PPCCTRLoops.cpp revision 96848dfc465c8c7f156a562c246803ebefcf21cf
1//===-- PPCCTRLoops.cpp - Identify and generate CTR loops -----------------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This pass identifies loops where we can generate the PPC branch instructions 11// that decrement and test the count register (CTR) (bdnz and friends). 12// This pass is based on the HexagonHardwareLoops pass. 13// 14// The pattern that defines the induction variable can changed depending on 15// prior optimizations. For example, the IndVarSimplify phase run by 'opt' 16// normalizes induction variables, and the Loop Strength Reduction pass 17// run by 'llc' may also make changes to the induction variable. 18// The pattern detected by this phase is due to running Strength Reduction. 19// 20// Criteria for CTR loops: 21// - Countable loops (w/ ind. var for a trip count) 22// - Assumes loops are normalized by IndVarSimplify 23// - Try inner-most loops first 24// - No nested CTR loops. 25// - No function calls in loops. 26// 27// Note: As with unconverted loops, PPCBranchSelector must be run after this 28// pass in order to convert long-displacement jumps into jump pairs. 29// 30//===----------------------------------------------------------------------===// 31 32#define DEBUG_TYPE "ctrloops" 33#include "PPC.h" 34#include "MCTargetDesc/PPCPredicates.h" 35#include "PPCTargetMachine.h" 36#include "llvm/ADT/DenseMap.h" 37#include "llvm/ADT/Statistic.h" 38#include "llvm/CodeGen/MachineDominators.h" 39#include "llvm/CodeGen/MachineFunction.h" 40#include "llvm/CodeGen/MachineFunctionPass.h" 41#include "llvm/CodeGen/MachineInstrBuilder.h" 42#include "llvm/CodeGen/MachineLoopInfo.h" 43#include "llvm/CodeGen/MachineRegisterInfo.h" 44#include "llvm/CodeGen/Passes.h" 45#include "llvm/CodeGen/RegisterScavenging.h" 46#include "llvm/IR/Constants.h" 47#include "llvm/PassSupport.h" 48#include "llvm/Support/Debug.h" 49#include "llvm/Support/raw_ostream.h" 50#include "llvm/Target/TargetInstrInfo.h" 51#include <algorithm> 52 53using namespace llvm; 54 55STATISTIC(NumCTRLoops, "Number of loops converted to CTR loops"); 56 57namespace llvm { 58 void initializePPCCTRLoopsPass(PassRegistry&); 59} 60 61namespace { 62 class CountValue; 63 struct PPCCTRLoops : public MachineFunctionPass { 64 MachineLoopInfo *MLI; 65 MachineRegisterInfo *MRI; 66 const TargetInstrInfo *TII; 67 68 public: 69 static char ID; // Pass identification, replacement for typeid 70 71 PPCCTRLoops() : MachineFunctionPass(ID) { 72 initializePPCCTRLoopsPass(*PassRegistry::getPassRegistry()); 73 } 74 75 virtual bool runOnMachineFunction(MachineFunction &MF); 76 77 const char *getPassName() const { return "PPC CTR Loops"; } 78 79 virtual void getAnalysisUsage(AnalysisUsage &AU) const { 80 AU.setPreservesCFG(); 81 AU.addRequired<MachineDominatorTree>(); 82 AU.addPreserved<MachineDominatorTree>(); 83 AU.addRequired<MachineLoopInfo>(); 84 AU.addPreserved<MachineLoopInfo>(); 85 MachineFunctionPass::getAnalysisUsage(AU); 86 } 87 88 private: 89 /// getCanonicalInductionVariable - Check to see if the loop has a canonical 90 /// induction variable. 