOperand *CreateCoprocNum(unsigned CopVal, SMLoc S) {
467    ARMOperand *Op = new ARMOperand(CoprocNum);
468    Op->Cop.Val = CopVal;
469    Op->StartLoc = S;
470    Op->EndLoc = S;
471    return Op;
472  }
473
474  static ARMOperand *CreateCoprocReg(unsigned CopVal, SMLoc S) {
475    ARMOperand *Op = new ARMOperand(CoprocReg);
476    Op->Cop.Val = CopVal;
477    Op->StartLoc = S;
478    Op->EndLoc = S;
479    return Op;
480  }
481
482  static ARMOperand *CreateCCOut(unsigned RegNum, SMLoc S) {
483    ARMOperand *Op = new ARMOperand(CCOut);
484    Op->Reg.RegNum = RegNum;
485    Op->StartLoc = S;
486    Op->EndLoc = S;
487    return Op;
488  }
489
490  static ARMOperand *CreateToken(StringRef Str, SMLoc S) {
491    ARMOperand *Op = new ARMOperand(Token);
492    Op->Tok.Data = Str.data();
493    Op->Tok.Length = Str.size();
494    Op->StartLoc = S;
495    Op->EndLoc = S;
496    return Op;
497  }
498
499  static ARMOperand *CreateReg(unsigned RegNum, SMLoc S, SMLoc E) {
500    ARMOperand *Op = new ARMOperand(Register);
501    Op->Reg.RegNum = RegNum;
502    Op->StartLoc = S;
503    Op->EndLoc = E;
504    return Op;
505  }
506
507  static ARMOperand *
508  CreateRegList(const SmallVectorImpl<std::pair<unsigned, SMLoc> > &Regs,
509                SMLoc StartLoc, SMLoc EndLoc) {
510    KindTy Kind = RegisterList;
511
512    if (ARM::DPRRegClass.contains(Regs.front().first))
513      Kind = DPRRegisterList;
514    else if (ARM::SPRRegClass.contains(Regs.front().first))
515      Kind = SPRRegisterList;
516
517    ARMOperand *Op = new ARMOperand(Kind);
518    for (SmallVectorImpl<std::pair<unsigned, SMLoc> >::const_iterator
519           I = Regs.begin(), E = Regs.end(); I != E; ++I)
520      Op->Registers.push_back(I->first);
521    array_pod_sort(Op->Registers.begin(), Op->Registers.end());
522    Op->StartLoc = StartLoc;
523    Op->EndLoc = EndLoc;
524    return Op;
525  }
526
527  static ARMOperand *CreateImm(const MCExpr *Val, SMLoc S, SMLoc E) {
528    ARMOperand *Op = new ARMOperand(Immediate);
529    Op->Imm.Val = Val;
530    Op->StartLoc = S;
531    Op->EndLoc = E;
532    return Op;
533  }
534
535  static ARMOperand *CreateMem(unsigned BaseRegNum, bool OffsetIsReg,
536                               const MCExpr *Offset, int OffsetRegNum,
537                               bool OffsetRegShifted, enum ShiftType ShiftType,
538                               const MCExpr *ShiftAmount, bool Preindexed,
539                               bool Postindexed, bool Negative, bool Writeback,
540                               SMLoc S, SMLoc E) {
541    assert((OffsetRegNum == -1 || OffsetIsReg) &&
542           "OffsetRegNum must imply OffsetIsReg!");
543    assert((!OffsetRegShifted || OffsetIsReg) &&
544           "OffsetRegShifted must imply OffsetIsReg!");
545    assert((Offset || OffsetIsReg) &&
546           "Offset must exists unless register offset is used!");
547    assert((!ShiftAmount || (OffsetIsReg && OffsetRegShifted)) &&
548           "Cannot have shift amount without shifted register offset!");
549    assert((!Offset || !OffsetIsReg) &&
550           "Cannot have expression offset and register offset!");
551
552    ARMOperand *Op = new ARMOperand(Memory);
553    Op->Mem.BaseRegNum = BaseRegNum;
554    Op->Mem.OffsetIsReg = OffsetIsReg;
555    if (OffsetIsReg)
556      Op->Mem.Offset.RegNum = OffsetRegNum;
557    else
558      Op->Mem.Offset.Value = Offset;
559    Op->Mem.OffsetRegShifted = OffsetRegShifted;
560    Op->Mem.ShiftType = ShiftType;
561    Op->Mem.ShiftAmount = ShiftAmount;
562    Op->Mem.Preindexed = Preindexed;
563    Op->Mem.Postindexed = Postindexed;
564    Op->Mem.Negative = Negative;
565    Op->Mem.Writeback = Writeback;
566
567    Op->StartLoc = S;
568    Op->EndLoc = E;
569    return Op;
570  }
571
572  static ARMOperand *CreateMemBarrierOpt(ARM_MB::MemBOpt Opt, SMLoc S) {
573    ARMOperand *Op = new ARMOperand(MemBarrierOpt);
574    Op->MBOpt.Val = Opt;
575    Op->StartLoc = S;
576    Op->EndLoc = S;
577    return Op;
578  }
579
580  static ARMOperand *CreateProcIFlags(ARM_PROC::IFlags IFlags, SMLoc S) {
581    ARMOperand *Op = new ARMOperand(ProcIFlags);
582    Op->IFlags.Val = IFlags;
583    Op->StartLoc = S;
584    Op->EndLoc = S;
585    return Op;
586  }
587};
588
589} // end anonymous namespace.
590
591void ARMOperand::dump(raw_ostream &OS) const {
592  switch (Kind) {
593  case CondCode:
594    OS << "<ARMCC::" << ARMCondCodeToString(getCondCode()) << ">";
595    break;
596  case CCOut:
597    OS << "<ccout " << getReg() << ">";
598    break;
599  case CoprocNum:
600    OS << "<coprocessor number: " << getCoproc() << ">";
601    break;
602  case CoprocReg:
603    OS << "<coprocessor register: " << getCoproc() << ">";
604    break;
605  case Immediate:
606    getImm()->print(OS);
607    break;
608  case MemBarrierOpt:
609    OS << "<ARM_MB::" << MemBOptToString(getMemBarrierOpt()) << ">";
610    break;
611  case Memory:
612    OS << "<memory "
613       << "base:" << getMemBaseRegNum();
614    if (getMemOffsetIsReg()) {
615      OS << " offset:<register " << getMemOffsetRegNum();
616      if (getMemOffsetRegShifted()) {
617        OS << " offset-shift-type:" << getMemShiftType();
618        OS << " offset-shift-amount:" << *getMemShiftAmount();
619      }
620    } else {
621      OS << " offset:" << *getMemOffset();
622    }
623    if (getMemOffsetIsReg())
624      OS << " (offset-is-reg)";
625    if (getMemPreindexed())
626      OS << " (pre-indexed)";
627    if (getMemPostindexed())
628      OS << " (post-indexed)";
629    if (getMemNegative())
630      OS << " (negative)";
631    if (getMemWriteback())
632      OS << " (writeback)";
633    OS << ">";
634    break;
635  case ProcIFlags: {
636    OS << "<ARM_PROC::";
637    unsigned IFlags = getProcIFlags();
638    for (int i=2; i >= 0; --i)
639      if (IFlags & (1 << i))
640        OS << ARM_PROC::IFlagsToString(1 << i);
641    OS << ">";
642    break;
643  }
644  case Register:
645    OS << "<register " << getReg() << ">";
646    break;
647  case RegisterList:
648  case DPRRegisterList:
649  case SPRRegisterList: {
650    OS << "<register_list ";
651
652    const SmallVectorImpl<unsigned> &RegList = getRegList();
653    for (SmallVectorImpl<unsigned>::const_iterator
654           I = RegList.begin(), E = RegList.end(); I != E; ) {
655      OS << *I;
656      if (++I < E) OS << ", ";
657    }
658
659    OS << ">";
660    break;
661  }
662  case Token:
663    OS << "'" << getToken() << "'";
664    break;
665  }
666}
667
668/// @name Auto-generated Match Functions
669/// {
670
671static unsigned MatchRegisterName(StringRef Name);
672
673/// }
674
675bool ARMAsmParser::ParseRegister(unsigned &RegNo,
676                                 SMLoc &StartLoc, SMLoc &EndLoc) {
677  RegNo = TryParseRegister();
678
679  return (RegNo == (unsigned)-1);
680}
681
682/// Try to parse a register name.  The token must be an Identifier when called,
683/// and if it is a register name the token is eaten and the register number is
684/// returned.  Otherwise return -1.
