PPCCTRLoops.cpp revision 96848dfc465c8c7f156a562c246803ebefcf21cf
1//===-- PPCCTRLoops.cpp - Identify and generate CTR loops -----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass identifies loops where we can generate the PPC branch instructions
11// that decrement and test the count register (CTR) (bdnz and friends).
12// This pass is based on the HexagonHardwareLoops pass.
13//
14// The pattern that defines the induction variable can changed depending on
15// prior optimizations.  For example, the IndVarSimplify phase run by 'opt'
16// normalizes induction variables, and the Loop Strength Reduction pass
17// run by 'llc' may also make changes to the induction variable.
18// The pattern detected by this phase is due to running Strength Reduction.
19//
20// Criteria for CTR loops:
21//  - Countable loops (w/ ind. var for a trip count)
22//  - Assumes loops are normalized by IndVarSimplify
23//  - Try inner-most loops first
24//  - No nested CTR loops.
25//  - No function calls in loops.
26//
27//  Note: As with unconverted loops, PPCBranchSelector must be run after this
28//  pass in order to convert long-displacement jumps into jump pairs.
29//
30//===----------------------------------------------------------------------===//
31
32#define DEBUG_TYPE "ctrloops"
33#include "PPC.h"
34#include "MCTargetDesc/PPCPredicates.h"
35#include "PPCTargetMachine.h"
36#include "llvm/ADT/DenseMap.h"
37#include "llvm/ADT/Statistic.h"
38#include "llvm/CodeGen/MachineDominators.h"
39#include "llvm/CodeGen/MachineFunction.h"
40#include "llvm/CodeGen/MachineFunctionPass.h"
41#include "llvm/CodeGen/MachineInstrBuilder.h"
42#include "llvm/CodeGen/MachineLoopInfo.h"
43#include "llvm/CodeGen/MachineRegisterInfo.h"
44#include "llvm/CodeGen/Passes.h"
45#include "llvm/CodeGen/RegisterScavenging.h"
46#include "llvm/IR/Constants.h"
47#include "llvm/PassSupport.h"
48#include "llvm/Support/Debug.h"
49#include "llvm/Support/raw_ostream.h"
50#include "llvm/Target/TargetInstrInfo.h"
51#include <algorithm>
52
53using namespace llvm;
54
55STATISTIC(NumCTRLoops, "Number of loops converted to CTR loops");
56
57namespace llvm {
58  void initializePPCCTRLoopsPass(PassRegistry&);
59}
60
61namespace {
62  class CountValue;
63  struct PPCCTRLoops : public MachineFunctionPass {
64    MachineLoopInfo       *MLI;
65    MachineRegisterInfo   *MRI;
66    const TargetInstrInfo *TII;
67
68  public:
69    static char ID;   // Pass identification, replacement for typeid
70
71    PPCCTRLoops() : MachineFunctionPass(ID) {
72      initializePPCCTRLoopsPass(*PassRegistry::getPassRegistry());
73    }
74
75    virtual bool runOnMachineFunction(MachineFunction &MF);
76
77    const char *getPassName() const { return "PPC CTR Loops"; }
78
79    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
80      AU.setPreservesCFG();
81      AU.addRequired<MachineDominatorTree>();
82      AU.addPreserved<MachineDominatorTree>();
83      AU.addRequired<MachineLoopInfo>();
84      AU.addPreserved<MachineLoopInfo>();
85      MachineFunctionPass::getAnalysisUsage(AU);
86    }
87
88  private:
89    /// getCanonicalInductionVariable - Check to see if the loop has a canonical
90    /// induction variable.
91    /// Should be defined in MachineLoop. Based upon version in class Loop.
92    void getCanonicalInductionVariable(MachineLoop *L,
93                              SmallVector<MachineInstr *, 4> &IVars,
94                              SmallVector<MachineInstr *, 4> &IOps) const;
95
96    /// getTripCount - Return a loop-invariant LLVM register indicating the
97    /// number of times the loop will be executed.  If the trip-count cannot
98    /// be determined, this return null.