91 /// Should be defined in MachineLoop. Based upon version in class Loop. 92 void getCanonicalInductionVariable(MachineLoop *L, 93 SmallVector<MachineInstr *, 4> &IVars, 94 SmallVector<MachineInstr *, 4> &IOps) const; 95 96 /// getTripCount - Return a loop-invariant LLVM register indicating the 97 /// number of times the loop will be executed. If the trip-count cannot 98 /// be determined, this return null. 99 CountValue *getTripCount(MachineLoop *L, 100 SmallVector<MachineInstr *, 2> &OldInsts) const; 101 102 /// isInductionOperation - Return true if the instruction matches the 103 /// pattern for an opertion that defines an induction variable. 104 bool isInductionOperation(const MachineInstr *MI, unsigned IVReg) const; 105 106 /// isInvalidOperation - Return true if the instruction is not valid within 107 /// a CTR loop. 108 bool isInvalidLoopOperation(const MachineInstr *MI) const; 109 110 /// containsInavlidInstruction - Return true if the loop contains an 111 /// instruction that inhibits using the CTR loop. 112 bool containsInvalidInstruction(MachineLoop *L) const; 113 114 /// converToCTRLoop - Given a loop, check if we can convert it to a 115 /// CTR loop. If so, then perform the conversion and return true. 116 bool convertToCTRLoop(MachineLoop *L); 117 118 /// isDead - Return true if the instruction is now dead. 119 bool isDead(const MachineInstr *MI, 120 SmallVector<MachineInstr *, 1> &DeadPhis) const; 121 122 /// removeIfDead - Remove the instruction if it is now dead. 123 void removeIfDead(MachineInstr *MI); 124 }; 125 126 char PPCCTRLoops::ID = 0; 127 128 129 // CountValue class - Abstraction for a trip count of a loop. A 130 // smaller vesrsion of the MachineOperand class without the concerns 131 // of changing the operand representation. 132 class CountValue { 133 public: 134 enum CountValueType { 135 CV_Register, 136 CV_Immediate 137 }; 138 private: 139 CountValueType Kind; 140 union Values { 141 unsigned RegNum; 142 int64_t ImmVal; 143 Values(unsigned r) : RegNum(r) {} 144 Values(int64_t i) : ImmVal(i) {} 145 } Contents; 146 bool isNegative; 147 148 public: 149 CountValue(unsigned r, bool neg) : Kind(CV_Register), Contents(r), 150 isNegative(neg) {} 151 explicit CountValue(int64_t i) : Kind(CV_Immediate), Contents(i), 152 isNegative(i < 0) {} 153 CountValueType getType() const { return Kind; } 154 bool isReg() const { return Kind == CV_Register; } 155 bool isImm() const { return Kind == CV_Immediate; } 156 bool isNeg() const { return isNegative; } 157 158 unsigned getReg() const { 159 assert(isReg() && "Wrong CountValue accessor"); 160 return Contents.RegNum; 161 } 162 void setReg(unsigned Val) { 163 Contents.RegNum = Val; 164 } 165 int64_t getImm() const { 166 assert(isImm() && "Wrong CountValue accessor"); 167 if (isNegative) { 168 return -Contents.ImmVal; 169 } 170 return Contents.ImmVal; 171 } 172 void setImm(int64_t Val) { 173 Contents.ImmVal = Val; 174 } 175 176 void print(raw_ostream &OS, const TargetMachine *TM = 0) const { 177 if (isReg()) { OS << PrintReg(getReg()); } 178 if (isImm()) { OS << getImm(); } 179 } 180 }; 181} // end anonymous namespace 182 183INITIALIZE_PASS_BEGIN(PPCCTRLoops, "ppc-ctr-loops", "PowerPC CTR Loops", 184 false, false) 185INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 186INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 187INITIALIZE_PASS_END(PPCCTRLoops, "ppc-ctr-loops", "PowerPC CTR Loops", 188 false, false) 189 190/// isCompareEquals - Returns true if the instruction is a compare equals 191/// instruction with an immediate operand. 