ARMAsmParser.cpp revision f922c47143d247cbae14b294a0bada139bcd35f6
1//===-- ARMAsmParser.cpp - Parse ARM assembly to MCInst instructions ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9
10#include "ARM.h"
11#include "ARMAddressingModes.h"
12#include "ARMMCExpr.h"
13#include "ARMBaseRegisterInfo.h"
14#include "ARMSubtarget.h"
15#include "llvm/MC/MCParser/MCAsmLexer.h"
16#include "llvm/MC/MCParser/MCAsmParser.h"
17#include "llvm/MC/MCParser/MCParsedAsmOperand.h"
18#include "llvm/MC/MCContext.h"
19#include "llvm/MC/MCStreamer.h"
20#include "llvm/MC/MCExpr.h"
21#include "llvm/MC/MCInst.h"
22#include "llvm/Target/TargetRegistry.h"
23#include "llvm/Target/TargetAsmParser.h"
24#include "llvm/Support/SourceMgr.h"
25#include "llvm/Support/raw_ostream.h"
26#include "llvm/ADT/SmallVector.h"
27#include "llvm/ADT/StringExtras.h"
28#include "llvm/ADT/StringSwitch.h"
29#include "llvm/ADT/Twine.h"
30using namespace llvm;
31
32/// Shift types used for register controlled shifts in ARM memory addressing.
33enum ShiftType {
34  Lsl,
35  Lsr,
36  Asr,
37  Ror,
38  Rrx
39};
40
41namespace {
42
43class ARMOperand;
44
45class ARMAsmParser : public TargetAsmParser {
46  MCAsmParser &Parser;
47  TargetMachine &TM;
48
49  MCAsmParser &getParser() const { return Parser; }
50  MCAsmLexer &getLexer() const { return Parser.getLexer(); }
51
52  void Warning(SMLoc L, const Twine &Msg) { Parser.Warning(L, Msg); }
53  bool Error(SMLoc L, const Twine &Msg) { return Parser.Error(L, Msg); }
54
55  int TryParseRegister();
56  virtual bool ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc);
57  bool TryParseRegisterWithWriteBack(SmallVectorImpl<MCParsedAsmOperand*> &);
58  bool ParseRegisterList(SmallVectorImpl<MCParsedAsmOperand*> &);
59  bool ParseMemory(SmallVectorImpl<MCParsedAsmOperand*> &);
60  bool ParseOperand(SmallVectorImpl<MCParsedAsmOperand*> &, StringRef Mnemonic);
61  bool ParsePrefix(ARMMCExpr::VariantKind &RefKind);
62  const MCExpr *ApplyPrefixToExpr(const MCExpr *E,
63                                  MCSymbolRefExpr::VariantKind Variant);
64
65
66  bool ParseMemoryOffsetReg(bool &Negative,
67                            bool &OffsetRegShifted,
68                            enum ShiftType &ShiftType,
69                            const MCExpr *&ShiftAmount,
70                            const MCExpr *&Offset,
71                            bool &OffsetIsReg,
72                            int &OffsetRegNum,
73                            SMLoc &E);
74  bool ParseShift(enum ShiftType &St, const MCExpr *&ShiftAmount, SMLoc &E);
75  bool ParseDirectiveWord(unsigned Size, SMLoc L);
76  bool ParseDirectiveThumb(SMLoc L);
77  bool ParseDirectiveThumbFunc(SMLoc L);
78  bool ParseDirectiveCode(SMLoc L);
79  bool ParseDirectiveSyntax(SMLoc L);
80
81  bool MatchAndEmitInstruction(SMLoc IDLoc,
82                               SmallVectorImpl<MCParsedAsmOperand*> &Operands,
83                               MCStreamer &Out);
84  void GetMnemonicAcceptInfo(StringRef Mnemonic, bool &CanAcceptCarrySet,
85                             bool &CanAcceptPredicationCode);
86
87  /// @name Auto-generated Match Functions
88  /// {
89
90#define GET_ASSEMBLER_HEADER
91#include "ARMGenAsmMatcher.inc"
92
93  /// }
94
95  OperandMatchResultTy tryParseCoprocNumOperand(
96    SmallVectorImpl<MCParsedAsmOperand*>&);
97  OperandMatchResultTy tryParseCoprocRegOperand(
98    SmallVectorImpl<MCParsedAsmOperand*>&);
99  OperandMatchResultTy tryParseMemBarrierOptOperand(
100    SmallVectorImpl<MCParsedAsmOperand*> &);
101
102public:
103  ARMAsmParser(const Target &T, MCAsmParser &_Parser, TargetMachine &_TM)
104    : TargetAsmParser(T), Parser(_Parser), TM(_TM) {
105      // Initialize the set of available features.
106      setAvailableFeatures(ComputeAvailableFeatures(
107          &TM.getSubtarget<ARMSubtarget>()));
108    }
109
110  virtual bool ParseInstruction(StringRef Name, SMLoc NameLoc,
111                                SmallVectorImpl<MCParsedAsmOperand*> &Operands);
112  virtual bool ParseDirective(AsmToken DirectiveID);
113};
114} // end anonymous namespace
115
116namespace {
117
118/// ARMOperand - Instances of this class represent a parsed ARM machine
119/// instruction.
120class ARMOperand : public MCParsedAsmOperand {
121  enum KindTy {
122    CondCode,
123    CCOut,
124    CoprocNum,
125    CoprocReg,
126    Immediate,
127    MemBarrierOpt,
128    Memory,
129    Register,
130    RegisterList,
131    DPRRegisterList,
132    SPRRegisterList,
133    Token
134  } Kind;
135
136  SMLoc StartLoc, EndLoc;
137  SmallVector<unsigned, 8> Registers;
138
139  union {
140    struct {
141      ARMCC::CondCodes Val;
142    } CC;
143
144    struct {
145      ARM_MB::MemBOpt Val;
146    } MBOpt;
147
148    struct {
149      unsigned Val;
150    } Cop;
151
152    struct {
153      const char *Data;
154      unsigned Length;
155    } Tok;
156
157    struct {
158      unsigned RegNum;
159    } Reg;
160
161    struct {
162      const MCExpr *Val;
163    } Imm;
164
165    /// Combined record for all forms of ARM address expressions.
166    struct {
167      unsigned BaseRegNum;
168      union {
169        unsigned RegNum;     ///< Offset register num, when OffsetIsReg.
170        const MCExpr *Value; ///< Offset value, when !OffsetIsReg.
171      } Offset;
172      const MCExpr *ShiftAmount;     // used when OffsetRegShifted is true
173      enum ShiftType ShiftType;      // used when OffsetRegShifted is true
174      unsigned OffsetRegShifted : 1; // only used when OffsetIsReg is true
175      unsigned Preindexed       : 1;
176      unsigned Postindexed      : 1;
177      unsigned OffsetIsReg      : 1;
178      unsigned Negative         : 1; // only used when OffsetIsReg is true
179      unsigned Writeback        : 1;
180    } Mem;
181  };
182
183  ARMOperand(KindTy K) : MCParsedAsmOperand(), Kind(K) {}
184public:
185  ARMOperand(const ARMOperand &o) : MCParsedAsmOperand() {
186    Kind = o.Kind;
187    StartLoc = o.StartLoc;
188    EndLoc = o.EndLoc;
189    switch (Kind) {
190    case CondCode:
191      CC = o.CC;
192      break;
193    case Token:
194      Tok = o.Tok;
195      break;
196    case CCOut:
197    case Register:
198      Reg = o.Reg;
199      break;
200    case RegisterList:
201    case DPRRegisterList:
202    case SPRRegisterList:
203      Registers = o.Registers;
204      break;
205    case CoprocNum:
206    case CoprocReg:
207      Cop = o.Cop;
208      break;
209    case Immediate:
210      Imm = o.Imm;
211      break;
212    case MemBarrierOpt:
213      MBOpt = o.MBOpt;
214      break;
215    case Memory:
216      Mem = o.Mem;
217      break;
218    }
219  }
220
221  /// getStartLoc - Get the location of the first token of this operand.
222  SMLoc getStartLoc() const { return StartLoc; }
223  /// getEndLoc - Get the location of the last token of this operand.