99    CountValue *getTripCount(MachineLoop *L,
100                             SmallVector<MachineInstr *, 2> &OldInsts) const;
101
102    /// isInductionOperation - Return true if the instruction matches the
103    /// pattern for an opertion that defines an induction variable.
104    bool isInductionOperation(const MachineInstr *MI, unsigned IVReg) const;
105
106    /// isInvalidOperation - Return true if the instruction is not valid within
107    /// a CTR loop.
108    bool isInvalidLoopOperation(const MachineInstr *MI) const;
109
110    /// containsInavlidInstruction - Return true if the loop contains an
111    /// instruction that inhibits using the CTR loop.
112    bool containsInvalidInstruction(MachineLoop *L) const;
113
114    /// converToCTRLoop - Given a loop, check if we can convert it to a
115    /// CTR loop.  If so, then perform the conversion and return true.
116    bool convertToCTRLoop(MachineLoop *L);
117
118    /// isDead - Return true if the instruction is now dead.
119    bool isDead(const MachineInstr *MI,
120                SmallVector<MachineInstr *, 1> &DeadPhis) const;
121
122    /// removeIfDead - Remove the instruction if it is now dead.
123    void removeIfDead(MachineInstr *MI);
124  };
125
126  char PPCCTRLoops::ID = 0;
127
128
129  // CountValue class - Abstraction for a trip count of a loop. A
130  // smaller vesrsion of the MachineOperand class without the concerns
131  // of changing the operand representation.
132  class CountValue {
133  public:
134    enum CountValueType {
135      CV_Register,
136      CV_Immediate
137    };
138  private:
139    CountValueType Kind;
140    union Values {
141      unsigned RegNum;
142      int64_t ImmVal;
143      Values(unsigned r) : RegNum(r) {}
144      Values(int64_t i) : ImmVal(i) {}
145    } Contents;
146    bool isNegative;
147
148  public:
149    CountValue(unsigned r, bool neg) : Kind(CV_Register), Contents(r),
150                                       isNegative(neg) {}
151    explicit CountValue(int64_t i) : Kind(CV_Immediate), Contents(i),
152                                     isNegative(i < 0) {}
153    CountValueType getType() const { return Kind; }
154    bool isReg() const { return Kind == CV_Register; }
155    bool isImm() const { return Kind == CV_Immediate; }
156    bool isNeg() const { return isNegative; }
157
158    unsigned getReg() const {
159      assert(isReg() && "Wrong CountValue accessor");
160      return Contents.RegNum;
161    }
162    void setReg(unsigned Val) {
163      Contents.RegNum = Val;
164    }
165    int64_t getImm() const {
166      assert(isImm() && "Wrong CountValue accessor");
167      if (isNegative) {
168        return -Contents.ImmVal;
169      }
170      return Contents.ImmVal;
171    }
172    void setImm(int64_t Val) {
173      Contents.ImmVal = Val;
174    }
175
176    void print(raw_ostream &OS, const TargetMachine *TM = 0) const {
177      if (isReg()) { OS << PrintReg(getReg()); }
178      if (isImm()) { OS << getImm(); }
179    }
180  };
181} // end anonymous namespace
182
183INITIALIZE_PASS_BEGIN(PPCCTRLoops, "ppc-ctr-loops", "PowerPC CTR Loops",
184                      false, false)
185INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
186INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
187INITIALIZE_PASS_END(PPCCTRLoops, "ppc-ctr-loops", "PowerPC CTR Loops",
188                    false, false)
189
190/// isCompareEquals - Returns true if the instruction is a compare equals
191/// instruction with an immediate operand.