192static bool isCompareEqualsImm(const MachineInstr *MI, bool &SignedCmp) { 193 if (MI->getOpcode() == PPC::CMPWI || MI->getOpcode() == PPC::CMPDI) { 194 SignedCmp = true; 195 return true; 196 } else if (MI->getOpcode() == PPC::CMPLWI || MI->getOpcode() == PPC::CMPLDI) { 197 SignedCmp = false; 198 return true; 199 } 200 201 return false; 202} 203 204 205/// createPPCCTRLoops - Factory for creating 206/// the CTR loop phase. 207FunctionPass *llvm::createPPCCTRLoops() { 208 return new PPCCTRLoops(); 209} 210 211 212bool PPCCTRLoops::runOnMachineFunction(MachineFunction &MF) { 213 DEBUG(dbgs() << "********* PPC CTR Loops *********\n"); 214 215 bool Changed = false; 216 217 // get the loop information 218 MLI = &getAnalysis<MachineLoopInfo>(); 219 // get the register information 220 MRI = &MF.getRegInfo(); 221 // the target specific instructio info. 222 TII = MF.getTarget().getInstrInfo(); 223 224 for (MachineLoopInfo::iterator I = MLI->begin(), E = MLI->end(); 225 I != E; ++I) { 226 MachineLoop *L = *I; 227 if (!L->getParentLoop()) { 228 Changed |= convertToCTRLoop(L); 229 } 230 } 231 232 return Changed; 233} 234 235/// getCanonicalInductionVariable - Check to see if the loop has a canonical 236/// induction variable. We check for a simple recurrence pattern - an 237/// integer recurrence that decrements by one each time through the loop and 238/// ends at zero. If so, return the phi node that corresponds to it. 239/// 240/// Based upon the similar code in LoopInfo except this code is specific to 241/// the machine. 242/// This method assumes that the IndVarSimplify pass has been run by 'opt'. 243/// 244void 245PPCCTRLoops::getCanonicalInductionVariable(MachineLoop *L, 246 SmallVector<MachineInstr *, 4> &IVars, 247 SmallVector<MachineInstr *, 4> &IOps) const { 248 MachineBasicBlock *TopMBB = L->getTopBlock(); 249 MachineBasicBlock::pred_iterator PI = TopMBB->pred_begin(); 250 assert(PI != TopMBB->pred_end() && 251 "Loop must have more than one incoming edge!"); 252 MachineBasicBlock *Backedge = *PI++; 253 if (PI == TopMBB->pred_end()) return; // dead loop 254 MachineBasicBlock *Incoming = *PI++; 255 if (PI != TopMBB->pred_end()) return; // multiple backedges? 256 257 // make sure there is one incoming and one backedge and determine which 258 // is which. 259 if (L->contains(Incoming)) { 260 if (L->contains(Backedge)) 261 return; 262 std::swap(Incoming, Backedge); 263 } else if (!L->contains(Backedge)) 264 return; 265 266 // Loop over all of the PHI nodes, looking for a canonical induction variable: 267 // - The PHI node is "reg1 = PHI reg2, BB1, reg3, BB2". 268 // - The recurrence comes from the backedge. 269 // - the definition is an induction operatio.n 270 for (MachineBasicBlock::iterator I = TopMBB->begin(), E = TopMBB->end(); 271 I != E && I->isPHI(); ++I) { 272 MachineInstr *MPhi = &*I; 273 unsigned DefReg = MPhi->getOperand(0).getReg(); 274 for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2) { 275 // Check each operand for the value from the backedge. 276 MachineBasicBlock *MBB = MPhi->getOperand(i+1).getMBB(); 277 if (L->contains(MBB)) { // operands comes from the backedge 278 // Check if the definition is an induction operation. 