X86ISelDAGToDAG.cpp revision 17aa68055beed6faa48ca3a995c5b6fdf5092fd4
1//===- X86ISelDAGToDAG.cpp - A DAG pattern matching inst selector for X86 -===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines a DAG pattern matching instruction selector for X86,
11// converting from a legalized dag to a X86 dag.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "x86-isel"
16#include "X86.h"
17#include "X86InstrBuilder.h"
18#include "X86MachineFunctionInfo.h"
19#include "X86RegisterInfo.h"
20#include "X86Subtarget.h"
21#include "X86TargetMachine.h"
22#include "llvm/Instructions.h"
23#include "llvm/Intrinsics.h"
24#include "llvm/Support/CFG.h"
25#include "llvm/Type.h"
26#include "llvm/CodeGen/MachineConstantPool.h"
27#include "llvm/CodeGen/MachineFunction.h"
28#include "llvm/CodeGen/MachineFrameInfo.h"
29#include "llvm/CodeGen/MachineInstrBuilder.h"
30#include "llvm/CodeGen/MachineRegisterInfo.h"
31#include "llvm/CodeGen/SelectionDAGISel.h"
32#include "llvm/Target/TargetMachine.h"
33#include "llvm/Target/TargetOptions.h"
34#include "llvm/Support/Debug.h"
35#include "llvm/Support/ErrorHandling.h"
36#include "llvm/Support/MathExtras.h"
37#include "llvm/Support/raw_ostream.h"
38#include "llvm/ADT/SmallPtrSet.h"
39#include "llvm/ADT/Statistic.h"
40using namespace llvm;
41
42STATISTIC(NumLoadMoved, "Number of loads moved below TokenFactor");
43
44//===----------------------------------------------------------------------===//
45//                      Pattern Matcher Implementation
46//===----------------------------------------------------------------------===//
47
48namespace {
49  /// X86ISelAddressMode - This corresponds to X86AddressMode, but uses
50  /// SDValue's instead of register numbers for the leaves of the matched
51  /// tree.
52  struct X86ISelAddressMode {
53    enum {
54      RegBase,
55      FrameIndexBase
56    } BaseType;
57
58    // This is really a union, discriminated by BaseType!
59    SDValue Base_Reg;
60    int Base_FrameIndex;
61
62    unsigned Scale;
63    SDValue IndexReg;
64    int32_t Disp;
65    SDValue Segment;
66    const GlobalValue *GV;
67    const Constant *CP;
68    const BlockAddress *BlockAddr;
69    const char *ES;
70    int JT;
71    unsigned Align;    // CP alignment.
72    unsigned char SymbolFlags;  // X86II::MO_*
73
74    X86ISelAddressMode()
75      : BaseType(RegBase), Base_FrameIndex(0), Scale(1), IndexReg(), Disp(0),
76        Segment(), GV(0), CP(0), BlockAddr(0), ES(0), JT(-1), Align(0),
77        SymbolFlags(X86II::MO_NO_FLAG) {
78    }
79
80    bool hasSymbolicDisplacement() const {
81      return GV != 0 || CP != 0 || ES != 0 || JT != -1 || BlockAddr != 0;
82    }
83
84    bool hasBaseOrIndexReg() const {
85      return IndexReg.getNode() != 0 || Base_Reg.getNode() != 0;
86    }
87
88    /// isRIPRelative - Return true if this addressing mode is already RIP
89    /// relative.
90    bool isRIPRelative() const {
91      if (BaseType != RegBase) return false;
92      if (RegisterSDNode *RegNode =
93            dyn_cast_or_null<RegisterSDNode>(Base_Reg.getNode()))
94        return RegNode->getReg() == X86::RIP;
95      return false;
96    }
97
98    void setBaseReg(SDValue Reg) {
99      BaseType = RegBase;
100      Base_Reg = Reg;
101    }
102
103    void dump() {
104      dbgs() << "X86ISelAddressMode " << this << '\n';
105      dbgs() << "Base_Reg ";
106      if (Base_Reg.getNode() != 0)
107        Base_Reg.getNode()->dump();
108      else
109        dbgs() << "nul";
110      dbgs() << " Base.FrameIndex " << Base_FrameIndex << '\n'
111             << " Scale" << Scale << '\n'
112             << "IndexReg ";
113      if (IndexReg.getNode() != 0)
114        IndexReg.getNode()->dump();
115      else
116        dbgs() << "nul";
117      dbgs() << " Disp " << Disp << '\n'
118             << "GV ";
119      if (GV)
120        GV->dump();
121      else
122        dbgs() << "nul";
123      dbgs() << " CP ";
124      if (CP)
125        CP->dump();
126      else
127        dbgs() << "nul";
128      dbgs() << '\n'
129             << "ES ";
130      if (ES)
131        dbgs() << ES;
132      else
133        dbgs() << "nul";
134      dbgs() << " JT" << JT << " Align" << Align << '\n';
135    }
136  };
137}
138
139namespace {
140  //===--------------------------------------------------------------------===//
141  /// ISel - X86 specific code to select X86 machine instructions for
142  /// SelectionDAG operations.