685///
686int ARMAsmParser::TryParseRegister() {
687  const AsmToken &Tok = Parser.getTok();
688  assert(Tok.is(AsmToken::Identifier) && "Token is not an Identifier");
689
690  // FIXME: Validate register for the current architecture; we have to do
691  // validation later, so maybe there is no need for this here.
692  std::string upperCase = Tok.getString().str();
693  std::string lowerCase = LowercaseString(upperCase);
694  unsigned RegNum = MatchRegisterName(lowerCase);
695  if (!RegNum) {
696    RegNum = StringSwitch<unsigned>(lowerCase)
697      .Case("r13", ARM::SP)
698      .Case("r14", ARM::LR)
699      .Case("r15", ARM::PC)
700      .Case("ip", ARM::R12)
701      .Default(0);
702  }
703  if (!RegNum) return -1;
704
705  Parser.Lex(); // Eat identifier token.
706  return RegNum;
707}
708
709/// Try to parse a register name.  The token must be an Identifier when called.
710/// If it's a register, an AsmOperand is created. Another AsmOperand is created
711/// if there is a "writeback". 'true' if it's not a register.
712///
713/// TODO this is likely to change to allow different register types and or to
714/// parse for a specific register type.
715bool ARMAsmParser::
716TryParseRegisterWithWriteBack(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
717  SMLoc S = Parser.getTok().getLoc();
718  int RegNo = TryParseRegister();
719  if (RegNo == -1)
720    return true;
721
722  Operands.push_back(ARMOperand::CreateReg(RegNo, S, Parser.getTok().getLoc()));
723
724  const AsmToken &ExclaimTok = Parser.getTok();
725  if (ExclaimTok.is(AsmToken::Exclaim)) {
726    Operands.push_back(ARMOperand::CreateToken(ExclaimTok.getString(),
727                                               ExclaimTok.getLoc()));
728    Parser.Lex(); // Eat exclaim token
729  }
730
731  return false;
732}
733
734/// MatchCoprocessorOperandName - Try to parse an coprocessor related
735/// instruction with a symbolic operand name. Example: "p1", "p7", "c3",
736/// "c5", ...
737static int MatchCoprocessorOperandName(StringRef Name, char CoprocOp) {
738  // Use the same layout as the tablegen'erated register name matcher. Ugly,
739  // but efficient.
740  switch (Name.size()) {
741  default: break;
742  case 2:
743    if (Name[0] != CoprocOp)
744      return -1;
745    switch (Name[1]) {
746    default:  return -1;
747    case '0': return 0;
748    case '1': return 1;
749    case '2': return 2;
750    case '3': return 3;
751    case '4': return 4;
752    case '5': return 5;
753    case '6': return 6;
754    case '7': return 7;
755    case '8': return 8;
756    case '9': return 9;
757    }
758    break;
759  case 3:
760    if (Name[0] != CoprocOp || Name[1] != '1')
761      return -1;
762    switch (Name[2]) {
763    default:  return -1;
764    case '0': return 10;
765    case '1': return 11;
766    case '2': return 12;
767    case '3': return 13;
768    case '4': return 14;
769    case '5': return 15;
770    }
771    break;
772  }
773
774  llvm_unreachable("Unhandled coprocessor operand string!");
775  return -1;
776}
777
778/// tryParseCoprocNumOperand - Try to parse an coprocessor number operand. The
779/// token must be an Identifier when called, and if it is a coprocessor
780/// number, the token is eaten and the operand is added to the operand list.
781ARMAsmParser::OperandMatchResultTy ARMAsmParser::
782tryParseCoprocNumOperand(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
783  SMLoc S = Parser.getTok().getLoc();
784  const AsmToken &Tok = Parser.getTok();
785  assert(Tok.is(AsmToken::Identifier) && "Token is not an Identifier");
786
787  int Num = MatchCoprocessorOperandName(Tok.getString(), 'p');
788  if (Num == -1)
789    return MatchOperand_NoMatch;
790
791  Parser.Lex(); // Eat identifier token.
792  Operands.push_back(ARMOperand::CreateCoprocNum(Num, S));
793  return MatchOperand_Success;
794}
795
796/// tryParseCoprocRegOperand - Try to parse an coprocessor register operand. The
797/// token must be an Identifier when called, and if it is a coprocessor
798/// number, the token is eaten and the operand is added to the operand list.
799ARMAsmParser::OperandMatchResultTy ARMAsmParser::
800tryParseCoprocRegOperand(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
801  SMLoc S = Parser.getTok().getLoc();
802  const AsmToken &Tok = Parser.getTok();
803  assert(Tok.is(AsmToken::Identifier) && "Token is not an Identifier");
804
805  int Reg = MatchCoprocessorOperandName(Tok.getString(), 'c');
806  if (Reg == -1)
807    return MatchOperand_NoMatch;
808
809  Parser.Lex(); // Eat identifier token.
810  Operands.push_back(ARMOperand::CreateCoprocReg(Reg, S));
811  return MatchOperand_Success;
812}
813
814/// Parse a register list, return it if successful else return null.  The first
815/// token must be a '{' when called.
816bool ARMAsmParser::
817ParseRegisterList(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
818  assert(Parser.getTok().is(AsmToken::LCurly) &&
819         "Token is not a Left Curly Brace");
820  SMLoc S = Parser.getTok().getLoc();
821
822  // Read the rest of the registers in the list.