279 MachineInstr *DI = MRI->getVRegDef(MPhi->getOperand(i).getReg()); 280 if (isInductionOperation(DI, DefReg)) { 281 IOps.push_back(DI); 282 IVars.push_back(MPhi); 283 } 284 } 285 } 286 } 287 return; 288} 289 290/// getTripCount - Return a loop-invariant LLVM value indicating the 291/// number of times the loop will be executed. The trip count can 292/// be either a register or a constant value. If the trip-count 293/// cannot be determined, this returns null. 294/// 295/// We find the trip count from the phi instruction that defines the 296/// induction variable. We follow the links to the CMP instruction 297/// to get the trip count. 298/// 299/// Based upon getTripCount in LoopInfo. 300/// 301CountValue *PPCCTRLoops::getTripCount(MachineLoop *L, 302 SmallVector<MachineInstr *, 2> &OldInsts) const { 303 MachineBasicBlock *LastMBB = L->getExitingBlock(); 304 // Don't generate a CTR loop if the loop has more than one exit. 305 if (LastMBB == 0) 306 return 0; 307 308 MachineBasicBlock::iterator LastI = LastMBB->getFirstTerminator(); 309 if (LastI->getOpcode() != PPC::BCC) 310 return 0; 311 312 // We need to make sure that this compare is defining the condition 313 // register actually used by the terminating branch. 314 315 unsigned PredReg = LastI->getOperand(1).getReg(); 316 DEBUG(dbgs() << "Examining loop with first terminator: " << *LastI); 317 318 unsigned PredCond = LastI->getOperand(0).getImm(); 319 if (PredCond != PPC::PRED_EQ && PredCond != PPC::PRED_NE) 320 return 0; 321 322 // Check that the loop has a induction variable. 323 SmallVector<MachineInstr *, 4> IVars, IOps; 324 getCanonicalInductionVariable(L, IVars, IOps); 325 for (unsigned i = 0; i < IVars.size(); ++i) { 326 MachineInstr *IOp = IOps[i]; 327 MachineInstr *IV_Inst = IVars[i]; 328 329 // Canonical loops will end with a 'cmpwi/cmpdi cr, IV, Imm', 330 // if Imm is 0, get the count from the PHI opnd 331 // if Imm is -M, than M is the count 332 // Otherwise, Imm is the count 333 MachineOperand *IV_Opnd; 334 const MachineOperand *InitialValue; 335 if (!L->contains(IV_Inst->getOperand(2).getMBB())) { 336 InitialValue = &IV_Inst->getOperand(1); 337 IV_Opnd = &IV_Inst->getOperand(3); 338 } else { 339 InitialValue = &IV_Inst->getOperand(3); 340 IV_Opnd = &IV_Inst->getOperand(1); 341 } 342 343 DEBUG(dbgs() << "Considering:\n"); 344 DEBUG(dbgs() << " induction operation: " << *IOp); 345 DEBUG(dbgs() << " induction variable: " << *IV_Inst); 346 DEBUG(dbgs() << " initial value: " << *InitialValue << "\n"); 347 348 // Look for the cmp instruction to determine if we 349 // can get a useful trip count. The trip count can 350 // be either a register or an immediate. The location 351 // of the value depends upon the type (reg or imm). 352 for (MachineRegisterInfo::reg_iterator 353 RI = MRI->reg_begin(IV_Opnd->getReg()), RE = MRI->reg_end(); 354 RI != RE; ++RI) { 355 IV_Opnd = &RI.getOperand(); 356 bool SignedCmp; 357 MachineInstr *MI = IV_Opnd->getParent(); 358 if (L->contains(MI) && isCompareEqualsImm(MI, SignedCmp) && 359 MI->getOperand(0).getReg() == PredReg) { 360 361 OldInsts.push_back(MI); 362 OldInsts.push_back(IOp); 363 364 DEBUG(dbgs() << " compare: " << *MI); 365 366 const MachineOperand &MO = MI->getOperand(2); 367 assert(MO.isImm() && "IV Cmp Operand should be an immediate"); 368 369 int64_t ImmVal; 370 if (SignedCmp) 371 ImmVal = (short) MO.getImm(); 372 else 373 ImmVal = MO.getImm(); 374 375 const MachineInstr *IV_DefInstr = MRI->getVRegDef(IV_Opnd->getReg()); 376 assert(L->contains(IV_DefInstr->getParent()) && 377 "IV definition should occurs in loop"); 378 int64_t iv_value = (short) IV_DefInstr->getOperand(2).getImm(); 379 380 assert(InitialValue->isReg() && "Expecting register for init value"); 381 unsigned InitialValueReg = InitialValue->getReg(); 382 383 const MachineInstr *DefInstr = MRI->getVRegDef(InitialValueReg); 384 385 // Here we need to look for an immediate load (an li or lis/ori pair). 