224  SMLoc getEndLoc() const { return EndLoc; }
225
226  ARMCC::CondCodes getCondCode() const {
227    assert(Kind == CondCode && "Invalid access!");
228    return CC.Val;
229  }
230
231  unsigned getCoproc() const {
232    assert((Kind == CoprocNum || Kind == CoprocReg) && "Invalid access!");
233    return Cop.Val;
234  }
235
236  StringRef getToken() const {
237    assert(Kind == Token && "Invalid access!");
238    return StringRef(Tok.Data, Tok.Length);
239  }
240
241  unsigned getReg() const {
242    assert((Kind == Register || Kind == CCOut) && "Invalid access!");
243    return Reg.RegNum;
244  }
245
246  const SmallVectorImpl<unsigned> &getRegList() const {
247    assert((Kind == RegisterList || Kind == DPRRegisterList ||
248            Kind == SPRRegisterList) && "Invalid access!");
249    return Registers;
250  }
251
252  const MCExpr *getImm() const {
253    assert(Kind == Immediate && "Invalid access!");
254    return Imm.Val;
255  }
256
257  ARM_MB::MemBOpt getMemBarrierOpt() const {
258    assert(Kind == MemBarrierOpt && "Invalid access!");
259    return MBOpt.Val;
260  }
261
262  /// @name Memory Operand Accessors
263  /// @{
264
265  unsigned getMemBaseRegNum() const {
266    return Mem.BaseRegNum;
267  }
268  unsigned getMemOffsetRegNum() const {
269    assert(Mem.OffsetIsReg && "Invalid access!");
270    return Mem.Offset.RegNum;
271  }
272  const MCExpr *getMemOffset() const {
273    assert(!Mem.OffsetIsReg && "Invalid access!");
274    return Mem.Offset.Value;
275  }
276  unsigned getMemOffsetRegShifted() const {
277    assert(Mem.OffsetIsReg && "Invalid access!");
278    return Mem.OffsetRegShifted;
279  }
280  const MCExpr *getMemShiftAmount() const {
281    assert(Mem.OffsetIsReg && Mem.OffsetRegShifted && "Invalid access!");
282    return Mem.ShiftAmount;
283  }
284  enum ShiftType getMemShiftType() const {
285    assert(Mem.OffsetIsReg && Mem.OffsetRegShifted && "Invalid access!");
286    return Mem.ShiftType;
287  }
288  bool getMemPreindexed() const { return Mem.Preindexed; }
289  bool getMemPostindexed() const { return Mem.Postindexed; }
290  bool getMemOffsetIsReg() const { return Mem.OffsetIsReg; }
291  bool getMemNegative() const { return Mem.Negative; }
292  bool getMemWriteback() const { return Mem.Writeback; }
293
294  /// @}
295
296  bool isCoprocNum() const { return Kind == CoprocNum; }
297  bool isCoprocReg() const { return Kind == CoprocReg; }
298  bool isCondCode() const { return Kind == CondCode; }
299  bool isCCOut() const { return Kind == CCOut; }
300  bool isImm() const { return Kind == Immediate; }
301  bool isReg() const { return Kind == Register; }
302  bool isRegList() const { return Kind == RegisterList; }
303  bool isDPRRegList() const { return Kind == DPRRegisterList; }
304  bool isSPRRegList() const { return Kind == SPRRegisterList; }
305  bool isToken() const { return Kind == Token; }
306  bool isMemBarrierOpt() const { return Kind == MemBarrierOpt; }
307  bool isMemory() const { return Kind == Memory; }
308  bool isMemMode5() const {
309    if (!isMemory() || getMemOffsetIsReg() || getMemWriteback() ||
310        getMemNegative())
311      return false;
312
313    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getMemOffset());
314    if (!CE) return false;
315
316    // The offset must be a multiple of 4 in the range 0-1020.
317    int64_t Value = CE->getValue();
318    return ((Value & 0x3) == 0 && Value <= 1020 && Value >= -1020);
319  }
320  bool isMemModeRegThumb() const {
321    if (!isMemory() || !getMemOffsetIsReg() || getMemWriteback())
322      return false;
323    return true;
324  }
325  bool isMemModeImmThumb() const {
326    if (!isMemory() || getMemOffsetIsReg() || getMemWriteback())
327      return false;
328
329    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getMemOffset());
330    if (!CE) return false;
331
332    // The offset must be a multiple of 4 in the range 0-124.
333    uint64_t Value = CE->getValue();
334    return ((Value & 0x3) == 0 && Value <= 124);
335  }
336
337  void addExpr(MCInst &Inst, const MCExpr *Expr) const {
338    // Add as immediates when possible.  Null MCExpr = 0.
339    if (Expr == 0)
340      Inst.addOperand(MCOperand::CreateImm(0));
341    else if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr))
342      Inst.addOperand(MCOperand::CreateImm(CE->getValue()));
343    else
344      Inst.addOperand(MCOperand::CreateExpr(Expr));
345  }
346
347  void addCondCodeOperands(MCInst &Inst, unsigned N) const {
348    assert(N == 2 && "Invalid number of operands!");
349    Inst.addOperand(MCOperand::CreateImm(unsigned(getCondCode())));
350    unsigned RegNum = getCondCode() == ARMCC::AL ? 0: ARM::CPSR;
351    Inst.addOperand(MCOperand::CreateReg(RegNum));
352  }
353
354  void addCoprocNumOperands(MCInst &Inst, unsigned N) const {
355    assert(N == 1 && "Invalid number of operands!");
356    Inst.addOperand(MCOperand::CreateImm(getCoproc()));
357  }
358
359  void addCoprocRegOperands(MCInst &Inst, unsigned N) const {
360    assert(N == 1 && "Invalid number of operands!");
361    Inst.addOperand(MCOperand::CreateImm(getCoproc()));
362  }
363
364  void addCCOutOperands(MCInst &Inst, unsigned N) const {
365    assert(N == 1 && "Invalid number of operands!");
366    Inst.addOperand(MCOperand::CreateReg(getReg()));
367  }
368
369  void addRegOperands(MCInst &Inst, unsigned N) const {
370    assert(N == 1 && "Invalid number of operands!");
371    Inst.addOperand(MCOperand::CreateReg(getReg()));
372  }
373
374  void addRegListOperands(MCInst &Inst, unsigned N) const {
375    assert(N == 1 && "Invalid number of operands!");
376    const SmallVectorImpl<unsigned> &RegList = getRegList();
377    for (SmallVectorImpl<unsigned>::const_iterator
378           I = RegList.begin(), E = RegList.end(); I != E; ++I)
379      Inst.addOperand(MCOperand::CreateReg(*I));
380  }
381
382  void addDPRRegListOperands(MCInst &Inst, unsigned N) const {
383    addRegListOperands(Inst, N);
384  }
385
386  void addSPRRegListOperands(MCInst &Inst, unsigned N) const {
387    addRegListOperands(Inst, N);
388  }
389
390  void addImmOperands(MCInst &Inst, unsigned N) const {
391    assert(N == 1 && "Invalid number of operands!");
392    addExpr(Inst, getImm());
393  }
394
395  void addMemBarrierOptOperands(MCInst &Inst, unsigned N) const {
396    assert(N == 1 && "Invalid number of operands!");
397    Inst.addOperand(MCOperand::CreateImm(unsigned(getMemBarrierOpt())));
398  }
399
400  void addMemMode5Operands(MCInst &Inst, unsigned N) const {
401    assert(N == 2 && isMemMode5() && "Invalid number of operands!");
402
403    Inst.addOperand(MCOperand::CreateReg(getMemBaseRegNum()));
404    assert(!getMemOffsetIsReg() && "Invalid mode 5 operand");
405
406    // FIXME: #-0 is encoded differently than #0. Does the parser preserve
407    // the difference?
408    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getMemOffset());
409    assert(CE && "Non-constant mode 5 offset operand!");
410
411    // The MCInst offset operand doesn't include the low two bits (like
412    // the instruction encoding).