823  unsigned PrevRegNum = 0;
824  SmallVector<std::pair<unsigned, SMLoc>, 32> Registers;
825
826  do {
827    bool IsRange = Parser.getTok().is(AsmToken::Minus);
828    Parser.Lex(); // Eat non-identifier token.
829
830    const AsmToken &RegTok = Parser.getTok();
831    SMLoc RegLoc = RegTok.getLoc();
832    if (RegTok.isNot(AsmToken::Identifier)) {
833      Error(RegLoc, "register expected");
834      return true;
835    }
836
837    int RegNum = TryParseRegister();
838    if (RegNum == -1) {
839      Error(RegLoc, "register expected");
840      return true;
841    }
842
843    if (IsRange) {
844      int Reg = PrevRegNum;
845      do {
846        ++Reg;
847        Registers.push_back(std::make_pair(Reg, RegLoc));
848      } while (Reg != RegNum);
849    } else {
850      Registers.push_back(std::make_pair(RegNum, RegLoc));
851    }
852
853    PrevRegNum = RegNum;
854  } while (Parser.getTok().is(AsmToken::Comma) ||
855           Parser.getTok().is(AsmToken::Minus));
856
857  // Process the right curly brace of the list.
858  const AsmToken &RCurlyTok = Parser.getTok();
859  if (RCurlyTok.isNot(AsmToken::RCurly)) {
860    Error(RCurlyTok.getLoc(), "'}' expected");
861    return true;
862  }
863
864  SMLoc E = RCurlyTok.getLoc();
865  Parser.Lex(); // Eat right curly brace token.
866
867  // Verify the register list.
868  SmallVectorImpl<std::pair<unsigned, SMLoc> >::const_iterator
869    RI = Registers.begin(), RE = Registers.end();
870
871  unsigned HighRegNum = getARMRegisterNumbering(RI->first);
872  bool EmittedWarning = false;
873
874  DenseMap<unsigned, bool> RegMap;
875  RegMap[HighRegNum] = true;
876
877  for (++RI; RI != RE; ++RI) {
878    const std::pair<unsigned, SMLoc> &RegInfo = *RI;
879    unsigned Reg = getARMRegisterNumbering(RegInfo.first);
880
881    if (RegMap[Reg]) {
882      Error(RegInfo.second, "register duplicated in register list");
883      return true;
884    }
885
886    if (!EmittedWarning && Reg < HighRegNum)
887      Warning(RegInfo.second,
888              "register not in ascending order in register list");
889
890    RegMap[Reg] = true;
891    HighRegNum = std::max(Reg, HighRegNum);
892  }
893
894  Operands.push_back(ARMOperand::CreateRegList(Registers, S, E));
895  return false;
896}
897
898/// tryParseMemBarrierOptOperand - Try to parse DSB/DMB data barrier options.
899ARMAsmParser::OperandMatchResultTy ARMAsmParser::
900tryParseMemBarrierOptOperand(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
901  SMLoc S = Parser.getTok().getLoc();
902  const AsmToken &Tok = Parser.getTok();
903  assert(Tok.is(AsmToken::Identifier) && "Token is not an Identifier");
904  StringRef OptStr = Tok.getString();
905
906  unsigned Opt = StringSwitch<unsigned>(OptStr.slice(0, OptStr.size()))
907    .Case("sy",    ARM_MB::SY)
908    .Case("st",    ARM_MB::ST)
909    .Case("ish",   ARM_MB::ISH)
910    .Case("ishst", ARM_MB::ISHST)
911    .Case("nsh",   ARM_MB::NSH)
912    .Case("nshst", ARM_MB::NSHST)
913    .Case("osh",   ARM_MB::OSH)
914    .Case("oshst", ARM_MB::OSHST)
915    .Default(~0U);
916
917  if (Opt == ~0U)
918    return MatchOperand_NoMatch;
919
920  Parser.Lex(); // Eat identifier token.
921  Operands.push_back(ARMOperand::CreateMemBarrierOpt((ARM_MB::MemBOpt)Opt, S));
922  return MatchOperand_Success;
923}
924
925/// ParseProcIFlagsOperand - Try to parse iflags from CPS instruction.
926ARMAsmParser::OperandMatchResultTy ARMAsmParser::
927tryParseProcIFlagsOperand(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
928  SMLoc S = Parser.getTok().getLoc();
929  const AsmToken &Tok = Parser.getTok();
930  assert(Tok.is(AsmToken::Identifier) && "Token is not an Identifier");
931  StringRef IFlagsStr = Tok.getString();
932
933  unsigned IFlags = 0;
934  for (int i = 0, e = IFlagsStr.size(); i != e; ++i) {
935    unsigned Flag = StringSwitch<unsigned>(IFlagsStr.substr(i, 1))
936    .Case("a", ARM_PROC::A)
937    .Case("i", ARM_PROC::I)
938    .Case("f", ARM_PROC::F)
939    .Default(~0U);
940
941    // If some specific iflag is already set, it means that some letter is
942    // present more than once, this is not acceptable.
943    if (Flag == ~0U || (IFlags & Flag))
944      return MatchOperand_NoMatch;
945
946    IFlags |= Flag;
947  }
948
949  Parser.Lex(); // Eat identifier token.
950  Operands.push_back(ARMOperand::CreateProcIFlags((ARM_PROC::IFlags)IFlags, S));
951  return MatchOperand_Success;
952}
953
954/// Parse an ARM memory expression, return false if successful else return true
955/// or an error.  The first token must be a '[' when called.
956///
957/// TODO Only preindexing and postindexing addressing are started, unindexed
958/// with option, etc are still to do.
959bool ARMAsmParser::
960ParseMemory(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
961  SMLoc S, E;
962  assert(Parser.getTok().is(AsmToken::LBrac) &&
963         "Token is not a Left Bracket");
964  S = Parser.getTok().getLoc();
965  Parser.Lex(); // Eat left bracket token.
966
967  const AsmToken &BaseRegTok = Parser.getTok();
968  if (BaseRegTok.isNot(AsmToken::Identifier)) {
969    Error(BaseRegTok.getLoc(), "register expected");
970    return true;
971  }
972  int BaseRegNum = TryParseRegister();
973  if (BaseRegNum == -1) {
974    Error(BaseRegTok.getLoc(), "register expected");
975    return true;
976  }
977
978  // The next token must either be a comma or a closing bracket.
979  const AsmToken &Tok = Parser.getTok();
980  if (!Tok.is(AsmToken::Comma) && !Tok.is(AsmToken::RBrac))
981    return true;
982
983  bool Preindexed = false;
984  bool Postindexed = false;
985  bool OffsetIsReg = false;
986  bool Negative = false;
987  bool Writeback = false;
988  ARMOperand *WBOp = 0;
989  int OffsetRegNum = -1;
990  bool OffsetRegShifted = false;
991  enum ShiftType ShiftType = Lsl;
992  const MCExpr *ShiftAmount = 0;
993  const MCExpr *Offset = 0;
994
995  // First look for preindexed address forms, that is after the "[Rn" we now
996  // have to see if the next token is a comma.