386 if (DefInstr && (DefInstr->getOpcode() == PPC::ORI8 || 387 DefInstr->getOpcode() == PPC::ORI)) { 388 int64_t start = (short) DefInstr->getOperand(2).getImm(); 389 const MachineInstr *DefInstr2 = 390 MRI->getVRegDef(DefInstr->getOperand(0).getReg()); 391 if (DefInstr2 && (DefInstr2->getOpcode() == PPC::LIS8 || 392 DefInstr2->getOpcode() == PPC::LIS)) { 393 DEBUG(dbgs() << " initial constant: " << *DefInstr); 394 DEBUG(dbgs() << " initial constant: " << *DefInstr2); 395 396 start |= int64_t(short(DefInstr2->getOperand(1).getImm())) << 16; 397 398 int64_t count = ImmVal - start; 399 if ((count % iv_value) != 0) { 400 return 0; 401 } 402 return new CountValue(count/iv_value); 403 } 404 } else if (DefInstr && (DefInstr->getOpcode() == PPC::LI8 || 405 DefInstr->getOpcode() == PPC::LI)) { 406 DEBUG(dbgs() << " initial constant: " << *DefInstr); 407 408 int64_t count = ImmVal - int64_t(short(DefInstr->getOperand(1).getImm())); 409 if ((count % iv_value) != 0) { 410 return 0; 411 } 412 return new CountValue(count/iv_value); 413 } else if (iv_value == 1 || iv_value == -1) { 414 // We can't determine a constant starting value. 415 if (ImmVal == 0) { 416 return new CountValue(InitialValueReg, iv_value > 0); 417 } 418 // FIXME: handle non-zero end value. 419 } 420 // FIXME: handle non-unit increments (we might not want to introduce division 421 // but we can handle some 2^n cases with shifts). 422 423 } 424 } 425 } 426 return 0; 427} 428 429/// isInductionOperation - return true if the operation is matches the 430/// pattern that defines an induction variable: 431/// addi iv, c 432/// 433bool 434PPCCTRLoops::isInductionOperation(const MachineInstr *MI, 435 unsigned IVReg) const { 436 return ((MI->getOpcode() == PPC::ADDI || MI->getOpcode() == PPC::ADDI8) && 437 MI->getOperand(1).isReg() && // could be a frame index instead 438 MI->getOperand(1).getReg() == IVReg); 439} 440 441/// isInvalidOperation - Return true if the operation is invalid within 442/// CTR loop. 443bool 444PPCCTRLoops::isInvalidLoopOperation(const MachineInstr *MI) const { 445 446 // call is not allowed because the callee may use a CTR loop 447 if (MI->getDesc().isCall()) { 448 return true; 449 } 450 // check if the instruction defines a CTR loop register 451 // (this will also catch nested CTR loops) 452 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 453 const MachineOperand &MO = MI->getOperand(i); 454 if (MO.isReg() && MO.isDef() && 455 (MO.getReg() == PPC::CTR || MO.getReg() == PPC::CTR8)) { 456 return true; 457 } 458 } 459 return false; 460} 461 462/// containsInvalidInstruction - Return true if the loop contains 463/// an instruction that inhibits the use of the CTR loop function. 