413    int64_t Offset = CE->getValue() / 4;
414    if (Offset >= 0)
415      Inst.addOperand(MCOperand::CreateImm(ARM_AM::getAM5Opc(ARM_AM::add,
416                                                             Offset)));
417    else
418      Inst.addOperand(MCOperand::CreateImm(ARM_AM::getAM5Opc(ARM_AM::sub,
419                                                             -Offset)));
420  }
421
422  void addMemModeRegThumbOperands(MCInst &Inst, unsigned N) const {
423    assert(N == 2 && isMemModeRegThumb() && "Invalid number of operands!");
424    Inst.addOperand(MCOperand::CreateReg(getMemBaseRegNum()));
425    Inst.addOperand(MCOperand::CreateReg(getMemOffsetRegNum()));
426  }
427
428  void addMemModeImmThumbOperands(MCInst &Inst, unsigned N) const {
429    assert(N == 2 && isMemModeImmThumb() && "Invalid number of operands!");
430    Inst.addOperand(MCOperand::CreateReg(getMemBaseRegNum()));
431    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getMemOffset());
432    assert(CE && "Non-constant mode offset operand!");
433    Inst.addOperand(MCOperand::CreateImm(CE->getValue()));
434  }
435
436  virtual void dump(raw_ostream &OS) const;
437
438  static ARMOperand *CreateCondCode(ARMCC::CondCodes CC, SMLoc S) {
439    ARMOperand *Op = new ARMOperand(CondCode);
440    Op->CC.Val = CC;
441    Op->StartLoc = S;
442    Op->EndLoc = S;
443    return Op;
444  }
445
446  static ARMOperand *CreateCoprocNum(unsigned CopVal, SMLoc S) {
447    ARMOperand *Op = new ARMOperand(CoprocNum);
448    Op->Cop.Val = CopVal;
449    Op->StartLoc = S;
450    Op->EndLoc = S;
451    return Op;
452  }
453
454  static ARMOperand *CreateCoprocReg(unsigned CopVal, SMLoc S) {
455    ARMOperand *Op = new ARMOperand(CoprocReg);
456    Op->Cop.Val = CopVal;
457    Op->StartLoc = S;
458    Op->EndLoc = S;
459    return Op;
460  }
461
462  static ARMOperand *CreateCCOut(unsigned RegNum, SMLoc S) {
463    ARMOperand *Op = new ARMOperand(CCOut);
464    Op->Reg.RegNum = RegNum;
465    Op->StartLoc = S;
466    Op->EndLoc = S;
467    return Op;
468  }
469
470  static ARMOperand *CreateToken(StringRef Str, SMLoc S) {
471    ARMOperand *Op = new ARMOperand(Token);
472    Op->Tok.Data = Str.data();
473    Op->Tok.Length = Str.size();
474    Op->StartLoc = S;
475    Op->EndLoc = S;
476    return Op;
477  }
478
479  static ARMOperand *CreateReg(unsigned RegNum, SMLoc S, SMLoc E) {
480    ARMOperand *Op = new ARMOperand(Register);
481    Op->Reg.RegNum = RegNum;
482    Op->StartLoc = S;
483    Op->EndLoc = E;
484    return Op;
485  }
486
487  static ARMOperand *
488  CreateRegList(const SmallVectorImpl<std::pair<unsigned, SMLoc> > &Regs,
489                SMLoc StartLoc, SMLoc EndLoc) {
490    KindTy Kind = RegisterList;
491
492    if (ARM::DPRRegClass.contains(Regs.front().first))
493      Kind = DPRRegisterList;
494    else if (ARM::SPRRegClass.contains(Regs.front().first))
495      Kind = SPRRegisterList;
496
497    ARMOperand *Op = new ARMOperand(Kind);
498    for (SmallVectorImpl<std::pair<unsigned, SMLoc> >::const_iterator
499           I = Regs.begin(), E = Regs.end(); I != E; ++I)
500      Op->Registers.push_back(I->first);
501    array_pod_sort(Op->Registers.begin(), Op->Registers.end());
502    Op->StartLoc = StartLoc;
503    Op->EndLoc = EndLoc;
504    return Op;
505  }
506
507  static ARMOperand *CreateImm(const MCExpr *Val, SMLoc S, SMLoc E) {
508    ARMOperand *Op = new ARMOperand(Immediate);
509    Op->Imm.Val = Val;
510    Op->StartLoc = S;
511    Op->EndLoc = E;
512    return Op;
513  }
514
515  static ARMOperand *CreateMem(unsigned BaseRegNum, bool OffsetIsReg,
516                               const MCExpr *Offset, int OffsetRegNum,
517                               bool OffsetRegShifted, enum ShiftType ShiftType,
518                               const MCExpr *ShiftAmount, bool Preindexed,
519                               bool Postindexed, bool Negative, bool Writeback,
520                               SMLoc S, SMLoc E) {
521    assert((OffsetRegNum == -1 || OffsetIsReg) &&
522           "OffsetRegNum must imply OffsetIsReg!");
523    assert((!OffsetRegShifted || OffsetIsReg) &&
524           "OffsetRegShifted must imply OffsetIsReg!");
525    assert((Offset || OffsetIsReg) &&
526           "Offset must exists unless register offset is used!");
527    assert((!ShiftAmount || (OffsetIsReg && OffsetRegShifted)) &&
528           "Cannot have shift amount without shifted register offset!");
529    assert((!Offset || !OffsetIsReg) &&
530           "Cannot have expression offset and register offset!");
531
532    ARMOperand *Op = new ARMOperand(Memory);
533    Op->Mem.BaseRegNum = BaseRegNum;
534    Op->Mem.OffsetIsReg = OffsetIsReg;
535    if (OffsetIsReg)
536      Op->Mem.Offset.RegNum = OffsetRegNum;
537    else
538      Op->Mem.Offset.Value = Offset;
539    Op->Mem.OffsetRegShifted = OffsetRegShifted;
540    Op->Mem.ShiftType = ShiftType;
541    Op->Mem.ShiftAmount = ShiftAmount;
542    Op->Mem.Preindexed = Preindexed;
543    Op->Mem.Postindexed = Postindexed;
544    Op->Mem.Negative = Negative;
545    Op->Mem.Writeback = Writeback;
546
547    Op->StartLoc = S;
548    Op->EndLoc = E;
549    return Op;
550  }
551
552  static ARMOperand *CreateMemBarrierOpt(ARM_MB::MemBOpt Opt, SMLoc S) {
553    ARMOperand *Op = new ARMOperand(MemBarrierOpt);
554    Op->MBOpt.Val = Opt;
555    Op->StartLoc = S;
556    Op->EndLoc = S;
557    return Op;
558  }
559};
560
561} // end anonymous namespace.
562
563void ARMOperand::dump(raw_ostream &OS) const {
564  switch (Kind) {
565  case CondCode:
566    OS << "<ARMCC::" << ARMCondCodeToString(getCondCode()) << ">";
567    break;
568  case CCOut:
569    OS << "<ccout " << getReg() << ">";
570    break;
571  case CoprocNum:
572    OS << "<coprocessor number: " << getCoproc() << ">";
573    break;
574  case CoprocReg:
575    OS << "<coprocessor register: " << getCoproc() << ">";
576    break;
577  case Immediate:
578    getImm()->print(OS);
579    break;
580  case MemBarrierOpt:
581    OS << "<ARM_MB::" << MemBOptToString(getMemBarrierOpt()) << ">";
582    break;
583  case Memory:
584    OS << "<memory "
585       << "base:" << getMemBaseRegNum();
586    if (getMemOffsetIsReg()) {
587      OS << " offset:<register " << getMemOffsetRegNum();
588      if (getMemOffsetRegShifted()) {
589        OS << " offset-shift-type:" << getMemShiftType();
590        OS << " offset-shift-amount:" << *getMemShiftAmount();
591      }
592    } else {
593      OS << " offset:" << *getMemOffset();
594    }
595    if (getMemOffsetIsReg())
596      OS << " (offset-is-reg)";
597    if (getMemPreindexed())
598      OS << " (pre-indexed)";
599    if (getMemPostindexed())
600      OS << " (post-indexed)";
601    if (getMemNegative())
602      OS << " (negative)";
603    if (getMemWriteback())
604      OS << " (writeback)";
605    OS << ">";
606    break;
607  case Register:
608    OS << "<register " << getReg() << ">";
609    break;
610  case RegisterList:
611  case DPRRegisterList:
612  case SPRRegisterList: {
613    OS << "<register_list ";
614
615    const SmallVectorImpl<unsigned> &RegList = getRegList();
616    for (SmallVectorImpl<unsigned>::const_iterator
617           I = RegList.begin(), E = RegList.end(); I != E; ) {
618      OS << *I;
619      if (++I < E) OS << ", ";
620    }
621
622    OS << ">";
623    break;
624  }
625  case Token:
626    OS << "'" << getToken() << "'";
627    break;
628  }
629}
630
631/// @name Auto-generated Match Functions
632/// {
633
634static unsigned MatchRegisterName(StringRef Name);
635
636/// }
637
638bool ARMAsmParser::ParseRegister(unsigned &RegNo,
639                                 SMLoc &StartLoc, SMLoc &EndLoc) {
640  RegNo = TryParseRegister();
641
642  return (RegNo == (unsigned)-1);
643}
644
645/// Try to parse a register name.  The token must be an Identifier when called,
646/// and if it is a register name the token is eaten and the register number is
647/// returned.  Otherwise return -1.
648///
649int ARMAsmParser::TryParseRegister() {
650  const AsmToken &Tok = Parser.getTok();
651  assert(Tok.is(AsmToken::Identifier) && "Token is not an Identifier");
652
653  // FIXME: Validate register for the current architecture; we have to do
654  // validation later, so maybe there is no need for this here.
655  std::string upperCase = Tok.getString().str();
656  std::string lowerCase = LowercaseString(upperCase);
657  unsigned RegNum = MatchRegisterName(lowerCase);
658  if (!RegNum) {
659    RegNum = StringSwitch<unsigned>(lowerCase)
660      .Case("r13", ARM::SP)
661      .Case("r14", ARM::LR)
662      .Case("r15", ARM::PC)
663      .Case("ip", ARM::R12)
664      .Default(0);
665  }
666  if (!RegNum) return -1;
667
668  Parser.Lex(); // Eat identifier token.
669  return RegNum;
670}
671
672/// Try to parse a register name.  The token must be an Identifier when called.