997  if (Tok.is(AsmToken::Comma)) {
998    Preindexed = true;
999    Parser.Lex(); // Eat comma token.
1000
1001    if (ParseMemoryOffsetReg(Negative, OffsetRegShifted, ShiftType, ShiftAmount,
1002                             Offset, OffsetIsReg, OffsetRegNum, E))
1003      return true;
1004    const AsmToken &RBracTok = Parser.getTok();
1005    if (RBracTok.isNot(AsmToken::RBrac)) {
1006      Error(RBracTok.getLoc(), "']' expected");
1007      return true;
1008    }
1009    E = RBracTok.getLoc();
1010    Parser.Lex(); // Eat right bracket token.
1011
1012    const AsmToken &ExclaimTok = Parser.getTok();
1013    if (ExclaimTok.is(AsmToken::Exclaim)) {
1014      WBOp = ARMOperand::CreateToken(ExclaimTok.getString(),
1015                                     ExclaimTok.getLoc());
1016      Writeback = true;
1017      Parser.Lex(); // Eat exclaim token
1018    }
1019  } else {
1020    // The "[Rn" we have so far was not followed by a comma.
1021
1022    // If there's anything other than the right brace, this is a post indexing
1023    // addressing form.
1024    E = Tok.getLoc();
1025    Parser.Lex(); // Eat right bracket token.
1026
1027    const AsmToken &NextTok = Parser.getTok();
1028
1029    if (NextTok.isNot(AsmToken::EndOfStatement)) {
1030      Postindexed = true;
1031      Writeback = true;
1032
1033      if (NextTok.isNot(AsmToken::Comma)) {
1034        Error(NextTok.getLoc(), "',' expected");
1035        return true;
1036      }
1037
1038      Parser.Lex(); // Eat comma token.
1039
1040      if (ParseMemoryOffsetReg(Negative, OffsetRegShifted, ShiftType,
1041                               ShiftAmount, Offset, OffsetIsReg, OffsetRegNum,
1042                               E))
1043        return true;
1044    }
1045  }
1046
1047  // Force Offset to exist if used.
1048  if (!OffsetIsReg) {
1049    if (!Offset)
1050      Offset = MCConstantExpr::Create(0, getContext());
1051  }
1052
1053  Operands.push_back(ARMOperand::CreateMem(BaseRegNum, OffsetIsReg, Offset,
1054                                           OffsetRegNum, OffsetRegShifted,
1055                                           ShiftType, ShiftAmount, Preindexed,
1056                                           Postindexed, Negative, Writeback,
1057                                           S, E));
1058  if (WBOp)
1059    Operands.push_back(WBOp);
1060
1061  return false;
1062}
1063
1064/// Parse the offset of a memory operand after we have seen "[Rn," or "[Rn],"
1065/// we will parse the following (were +/- means that a plus or minus is
1066/// optional):
1067///   +/-Rm
1068///   +/-Rm, shift
1069///   #offset
1070/// we return false on success or an error otherwise.
1071bool ARMAsmParser::ParseMemoryOffsetReg(bool &Negative,
1072                                        bool &OffsetRegShifted,
1073                                        enum ShiftType &ShiftType,
1074                                        const MCExpr *&ShiftAmount,
1075                                        const MCExpr *&Offset,
1076                                        bool &OffsetIsReg,
1077                                        int &OffsetRegNum,
1078                                        SMLoc &E) {
1079  Negative = false;
1080  OffsetRegShifted = false;
1081  OffsetIsReg = false;
1082  OffsetRegNum = -1;
1083  const AsmToken &NextTok = Parser.getTok();
1084  E = NextTok.getLoc();
1085  if (NextTok.is(AsmToken::Plus))
1086    Parser.Lex(); // Eat plus token.
1087  else if (NextTok.is(AsmToken::Minus)) {
1088    Negative = true;
1089    Parser.Lex(); // Eat minus token
1090  }
1091  // See if there is a register following the "[Rn," or "[Rn]," we have so far.
1092  const AsmToken &OffsetRegTok = Parser.getTok();
1093  if (OffsetRegTok.is(AsmToken::Identifier)) {
1094    SMLoc CurLoc = OffsetRegTok.getLoc();
1095    OffsetRegNum = TryParseRegister();
1096    if (OffsetRegNum != -1) {
1097      OffsetIsReg = true;
1098      E = CurLoc;
1099    }
1100  }
1101
1102  // If we parsed a register as the offset then there can be a shift after that.
1103  if (OffsetRegNum != -1) {
1104    // Look for a comma then a shift
1105    const AsmToken &Tok = Parser.getTok();
1106    if (Tok.is(AsmToken::Comma)) {
1107      Parser.Lex(); // Eat comma token.
1108
1109      const AsmToken &Tok = Parser.getTok();
1110      if (ParseShift(ShiftType, ShiftAmount, E))
1111        return Error(Tok.getLoc(), "shift expected");
1112      OffsetRegShifted = true;
1113    }
1114  }
1115  else { // the "[Rn," or "[Rn,]" we have so far was not followed by "Rm"
1116    // Look for #offset following the "[Rn," or "[Rn],"
1117    const AsmToken &HashTok = Parser.getTok();
1118    if (HashTok.isNot(AsmToken::Hash))
1119      return Error(HashTok.getLoc(), "'#' expected");
1120
1121    Parser.Lex(); // Eat hash token.
1122
1123    if (getParser().ParseExpression(Offset))
1124     return true;
1125    E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
1126  }
1127  return false;
1128}
1129
1130/// ParseShift as one of these two:
1131///   ( lsl | lsr | asr | ror ) , # shift_amount
1132///   rrx
1133/// and returns true if it parses a shift otherwise it returns false.
1134bool ARMAsmParser::ParseShift(ShiftType &St, const MCExpr *&ShiftAmount,
1135                              SMLoc &E) {
1136  const AsmToken &Tok = Parser.getTok();
1137  if (Tok.isNot(AsmToken::Identifier))
1138    return true;
1139  StringRef ShiftName = Tok.getString();
1140  if (ShiftName == "lsl" || ShiftName == "LSL")
1141    St = Lsl;
1142  else if (ShiftName == "lsr" || ShiftName == "LSR")
1143    St = Lsr;
1144  else if (ShiftName == "asr" || ShiftName == "ASR")
1145    St = Asr;
1146  else if (ShiftName == "ror" || ShiftName == "ROR")
1147    St = Ror;
1148  else if (ShiftName == "rrx" || ShiftName == "RRX")
1149    St = Rrx;
1150  else
1151    return true;
1152  Parser.Lex(); // Eat shift type token.
1153
1154  // Rrx stands alone.
1155  if (St == Rrx)
1156    return false;
1157
1158  // Otherwise, there must be a '#' and a shift amount.
1159  const AsmToken &HashTok = Parser.getTok();
1160  if (HashTok.isNot(AsmToken::Hash))
1161    return Error(HashTok.getLoc(), "'#' expected");
1162  Parser.Lex(); // Eat hash token.
1163
1164  if (getParser().ParseExpression(ShiftAmount))
1165    return true;
1166
1167  return false;
1168}
1169
1170/// Parse a arm instruction operand.  For now this parses the operand regardless
1171/// of the mnemonic.