464/// 465bool PPCCTRLoops::containsInvalidInstruction(MachineLoop *L) const { 466 const std::vector<MachineBasicBlock*> Blocks = L->getBlocks(); 467 for (unsigned i = 0, e = Blocks.size(); i != e; ++i) { 468 MachineBasicBlock *MBB = Blocks[i]; 469 for (MachineBasicBlock::iterator 470 MII = MBB->begin(), E = MBB->end(); MII != E; ++MII) { 471 const MachineInstr *MI = &*MII; 472 if (isInvalidLoopOperation(MI)) { 473 return true; 474 } 475 } 476 } 477 return false; 478} 479 480/// isDead returns true if the instruction is dead 481/// (this was essentially copied from DeadMachineInstructionElim::isDead, but 482/// with special cases for inline asm, physical registers and instructions with 483/// side effects removed) 484bool PPCCTRLoops::isDead(const MachineInstr *MI, 485 SmallVector<MachineInstr *, 1> &DeadPhis) const { 486 // Examine each operand. 487 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 488 const MachineOperand &MO = MI->getOperand(i); 489 if (MO.isReg() && MO.isDef()) { 490 unsigned Reg = MO.getReg(); 491 if (!MRI->use_nodbg_empty(Reg)) { 492 // This instruction has users, but if the only user is the phi node for the 493 // parent block, and the only use of that phi node is this instruction, then 494 // this instruction is dead: both it (and the phi node) can be removed. 495 MachineRegisterInfo::use_iterator I = MRI->use_begin(Reg); 496 if (llvm::next(I) == MRI->use_end() && 497 I.getOperand().getParent()->isPHI()) { 498 MachineInstr *OnePhi = I.getOperand().getParent(); 499 500 for (unsigned j = 0, f = OnePhi->getNumOperands(); j != f; ++j) { 501 const MachineOperand &OPO = OnePhi->getOperand(j); 502 if (OPO.isReg() && OPO.isDef()) { 503 unsigned OPReg = OPO.getReg(); 504 505 MachineRegisterInfo::use_iterator nextJ; 506 for (MachineRegisterInfo::use_iterator J = MRI->use_begin(OPReg), 507 E = MRI->use_end(); J!=E; J=nextJ) { 508 nextJ = llvm::next(J); 509 MachineOperand& Use = J.getOperand(); 510 MachineInstr *UseMI = Use.getParent(); 511 512 if (MI != UseMI) { 513 // The phi node has a user that is not MI, bail... 514 return false; 515 } 516 } 517 } 518 } 519 520 DeadPhis.push_back(OnePhi); 521 } else { 522 // This def has a non-debug use. Don't delete the instruction! 523 return false; 524 } 525 } 526 } 527 } 528 529 // If there are no defs with uses, the instruction is dead. 530 return true; 531} 532 533void PPCCTRLoops::removeIfDead(MachineInstr *MI) { 534 // This procedure was essentially copied from DeadMachineInstructionElim 535 536 SmallVector<MachineInstr *, 1> DeadPhis; 537 if (isDead(MI, DeadPhis)) { 538 DEBUG(dbgs() << "CTR looping will remove: " << *MI); 539 540 // It is possible that some DBG_VALUE instructions refer to this 541 // instruction. Examine each def operand for such references; 542 // if found, mark the DBG_VALUE as undef (but don't delete it). 543 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 544 const MachineOperand &MO = MI->getOperand(i); 545 if (!MO.isReg() || !MO.isDef()) 546 continue; 547 unsigned Reg = MO.getReg(); 548 MachineRegisterInfo::use_iterator nextI; 549 for (MachineRegisterInfo::use_iterator I = MRI->use_begin(Reg), 550 E = MRI->use_end(); I!=E; I=nextI) { 551 nextI = llvm::next(I); // I is invalidated by the setReg 552 MachineOperand& Use = I.getOperand(); 553 MachineInstr *UseMI = Use.getParent(); 554 if (UseMI==MI) 555 continue; 556 if (Use.isDebug()) // this might also be a instr -> phi -> instr case 557 // which can also be removed. 