143  ///
144  class X86DAGToDAGISel : public SelectionDAGISel {
145    /// X86Lowering - This object fully describes how to lower LLVM code to an
146    /// X86-specific SelectionDAG.
147    const X86TargetLowering &X86Lowering;
148
149    /// Subtarget - Keep a pointer to the X86Subtarget around so that we can
150    /// make the right decision when generating code for different targets.
151    const X86Subtarget *Subtarget;
152
153    /// OptForSize - If true, selector should try to optimize for code size
154    /// instead of performance.
155    bool OptForSize;
156
157  public:
158    explicit X86DAGToDAGISel(X86TargetMachine &tm, CodeGenOpt::Level OptLevel)
159      : SelectionDAGISel(tm, OptLevel),
160        X86Lowering(*tm.getTargetLowering()),
161        Subtarget(&tm.getSubtarget<X86Subtarget>()),
162        OptForSize(false) {}
163
164    virtual const char *getPassName() const {
165      return "X86 DAG->DAG Instruction Selection";
166    }
167
168    virtual void EmitFunctionEntryCode();
169
170    virtual bool IsProfitableToFold(SDValue N, SDNode *U, SDNode *Root) const;
171
172    virtual void PreprocessISelDAG();
173
174    inline bool immSext8(SDNode *N) const {
175      return isInt<8>(cast<ConstantSDNode>(N)->getSExtValue());
176    }
177
178    // i64immSExt32 predicate - True if the 64-bit immediate fits in a 32-bit
179    // sign extended field.
180    inline bool i64immSExt32(SDNode *N) const {
181      uint64_t v = cast<ConstantSDNode>(N)->getZExtValue();
182      return (int64_t)v == (int32_t)v;
183    }
184
185// Include the pieces autogenerated from the target description.
186#include "X86GenDAGISel.inc"
187
188  private:
189    SDNode *Select(SDNode *N);
190    SDNode *SelectAtomic64(SDNode *Node, unsigned Opc);
191    SDNode *SelectAtomicLoadAdd(SDNode *Node, EVT NVT);
192
193    bool MatchSegmentBaseAddress(SDValue N, X86ISelAddressMode &AM);
194    bool MatchLoad(SDValue N, X86ISelAddressMode &AM);
195    bool MatchWrapper(SDValue N, X86ISelAddressMode &AM);
196    bool MatchAddress(SDValue N, X86ISelAddressMode &AM);
197    bool MatchAddressRecursively(SDValue N, X86ISelAddressMode &AM,
198                                 unsigned Depth);
199    bool MatchAddressBase(SDValue N, X86ISelAddressMode &AM);
200    bool SelectAddr(SDNode *Op, SDValue N, SDValue &Base,
201                    SDValue &Scale, SDValue &Index, SDValue &Disp,
202                    SDValue &Segment);
203    bool SelectLEAAddr(SDNode *Op, SDValue N, SDValue &Base,
204                       SDValue &Scale, SDValue &Index, SDValue &Disp,
205                       SDValue &Segment);
206    bool SelectTLSADDRAddr(SDNode *Op, SDValue N, SDValue &Base,
207                           SDValue &Scale, SDValue &Index, SDValue &Disp,
208                           SDValue &Segment);
209    bool SelectScalarSSELoad(SDNode *Root, SDValue N,
210                             SDValue &Base, SDValue &Scale,
211                             SDValue &Index, SDValue &Disp,
212                             SDValue &Segment,
213                             SDValue &NodeWithChain);
214
215    bool TryFoldLoad(SDNode *P, SDValue N,
216                     SDValue &Base, SDValue &Scale,
217                     SDValue &Index, SDValue &Disp,
218                     SDValue &Segment);
219
220    /// SelectInlineAsmMemoryOperand - Implement addressing mode selection for
221    /// inline asm expressions.