192static bool isCompareEqualsImm(const MachineInstr *MI, bool &SignedCmp) {
193  if (MI->getOpcode() == PPC::CMPWI || MI->getOpcode() == PPC::CMPDI) {
194    SignedCmp = true;
195    return true;
196  } else if (MI->getOpcode() == PPC::CMPLWI || MI->getOpcode() == PPC::CMPLDI) {
197    SignedCmp = false;
198    return true;
199  }
200
201  return false;
202}
203
204
205/// createPPCCTRLoops - Factory for creating
206/// the CTR loop phase.
207FunctionPass *llvm::createPPCCTRLoops() {
208  return new PPCCTRLoops();
209}
210
211
212bool PPCCTRLoops::runOnMachineFunction(MachineFunction &MF) {
213  DEBUG(dbgs() << "********* PPC CTR Loops *********\n");
214
215  bool Changed = false;
216
217  // get the loop information
218  MLI = &getAnalysis<MachineLoopInfo>();
219  // get the register information
220  MRI = &MF.getRegInfo();
221  // the target specific instructio info.
222  TII = MF.getTarget().getInstrInfo();
223
224  for (MachineLoopInfo::iterator I = MLI->begin(), E = MLI->end();
225       I != E; ++I) {
226    MachineLoop *L = *I;
227    if (!L->getParentLoop()) {
228      Changed |= convertToCTRLoop(L);
229    }
230  }
231
232  return Changed;
233}
234
235/// getCanonicalInductionVariable - Check to see if the loop has a canonical
236/// induction variable. We check for a simple recurrence pattern - an
237/// integer recurrence that decrements by one each time through the loop and
238/// ends at zero.  If so, return the phi node that corresponds to it.
239///
240/// Based upon the similar code in LoopInfo except this code is specific to
241/// the machine.
242/// This method assumes that the IndVarSimplify pass has been run by 'opt'.
243///
244void
245PPCCTRLoops::getCanonicalInductionVariable(MachineLoop *L,
246                                  SmallVector<MachineInstr *, 4> &IVars,
247                                  SmallVector<MachineInstr *, 4> &IOps) const {
248  MachineBasicBlock *TopMBB = L->getTopBlock();
249  MachineBasicBlock::pred_iterator PI = TopMBB->pred_begin();
250  assert(PI != TopMBB->pred_end() &&
251         "Loop must have more than one incoming edge!");
252  MachineBasicBlock *Backedge = *PI++;
253  if (PI == TopMBB->pred_end()) return;  // dead loop
254  MachineBasicBlock *Incoming = *PI++;
255  if (PI != TopMBB->pred_end()) return;  // multiple backedges?
256
257  // make sure there is one incoming and one backedge and determine which
258  // is which.
259  if (L->contains(Incoming)) {
260    if (L->contains(Backedge))
261      return;
262    std::swap(Incoming, Backedge);
263  } else if (!L->contains(Backedge))
264    return;
265
266  // Loop over all of the PHI nodes, looking for a canonical induction variable:
267  //   - The PHI node is "reg1 = PHI reg2, BB1, reg3, BB2".
268  //   - The recurrence comes from the backedge.
269  //   - the definition is an induction operatio.n
270  for (MachineBasicBlock::iterator I = TopMBB->begin(), E = TopMBB->end();
271       I != E && I->isPHI(); ++I) {
272    MachineInstr *MPhi = &*I;
273    unsigned DefReg = MPhi->getOperand(0).getReg();
274    for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2) {
275      // Check each operand for the value from the backedge.
276      MachineBasicBlock *MBB = MPhi->getOperand(i+1).getMBB();
277      if (L->contains(MBB)) { // operands comes from the backedge
278        // Check if the definition is an induction operation.
279        MachineInstr *DI = MRI->getVRegDef(MPhi->getOperand(i).getReg());
280        if (isInductionOperation(DI, DefReg)) {
281          IOps.push_back(DI);
282          IVars.push_back(MPhi);
283        }
284      }
285    }
286  }
287  return;
288}
289
290/// getTripCount - Return a loop-invariant LLVM value indicating the
291/// number of times the loop will be executed.  The trip count can
292/// be either a register or a constant value.  If the trip-count
293/// cannot be determined, this returns null.