1172bool ARMAsmParser::ParseOperand(SmallVectorImpl<MCParsedAsmOperand*> &Operands,
1173                                StringRef Mnemonic) {
1174  SMLoc S, E;
1175
1176  // Check if the current operand has a custom associated parser, if so, try to
1177  // custom parse the operand, or fallback to the general approach.
1178  OperandMatchResultTy ResTy = MatchOperandParserImpl(Operands, Mnemonic);
1179  if (ResTy == MatchOperand_Success)
1180    return false;
1181  // If there wasn't a custom match, try the generic matcher below. Otherwise,
1182  // there was a match, but an error occurred, in which case, just return that
1183  // the operand parsing failed.
1184  if (ResTy == MatchOperand_ParseFail)
1185    return true;
1186
1187  switch (getLexer().getKind()) {
1188  default:
1189    Error(Parser.getTok().getLoc(), "unexpected token in operand");
1190    return true;
1191  case AsmToken::Identifier:
1192    if (!TryParseRegisterWithWriteBack(Operands))
1193      return false;
1194
1195    // Fall though for the Identifier case that is not a register or a
1196    // special name.
1197  case AsmToken::Integer: // things like 1f and 2b as a branch targets
1198  case AsmToken::Dot: {   // . as a branch target
1199    // This was not a register so parse other operands that start with an
1200    // identifier (like labels) as expressions and create them as immediates.
1201    const MCExpr *IdVal;
1202    S = Parser.getTok().getLoc();
1203    if (getParser().ParseExpression(IdVal))
1204      return true;
1205    E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
1206    Operands.push_back(ARMOperand::CreateImm(IdVal, S, E));
1207    return false;
1208  }
1209  case AsmToken::LBrac:
1210    return ParseMemory(Operands);
1211  case AsmToken::LCurly:
1212    return ParseRegisterList(Operands);
1213  case AsmToken::Hash:
1214    // #42 -> immediate.
1215    // TODO: ":lower16:" and ":upper16:" modifiers after # before immediate
1216    S = Parser.getTok().getLoc();
1217    Parser.Lex();
1218    const MCExpr *ImmVal;
1219    if (getParser().ParseExpression(ImmVal))
1220      return true;
1221    E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
1222    Operands.push_back(ARMOperand::CreateImm(ImmVal, S, E));
1223    return false;
1224  case AsmToken::Colon: {
1225    // ":lower16:" and ":upper16:" expression prefixes
1226    // FIXME: Check it's an expression prefix,
1227    // e.g. (FOO - :lower16:BAR) isn't legal.
1228    ARMMCExpr::VariantKind RefKind;
1229    if (ParsePrefix(RefKind))
1230      return true;
1231
1232    const MCExpr *SubExprVal;
1233    if (getParser().ParseExpression(SubExprVal))
1234      return true;
1235
1236    const MCExpr *ExprVal = ARMMCExpr::Create(RefKind, SubExprVal,
1237                                                   getContext());
1238    E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
1239    Operands.push_back(ARMOperand::CreateImm(ExprVal, S, E));
1240    return false;
1241  }
1242  }
1243}
1244
1245// ParsePrefix - Parse ARM 16-bit relocations expression prefix, i.e.
1246//  :lower16: and :upper16:.
1247bool ARMAsmParser::ParsePrefix(ARMMCExpr::VariantKind &RefKind) {
1248  RefKind = ARMMCExpr::VK_ARM_None;
1249
1250  // :lower16: and :upper16: modifiers
1251  assert(getLexer().is(AsmToken::Colon) && "expected a :");
1252  Parser.Lex(); // Eat ':'
1253
1254  if (getLexer().isNot(AsmToken::Identifier)) {
1255    Error(Parser.getTok().getLoc(), "expected prefix identifier in operand");
1256    return true;
1257  }
1258
1259  StringRef IDVal = Parser.getTok().getIdentifier();
1260  if (IDVal == "lower16") {
1261    RefKind = ARMMCExpr::VK_ARM_LO16;
1262  } else if (IDVal == "upper16") {
1263    RefKind = ARMMCExpr::VK_ARM_HI16;
1264  } else {
1265    Error(Parser.getTok().getLoc(), "unexpected prefix in operand");
1266    return true;
1267  }
1268  Parser.Lex();
1269
1270  if (getLexer().isNot(AsmToken::Colon)) {
1271    Error(Parser.getTok().getLoc(), "unexpected token after prefix");
1272    return true;
1273  }
1274  Parser.Lex(); // Eat the last ':'
1275  return false;
1276}
1277
1278const MCExpr *
1279ARMAsmParser::ApplyPrefixToExpr(const MCExpr *E,
1280                                MCSymbolRefExpr::VariantKind Variant) {
1281  // Recurse over the given expression, rebuilding it to apply the given variant
1282  // to the leftmost symbol.
1283  if (Variant == MCSymbolRefExpr::VK_None)
1284    return E;
1285
1286  switch (E->getKind()) {
1287  case MCExpr::Target:
1288    llvm_unreachable("Can't handle target expr yet");
1289  case MCExpr::Constant:
1290    llvm_unreachable("Can't handle lower16/upper16 of constant yet");
1291
1292  case MCExpr::SymbolRef: {
1293    const MCSymbolRefExpr *SRE = cast<MCSymbolRefExpr>(E);
1294
1295    if (SRE->getKind() != MCSymbolRefExpr::VK_None)
1296      return 0;
1297
1298    return MCSymbolRefExpr::Create(&SRE->getSymbol(), Variant, getContext());
1299  }
1300
1301  case MCExpr::Unary:
1302    llvm_unreachable("Can't handle unary expressions yet");
1303
1304  case MCExpr::Binary: {
1305    const MCBinaryExpr *BE = cast<MCBinaryExpr>(E);
1306    const MCExpr *LHS = ApplyPrefixToExpr(BE->getLHS(), Variant);
1307    const MCExpr *RHS = BE->getRHS();
1308    if (!LHS)
1309      return 0;
1310
1311    return MCBinaryExpr::Create(BE->getOpcode(), LHS, RHS, getContext());
1312  }
1313  }
1314
1315  assert(0 && "Invalid expression kind!");
1316  return 0;
1317}
1318
1319/// \brief Given a mnemonic, split out possible predication code and carry
1320/// setting letters to form a canonical mnemonic and flags.
1321//
1322// FIXME: Would be nice to autogen this.
1323static StringRef SplitMnemonic(StringRef Mnemonic,
1324                               unsigned &PredicationCode,
1325                               bool &CarrySetting,
1326                               unsigned &ProcessorIMod) {
1327  PredicationCode = ARMCC::AL;
1328  CarrySetting = false;
1329  ProcessorIMod = 0;
1330
1331  // Ignore some mnemonics we know aren't predicated forms.
1332  //
1333  // FIXME: Would be nice to autogen this.