673/// If it's a register, an AsmOperand is created. Another AsmOperand is created
674/// if there is a "writeback". 'true' if it's not a register.
675///
676/// TODO this is likely to change to allow different register types and or to
677/// parse for a specific register type.
678bool ARMAsmParser::
679TryParseRegisterWithWriteBack(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
680  SMLoc S = Parser.getTok().getLoc();
681  int RegNo = TryParseRegister();
682  if (RegNo == -1)
683    return true;
684
685  Operands.push_back(ARMOperand::CreateReg(RegNo, S, Parser.getTok().getLoc()));
686
687  const AsmToken &ExclaimTok = Parser.getTok();
688  if (ExclaimTok.is(AsmToken::Exclaim)) {
689    Operands.push_back(ARMOperand::CreateToken(ExclaimTok.getString(),
690                                               ExclaimTok.getLoc()));
691    Parser.Lex(); // Eat exclaim token
692  }
693
694  return false;
695}
696
697/// MatchCoprocessorOperandName - Try to parse an coprocessor related
698/// instruction with a symbolic operand name. Example: "p1", "p7", "c3",
699/// "c5", ...
700static int MatchCoprocessorOperandName(StringRef Name, char CoprocOp) {
701  // Use the same layout as the tablegen'erated register name matcher. Ugly,
702  // but efficient.
703  switch (Name.size()) {
704  default: break;
705  case 2:
706    if (Name[0] != CoprocOp)
707      return -1;
708    switch (Name[1]) {
709    default:  return -1;
710    case '0': return 0;
711    case '1': return 1;
712    case '2': return 2;
713    case '3': return 3;
714    case '4': return 4;
715    case '5': return 5;
716    case '6': return 6;
717    case '7': return 7;
718    case '8': return 8;
719    case '9': return 9;
720    }
721    break;
722  case 3:
723    if (Name[0] != CoprocOp || Name[1] != '1')
724      return -1;
725    switch (Name[2]) {
726    default:  return -1;
727    case '0': return 10;
728    case '1': return 11;
729    case '2': return 12;
730    case '3': return 13;
731    case '4': return 14;
732    case '5': return 15;
733    }
734    break;
735  }
736
737  llvm_unreachable("Unhandled coprocessor operand string!");
738  return -1;
739}
740
741/// tryParseCoprocNumOperand - Try to parse an coprocessor number operand. The
742/// token must be an Identifier when called, and if it is a coprocessor
743/// number, the token is eaten and the operand is added to the operand list.
744ARMAsmParser::OperandMatchResultTy ARMAsmParser::
745tryParseCoprocNumOperand(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
746  SMLoc S = Parser.getTok().getLoc();
747  const AsmToken &Tok = Parser.getTok();
748  assert(Tok.is(AsmToken::Identifier) && "Token is not an Identifier");
749
750  int Num = MatchCoprocessorOperandName(Tok.getString(), 'p');
751  if (Num == -1)
752    return MatchOperand_NoMatch;
753
754  Parser.Lex(); // Eat identifier token.
755  Operands.push_back(ARMOperand::CreateCoprocNum(Num, S));
756  return MatchOperand_Success;
757}
758
759/// tryParseCoprocRegOperand - Try to parse an coprocessor register operand. The
760/// token must be an Identifier when called, and if it is a coprocessor
761/// number, the token is eaten and the operand is added to the operand list.
762ARMAsmParser::OperandMatchResultTy ARMAsmParser::
763tryParseCoprocRegOperand(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
764  SMLoc S = Parser.getTok().getLoc();
765  const AsmToken &Tok = Parser.getTok();
766  assert(Tok.is(AsmToken::Identifier) && "Token is not an Identifier");
767
768  int Reg = MatchCoprocessorOperandName(Tok.getString(), 'c');
769  if (Reg == -1)
770    return MatchOperand_NoMatch;
771
772  Parser.Lex(); // Eat identifier token.
773  Operands.push_back(ARMOperand::CreateCoprocReg(Reg, S));
774  return MatchOperand_Success;
775}
776
777/// Parse a register list, return it if successful else return null.  The first
778/// token must be a '{' when called.
779bool ARMAsmParser::
780ParseRegisterList(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
781  assert(Parser.getTok().is(AsmToken::LCurly) &&
782         "Token is not a Left Curly Brace");
783  SMLoc S = Parser.getTok().getLoc();
784
785  // Read the rest of the registers in the list.
786  unsigned PrevRegNum = 0;
787  SmallVector<std::pair<unsigned, SMLoc>, 32> Registers;
788
789  do {
790    bool IsRange = Parser.getTok().is(AsmToken::Minus);
791    Parser.Lex(); // Eat non-identifier token.
792
793    const AsmToken &RegTok = Parser.getTok();
794    SMLoc RegLoc = RegTok.getLoc();
795    if (RegTok.isNot(AsmToken::Identifier)) {
796      Error(RegLoc, "register expected");
797      return true;
798    }
799
800    int RegNum = TryParseRegister();
801    if (RegNum == -1) {
802      Error(RegLoc, "register expected");
803      return true;
804    }
805
806    if (IsRange) {
807      int Reg = PrevRegNum;
808      do {
809        ++Reg;
810        Registers.push_back(std::make_pair(Reg, RegLoc));
811      } while (Reg != RegNum);
812    } else {
813      Registers.push_back(std::make_pair(RegNum, RegLoc));
814    }
815
816    PrevRegNum = RegNum;
817  } while (Parser.getTok().is(AsmToken::Comma) ||
818           Parser.getTok().is(AsmToken::Minus));
819
820  // Process the right curly brace of the list.
821  const AsmToken &RCurlyTok = Parser.getTok();
822  if (RCurlyTok.isNot(AsmToken::RCurly)) {
823    Error(RCurlyTok.getLoc(), "'}' expected");
824    return true;
825  }
826
827  SMLoc E = RCurlyTok.getLoc();
828  Parser.Lex(); // Eat right curly brace token.
829
830  // Verify the register list.
831  SmallVectorImpl<std::pair<unsigned, SMLoc> >::const_iterator
832    RI = Registers.begin(), RE = Registers.end();
833
834  unsigned HighRegNum = getARMRegisterNumbering(RI->first);
835  bool EmittedWarning = false;
836
837  DenseMap<unsigned, bool> RegMap;
838  RegMap[HighRegNum] = true;
839
840  for (++RI; RI != RE; ++RI) {
841    const std::pair<unsigned, SMLoc> &RegInfo = *RI;
842    unsigned Reg = getARMRegisterNumbering(RegInfo.first);
843
844    if (RegMap[Reg]) {
845      Error(RegInfo.second, "register duplicated in register list");
846      return true;
847    }
848
849    if (!EmittedWarning && Reg < HighRegNum)
850      Warning(RegInfo.second,
851              "register not in ascending order in register list");
852
853    RegMap[Reg] = true;
854    HighRegNum = std::max(Reg, HighRegNum);
855  }
856
857  Operands.push_back(ARMOperand::CreateRegList(Registers, S, E));
858  return false;
859}
860
861/// tryParseMemBarrierOptOperand - Try to parse DSB/DMB data barrier options.
862ARMAsmParser::OperandMatchResultTy ARMAsmParser::
863tryParseMemBarrierOptOperand(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
864  SMLoc S = Parser.getTok().getLoc();
865  const AsmToken &Tok = Parser.getTok();
866  assert(Tok.is(AsmToken::Identifier) && "Token is not an Identifier");
867  StringRef OptStr = Tok.getString();
868
869  unsigned Opt = StringSwitch<unsigned>(OptStr.slice(0, OptStr.size()))
870    .Case("sy",    ARM_MB::SY)
871    .Case("st",    ARM_MB::ST)
872    .Case("ish",   ARM_MB::ISH)
873    .Case("ishst", ARM_MB::ISHST)
874    .Case("nsh",   ARM_MB::NSH)
875    .Case("nshst", ARM_MB::NSHST)
876    .Case("osh",   ARM_MB::OSH)
877    .Case("oshst", ARM_MB::OSHST)
878    .Default(~0U);
879
880  if (Opt == ~0U)
881    return MatchOperand_NoMatch;
882
883  Parser.Lex(); // Eat identifier token.
884  Operands.push_back(ARMOperand::CreateMemBarrierOpt((ARM_MB::MemBOpt)Opt, S));
885  return MatchOperand_Success;
886}
887
888/// Parse an ARM memory expression, return false if successful else return true
889/// or an error.  The first token must be a '[' when called.