222    virtual bool SelectInlineAsmMemoryOperand(const SDValue &Op,
223                                              char ConstraintCode,
224                                              std::vector<SDValue> &OutOps);
225
226    void EmitSpecialCodeForMain(MachineBasicBlock *BB, MachineFrameInfo *MFI);
227
228    inline void getAddressOperands(X86ISelAddressMode &AM, SDValue &Base,
229                                   SDValue &Scale, SDValue &Index,
230                                   SDValue &Disp, SDValue &Segment) {
231      Base  = (AM.BaseType == X86ISelAddressMode::FrameIndexBase) ?
232        CurDAG->getTargetFrameIndex(AM.Base_FrameIndex, TLI.getPointerTy()) :
233        AM.Base_Reg;
234      Scale = getI8Imm(AM.Scale);
235      Index = AM.IndexReg;
236      // These are 32-bit even in 64-bit mode since RIP relative offset
237      // is 32-bit.
238      if (AM.GV)
239        Disp = CurDAG->getTargetGlobalAddress(AM.GV, DebugLoc(),
240                                              MVT::i32, AM.Disp,
241                                              AM.SymbolFlags);
242      else if (AM.CP)
243        Disp = CurDAG->getTargetConstantPool(AM.CP, MVT::i32,
244                                             AM.Align, AM.Disp, AM.SymbolFlags);
245      else if (AM.ES)
246        Disp = CurDAG->getTargetExternalSymbol(AM.ES, MVT::i32, AM.SymbolFlags);
247      else if (AM.JT != -1)
248        Disp = CurDAG->getTargetJumpTable(AM.JT, MVT::i32, AM.SymbolFlags);
249      else if (AM.BlockAddr)
250        Disp = CurDAG->getBlockAddress(AM.BlockAddr, MVT::i32,
251                                       true, AM.SymbolFlags);
252      else
253        Disp = CurDAG->getTargetConstant(AM.Disp, MVT::i32);
254
255      if (AM.Segment.getNode())
256        Segment = AM.Segment;
257      else
258        Segment = CurDAG->getRegister(0, MVT::i32);
259    }
260
261    /// getI8Imm - Return a target constant with the specified value, of type
262    /// i8.
263    inline SDValue getI8Imm(unsigned Imm) {
264      return CurDAG->getTargetConstant(Imm, MVT::i8);
265    }
266
267    /// getI32Imm - Return a target constant with the specified value, of type
268    /// i32.
269    inline SDValue getI32Imm(unsigned Imm) {
270      return CurDAG->getTargetConstant(Imm, MVT::i32);
271    }
272
273    /// getGlobalBaseReg - Return an SDNode that returns the value of
274    /// the global base register. Output instructions required to
275    /// initialize the global base register, if necessary.
276    ///
277    SDNode *getGlobalBaseReg();
278
279    /// getTargetMachine - Return a reference to the TargetMachine, casted
280    /// to the target-specific type.
281    const X86TargetMachine &getTargetMachine() {
282      return static_cast<const X86TargetMachine &>(TM);
283    }
284
285    /// getInstrInfo - Return a reference to the TargetInstrInfo, casted
286    /// to the target-specific type.
287    const X86InstrInfo *getInstrInfo() {
288      return getTargetMachine().getInstrInfo();
289    }
290  };
291}
292
293
294bool
295X86DAGToDAGISel::IsProfitableToFold(SDValue N, SDNode *U, SDNode *Root) const {
296  if (OptLevel == CodeGenOpt::None) return false;
297
298  if (!N.hasOneUse())
299    return false;
300
301  if (N.getOpcode() != ISD::LOAD)
302    return true;
303
304  // If N is a load, do additional profitability checks.
305  if (U == Root) {
306    switch (U->getOpcode()) {
307    default: break;
308    case X86ISD::ADD:
309    case X86ISD::SUB:
310    case X86ISD::AND:
311    case X86ISD::XOR:
312    case X86ISD::OR:
313    case ISD::ADD:
314    case ISD::ADDC:
315    case ISD::ADDE:
316    case ISD::AND:
317    case ISD::OR:
318    case ISD::XOR: {
319      SDValue Op1 = U->getOperand(1);
320
321      // If the other operand is a 8-bit immediate we should fold the immediate
322      // instead. This reduces code size.
323      // e.g.
324      // movl 4(%esp), %eax
325      // addl $4, %eax
326      // vs.
327      // movl $4, %eax
328      // addl 4(%esp), %eax
329      // The former is 2 bytes shorter. In case where the increment is 1, then
330      // the saving can be 4 bytes (by using incl %eax).