1334  if (Mnemonic == "teq" || Mnemonic == "vceq" ||
1335      Mnemonic == "movs" ||
1336      Mnemonic == "svc" ||
1337      (Mnemonic == "mls" || Mnemonic == "smmls" || Mnemonic == "vcls" ||
1338       Mnemonic == "vmls" || Mnemonic == "vnmls") ||
1339      Mnemonic == "vacge" || Mnemonic == "vcge" ||
1340      Mnemonic == "vclt" ||
1341      Mnemonic == "vacgt" || Mnemonic == "vcgt" ||
1342      Mnemonic == "vcle" ||
1343      (Mnemonic == "smlal" || Mnemonic == "umaal" || Mnemonic == "umlal" ||
1344       Mnemonic == "vabal" || Mnemonic == "vmlal" || Mnemonic == "vpadal" ||
1345       Mnemonic == "vqdmlal"))
1346    return Mnemonic;
1347
1348  // First, split out any predication code.
1349  unsigned CC = StringSwitch<unsigned>(Mnemonic.substr(Mnemonic.size()-2))
1350    .Case("eq", ARMCC::EQ)
1351    .Case("ne", ARMCC::NE)
1352    .Case("hs", ARMCC::HS)
1353    .Case("lo", ARMCC::LO)
1354    .Case("mi", ARMCC::MI)
1355    .Case("pl", ARMCC::PL)
1356    .Case("vs", ARMCC::VS)
1357    .Case("vc", ARMCC::VC)
1358    .Case("hi", ARMCC::HI)
1359    .Case("ls", ARMCC::LS)
1360    .Case("ge", ARMCC::GE)
1361    .Case("lt", ARMCC::LT)
1362    .Case("gt", ARMCC::GT)
1363    .Case("le", ARMCC::LE)
1364    .Case("al", ARMCC::AL)
1365    .Default(~0U);
1366  if (CC != ~0U) {
1367    Mnemonic = Mnemonic.slice(0, Mnemonic.size() - 2);
1368    PredicationCode = CC;
1369  }
1370
1371  // Next, determine if we have a carry setting bit. We explicitly ignore all
1372  // the instructions we know end in 's'.
1373  if (Mnemonic.endswith("s") &&
1374      !(Mnemonic == "asrs" || Mnemonic == "cps" || Mnemonic == "mls" ||
1375        Mnemonic == "movs" || Mnemonic == "mrs" || Mnemonic == "smmls" ||
1376        Mnemonic == "vabs" || Mnemonic == "vcls" || Mnemonic == "vmls" ||
1377        Mnemonic == "vmrs" || Mnemonic == "vnmls" || Mnemonic == "vqabs" ||
1378        Mnemonic == "vrecps" || Mnemonic == "vrsqrts")) {
1379    Mnemonic = Mnemonic.slice(0, Mnemonic.size() - 1);
1380    CarrySetting = true;
1381  }
1382
1383  // The "cps" instruction can have a interrupt mode operand which is glued into
1384  // the mnemonic. Check if this is the case, split it and parse the imod op
1385  if (Mnemonic.startswith("cps")) {
1386    // Split out any imod code.
1387    unsigned IMod =
1388      StringSwitch<unsigned>(Mnemonic.substr(Mnemonic.size()-2, 2))
1389      .Case("ie", ARM_PROC::IE)
1390      .Case("id", ARM_PROC::ID)
1391      .Default(~0U);
1392    if (IMod != ~0U) {
1393      Mnemonic = Mnemonic.slice(0, Mnemonic.size()-2);
1394      ProcessorIMod = IMod;
1395    }
1396  }
1397
1398  return Mnemonic;
1399}
1400
1401/// \brief Given a canonical mnemonic, determine if the instruction ever allows
1402/// inclusion of carry set or predication code operands.
1403//
1404// FIXME: It would be nice to autogen this.
1405void ARMAsmParser::
1406GetMnemonicAcceptInfo(StringRef Mnemonic, bool &CanAcceptCarrySet,
1407                      bool &CanAcceptPredicationCode) {
1408  bool isThumb = TM.getSubtarget<ARMSubtarget>().isThumb();
1409
1410  if (Mnemonic == "and" || Mnemonic == "lsl" || Mnemonic == "lsr" ||
1411      Mnemonic == "rrx" || Mnemonic == "ror" || Mnemonic == "sub" ||
1412      Mnemonic == "smull" || Mnemonic == "add" || Mnemonic == "adc" ||
1413      Mnemonic == "mul" || Mnemonic == "bic" || Mnemonic == "asr" ||
1414      Mnemonic == "umlal" || Mnemonic == "orr" || Mnemonic == "mov" ||
1415      Mnemonic == "rsb" || Mnemonic == "rsc" || Mnemonic == "orn" ||
1416      Mnemonic == "sbc" || Mnemonic == "mla" || Mnemonic == "umull" ||
1417      Mnemonic == "eor" || Mnemonic == "smlal" || Mnemonic == "mvn") {
1418    CanAcceptCarrySet = true;
1419  } else {
1420    CanAcceptCarrySet = false;
1421  }
1422
1423  if (Mnemonic == "cbnz" || Mnemonic == "setend" || Mnemonic == "dmb" ||
1424      Mnemonic == "cps" || Mnemonic == "mcr2" || Mnemonic == "it" ||
1425      Mnemonic == "mcrr2" || Mnemonic == "cbz" || Mnemonic == "cdp2" ||
1426      Mnemonic == "trap" || Mnemonic == "mrc2" || Mnemonic == "mrrc2" ||
1427      Mnemonic == "dsb" || Mnemonic == "movs" || Mnemonic == "isb" ||
1428      Mnemonic == "clrex" || Mnemonic.startswith("cps")) {
1429    CanAcceptPredicationCode = false;
1430  } else {
1431    CanAcceptPredicationCode = true;
1432  }
1433
1434  if (isThumb)
1435    if (Mnemonic == "bkpt" || Mnemonic == "mcr" || Mnemonic == "mcrr" ||
1436        Mnemonic == "mrc" || Mnemonic == "mrrc" || Mnemonic == "cdp")
1437      CanAcceptPredicationCode = false;
1438}
1439
1440/// Parse an arm instruction mnemonic followed by its operands.
1441bool ARMAsmParser::ParseInstruction(StringRef Name, SMLoc NameLoc,
1442                               SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
1443  // Create the leading tokens for the mnemonic, split by '.' characters.
1444  size_t Start = 0, Next = Name.find('.');
1445  StringRef Head = Name.slice(Start, Next);
1446
1447  // Split out the predication code and carry setting flag from the mnemonic.
1448  unsigned PredicationCode;
1449  unsigned ProcessorIMod;
1450  bool CarrySetting;
1451  Head = SplitMnemonic(Head, PredicationCode, CarrySetting,
1452                       ProcessorIMod);
1453
1454  Operands.push_back(ARMOperand::CreateToken(Head, NameLoc));
1455
1456  // Next, add the CCOut and ConditionCode operands, if needed.