890///
891/// TODO Only preindexing and postindexing addressing are started, unindexed
892/// with option, etc are still to do.
893bool ARMAsmParser::
894ParseMemory(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
895  SMLoc S, E;
896  assert(Parser.getTok().is(AsmToken::LBrac) &&
897         "Token is not a Left Bracket");
898  S = Parser.getTok().getLoc();
899  Parser.Lex(); // Eat left bracket token.
900
901  const AsmToken &BaseRegTok = Parser.getTok();
902  if (BaseRegTok.isNot(AsmToken::Identifier)) {
903    Error(BaseRegTok.getLoc(), "register expected");
904    return true;
905  }
906  int BaseRegNum = TryParseRegister();
907  if (BaseRegNum == -1) {
908    Error(BaseRegTok.getLoc(), "register expected");
909    return true;
910  }
911
912  // The next token must either be a comma or a closing bracket.
913  const AsmToken &Tok = Parser.getTok();
914  if (!Tok.is(AsmToken::Comma) && !Tok.is(AsmToken::RBrac))
915    return true;
916
917  bool Preindexed = false;
918  bool Postindexed = false;
919  bool OffsetIsReg = false;
920  bool Negative = false;
921  bool Writeback = false;
922  ARMOperand *WBOp = 0;
923  int OffsetRegNum = -1;
924  bool OffsetRegShifted = false;
925  enum ShiftType ShiftType = Lsl;
926  const MCExpr *ShiftAmount = 0;
927  const MCExpr *Offset = 0;
928
929  // First look for preindexed address forms, that is after the "[Rn" we now
930  // have to see if the next token is a comma.
931  if (Tok.is(AsmToken::Comma)) {
932    Preindexed = true;
933    Parser.Lex(); // Eat comma token.
934
935    if (ParseMemoryOffsetReg(Negative, OffsetRegShifted, ShiftType, ShiftAmount,
936                             Offset, OffsetIsReg, OffsetRegNum, E))
937      return true;
938    const AsmToken &RBracTok = Parser.getTok();
939    if (RBracTok.isNot(AsmToken::RBrac)) {
940      Error(RBracTok.getLoc(), "']' expected");
941      return true;
942    }
943    E = RBracTok.getLoc();
944    Parser.Lex(); // Eat right bracket token.
945
946    const AsmToken &ExclaimTok = Parser.getTok();
947    if (ExclaimTok.is(AsmToken::Exclaim)) {
948      WBOp = ARMOperand::CreateToken(ExclaimTok.getString(),
949                                     ExclaimTok.getLoc());
950      Writeback = true;
951      Parser.Lex(); // Eat exclaim token
952    }
953  } else {
954    // The "[Rn" we have so far was not followed by a comma.
955
956    // If there's anything other than the right brace, this is a post indexing
957    // addressing form.
958    E = Tok.getLoc();
959    Parser.Lex(); // Eat right bracket token.
960
961    const AsmToken &NextTok = Parser.getTok();
962
963    if (NextTok.isNot(AsmToken::EndOfStatement)) {
964      Postindexed = true;
965      Writeback = true;
966
967      if (NextTok.isNot(AsmToken::Comma)) {
968        Error(NextTok.getLoc(), "',' expected");
969        return true;
970      }
971
972      Parser.Lex(); // Eat comma token.
973
974      if (ParseMemoryOffsetReg(Negative, OffsetRegShifted, ShiftType,
975                               ShiftAmount, Offset, OffsetIsReg, OffsetRegNum,
976                               E))
977        return true;
978    }
979  }
980
981  // Force Offset to exist if used.
982  if (!OffsetIsReg) {
983    if (!Offset)
984      Offset = MCConstantExpr::Create(0, getContext());
985  }
986
987  Operands.push_back(ARMOperand::CreateMem(BaseRegNum, OffsetIsReg, Offset,
988                                           OffsetRegNum, OffsetRegShifted,
989                                           ShiftType, ShiftAmount, Preindexed,
990                                           Postindexed, Negative, Writeback,
991                                           S, E));
992  if (WBOp)
993    Operands.push_back(WBOp);
994
995  return false;
996}
997
998/// Parse the offset of a memory operand after we have seen "[Rn," or "[Rn],"
999/// we will parse the following (were +/- means that a plus or minus is
1000/// optional):
1001///   +/-Rm
1002///   +/-Rm, shift
1003///   #offset
1004/// we return false on success or an error otherwise.
1005bool ARMAsmParser::ParseMemoryOffsetReg(bool &Negative,
1006                                        bool &OffsetRegShifted,
1007                                        enum ShiftType &ShiftType,
1008                                        const MCExpr *&ShiftAmount,
1009                                        const MCExpr *&Offset,
1010                                        bool &OffsetIsReg,
1011                                        int &OffsetRegNum,
1012                                        SMLoc &E) {
1013  Negative = false;
1014  OffsetRegShifted = false;
1015  OffsetIsReg = false;
1016  OffsetRegNum = -1;
1017  const AsmToken &NextTok = Parser.getTok();
1018  E = NextTok.getLoc();
1019  if (NextTok.is(AsmToken::Plus))
1020    Parser.Lex(); // Eat plus token.
1021  else if (NextTok.is(AsmToken::Minus)) {
1022    Negative = true;
1023    Parser.Lex(); // Eat minus token
1024  }
1025  // See if there is a register following the "[Rn," or "[Rn]," we have so far.
1026  const AsmToken &OffsetRegTok = Parser.getTok();
1027  if (OffsetRegTok.is(AsmToken::Identifier)) {
1028    SMLoc CurLoc = OffsetRegTok.getLoc();
1029    OffsetRegNum = TryParseRegister();
1030    if (OffsetRegNum != -1) {
1031      OffsetIsReg = true;
1032      E = CurLoc;
1033    }
1034  }
1035
1036  // If we parsed a register as the offset then there can be a shift after that.
1037  if (OffsetRegNum != -1) {
1038    // Look for a comma then a shift
1039    const AsmToken &Tok = Parser.getTok();
1040    if (Tok.is(AsmToken::Comma)) {
1041      Parser.Lex(); // Eat comma token.
1042
1043      const AsmToken &Tok = Parser.getTok();
1044      if (ParseShift(ShiftType, ShiftAmount, E))
1045        return Error(Tok.getLoc(), "shift expected");
1046      OffsetRegShifted = true;
1047    }
1048  }
1049  else { // the "[Rn," or "[Rn,]" we have so far was not followed by "Rm"
1050    // Look for #offset following the "[Rn," or "[Rn],"
1051    const AsmToken &HashTok = Parser.getTok();
1052    if (HashTok.isNot(AsmToken::Hash))
1053      return Error(HashTok.getLoc(), "'#' expected");
1054
1055    Parser.Lex(); // Eat hash token.
1056
1057    if (getParser().ParseExpression(Offset))
1058     return true;
1059    E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
1060  }
1061  return false;
1062}
1063
1064/// ParseShift as one of these two:
1065///   ( lsl | lsr | asr | ror ) , # shift_amount
1066///   rrx
1067/// and returns true if it parses a shift otherwise it returns false.
1068bool ARMAsmParser::ParseShift(ShiftType &St, const MCExpr *&ShiftAmount,
1069                              SMLoc &E) {
1070  const AsmToken &Tok = Parser.getTok();
1071  if (Tok.isNot(AsmToken::Identifier))
1072    return true;
1073  StringRef ShiftName = Tok.getString();
1074  if (ShiftName == "lsl" || ShiftName == "LSL")
1075    St = Lsl;
1076  else if (ShiftName == "lsr" || ShiftName == "LSR")
1077    St = Lsr;
1078  else if (ShiftName == "asr" || ShiftName == "ASR")
1079    St = Asr;
1080  else if (ShiftName == "ror" || ShiftName == "ROR")
1081    St = Ror;
1082  else if (ShiftName == "rrx" || ShiftName == "RRX")
1083    St = Rrx;
1084  else
1085    return true;
1086  Parser.Lex(); // Eat shift type token.
1087
1088  // Rrx stands alone.
1089  if (St == Rrx)
1090    return false;
1091
1092  // Otherwise, there must be a '#' and a shift amount.
1093  const AsmToken &HashTok = Parser.getTok();
1094  if (HashTok.isNot(AsmToken::Hash))
1095    return Error(HashTok.getLoc(), "'#' expected");
1096  Parser.Lex(); // Eat hash token.
1097
1098  if (getParser().ParseExpression(ShiftAmount))
1099    return true;
1100
1101  return false;
1102}
1103
1104/// Parse a arm instruction operand.  For now this parses the operand regardless
1105/// of the mnemonic.
1106bool ARMAsmParser::ParseOperand(SmallVectorImpl<MCParsedAsmOperand*> &Operands,
1107                                StringRef Mnemonic) {
1108  SMLoc S, E;
1109
1110  // Check if the current operand has a custom associated parser, if so, try to
1111  // custom parse the operand, or fallback to the general approach.