331      if (ConstantSDNode *Imm = dyn_cast<ConstantSDNode>(Op1))
332        if (Imm->getAPIntValue().isSignedIntN(8))
333          return false;
334
335      // If the other operand is a TLS address, we should fold it instead.
336      // This produces
337      // movl    %gs:0, %eax
338      // leal    i@NTPOFF(%eax), %eax
339      // instead of
340      // movl    $i@NTPOFF, %eax
341      // addl    %gs:0, %eax
342      // if the block also has an access to a second TLS address this will save
343      // a load.
344      // FIXME: This is probably also true for non TLS addresses.
345      if (Op1.getOpcode() == X86ISD::Wrapper) {
346        SDValue Val = Op1.getOperand(0);
347        if (Val.getOpcode() == ISD::TargetGlobalTLSAddress)
348          return false;
349      }
350    }
351    }
352  }
353
354  return true;
355}
356
357/// MoveBelowCallOrigChain - Replace the original chain operand of the call with
358/// load's chain operand and move load below the call's chain operand.
359static void MoveBelowOrigChain(SelectionDAG *CurDAG, SDValue Load,
360                                  SDValue Call, SDValue OrigChain) {
361  SmallVector<SDValue, 8> Ops;
362  SDValue Chain = OrigChain.getOperand(0);
363  if (Chain.getNode() == Load.getNode())
364    Ops.push_back(Load.getOperand(0));
365  else {
366    assert(Chain.getOpcode() == ISD::TokenFactor &&
367           "Unexpected chain operand");
368    for (unsigned i = 0, e = Chain.getNumOperands(); i != e; ++i)
369      if (Chain.getOperand(i).getNode() == Load.getNode())
370        Ops.push_back(Load.getOperand(0));
371      else
372        Ops.push_back(Chain.getOperand(i));
373    SDValue NewChain =
374      CurDAG->getNode(ISD::TokenFactor, Load.getDebugLoc(),
375                      MVT::Other, &Ops[0], Ops.size());
376    Ops.clear();
377    Ops.push_back(NewChain);
378  }
379  for (unsigned i = 1, e = OrigChain.getNumOperands(); i != e; ++i)
380    Ops.push_back(OrigChain.getOperand(i));
381  CurDAG->UpdateNodeOperands(OrigChain.getNode(), &Ops[0], Ops.size());
382  CurDAG->UpdateNodeOperands(Load.getNode(), Call.getOperand(0),
383                             Load.getOperand(1), Load.getOperand(2));
384  Ops.clear();
385  Ops.push_back(SDValue(Load.getNode(), 1));
386  for (unsigned i = 1, e = Call.getNode()->getNumOperands(); i != e; ++i)
387    Ops.push_back(Call.getOperand(i));
388  CurDAG->UpdateNodeOperands(Call.getNode(), &Ops[0], Ops.size());
389}
390
391/// isCalleeLoad - Return true if call address is a load and it can be
392/// moved below CALLSEQ_START and the chains leading up to the call.
393/// Return the CALLSEQ_START by reference as a second output.
394/// In the case of a tail call, there isn't a callseq node between the call
395/// chain and the load.
396static bool isCalleeLoad(SDValue Callee, SDValue &Chain, bool HasCallSeq) {
397  if (Callee.getNode() == Chain.getNode() || !Callee.hasOneUse())
398    return false;
399  LoadSDNode *LD = dyn_cast<LoadSDNode>(Callee.getNode());
400  if (!LD ||
401      LD->isVolatile() ||
402      LD->getAddressingMode() != ISD::UNINDEXED ||
403      LD->getExtensionType() != ISD::NON_EXTLOAD)
404    return false;
405
406  // Now let's find the callseq_start.
407  while (HasCallSeq && Chain.getOpcode() != ISD::CALLSEQ_START) {
408    if (!Chain.hasOneUse())
409      return false;
410    Chain = Chain.getOperand(0);
411  }
412
413  if (!Chain.getNumOperands())
414    return false;
415  if (Chain.getOperand(0).getNode() == Callee.getNode())
416    return true;
417  if (Chain.getOperand(0).getOpcode() == ISD::TokenFactor &&
418      Callee.getValue(1).isOperandOf(Chain.getOperand(0).getNode()) &&
419      Callee.getValue(1).hasOneUse())
420    return true;
421  return false;
422}
423
424void X86DAGToDAGISel::PreprocessISelDAG() {
425  // OptForSize is used in pattern predicates that isel is matching.