558 UseMI->getOperand(0).setReg(0U); 559 } 560 } 561 562 MI->eraseFromParent(); 563 for (unsigned i = 0; i < DeadPhis.size(); ++i) { 564 DeadPhis[i]->eraseFromParent(); 565 } 566 } 567} 568 569/// converToCTRLoop - check if the loop is a candidate for 570/// converting to a CTR loop. If so, then perform the 571/// transformation. 572/// 573/// This function works on innermost loops first. A loop can 574/// be converted if it is a counting loop; either a register 575/// value or an immediate. 576/// 577/// The code makes several assumptions about the representation 578/// of the loop in llvm. 579bool PPCCTRLoops::convertToCTRLoop(MachineLoop *L) { 580 bool Changed = false; 581 // Process nested loops first. 582 for (MachineLoop::iterator I = L->begin(), E = L->end(); I != E; ++I) { 583 Changed |= convertToCTRLoop(*I); 584 } 585 // If a nested loop has been converted, then we can't convert this loop. 586 if (Changed) { 587 return Changed; 588 } 589 590 SmallVector<MachineInstr *, 2> OldInsts; 591 // Are we able to determine the trip count for the loop? 592 CountValue *TripCount = getTripCount(L, OldInsts); 593 if (TripCount == 0) { 594 DEBUG(dbgs() << "failed to get trip count!\n"); 595 return false; 596 } 597 // Does the loop contain any invalid instructions? 598 if (containsInvalidInstruction(L)) { 599 return false; 600 } 601 MachineBasicBlock *Preheader = L->getLoopPreheader(); 602 // No preheader means there's not place for the loop instr. 603 if (Preheader == 0) { 604 return false; 605 } 606 MachineBasicBlock::iterator InsertPos = Preheader->getFirstTerminator(); 607 608 DebugLoc dl; 609 if (InsertPos != Preheader->end()) 610 dl = InsertPos->getDebugLoc(); 611 612 MachineBasicBlock *LastMBB = L->getExitingBlock(); 613 // Don't generate CTR loop if the loop has more than one exit. 614 if (LastMBB == 0) { 615 return false; 616 } 617 MachineBasicBlock::iterator LastI = LastMBB->getFirstTerminator(); 618 619 // Determine the loop start. 620 MachineBasicBlock *LoopStart = L->getTopBlock(); 621 if (L->getLoopLatch() != LastMBB) { 622 // When the exit and latch are not the same, use the latch block as the 623 // start. 624 // The loop start address is used only after the 1st iteration, and the loop 625 // latch may contains instrs. that need to be executed after the 1st iter. 626 LoopStart = L->getLoopLatch(); 627 // Make sure the latch is a successor of the exit, otherwise it won't work. 628 if (!LastMBB->isSuccessor(LoopStart)) { 629 return false; 630 } 631 } 632 633 // Convert the loop to a CTR loop 634 DEBUG(dbgs() << "Change to CTR loop at "; L->dump()); 635 636 MachineFunction *MF = LastMBB->getParent(); 637 const PPCSubtarget &Subtarget = MF->getTarget().getSubtarget<PPCSubtarget>(); 638 bool isPPC64 = Subtarget.isPPC64(); 639 640 const TargetRegisterClass *GPRC = &PPC::GPRCRegClass; 641 const TargetRegisterClass *G8RC = &PPC::G8RCRegClass; 642 const TargetRegisterClass *RC = isPPC64 ? G8RC : GPRC; 643 644 unsigned CountReg; 645 if (TripCount->isReg()) { 646 // Create a copy of the loop count register. 647 const TargetRegisterClass *SrcRC = 648 MF->getRegInfo().getRegClass(TripCount->getReg()); 649 CountReg = MF->getRegInfo().createVirtualRegister(RC); 650 unsigned CopyOp = (isPPC64 && SrcRC == GPRC) ? 