1112  OperandMatchResultTy ResTy = MatchOperandParserImpl(Operands, Mnemonic);
1113  if (ResTy == MatchOperand_Success)
1114    return false;
1115  // If there wasn't a custom match, try the generic matcher below. Otherwise,
1116  // there was a match, but an error occurred, in which case, just return that
1117  // the operand parsing failed.
1118  if (ResTy == MatchOperand_ParseFail)
1119    return true;
1120
1121  switch (getLexer().getKind()) {
1122  default:
1123    Error(Parser.getTok().getLoc(), "unexpected token in operand");
1124    return true;
1125  case AsmToken::Identifier:
1126    if (!TryParseRegisterWithWriteBack(Operands))
1127      return false;
1128
1129    // Fall though for the Identifier case that is not a register or a
1130    // special name.
1131  case AsmToken::Integer: // things like 1f and 2b as a branch targets
1132  case AsmToken::Dot: {   // . as a branch target
1133    // This was not a register so parse other operands that start with an
1134    // identifier (like labels) as expressions and create them as immediates.
1135    const MCExpr *IdVal;
1136    S = Parser.getTok().getLoc();
1137    if (getParser().ParseExpression(IdVal))
1138      return true;
1139    E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
1140    Operands.push_back(ARMOperand::CreateImm(IdVal, S, E));
1141    return false;
1142  }
1143  case AsmToken::LBrac:
1144    return ParseMemory(Operands);
1145  case AsmToken::LCurly:
1146    return ParseRegisterList(Operands);
1147  case AsmToken::Hash:
1148    // #42 -> immediate.
1149    // TODO: ":lower16:" and ":upper16:" modifiers after # before immediate
1150    S = Parser.getTok().getLoc();
1151    Parser.Lex();
1152    const MCExpr *ImmVal;
1153    if (getParser().ParseExpression(ImmVal))
1154      return true;
1155    E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
1156    Operands.push_back(ARMOperand::CreateImm(ImmVal, S, E));
1157    return false;
1158  case AsmToken::Colon: {
1159    // ":lower16:" and ":upper16:" expression prefixes
1160    // FIXME: Check it's an expression prefix,
1161    // e.g. (FOO - :lower16:BAR) isn't legal.
1162    ARMMCExpr::VariantKind RefKind;
1163    if (ParsePrefix(RefKind))
1164      return true;
1165
1166    const MCExpr *SubExprVal;
1167    if (getParser().ParseExpression(SubExprVal))
1168      return true;
1169
1170    const MCExpr *ExprVal = ARMMCExpr::Create(RefKind, SubExprVal,
1171                                                   getContext());
1172    E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
1173    Operands.push_back(ARMOperand::CreateImm(ExprVal, S, E));
1174    return false;
1175  }
1176  }
1177}
1178
1179// ParsePrefix - Parse ARM 16-bit relocations expression prefix, i.e.
1180//  :lower16: and :upper16:.
1181bool ARMAsmParser::ParsePrefix(ARMMCExpr::VariantKind &RefKind) {
1182  RefKind = ARMMCExpr::VK_ARM_None;
1183
1184  // :lower16: and :upper16: modifiers
1185  assert(getLexer().is(AsmToken::Colon) && "expected a :");
1186  Parser.Lex(); // Eat ':'
1187
1188  if (getLexer().isNot(AsmToken::Identifier)) {
1189    Error(Parser.getTok().getLoc(), "expected prefix identifier in operand");
1190    return true;
1191  }
1192
1193  StringRef IDVal = Parser.getTok().getIdentifier();
1194  if (IDVal == "lower16") {
1195    RefKind = ARMMCExpr::VK_ARM_LO16;
1196  } else if (IDVal == "upper16") {
1197    RefKind = ARMMCExpr::VK_ARM_HI16;
1198  } else {
1199    Error(Parser.getTok().getLoc(), "unexpected prefix in operand");
1200    return true;
1201  }
1202  Parser.Lex();
1203
1204  if (getLexer().isNot(AsmToken::Colon)) {
1205    Error(Parser.getTok().getLoc(), "unexpected token after prefix");
1206    return true;
1207  }
1208  Parser.Lex(); // Eat the last ':'
1209  return false;
1210}
1211
1212const MCExpr *
1213ARMAsmParser::ApplyPrefixToExpr(const MCExpr *E,
1214                                MCSymbolRefExpr::VariantKind Variant) {
1215  // Recurse over the given expression, rebuilding it to apply the given variant
1216  // to the leftmost symbol.
1217  if (Variant == MCSymbolRefExpr::VK_None)
1218    return E;
1219
1220  switch (E->getKind()) {
1221  case MCExpr::Target:
1222    llvm_unreachable("Can't handle target expr yet");
1223  case MCExpr::Constant:
1224    llvm_unreachable("Can't handle lower16/upper16 of constant yet");
1225
1226  case MCExpr::SymbolRef: {
1227    const MCSymbolRefExpr *SRE = cast<MCSymbolRefExpr>(E);
1228
1229    if (SRE->getKind() != MCSymbolRefExpr::VK_None)
1230      return 0;
1231
1232    return MCSymbolRefExpr::Create(&SRE->getSymbol(), Variant, getContext());
1233  }
1234
1235  case MCExpr::Unary:
1236    llvm_unreachable("Can't handle unary expressions yet");
1237
1238  case MCExpr::Binary: {
1239    const MCBinaryExpr *BE = cast<MCBinaryExpr>(E);
1240    const MCExpr *LHS = ApplyPrefixToExpr(BE->getLHS(), Variant);
1241    const MCExpr *RHS = BE->getRHS();
1242    if (!LHS)
1243      return 0;
1244
1245    return MCBinaryExpr::Create(BE->getOpcode(), LHS, RHS, getContext());
1246  }
1247  }
1248
1249  assert(0 && "Invalid expression kind!");
1250  return 0;
1251}
1252
1253/// \brief Given a mnemonic, split out possible predication code and carry
1254/// setting letters to form a canonical mnemonic and flags.
1255//
1256// FIXME: Would be nice to autogen this.
1257static StringRef SplitMnemonicAndCC(StringRef Mnemonic,
1258                                    unsigned &PredicationCode,
1259                                    bool &CarrySetting) {
1260  PredicationCode = ARMCC::AL;
1261  CarrySetting = false;
1262
1263  // Ignore some mnemonics we know aren't predicated forms.
1264  //
1265  // FIXME: Would be nice to autogen this.
1266  if (Mnemonic == "teq" || Mnemonic == "vceq" ||
1267      Mnemonic == "movs" ||
1268      Mnemonic == "svc" ||
1269      (Mnemonic == "mls" || Mnemonic == "smmls" || Mnemonic == "vcls" ||
1270       Mnemonic == "vmls" || Mnemonic == "vnmls") ||
1271      Mnemonic == "vacge" || Mnemonic == "vcge" ||
1272      Mnemonic == "vclt" ||
1273      Mnemonic == "vacgt" || Mnemonic == "vcgt" ||
1274      Mnemonic == "vcle" ||
1275      (Mnemonic == "smlal" || Mnemonic == "umaal" || Mnemonic == "umlal" ||
1276       Mnemonic == "vabal" || Mnemonic == "vmlal" || Mnemonic == "vpadal" ||
1277       Mnemonic == "vqdmlal"))
1278    return Mnemonic;
1279
1280  // First, split out any predication code.
1281  unsigned CC = StringSwitch<unsigned>(Mnemonic.substr(Mnemonic.size()-2))
1282    .Case("eq", ARMCC::EQ)
1283    .Case("ne", ARMCC::NE)
1284    .Case("hs", ARMCC::HS)
1285    .Case("lo", ARMCC::LO)
1286    .Case("mi", ARMCC::MI)
1287    .Case("pl", ARMCC::PL)
1288    .Case("vs", ARMCC::VS)
1289    .Case("vc", ARMCC::VC)
1290    .Case("hi", ARMCC::HI)
1291    .Case("ls", ARMCC::LS)
1292    .Case("ge", ARMCC::GE)
1293    .Case("lt", ARMCC::LT)
1294    .Case("gt", ARMCC::GT)
1295    .Case("le", ARMCC::LE)
1296    .Case("al", ARMCC::AL)
1297    .Default(~0U);
1298  if (CC != ~0U) {
1299    Mnemonic = Mnemonic.slice(0, Mnemonic.size() - 2);
1300    PredicationCode = CC;
1301  }
1302
1303  // Next, determine if we have a carry setting bit. We explicitly ignore all
1304  // the instructions we know end in 's'.