1457  //
1458  // For mnemonics which can ever incorporate a carry setting bit or predication
1459  // code, our matching model involves us always generating CCOut and
1460  // ConditionCode operands to match the mnemonic "as written" and then we let
1461  // the matcher deal with finding the right instruction or generating an
1462  // appropriate error.
1463  bool CanAcceptCarrySet, CanAcceptPredicationCode;
1464  GetMnemonicAcceptInfo(Head, CanAcceptCarrySet, CanAcceptPredicationCode);
1465
1466  // Add the carry setting operand, if necessary.
1467  //
1468  // FIXME: It would be awesome if we could somehow invent a location such that
1469  // match errors on this operand would print a nice diagnostic about how the
1470  // 's' character in the mnemonic resulted in a CCOut operand.
1471  if (CanAcceptCarrySet) {
1472    Operands.push_back(ARMOperand::CreateCCOut(CarrySetting ? ARM::CPSR : 0,
1473                                               NameLoc));
1474  } else {
1475    // This mnemonic can't ever accept a carry set, but the user wrote one (or
1476    // misspelled another mnemonic).
1477
1478    // FIXME: Issue a nice error.
1479  }
1480
1481  // Add the predication code operand, if necessary.
1482  if (CanAcceptPredicationCode) {
1483    Operands.push_back(ARMOperand::CreateCondCode(
1484                         ARMCC::CondCodes(PredicationCode), NameLoc));
1485  } else {
1486    // This mnemonic can't ever accept a predication code, but the user wrote
1487    // one (or misspelled another mnemonic).
1488
1489    // FIXME: Issue a nice error.
1490  }
1491
1492  // Add the processor imod operand, if necessary.
1493  if (ProcessorIMod) {
1494    Operands.push_back(ARMOperand::CreateImm(
1495          MCConstantExpr::Create(ProcessorIMod, getContext()),
1496                                 NameLoc, NameLoc));
1497  } else {
1498    // This mnemonic can't ever accept a imod, but the user wrote
1499    // one (or misspelled another mnemonic).
1500
1501    // FIXME: Issue a nice error.
1502  }
1503
1504  // Add the remaining tokens in the mnemonic.
1505  while (Next != StringRef::npos) {
1506    Start = Next;
1507    Next = Name.find('.', Start + 1);
1508    StringRef ExtraToken = Name.slice(Start, Next);
1509
1510    Operands.push_back(ARMOperand::CreateToken(ExtraToken, NameLoc));
1511  }
1512
1513  // Read the remaining operands.
1514  if (getLexer().isNot(AsmToken::EndOfStatement)) {
1515    // Read the first operand.
1516    if (ParseOperand(Operands, Head)) {
1517      Parser.EatToEndOfStatement();
1518      return true;
1519    }
1520
1521    while (getLexer().is(AsmToken::Comma)) {
1522      Parser.Lex();  // Eat the comma.
1523
1524      // Parse and remember the operand.
1525      if (ParseOperand(Operands, Head)) {
1526        Parser.EatToEndOfStatement();
1527        return true;
1528      }
1529    }
1530  }
1531
1532  if (getLexer().isNot(AsmToken::EndOfStatement)) {
1533    Parser.EatToEndOfStatement();
1534    return TokError("unexpected token in argument list");
1535  }
1536
1537  Parser.Lex(); // Consume the EndOfStatement
1538  return false;
1539}
1540
1541bool ARMAsmParser::
1542MatchAndEmitInstruction(SMLoc IDLoc,
1543                        SmallVectorImpl<MCParsedAsmOperand*> &Operands,
1544                        MCStreamer &Out) {
1545  MCInst Inst;
1546  unsigned ErrorInfo;
1547  MatchResultTy MatchResult, MatchResult2;
1548  MatchResult = MatchInstructionImpl(Operands, Inst, ErrorInfo);
1549  if (MatchResult != Match_Success) {
1550    // If we get a Match_InvalidOperand it might be some arithmetic instruction
1551    // that does not update the condition codes.  So try adding a CCOut operand
1552    // with a value of reg0.
1553    if (MatchResult == Match_InvalidOperand) {
1554      Operands.insert(Operands.begin() + 1,
1555                      ARMOperand::CreateCCOut(0,
1556                                  ((ARMOperand*)Operands[0])->getStartLoc()));
1557      MatchResult2 = MatchInstructionImpl(Operands, Inst, ErrorInfo);
1558      if (MatchResult2 == Match_Success)
1559        MatchResult = Match_Success;
1560      else {
1561        ARMOperand *CCOut = ((ARMOperand*)Operands[1]);
1562        Operands.erase(Operands.begin() + 1);
1563        delete CCOut;
1564      }
1565    }
1566    // If we get a Match_MnemonicFail it might be some arithmetic instruction
1567    // that updates the condition codes if it ends in 's'.  So see if the
1568    // mnemonic ends in 's' and if so try removing the 's' and adding a CCOut
1569    // operand with a value of CPSR.
1570    else if(MatchResult == Match_MnemonicFail) {
1571      // Get the instruction mnemonic, which is the first token.
1572      StringRef Mnemonic = ((ARMOperand*)Operands[0])->getToken();
1573      if (Mnemonic.substr(Mnemonic.size()-1) == "s") {
1574        // removed the 's' from the mnemonic for matching.