294///
295/// We find the trip count from the phi instruction that defines the
296/// induction variable.  We follow the links to the CMP instruction
297/// to get the trip count.
298///
299/// Based upon getTripCount in LoopInfo.
300///
301CountValue *PPCCTRLoops::getTripCount(MachineLoop *L,
302                           SmallVector<MachineInstr *, 2> &OldInsts) const {
303  MachineBasicBlock *LastMBB = L->getExitingBlock();
304  // Don't generate a CTR loop if the loop has more than one exit.
305  if (LastMBB == 0)
306    return 0;
307
308  MachineBasicBlock::iterator LastI = LastMBB->getFirstTerminator();
309  if (LastI->getOpcode() != PPC::BCC)
310    return 0;
311
312  // We need to make sure that this compare is defining the condition
313  // register actually used by the terminating branch.
314
315  unsigned PredReg = LastI->getOperand(1).getReg();
316  DEBUG(dbgs() << "Examining loop with first terminator: " << *LastI);
317
318  unsigned PredCond = LastI->getOperand(0).getImm();
319  if (PredCond != PPC::PRED_EQ && PredCond != PPC::PRED_NE)
320    return 0;
321
322  // Check that the loop has a induction variable.
323  SmallVector<MachineInstr *, 4> IVars, IOps;
324  getCanonicalInductionVariable(L, IVars, IOps);
325  for (unsigned i = 0; i < IVars.size(); ++i) {
326    MachineInstr *IOp = IOps[i];
327    MachineInstr *IV_Inst = IVars[i];
328
329    // Canonical loops will end with a 'cmpwi/cmpdi cr, IV, Imm',
330    //  if Imm is 0, get the count from the PHI opnd
331    //  if Imm is -M, than M is the count
332    //  Otherwise, Imm is the count
333    MachineOperand *IV_Opnd;
334    const MachineOperand *InitialValue;
335    if (!L->contains(IV_Inst->getOperand(2).getMBB())) {
336      InitialValue = &IV_Inst->getOperand(1);
337      IV_Opnd = &IV_Inst->getOperand(3);
338    } else {
339      InitialValue = &IV_Inst->getOperand(3);
340      IV_Opnd = &IV_Inst->getOperand(1);
341    }
342
343    DEBUG(dbgs() << "Considering:\n");
344    DEBUG(dbgs() << "  induction operation: " << *IOp);
345    DEBUG(dbgs() << "  induction variable: " << *IV_Inst);
346    DEBUG(dbgs() << "  initial value: " << *InitialValue << "\n");
347
348    // Look for the cmp instruction to determine if we
349    // can get a useful trip count.  The trip count can
350    // be either a register or an immediate.  The location
351    // of the value depends upon the type (reg or imm).
352    for (MachineRegisterInfo::reg_iterator
353         RI = MRI->reg_begin(IV_Opnd->getReg()), RE = MRI->reg_end();
354         RI != RE; ++RI) {
355      IV_Opnd = &RI.getOperand();
356      bool SignedCmp;
357      MachineInstr *MI = IV_Opnd->getParent();
358      if (L->contains(MI) && isCompareEqualsImm(MI, SignedCmp) &&
359          MI->getOperand(0).getReg() == PredReg) {
360
361        OldInsts.push_back(MI);
362        OldInsts.push_back(IOp);
363
364        DEBUG(dbgs() << "  compare: " << *MI);
365
366        const MachineOperand &MO = MI->getOperand(2);
367        assert(MO.isImm() && "IV Cmp Operand should be an immediate");
368
369        int64_t ImmVal;
370        if (SignedCmp)
371          ImmVal = (short) MO.getImm();
372        else
373          ImmVal = MO.getImm();
374
375        const MachineInstr *IV_DefInstr = MRI->getVRegDef(IV_Opnd->getReg());
376        assert(L->contains(IV_DefInstr->getParent()) &&
377               "IV definition should occurs in loop");
378        int64_t iv_value = (short) IV_DefInstr->getOperand(2).getImm();
379
380        assert(InitialValue->isReg() && "Expecting register for init value");
381        unsigned InitialValueReg = InitialValue->getReg();
382
383        const MachineInstr *DefInstr = MRI->getVRegDef(InitialValueReg);
384
385        // Here we need to look for an immediate load (an li or lis/ori pair).