1305  if (Mnemonic.endswith("s") &&
1306      !(Mnemonic == "asrs" || Mnemonic == "cps" || Mnemonic == "mls" ||
1307        Mnemonic == "movs" || Mnemonic == "mrs" || Mnemonic == "smmls" ||
1308        Mnemonic == "vabs" || Mnemonic == "vcls" || Mnemonic == "vmls" ||
1309        Mnemonic == "vmrs" || Mnemonic == "vnmls" || Mnemonic == "vqabs" ||
1310        Mnemonic == "vrecps" || Mnemonic == "vrsqrts")) {
1311    Mnemonic = Mnemonic.slice(0, Mnemonic.size() - 1);
1312    CarrySetting = true;
1313  }
1314
1315  return Mnemonic;
1316}
1317
1318/// \brief Given a canonical mnemonic, determine if the instruction ever allows
1319/// inclusion of carry set or predication code operands.
1320//
1321// FIXME: It would be nice to autogen this.
1322void ARMAsmParser::
1323GetMnemonicAcceptInfo(StringRef Mnemonic, bool &CanAcceptCarrySet,
1324                      bool &CanAcceptPredicationCode) {
1325  bool isThumb = TM.getSubtarget<ARMSubtarget>().isThumb();
1326
1327  if (Mnemonic == "and" || Mnemonic == "lsl" || Mnemonic == "lsr" ||
1328      Mnemonic == "rrx" || Mnemonic == "ror" || Mnemonic == "sub" ||
1329      Mnemonic == "smull" || Mnemonic == "add" || Mnemonic == "adc" ||
1330      Mnemonic == "mul" || Mnemonic == "bic" || Mnemonic == "asr" ||
1331      Mnemonic == "umlal" || Mnemonic == "orr" || Mnemonic == "mov" ||
1332      Mnemonic == "rsb" || Mnemonic == "rsc" || Mnemonic == "orn" ||
1333      Mnemonic == "sbc" || Mnemonic == "mla" || Mnemonic == "umull" ||
1334      Mnemonic == "eor" || Mnemonic == "smlal" || Mnemonic == "mvn") {
1335    CanAcceptCarrySet = true;
1336  } else {
1337    CanAcceptCarrySet = false;
1338  }
1339
1340  if (Mnemonic == "cbnz" || Mnemonic == "setend" || Mnemonic == "dmb" ||
1341      Mnemonic == "cps" || Mnemonic == "mcr2" || Mnemonic == "it" ||
1342      Mnemonic == "mcrr2" || Mnemonic == "cbz" || Mnemonic == "cdp2" ||
1343      Mnemonic == "trap" || Mnemonic == "mrc2" || Mnemonic == "mrrc2" ||
1344      Mnemonic == "dsb" || Mnemonic == "movs" || Mnemonic == "isb" ||
1345      Mnemonic == "clrex") {
1346    CanAcceptPredicationCode = false;
1347  } else {
1348    CanAcceptPredicationCode = true;
1349  }
1350
1351  if (isThumb)
1352    if (Mnemonic == "bkpt" || Mnemonic == "mcr" || Mnemonic == "mcrr" ||
1353        Mnemonic == "mrc" || Mnemonic == "mrrc" || Mnemonic == "cdp")
1354      CanAcceptPredicationCode = false;
1355}
1356
1357/// Parse an arm instruction mnemonic followed by its operands.
1358bool ARMAsmParser::ParseInstruction(StringRef Name, SMLoc NameLoc,
1359                               SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
1360  // Create the leading tokens for the mnemonic, split by '.' characters.
1361  size_t Start = 0, Next = Name.find('.');
1362  StringRef Head = Name.slice(Start, Next);
1363
1364  // Split out the predication code and carry setting flag from the mnemonic.
1365  unsigned PredicationCode;
1366  bool CarrySetting;
1367  Head = SplitMnemonicAndCC(Head, PredicationCode, CarrySetting);
1368
1369  Operands.push_back(ARMOperand::CreateToken(Head, NameLoc));
1370
1371  // Next, add the CCOut and ConditionCode operands, if needed.
1372  //
1373  // For mnemonics which can ever incorporate a carry setting bit or predication
1374  // code, our matching model involves us always generating CCOut and
1375  // ConditionCode operands to match the mnemonic "as written" and then we let
1376  // the matcher deal with finding the right instruction or generating an
1377  // appropriate error.
1378  bool CanAcceptCarrySet, CanAcceptPredicationCode;
1379  GetMnemonicAcceptInfo(Head, CanAcceptCarrySet, CanAcceptPredicationCode);
1380
1381  // Add the carry setting operand, if necessary.
1382  //
1383  // FIXME: It would be awesome if we could somehow invent a location such that
1384  // match errors on this operand would print a nice diagnostic about how the
1385  // 's' character in the mnemonic resulted in a CCOut operand.
1386  if (CanAcceptCarrySet) {
1387    Operands.push_back(ARMOperand::CreateCCOut(CarrySetting ? ARM::CPSR : 0,
1388                                               NameLoc));
1389  } else {
1390    // This mnemonic can't ever accept a carry set, but the user wrote one (or
1391    // misspelled another mnemonic).
1392
1393    // FIXME: Issue a nice error.
1394  }
1395
1396  // Add the predication code operand, if necessary.
1397  if (CanAcceptPredicationCode) {
1398    Operands.push_back(ARMOperand::CreateCondCode(
1399                         ARMCC::CondCodes(PredicationCode), NameLoc));
1400  } else {
1401    // This mnemonic can't ever accept a predication code, but the user wrote
1402    // one (or misspelled another mnemonic).
1403
1404    // FIXME: Issue a nice error.
1405  }
1406
1407  // Add the remaining tokens in the mnemonic.
1408  while (Next != StringRef::npos) {
1409    Start = Next;
1410    Next = Name.find('.', Start + 1);
1411    Head = Name.slice(Start, Next);
1412
1413    Operands.push_back(ARMOperand::CreateToken(Head, NameLoc));
1414  }
1415
1416  // Read the remaining operands.
1417  if (getLexer().isNot(AsmToken::EndOfStatement)) {
1418    // Read the first operand.
1419    if (ParseOperand(Operands, Head)) {
1420      Parser.EatToEndOfStatement();
1421      return true;
1422    }
1423
1424    while (getLexer().is(AsmToken::Comma)) {
1425      Parser.Lex();  // Eat the comma.
1426
1427      // Parse and remember the operand.
1428      if (ParseOperand(Operands, Head)) {
1429        Parser.EatToEndOfStatement();
1430        return true;
1431      }
1432    }
1433  }
1434
1435  if (getLexer().isNot(AsmToken::EndOfStatement)) {
1436    Parser.EatToEndOfStatement();
1437    return TokError("unexpected token in argument list");
1438  }
1439
1440  Parser.Lex(); // Consume the EndOfStatement
1441  return false;
1442}
1443
1444bool ARMAsmParser::
1445MatchAndEmitInstruction(SMLoc IDLoc,
1446                        SmallVectorImpl<MCParsedAsmOperand*> &Operands,
1447                        MCStreamer &Out) {
1448  MCInst Inst;
1449  unsigned ErrorInfo;
1450  MatchResultTy MatchResult, MatchResult2;
1451  MatchResult = MatchInstructionImpl(Operands, Inst, ErrorInfo);
1452  if (MatchResult != Match_Success) {
1453    // If we get a Match_InvalidOperand it might be some arithmetic instruction
1454    // that does not update the condition codes.  So try adding a CCOut operand
1455    // with a value of reg0.
1456    if (MatchResult == Match_InvalidOperand) {
1457      Operands.insert(Operands.begin() + 1,
1458                      ARMOperand::CreateCCOut(0,
1459                                  ((ARMOperand*)Operands[0])->getStartLoc()));
1460      MatchResult2 = MatchInstructionImpl(Operands, Inst, ErrorInfo);
1461      if (MatchResult2 == Match_Success)
1462        MatchResult = Match_Success;
1463      else {
1464        ARMOperand *CCOut = ((ARMOperand*)Operands[1]);
1465        Operands.erase(Operands.begin() + 1);
1466        delete CCOut;
1467      }
1468    }
1469    // If we get a Match_MnemonicFail it might be some arithmetic instruction
1470    // that updates the condition codes if it ends in 's'.  So see if the
1471    // mnemonic ends in 's' and if so try removing the 's' and adding a CCOut
1472    // operand with a value of CPSR.
1473    else if(MatchResult == Match_MnemonicFail) {
1474      // Get the instruction mnemonic, which is the first token.
1475      StringRef Mnemonic = ((ARMOperand*)Operands[0])->getToken();
1476      if (Mnemonic.substr(Mnemonic.size()-1) == "s") {
1477        // removed the 's' from the mnemonic for matching.