426  OptForSize = MF->getFunction()->hasFnAttr(Attribute::OptimizeForSize);
427
428  for (SelectionDAG::allnodes_iterator I = CurDAG->allnodes_begin(),
429       E = CurDAG->allnodes_end(); I != E; ) {
430    SDNode *N = I++;  // Preincrement iterator to avoid invalidation issues.
431
432    if (OptLevel != CodeGenOpt::None &&
433        (N->getOpcode() == X86ISD::CALL ||
434         N->getOpcode() == X86ISD::TC_RETURN)) {
435      /// Also try moving call address load from outside callseq_start to just
436      /// before the call to allow it to be folded.
437      ///
438      ///     [Load chain]
439      ///         ^
440      ///         |
441      ///       [Load]
442      ///       ^    ^
443      ///       |    |
444      ///      /      \--
445      ///     /          |
446      ///[CALLSEQ_START] |
447      ///     ^          |
448      ///     |          |
449      /// [LOAD/C2Reg]   |
450      ///     |          |
451      ///      \        /
452      ///       \      /
453      ///       [CALL]
454      bool HasCallSeq = N->getOpcode() == X86ISD::CALL;
455      SDValue Chain = N->getOperand(0);
456      SDValue Load  = N->getOperand(1);
457      if (!isCalleeLoad(Load, Chain, HasCallSeq))
458        continue;
459      MoveBelowOrigChain(CurDAG, Load, SDValue(N, 0), Chain);
460      ++NumLoadMoved;
461      continue;
462    }
463
464    // Lower fpround and fpextend nodes that target the FP stack to be store and
465    // load to the stack.  This is a gross hack.  We would like to simply mark
466    // these as being illegal, but when we do that, legalize produces these when
467    // it expands calls, then expands these in the same legalize pass.  We would
468    // like dag combine to be able to hack on these between the call expansion
469    // and the node legalization.  As such this pass basically does "really
470    // late" legalization of these inline with the X86 isel pass.
471    // FIXME: This should only happen when not compiled with -O0.
472    if (N->getOpcode() != ISD::FP_ROUND && N->getOpcode() != ISD::FP_EXTEND)
473      continue;
474
475    // If the source and destination are SSE registers, then this is a legal
476    // conversion that should not be lowered.
477    EVT SrcVT = N->getOperand(0).getValueType();
478    EVT DstVT = N->getValueType(0);
479    bool SrcIsSSE = X86Lowering.isScalarFPTypeInSSEReg(SrcVT);
480    bool DstIsSSE = X86Lowering.isScalarFPTypeInSSEReg(DstVT);
481    if (SrcIsSSE && DstIsSSE)
482      continue;
483
484    if (!SrcIsSSE && !DstIsSSE) {
485      // If this is an FPStack extension, it is a noop.
486      if (N->getOpcode() == ISD::FP_EXTEND)
487        continue;
488      // If this is a value-preserving FPStack truncation, it is a noop.
489      if (N->getConstantOperandVal(1))
490        continue;
491    }
492
493    // Here we could have an FP stack truncation or an FPStack <-> SSE convert.
494    // FPStack has extload and truncstore.  SSE can fold direct loads into other
495    // operations.  Based on this, decide what we want to do.
496    EVT MemVT;
497    if (N->getOpcode() == ISD::FP_ROUND)
498      MemVT = DstVT;  // FP_ROUND must use DstVT, we can't do a 'trunc load'.
499    else
500      MemVT = SrcIsSSE ? SrcVT : DstVT;
501
502    SDValue MemTmp = CurDAG->CreateStackTemporary(MemVT);
503    DebugLoc dl = N->getDebugLoc();
504
505    // FIXME: optimize the case where the src/dest is a load or store?
506    SDValue Store = CurDAG->getTruncStore(CurDAG->getEntryNode(), dl,
507                                          N->getOperand(0),
508                                          MemTmp, NULL, 0, MemVT,
509                                          false, false, 0);
510    SDValue Result = CurDAG->getExtLoad(ISD::EXTLOAD, DstVT, dl, Store, MemTmp,
511                                        NULL, 0, MemVT, false, false, 0);
512
513    // We're about to replace all uses of the FP_ROUND/FP_EXTEND with the
514    // extload we created.  This will cause general havok on the dag because
515    // anything below the conversion could be folded into other existing nodes.
516    // To avoid invalidating 'I', back it up to the convert node.
517    --I;
518    CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Result);
519
520    // Now that we did that, the node is dead.  Increment the iterator to the
521    // next node to process, then delete N.