1575        StringRef MnemonicNoS = Mnemonic.slice(0, Mnemonic.size() - 1);
1576        SMLoc NameLoc = ((ARMOperand*)Operands[0])->getStartLoc();
1577        ARMOperand *OldMnemonic = ((ARMOperand*)Operands[0]);
1578        Operands.erase(Operands.begin());
1579        delete OldMnemonic;
1580        Operands.insert(Operands.begin(),
1581                        ARMOperand::CreateToken(MnemonicNoS, NameLoc));
1582        Operands.insert(Operands.begin() + 1,
1583                        ARMOperand::CreateCCOut(ARM::CPSR, NameLoc));
1584        MatchResult2 = MatchInstructionImpl(Operands, Inst, ErrorInfo);
1585        if (MatchResult2 == Match_Success)
1586          MatchResult = Match_Success;
1587        else {
1588          ARMOperand *OldMnemonic = ((ARMOperand*)Operands[0]);
1589          Operands.erase(Operands.begin());
1590          delete OldMnemonic;
1591          Operands.insert(Operands.begin(),
1592                          ARMOperand::CreateToken(Mnemonic, NameLoc));
1593          ARMOperand *CCOut = ((ARMOperand*)Operands[1]);
1594          Operands.erase(Operands.begin() + 1);
1595          delete CCOut;
1596        }
1597      }
1598    }
1599  }
1600  switch (MatchResult) {
1601  case Match_Success:
1602    Out.EmitInstruction(Inst);
1603    return false;
1604  case Match_MissingFeature:
1605    Error(IDLoc, "instruction requires a CPU feature not currently enabled");
1606    return true;
1607  case Match_InvalidOperand: {
1608    SMLoc ErrorLoc = IDLoc;
1609    if (ErrorInfo != ~0U) {
1610      if (ErrorInfo >= Operands.size())
1611        return Error(IDLoc, "too few operands for instruction");
1612
1613      ErrorLoc = ((ARMOperand*)Operands[ErrorInfo])->getStartLoc();
1614      if (ErrorLoc == SMLoc()) ErrorLoc = IDLoc;
1615    }
1616
1617    return Error(ErrorLoc, "invalid operand for instruction");
1618  }
1619  case Match_MnemonicFail:
1620    return Error(IDLoc, "unrecognized instruction mnemonic");
1621  case Match_ConversionFail:
1622    return Error(IDLoc, "unable to convert operands to instruction");
1623  }
1624
1625  llvm_unreachable("Implement any new match types added!");
1626  return true;
1627}
1628
1629/// ParseDirective parses the arm specific directives
1630bool ARMAsmParser::ParseDirective(AsmToken DirectiveID) {
1631  StringRef IDVal = DirectiveID.getIdentifier();
1632  if (IDVal == ".word")
1633    return ParseDirectiveWord(4, DirectiveID.getLoc());
1634  else if (IDVal == ".thumb")
1635    return ParseDirectiveThumb(DirectiveID.getLoc());
1636  else if (IDVal == ".thumb_func")
1637    return ParseDirectiveThumbFunc(DirectiveID.getLoc());
1638  else if (IDVal == ".code")
1639    return ParseDirectiveCode(DirectiveID.getLoc());
1640  else if (IDVal == ".syntax")
1641    return ParseDirectiveSyntax(DirectiveID.getLoc());
1642  return true;
1643}
1644
1645/// ParseDirectiveWord
1646///  ::= .word [ expression (, expression)* ]
1647bool ARMAsmParser::ParseDirectiveWord(unsigned Size, SMLoc L) {
1648  if (getLexer().isNot(AsmToken::EndOfStatement)) {
1649    for (;;) {
1650      const MCExpr *Value;
1651      if (getParser().ParseExpression(Value))
1652        return true;
1653
1654      getParser().getStreamer().EmitValue(Value, Size, 0/*addrspace*/);
1655
1656      if (getLexer().is(AsmToken::EndOfStatement))
1657        break;
1658
1659      // FIXME: Improve diagnostic.
1660      if (getLexer().isNot(AsmToken::Comma))
1661        return Error(L, "unexpected token in directive");
1662      Parser.Lex();
1663    }
1664  }
1665
1666  Parser.Lex();
1667  return false;
1668}
1669
1670/// ParseDirectiveThumb
1671///  ::= .thumb
1672bool ARMAsmParser::ParseDirectiveThumb(SMLoc L) {
1673  if (getLexer().isNot(AsmToken::EndOfStatement))
1674    return Error(L, "unexpected token in directive");
1675  Parser.Lex();
1676
1677  // TODO: set thumb mode
1678  // TODO: tell the MC streamer the mode
1679  // getParser().getStreamer().Emit???();
1680  return false;
1681}
1682
1683/// ParseDirectiveThumbFunc
1684///  ::= .thumbfunc symbol_name
1685bool ARMAsmParser::ParseDirectiveThumbFunc(SMLoc L) {
1686  const AsmToken &Tok = Parser.getTok();
1687  if (Tok.isNot(AsmToken::Identifier) && Tok.isNot(AsmToken::String))
1688    return Error(L, "unexpected token in .thumb_func directive");
1689  StringRef Name = Tok.getString();
1690  Parser.Lex(); // Consume the identifier token.
1691  if (getLexer().isNot(AsmToken::EndOfStatement))
1692    return Error(L, "unexpected token in directive");
1693  Parser.Lex();
1694
1695  // Mark symbol as a thumb symbol.
1696  MCSymbol *Func = getParser().getContext().GetOrCreateSymbol(Name);
1697  getParser().getStreamer().EmitThumbFunc(Func);
1698  return false;
1699}
1700
1701/// ParseDirectiveSyntax
1702///  ::= .syntax unified | divided
1703bool ARMAsmParser::ParseDirectiveSyntax(SMLoc L) {
1704  const AsmToken &Tok = Parser.getTok();
1705  if (Tok.isNot(AsmToken::Identifier))
1706    return Error(L, "unexpected token in .syntax directive");
1707  StringRef Mode = Tok.getString();
1708  if (Mode == "unified" || Mode == "UNIFIED")
1709    Parser.Lex();
1710  else if (Mode == "divided" || Mode == "DIVIDED")
1711    return Error(L, "'.syntax divided' arm asssembly not supported");
1712  else
1713    return Error(L, "unrecognized syntax mode in .syntax directive");
1714
1715  if (getLexer().isNot(AsmToken::EndOfStatement))
1716    return Error(Parser.getTok().getLoc(), "unexpected token in directive");
1717  Parser.Lex();
1718
1719  // TODO tell the MC streamer the mode
1720  // getParser().getStreamer().Emit???();
1721  return false;
1722}
1723
1724/// ParseDirectiveCode
1725///  ::= .code 16 | 32
1726bool ARMAsmParser::ParseDirectiveCode(SMLoc L) {
1727  const AsmToken &Tok = Parser.getTok();
1728  if (Tok.isNot(AsmToken::Integer))
1729    return Error(L, "unexpected token in .code directive");
1730  int64_t Val = Parser.getTok().getIntVal();
1731  if (Val == 16)
1732    Parser.Lex();
1733  else if (Val == 32)
1734    Parser.Lex();
1735  else
1736    return Error(L, "invalid operand to .code directive");
1737
1738  if (getLexer().isNot(AsmToken::EndOfStatement))
1739    return Error(Parser.getTok().getLoc(), "unexpected token in directive");
1740  Parser.Lex();
1741
1742  // FIXME: We need to be able switch subtargets at this point so that
1743  // MatchInstructionImpl() will work when it gets the AvailableFeatures which
1744  // includes Feature_IsThumb or not to match the right instructions.  This is
1745  // blocked on the FIXME in llvm-mc.cpp when creating the TargetMachine.
1746  if (Val == 16){
1747    assert(TM.getSubtarget<ARMSubtarget>().isThumb() &&
1748	   "switching between arm/thumb not yet suppported via .code 16)");
1749    getParser().getStreamer().EmitAssemblerFlag(MCAF_Code16);
1750  }
1751  else{
1752    assert(!TM.getSubtarget<ARMSubtarget>().isThumb() &&
1753           "switching between thumb/arm not yet suppported via .code 32)");
1754    getParser().getStreamer().EmitAssemblerFlag(MCAF_Code32);
1755   }
1756
1757  return false;
1758}
1759
1760extern "C" void LLVMInitializeARMAsmLexer();
1761
1762/// Force static initialization.
1763extern "C" void LLVMInitializeARMAsmParser() {
1764  RegisterAsmParser<ARMAsmParser> X(TheARMTarget);
1765  RegisterAsmParser<ARMAsmParser> Y(TheThumbTarget);
1766  LLVMInitializeARMAsmLexer();
1767}
1768
1769#define GET_REGISTER_MATCHER
1770#define GET_MATCHER_IMPLEMENTATION
1771#include "ARMGenAsmMatcher.inc"
1772