386        if (DefInstr && (DefInstr->getOpcode() == PPC::ORI8 ||
387                         DefInstr->getOpcode() == PPC::ORI)) {
388          int64_t start = (short) DefInstr->getOperand(2).getImm();
389          const MachineInstr *DefInstr2 =
390            MRI->getVRegDef(DefInstr->getOperand(0).getReg());
391          if (DefInstr2 && (DefInstr2->getOpcode() == PPC::LIS8 ||
392                            DefInstr2->getOpcode() == PPC::LIS)) {
393            DEBUG(dbgs() << "  initial constant: " << *DefInstr);
394            DEBUG(dbgs() << "  initial constant: " << *DefInstr2);
395
396            start |= int64_t(short(DefInstr2->getOperand(1).getImm())) << 16;
397
398            int64_t count = ImmVal - start;
399            if ((count % iv_value) != 0) {
400              return 0;
401            }
402            return new CountValue(count/iv_value);
403          }
404        } else if (DefInstr && (DefInstr->getOpcode() == PPC::LI8 ||
405                                DefInstr->getOpcode() == PPC::LI)) {
406          DEBUG(dbgs() << "  initial constant: " << *DefInstr);
407
408          int64_t count = ImmVal - int64_t(short(DefInstr->getOperand(1).getImm()));
409          if ((count % iv_value) != 0) {
410            return 0;
411          }
412          return new CountValue(count/iv_value);
413        } else if (iv_value == 1 || iv_value == -1) {
414          // We can't determine a constant starting value.
415          if (ImmVal == 0) {
416            return new CountValue(InitialValueReg, iv_value > 0);
417          }
418          // FIXME: handle non-zero end value.
419        }
420        // FIXME: handle non-unit increments (we might not want to introduce division
421        // but we can handle some 2^n cases with shifts).
422
423      }
424    }
425  }
426  return 0;
427}
428
429/// isInductionOperation - return true if the operation is matches the
430/// pattern that defines an induction variable:
431///    addi iv, c
432///
433bool
434PPCCTRLoops::isInductionOperation(const MachineInstr *MI,
435                                           unsigned IVReg) const {
436  return ((MI->getOpcode() == PPC::ADDI || MI->getOpcode() == PPC::ADDI8) &&
437          MI->getOperand(1).isReg() && // could be a frame index instead
438          MI->getOperand(1).getReg() == IVReg);
439}
440
441/// isInvalidOperation - Return true if the operation is invalid within
442/// CTR loop.
443bool
444PPCCTRLoops::isInvalidLoopOperation(const MachineInstr *MI) const {
445
446  // call is not allowed because the callee may use a CTR loop
447  if (MI->getDesc().isCall()) {
448    return true;
449  }
450  // check if the instruction defines a CTR loop register
451  // (this will also catch nested CTR loops)
452  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
453    const MachineOperand &MO = MI->getOperand(i);
454    if (MO.isReg() && MO.isDef() &&
455        (MO.getReg() == PPC::CTR || MO.getReg() == PPC::CTR8)) {
456      return true;
457    }
458  }
459  return false;
460}
461
462/// containsInvalidInstruction - Return true if the loop contains
463/// an instruction that inhibits the use of the CTR loop function.