1478        StringRef MnemonicNoS = Mnemonic.slice(0, Mnemonic.size() - 1);
1479        SMLoc NameLoc = ((ARMOperand*)Operands[0])->getStartLoc();
1480        ARMOperand *OldMnemonic = ((ARMOperand*)Operands[0]);
1481        Operands.erase(Operands.begin());
1482        delete OldMnemonic;
1483        Operands.insert(Operands.begin(),
1484                        ARMOperand::CreateToken(MnemonicNoS, NameLoc));
1485        Operands.insert(Operands.begin() + 1,
1486                        ARMOperand::CreateCCOut(ARM::CPSR, NameLoc));
1487        MatchResult2 = MatchInstructionImpl(Operands, Inst, ErrorInfo);
1488        if (MatchResult2 == Match_Success)
1489          MatchResult = Match_Success;
1490        else {
1491          ARMOperand *OldMnemonic = ((ARMOperand*)Operands[0]);
1492          Operands.erase(Operands.begin());
1493          delete OldMnemonic;
1494          Operands.insert(Operands.begin(),
1495                          ARMOperand::CreateToken(Mnemonic, NameLoc));
1496          ARMOperand *CCOut = ((ARMOperand*)Operands[1]);
1497          Operands.erase(Operands.begin() + 1);
1498          delete CCOut;
1499        }
1500      }
1501    }
1502  }
1503  switch (MatchResult) {
1504  case Match_Success:
1505    Out.EmitInstruction(Inst);
1506    return false;
1507  case Match_MissingFeature:
1508    Error(IDLoc, "instruction requires a CPU feature not currently enabled");
1509    return true;
1510  case Match_InvalidOperand: {
1511    SMLoc ErrorLoc = IDLoc;
1512    if (ErrorInfo != ~0U) {
1513      if (ErrorInfo >= Operands.size())
1514        return Error(IDLoc, "too few operands for instruction");
1515
1516      ErrorLoc = ((ARMOperand*)Operands[ErrorInfo])->getStartLoc();
1517      if (ErrorLoc == SMLoc()) ErrorLoc = IDLoc;
1518    }
1519
1520    return Error(ErrorLoc, "invalid operand for instruction");
1521  }
1522  case Match_MnemonicFail:
1523    return Error(IDLoc, "unrecognized instruction mnemonic");
1524  case Match_ConversionFail:
1525    return Error(IDLoc, "unable to convert operands to instruction");
1526  }
1527
1528  llvm_unreachable("Implement any new match types added!");
1529  return true;
1530}
1531
1532/// ParseDirective parses the arm specific directives
1533bool ARMAsmParser::ParseDirective(AsmToken DirectiveID) {
1534  StringRef IDVal = DirectiveID.getIdentifier();
1535  if (IDVal == ".word")
1536    return ParseDirectiveWord(4, DirectiveID.getLoc());
1537  else if (IDVal == ".thumb")
1538    return ParseDirectiveThumb(DirectiveID.getLoc());
1539  else if (IDVal == ".thumb_func")
1540    return ParseDirectiveThumbFunc(DirectiveID.getLoc());
1541  else if (IDVal == ".code")
1542    return ParseDirectiveCode(DirectiveID.getLoc());
1543  else if (IDVal == ".syntax")
1544    return ParseDirectiveSyntax(DirectiveID.getLoc());
1545  return true;
1546}
1547
1548/// ParseDirectiveWord
1549///  ::= .word [ expression (, expression)* ]
1550bool ARMAsmParser::ParseDirectiveWord(unsigned Size, SMLoc L) {
1551  if (getLexer().isNot(AsmToken::EndOfStatement)) {
1552    for (;;) {
1553      const MCExpr *Value;
1554      if (getParser().ParseExpression(Value))
1555        return true;
1556
1557      getParser().getStreamer().EmitValue(Value, Size, 0/*addrspace*/);
1558
1559      if (getLexer().is(AsmToken::EndOfStatement))
1560        break;
1561
1562      // FIXME: Improve diagnostic.
1563      if (getLexer().isNot(AsmToken::Comma))
1564        return Error(L, "unexpected token in directive");
1565      Parser.Lex();
1566    }
1567  }
1568
1569  Parser.Lex();
1570  return false;
1571}
1572
1573/// ParseDirectiveThumb
1574///  ::= .thumb
1575bool ARMAsmParser::ParseDirectiveThumb(SMLoc L) {
1576  if (getLexer().isNot(AsmToken::EndOfStatement))
1577    return Error(L, "unexpected token in directive");
1578  Parser.Lex();
1579
1580  // TODO: set thumb mode
1581  // TODO: tell the MC streamer the mode
1582  // getParser().getStreamer().Emit???();
1583  return false;
1584}
1585
1586/// ParseDirectiveThumbFunc
1587///  ::= .thumbfunc symbol_name
1588bool ARMAsmParser::ParseDirectiveThumbFunc(SMLoc L) {
1589  const AsmToken &Tok = Parser.getTok();
1590  if (Tok.isNot(AsmToken::Identifier) && Tok.isNot(AsmToken::String))
1591    return Error(L, "unexpected token in .thumb_func directive");
1592  StringRef Name = Tok.getString();
1593  Parser.Lex(); // Consume the identifier token.
1594  if (getLexer().isNot(AsmToken::EndOfStatement))
1595    return Error(L, "unexpected token in directive");
1596  Parser.Lex();
1597
1598  // Mark symbol as a thumb symbol.
1599  MCSymbol *Func = getParser().getContext().GetOrCreateSymbol(Name);
1600  getParser().getStreamer().EmitThumbFunc(Func);
1601  return false;
1602}
1603
1604/// ParseDirectiveSyntax
1605///  ::= .syntax unified | divided
1606bool ARMAsmParser::ParseDirectiveSyntax(SMLoc L) {
1607  const AsmToken &Tok = Parser.getTok();
1608  if (Tok.isNot(AsmToken::Identifier))
1609    return Error(L, "unexpected token in .syntax directive");
1610  StringRef Mode = Tok.getString();
1611  if (Mode == "unified" || Mode == "UNIFIED")
1612    Parser.Lex();
1613  else if (Mode == "divided" || Mode == "DIVIDED")
1614    return Error(L, "'.syntax divided' arm asssembly not supported");
1615  else
1616    return Error(L, "unrecognized syntax mode in .syntax directive");
1617
1618  if (getLexer().isNot(AsmToken::EndOfStatement))
1619    return Error(Parser.getTok().getLoc(), "unexpected token in directive");
1620  Parser.Lex();
1621
1622  // TODO tell the MC streamer the mode
1623  // getParser().getStreamer().Emit???();
1624  return false;
1625}
1626
1627/// ParseDirectiveCode
1628///  ::= .code 16 | 32
1629bool ARMAsmParser::ParseDirectiveCode(SMLoc L) {
1630  const AsmToken &Tok = Parser.getTok();
1631  if (Tok.isNot(AsmToken::Integer))
1632    return Error(L, "unexpected token in .code directive");
1633  int64_t Val = Parser.getTok().getIntVal();
1634  if (Val == 16)
1635    Parser.Lex();
1636  else if (Val == 32)
1637    Parser.Lex();
1638  else
1639    return Error(L, "invalid operand to .code directive");
1640
1641  if (getLexer().isNot(AsmToken::EndOfStatement))
1642    return Error(Parser.getTok().getLoc(), "unexpected token in directive");
1643  Parser.Lex();
1644
1645  // FIXME: We need to be able switch subtargets at this point so that
1646  // MatchInstructionImpl() will work when it gets the AvailableFeatures which
1647  // includes Feature_IsThumb or not to match the right instructions.  This is
1648  // blocked on the FIXME in llvm-mc.cpp when creating the TargetMachine.
1649  if (Val == 16){
1650    assert(TM.getSubtarget<ARMSubtarget>().isThumb() &&
1651	   "switching between arm/thumb not yet suppported via .code 16)");
1652    getParser().getStreamer().EmitAssemblerFlag(MCAF_Code16);
1653  }
1654  else{
1655    assert(!TM.getSubtarget<ARMSubtarget>().isThumb() &&
1656           "switching between thumb/arm not yet suppported via .code 32)");
1657    getParser().getStreamer().EmitAssemblerFlag(MCAF_Code32);
1658   }
1659
1660  return false;
1661}
1662
1663extern "C" void LLVMInitializeARMAsmLexer();
1664
1665/// Force static initialization.
1666extern "C" void LLVMInitializeARMAsmParser() {
1667  RegisterAsmParser<ARMAsmParser> X(TheARMTarget);
1668  RegisterAsmParser<ARMAsmParser> Y(TheThumbTarget);
1669  LLVMInitializeARMAsmLexer();
1670}
1671
1672#define GET_REGISTER_MATCHER
1673#define GET_MATCHER_IMPLEMENTATION
1674#include "ARMGenAsmMatcher.inc"
1675