522    ++I;
523    CurDAG->DeleteNode(N);
524  }
525}
526
527
528/// EmitSpecialCodeForMain - Emit any code that needs to be executed only in
529/// the main function.
530void X86DAGToDAGISel::EmitSpecialCodeForMain(MachineBasicBlock *BB,
531                                             MachineFrameInfo *MFI) {
532  const TargetInstrInfo *TII = TM.getInstrInfo();
533  if (Subtarget->isTargetCygMing())
534    BuildMI(BB, DebugLoc(),
535            TII->get(X86::CALLpcrel32)).addExternalSymbol("__main");
536}
537
538void X86DAGToDAGISel::EmitFunctionEntryCode() {
539  // If this is main, emit special code for main.
540  if (const Function *Fn = MF->getFunction())
541    if (Fn->hasExternalLinkage() && Fn->getName() == "main")
542      EmitSpecialCodeForMain(MF->begin(), MF->getFrameInfo());
543}
544
545
546bool X86DAGToDAGISel::MatchSegmentBaseAddress(SDValue N,
547                                              X86ISelAddressMode &AM) {
548  assert(N.getOpcode() == X86ISD::SegmentBaseAddress);
549  SDValue Segment = N.getOperand(0);
550
551  if (AM.Segment.getNode() == 0) {
552    AM.Segment = Segment;
553    return false;
554  }
555
556  return true;
557}
558
559bool X86DAGToDAGISel::MatchLoad(SDValue N, X86ISelAddressMode &AM) {
560  // This optimization is valid because the GNU TLS model defines that
561  // gs:0 (or fs:0 on X86-64) contains its own address.
562  // For more information see http://people.redhat.com/drepper/tls.pdf
563
564  SDValue Address = N.getOperand(1);
565  if (Address.getOpcode() == X86ISD::SegmentBaseAddress &&
566      !MatchSegmentBaseAddress (Address, AM))
567    return false;
568
569  return true;
570}
571
572/// MatchWrapper - Try to match X86ISD::Wrapper and X86ISD::WrapperRIP nodes
573/// into an addressing mode.  These wrap things that will resolve down into a
574/// symbol reference.  If no match is possible, this returns true, otherwise it
575/// returns false.
576bool X86DAGToDAGISel::MatchWrapper(SDValue N, X86ISelAddressMode &AM) {
577  // If the addressing mode already has a symbol as the displacement, we can
578  // never match another symbol.
579  if (AM.hasSymbolicDisplacement())
580    return true;
581
582  SDValue N0 = N.getOperand(0);
583  CodeModel::Model M = TM.getCodeModel();
584
585  // Handle X86-64 rip-relative addresses.  We check this before checking direct
586  // folding because RIP is preferable to non-RIP accesses.
587  if (Subtarget->is64Bit() &&
588      // Under X86-64 non-small code model, GV (and friends) are 64-bits, so
589      // they cannot be folded into immediate fields.
590      // FIXME: This can be improved for kernel and other models?
591      (M == CodeModel::Small || M == CodeModel::Kernel) &&
592      // Base and index reg must be 0 in order to use %rip as base and lowering
593      // must allow RIP.
594      !AM.hasBaseOrIndexReg() && N.getOpcode() == X86ISD::WrapperRIP) {
595    if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(N0)) {
596      int64_t Offset = AM.Disp + G->getOffset();
597      if (!X86::isOffsetSuitableForCodeModel(Offset, M)) return true;
598      AM.GV = G->getGlobal();
599      AM.Disp = Offset;
600      AM.SymbolFlags = G->getTargetFlags();
601    } else if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(N0)) {
602      int64_t Offset = AM.Disp + CP->getOffset();
603      if (!X86::isOffsetSuitableForCodeModel(Offset, M)) return true;
604      AM.CP = CP->getConstVal();
605      AM.Align = CP->getAlignment();
606      AM.Disp = Offset;
607      AM.SymbolFlags = CP->getTargetFlags();
608    } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(N0)) {
609      AM.ES = S->getSymbol();
610      AM.SymbolFlags = S->getTargetFlags();
611    } else if (JumpTableSDNode *J = dyn_cast<JumpTableSDNode>(N0)) {
612      AM.JT = J->getIndex();
613      AM.SymbolFlags = J->getTargetFlags();
614    } else {
615      AM.BlockAddr = cast<BlockAddressSDNode>(N0)->getBlockAddress();
616      AM.SymbolFlags = cast<BlockAddressSDNode>(N0)->getTargetFlags();
617    }
618
619    if (N.getOpcode() == X86ISD::WrapperRIP)
620      AM.setBaseReg(CurDAG->getRegister(X86::RIP, MVT::i64));
621    return false;
622  }
623
624  // Handle the case when globals fit in our immediate field: This is true for
625  // X86-32 always and X86-64 when in -static -mcmodel=small mode.  In 64-bit
626  // mode, this results in a non-RIP-relative computation.