464///
465bool PPCCTRLoops::containsInvalidInstruction(MachineLoop *L) const {
466  const std::vector<MachineBasicBlock*> Blocks = L->getBlocks();
467  for (unsigned i = 0, e = Blocks.size(); i != e; ++i) {
468    MachineBasicBlock *MBB = Blocks[i];
469    for (MachineBasicBlock::iterator
470           MII = MBB->begin(), E = MBB->end(); MII != E; ++MII) {
471      const MachineInstr *MI = &*MII;
472      if (isInvalidLoopOperation(MI)) {
473        return true;
474      }
475    }
476  }
477  return false;
478}
479
480/// isDead returns true if the instruction is dead
481/// (this was essentially copied from DeadMachineInstructionElim::isDead, but
482/// with special cases for inline asm, physical registers and instructions with
483/// side effects removed)
484bool PPCCTRLoops::isDead(const MachineInstr *MI,
485                         SmallVector<MachineInstr *, 1> &DeadPhis) const {
486  // Examine each operand.
487  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
488    const MachineOperand &MO = MI->getOperand(i);
489    if (MO.isReg() && MO.isDef()) {
490      unsigned Reg = MO.getReg();
491      if (!MRI->use_nodbg_empty(Reg)) {
492        // This instruction has users, but if the only user is the phi node for the
493        // parent block, and the only use of that phi node is this instruction, then
494        // this instruction is dead: both it (and the phi node) can be removed.
495        MachineRegisterInfo::use_iterator I = MRI->use_begin(Reg);
496        if (llvm::next(I) == MRI->use_end() &&
497            I.getOperand().getParent()->isPHI()) {
498          MachineInstr *OnePhi = I.getOperand().getParent();
499
500          for (unsigned j = 0, f = OnePhi->getNumOperands(); j != f; ++j) {
501            const MachineOperand &OPO = OnePhi->getOperand(j);
502            if (OPO.isReg() && OPO.isDef()) {
503              unsigned OPReg = OPO.getReg();
504
505              MachineRegisterInfo::use_iterator nextJ;
506              for (MachineRegisterInfo::use_iterator J = MRI->use_begin(OPReg),
507                   E = MRI->use_end(); J!=E; J=nextJ) {
508                nextJ = llvm::next(J);
509                MachineOperand& Use = J.getOperand();
510                MachineInstr *UseMI = Use.getParent();
511
512                if (MI != UseMI) {
513                  // The phi node has a user that is not MI, bail...
514                  return false;
515                }
516              }
517            }
518          }
519
520          DeadPhis.push_back(OnePhi);
521        } else {
522          // This def has a non-debug use. Don't delete the instruction!
523          return false;
524        }
525      }
526    }
527  }
528
529  // If there are no defs with uses, the instruction is dead.
530  return true;
531}
532
533void PPCCTRLoops::removeIfDead(MachineInstr *MI) {
534  // This procedure was essentially copied from DeadMachineInstructionElim
535
536  SmallVector<MachineInstr *, 1> DeadPhis;
537  if (isDead(MI, DeadPhis)) {
538    DEBUG(dbgs() << "CTR looping will remove: " << *MI);
539
540    // It is possible that some DBG_VALUE instructions refer to this
541    // instruction.  Examine each def operand for such references;
542    // if found, mark the DBG_VALUE as undef (but don't delete it).
543    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
544      const MachineOperand &MO = MI->getOperand(i);
545      if (!MO.isReg() || !MO.isDef())
546        continue;
547      unsigned Reg = MO.getReg();
548      MachineRegisterInfo::use_iterator nextI;
549      for (MachineRegisterInfo::use_iterator I = MRI->use_begin(Reg),
550           E = MRI->use_end(); I!=E; I=nextI) {
551        nextI = llvm::next(I);  // I is invalidated by the setReg
552        MachineOperand& Use = I.getOperand();
553        MachineInstr *UseMI = Use.getParent();
554        if (UseMI==MI)
555          continue;
556        if (Use.isDebug()) // this might also be a instr -> phi -> instr case
557                           // which can also be removed.