651 (unsigned) PPC::EXTSW_32_64 : 652 (unsigned) TargetOpcode::COPY; 653 BuildMI(*Preheader, InsertPos, dl, 654 TII->get(CopyOp), CountReg).addReg(TripCount->getReg()); 655 if (TripCount->isNeg()) { 656 unsigned CountReg1 = CountReg; 657 CountReg = MF->getRegInfo().createVirtualRegister(RC); 658 BuildMI(*Preheader, InsertPos, dl, 659 TII->get(isPPC64 ? PPC::NEG8 : PPC::NEG), 660 CountReg).addReg(CountReg1); 661 } 662 } else { 663 assert(TripCount->isImm() && "Expecting immedate vaule for trip count"); 664 // Put the trip count in a register for transfer into the count register. 665 666 int64_t CountImm = TripCount->getImm(); 667 assert(!TripCount->isNeg() && "Constant trip count must be positive"); 668 669 CountReg = MF->getRegInfo().createVirtualRegister(RC); 670 if (CountImm > 0xFFFF) { 671 BuildMI(*Preheader, InsertPos, dl, 672 TII->get(isPPC64 ? PPC::LIS8 : PPC::LIS), 673 CountReg).addImm(CountImm >> 16); 674 unsigned CountReg1 = CountReg; 675 CountReg = MF->getRegInfo().createVirtualRegister(RC); 676 BuildMI(*Preheader, InsertPos, dl, 677 TII->get(isPPC64 ? PPC::ORI8 : PPC::ORI), 678 CountReg).addReg(CountReg1).addImm(CountImm & 0xFFFF); 679 } else { 680 BuildMI(*Preheader, InsertPos, dl, 681 TII->get(isPPC64 ? PPC::LI8 : PPC::LI), 682 CountReg).addImm(CountImm); 683 } 684 } 685 686 // Add the mtctr instruction to the beginning of the loop. 687 BuildMI(*Preheader, InsertPos, dl, 688 TII->get(isPPC64 ? PPC::MTCTR8 : PPC::MTCTR)).addReg(CountReg, 689 TripCount->isImm() ? RegState::Kill : 0); 690 691 // Make sure the loop start always has a reference in the CFG. We need to 692 // create a BlockAddress operand to get this mechanism to work both the 693 // MachineBasicBlock and BasicBlock objects need the flag set. 694 LoopStart->setHasAddressTaken(); 695 // This line is needed to set the hasAddressTaken flag on the BasicBlock 696 // object 697 BlockAddress::get(const_cast<BasicBlock *>(LoopStart->getBasicBlock())); 698 699 // Replace the loop branch with a bdnz instruction. 700 dl = LastI->getDebugLoc(); 701 const std::vector<MachineBasicBlock*> Blocks = L->getBlocks(); 702 for (unsigned i = 0, e = Blocks.size(); i != e; ++i) { 703 MachineBasicBlock *MBB = Blocks[i]; 704 if (MBB != Preheader) 705 MBB->addLiveIn(isPPC64 ? PPC::CTR8 : PPC::CTR); 706 } 707 708 // The loop ends with either: 709 // - a conditional branch followed by an unconditional branch, or 710 // - a conditional branch to the loop start. 711 assert(LastI->getOpcode() == PPC::BCC && 712 "loop end must start with a BCC instruction"); 713 // Either the BCC branches to the beginning of the loop, or it 714 // branches out of the loop and there is an unconditional branch 715 // to the start of the loop. 716 MachineBasicBlock *BranchTarget = LastI->getOperand(2).getMBB(); 717 BuildMI(*LastMBB, LastI, dl, 718 TII->get((BranchTarget == LoopStart) ? 719 (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) : 720 (isPPC64 ? PPC::BDZ8 : PPC::BDZ))).addMBB(BranchTarget); 721 722 // Conditional branch; just delete it. 723 DEBUG(dbgs() << "Removing old branch: " << *LastI); 724 LastMBB->erase(LastI); 725 726 delete TripCount; 727 728 // The induction operation (add) and the comparison (cmpwi) may now be 729 // unneeded. If these are unneeded, then remove them. 730 for (unsigned i = 0; i < OldInsts.size(); ++i) 731 removeIfDead(OldInsts[i]); 732 733 ++NumCTRLoops; 734 return true; 735} 736 737