627  if (!Subtarget->is64Bit() ||
628      ((M == CodeModel::Small || M == CodeModel::Kernel) &&
629       TM.getRelocationModel() == Reloc::Static)) {
630    if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(N0)) {
631      AM.GV = G->getGlobal();
632      AM.Disp += G->getOffset();
633      AM.SymbolFlags = G->getTargetFlags();
634    } else if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(N0)) {
635      AM.CP = CP->getConstVal();
636      AM.Align = CP->getAlignment();
637      AM.Disp += CP->getOffset();
638      AM.SymbolFlags = CP->getTargetFlags();
639    } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(N0)) {
640      AM.ES = S->getSymbol();
641      AM.SymbolFlags = S->getTargetFlags();
642    } else if (JumpTableSDNode *J = dyn_cast<JumpTableSDNode>(N0)) {
643      AM.JT = J->getIndex();
644      AM.SymbolFlags = J->getTargetFlags();
645    } else {
646      AM.BlockAddr = cast<BlockAddressSDNode>(N0)->getBlockAddress();
647      AM.SymbolFlags = cast<BlockAddressSDNode>(N0)->getTargetFlags();
648    }
649    return false;
650  }
651
652  return true;
653}
654
655/// MatchAddress - Add the specified node to the specified addressing mode,
656/// returning true if it cannot be done.  This just pattern matches for the
657/// addressing mode.
658bool X86DAGToDAGISel::MatchAddress(SDValue N, X86ISelAddressMode &AM) {
659  if (MatchAddressRecursively(N, AM, 0))
660    return true;
661
662  // Post-processing: Convert lea(,%reg,2) to lea(%reg,%reg), which has
663  // a smaller encoding and avoids a scaled-index.
664  if (AM.Scale == 2 &&
665      AM.BaseType == X86ISelAddressMode::RegBase &&
666      AM.Base_Reg.getNode() == 0) {
667    AM.Base_Reg = AM.IndexReg;
668    AM.Scale = 1;
669  }
670
671  // Post-processing: Convert foo to foo(%rip), even in non-PIC mode,
672  // because it has a smaller encoding.
673  // TODO: Which other code models can use this?
674  if (TM.getCodeModel() == CodeModel::Small &&
675      Subtarget->is64Bit() &&
676      AM.Scale == 1 &&
677      AM.BaseType == X86ISelAddressMode::RegBase &&
678      AM.Base_Reg.getNode() == 0 &&
679      AM.IndexReg.getNode() == 0 &&
680      AM.SymbolFlags == X86II::MO_NO_FLAG &&
681      AM.hasSymbolicDisplacement())
682    AM.Base_Reg = CurDAG->getRegister(X86::RIP, MVT::i64);
683
684  return false;
685}
686
687/// isLogicallyAddWithConstant - Return true if this node is semantically an
688/// add of a value with a constantint.
689static bool isLogicallyAddWithConstant(SDValue V, SelectionDAG *CurDAG) {
690  // Check for (add x, Cst)
691  if (V->getOpcode() == ISD::ADD)
692    return isa<ConstantSDNode>(V->getOperand(1));
693
694  // Check for (or x, Cst), where Cst & x == 0.
695  if (V->getOpcode() != ISD::OR ||
696      !isa<ConstantSDNode>(V->getOperand(1)))
697    return false;
698
699  // Handle "X | C" as "X + C" iff X is known to have C bits clear.
700  ConstantSDNode *CN = cast<ConstantSDNode>(V->getOperand(1));
701
702  // Check to see if the LHS & C is zero.
703  return CurDAG->MaskedValueIsZero(V->getOperand(0), CN->getAPIntValue());
704}
705
706bool X86DAGToDAGISel::MatchAddressRecursively(SDValue N, X86ISelAddressMode &AM,
707                                              unsigned Depth) {
708  bool is64Bit = Subtarget->is64Bit();
709  DebugLoc dl = N.getDebugLoc();
710  DEBUG({
711      dbgs() << "MatchAddress: ";
712      AM.dump();
713    });
714  // Limit recursion.
715  if (Depth > 5)
716    return MatchAddressBase(N, AM);
717
718  CodeModel::Model M = TM.getCodeModel();
719
720  // If this is already a %rip relative address, we can only merge immediates
721  // into it.  Instead of handling this in every case, we handle it here.