558          UseMI->getOperand(0).setReg(0U);
559      }
560    }
561
562    MI->eraseFromParent();
563    for (unsigned i = 0; i < DeadPhis.size(); ++i) {
564      DeadPhis[i]->eraseFromParent();
565    }
566  }
567}
568
569/// converToCTRLoop - check if the loop is a candidate for
570/// converting to a CTR loop.  If so, then perform the
571/// transformation.
572///
573/// This function works on innermost loops first.  A loop can
574/// be converted if it is a counting loop; either a register
575/// value or an immediate.
576///
577/// The code makes several assumptions about the representation
578/// of the loop in llvm.
579bool PPCCTRLoops::convertToCTRLoop(MachineLoop *L) {
580  bool Changed = false;
581  // Process nested loops first.
582  for (MachineLoop::iterator I = L->begin(), E = L->end(); I != E; ++I) {
583    Changed |= convertToCTRLoop(*I);
584  }
585  // If a nested loop has been converted, then we can't convert this loop.
586  if (Changed) {
587    return Changed;
588  }
589
590  SmallVector<MachineInstr *, 2> OldInsts;
591  // Are we able to determine the trip count for the loop?
592  CountValue *TripCount = getTripCount(L, OldInsts);
593  if (TripCount == 0) {
594    DEBUG(dbgs() << "failed to get trip count!\n");
595    return false;
596  }
597  // Does the loop contain any invalid instructions?
598  if (containsInvalidInstruction(L)) {
599    return false;
600  }
601  MachineBasicBlock *Preheader = L->getLoopPreheader();
602  // No preheader means there's not place for the loop instr.
603  if (Preheader == 0) {
604    return false;
605  }
606  MachineBasicBlock::iterator InsertPos = Preheader->getFirstTerminator();
607
608  DebugLoc dl;
609  if (InsertPos != Preheader->end())
610    dl = InsertPos->getDebugLoc();
611
612  MachineBasicBlock *LastMBB = L->getExitingBlock();
613  // Don't generate CTR loop if the loop has more than one exit.
614  if (LastMBB == 0) {
615    return false;
616  }
617  MachineBasicBlock::iterator LastI = LastMBB->getFirstTerminator();
618
619  // Determine the loop start.
620  MachineBasicBlock *LoopStart = L->getTopBlock();
621  if (L->getLoopLatch() != LastMBB) {
622    // When the exit and latch are not the same, use the latch block as the
623    // start.
624    // The loop start address is used only after the 1st iteration, and the loop
625    // latch may contains instrs. that need to be executed after the 1st iter.
626    LoopStart = L->getLoopLatch();
627    // Make sure the latch is a successor of the exit, otherwise it won't work.
628    if (!LastMBB->isSuccessor(LoopStart)) {
629      return false;
630    }
631  }
632
633  // Convert the loop to a CTR loop
634  DEBUG(dbgs() << "Change to CTR loop at "; L->dump());
635
636  MachineFunction *MF = LastMBB->getParent();
637  const PPCSubtarget &Subtarget = MF->getTarget().getSubtarget<PPCSubtarget>();
638  bool isPPC64 = Subtarget.isPPC64();
639
640  const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;
641  const TargetRegisterClass *G8RC = &PPC::G8RCRegClass;
642  const TargetRegisterClass *RC = isPPC64 ? G8RC : GPRC;
643
644  unsigned CountReg;
645  if (TripCount->isReg()) {
646    // Create a copy of the loop count register.
647    const TargetRegisterClass *SrcRC =
648      MF->getRegInfo().getRegClass(TripCount->getReg());
649    CountReg = MF->getRegInfo().createVirtualRegister(RC);
650    unsigned CopyOp = (isPPC64 && SrcRC == GPRC) ?
651                        (unsigned) PPC::EXTSW_32_64 :
652                        (unsigned) TargetOpcode::COPY;
653    BuildMI(*Preheader, InsertPos, dl,
654            TII->get(CopyOp), CountReg).addReg(TripCount->getReg());
655    if (TripCount->isNeg()) {
656      unsigned CountReg1 = CountReg;
657      CountReg = MF->getRegInfo().createVirtualRegister(RC);
658      BuildMI(*Preheader, InsertPos, dl,
659              TII->get(isPPC64 ? PPC::NEG8 : PPC::NEG),
660                       CountReg).addReg(CountReg1);
661    }
662  } else {
663    assert(TripCount->isImm() && "Expecting immedate vaule for trip count");
664    // Put the trip count in a register for transfer into the count register.
665
666    int64_t CountImm = TripCount->getImm();
667    assert(!TripCount->isNeg() && "Constant trip count must be positive");
668
669    CountReg = MF->getRegInfo().createVirtualRegister(RC);
670    if (CountImm > 0xFFFF) {
671      BuildMI(*Preheader, InsertPos, dl,
672              TII->get(isPPC64 ? PPC::LIS8 : PPC::LIS),
673              CountReg).addImm(CountImm >> 16);
674      unsigned CountReg1 = CountReg;
675      CountReg = MF->getRegInfo().createVirtualRegister(RC);
676      BuildMI(*Preheader, InsertPos, dl,
677              TII->get(isPPC64 ? PPC::ORI8 : PPC::ORI),
678              CountReg).addReg(CountReg1).addImm(CountImm & 0xFFFF);
679    } else {
680      BuildMI(*Preheader, InsertPos, dl,
681              TII->get(isPPC64 ? PPC::LI8 : PPC::LI),
682              CountReg).addImm(CountImm);
683    }
684  }
685
686  // Add the mtctr instruction to the beginning of the loop.
687  BuildMI(*Preheader, InsertPos, dl,
688          TII->get(isPPC64 ? PPC::MTCTR8 : PPC::MTCTR)).addReg(CountReg,
689            TripCount->isImm() ? RegState::Kill : 0);
690
691  // Make sure the loop start always has a reference in the CFG.  We need to
692  // create a BlockAddress operand to get this mechanism to work both the
693  // MachineBasicBlock and BasicBlock objects need the flag set.
694  LoopStart->setHasAddressTaken();
695  // This line is needed to set the hasAddressTaken flag on the BasicBlock
696  // object
697  BlockAddress::get(const_cast<BasicBlock *>(LoopStart->getBasicBlock()));
698
699  // Replace the loop branch with a bdnz instruction.
700  dl = LastI->getDebugLoc();
701  const std::vector<MachineBasicBlock*> Blocks = L->getBlocks();
702  for (unsigned i = 0, e = Blocks.size(); i != e; ++i) {
703    MachineBasicBlock *MBB = Blocks[i];
704    if (MBB != Preheader)
705      MBB->addLiveIn(isPPC64 ? PPC::CTR8 : PPC::CTR);
706  }
707
708  // The loop ends with either:
709  //  - a conditional branch followed by an unconditional branch, or
710  //  - a conditional branch to the loop start.
711  assert(LastI->getOpcode() == PPC::BCC &&
712         "loop end must start with a BCC instruction");
713  // Either the BCC branches to the beginning of the loop, or it
714  // branches out of the loop and there is an unconditional branch
715  // to the start of the loop.
716  MachineBasicBlock *BranchTarget = LastI->getOperand(2).getMBB();
717  BuildMI(*LastMBB, LastI, dl,
718        TII->get((BranchTarget == LoopStart) ?
719                 (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) :
720                 (isPPC64 ? PPC::BDZ8 : PPC::BDZ))).addMBB(BranchTarget);
721
722  // Conditional branch; just delete it.
723  DEBUG(dbgs() << "Removing old branch: " << *LastI);
724  LastMBB->erase(LastI);
725
726  delete TripCount;
727
728  // The induction operation (add) and the comparison (cmpwi) may now be
729  // unneeded. If these are unneeded, then remove them.
730  for (unsigned i = 0; i < OldInsts.size(); ++i)
731    removeIfDead(OldInsts[i]);
732
733  ++NumCTRLoops;
734  return true;
735}
736
737