722  // RIP relative addressing: %rip + 32-bit displacement!
723  if (AM.isRIPRelative()) {
724    // FIXME: JumpTable and ExternalSymbol address currently don't like
725    // displacements.  It isn't very important, but this should be fixed for
726    // consistency.
727    if (!AM.ES && AM.JT != -1) return true;
728
729    if (ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(N)) {
730      int64_t Val = AM.Disp + Cst->getSExtValue();
731      if (X86::isOffsetSuitableForCodeModel(Val, M,
732                                            AM.hasSymbolicDisplacement())) {
733        AM.Disp = Val;
734        return false;
735      }
736    }
737    return true;
738  }
739
740  switch (N.getOpcode()) {
741  default: break;
742  case ISD::Constant: {
743    uint64_t Val = cast<ConstantSDNode>(N)->getSExtValue();
744    if (!is64Bit ||
745        X86::isOffsetSuitableForCodeModel(AM.Disp + Val, M,
746                                          AM.hasSymbolicDisplacement())) {
747      AM.Disp += Val;
748      return false;
749    }
750    break;
751  }
752
753  case X86ISD::SegmentBaseAddress:
754    if (!MatchSegmentBaseAddress(N, AM))
755      return false;
756    break;
757
758  case X86ISD::Wrapper:
759  case X86ISD::WrapperRIP:
760    if (!MatchWrapper(N, AM))
761      return false;
762    break;
763
764  case ISD::LOAD:
765    if (!MatchLoad(N, AM))
766      return false;
767    break;
768
769  case ISD::FrameIndex:
770    if (AM.BaseType == X86ISelAddressMode::RegBase
771        && AM.Base_Reg.getNode() == 0) {
772      AM.BaseType = X86ISelAddressMode::FrameIndexBase;
773      AM.Base_FrameIndex = cast<FrameIndexSDNode>(N)->getIndex();
774      return false;
775    }
776    break;
777
778  case ISD::SHL:
779    if (AM.IndexReg.getNode() != 0 || AM.Scale != 1)
780      break;
781
782    if (ConstantSDNode
783          *CN = dyn_cast<ConstantSDNode>(N.getNode()->getOperand(1))) {
784      unsigned Val = CN->getZExtValue();
785      // Note that we handle x<<1 as (,x,2) rather than (x,x) here so
786      // that the base operand remains free for further matching. If
787      // the base doesn't end up getting used, a post-processing step
788      // in MatchAddress turns (,x,2) into (x,x), which is cheaper.
789      if (Val == 1 || Val == 2 || Val == 3) {
790        AM.Scale = 1 << Val;
791        SDValue ShVal = N.getNode()->getOperand(0);
792
793        // Okay, we know that we have a scale by now.  However, if the scaled
794        // value is an add of something and a constant, we can fold the
795        // constant into the disp field here.
796        if (isLogicallyAddWithConstant(ShVal, CurDAG)) {
797          AM.IndexReg = ShVal.getNode()->getOperand(0);
798          ConstantSDNode *AddVal =
799            cast<ConstantSDNode>(ShVal.getNode()->getOperand(1));
800          uint64_t Disp = AM.Disp + (AddVal->getSExtValue() << Val);
801          if (!is64Bit ||
802              X86::isOffsetSuitableForCodeModel(Disp, M,
803                                                AM.hasSymbolicDisplacement()))
804            AM.Disp = Disp;
805          else
806            AM.IndexReg = ShVal;
807        } else {
808          AM.IndexReg = ShVal;
809        }
810        return false;
811      }
812    break;
813    }
814
815  case ISD::SMUL_LOHI:
816  case ISD::UMUL_LOHI:
817    // A mul_lohi where we need the low part can be folded as a plain multiply.
818    if (N.getResNo() != 0) break;
819    // FALL THROUGH
820  case ISD::MUL:
821  case X86ISD::MUL_IMM:
822    // X*[3,5,9] -> X+X*[2,4,8]
823    if (AM.BaseType == X86ISelAddressMode::RegBase &&
824        AM.Base_Reg.getNode() == 0 &&
825        AM.IndexReg.getNode() == 0) {
826      if (ConstantSDNode
827            *CN = dyn_cast<ConstantSDNode>(N.getNode()->getOperand(1)))
828        if (CN->getZExtValue() == 3 || CN->getZExtValue() == 5 ||
829            CN->getZExtValue() == 9) {
830          AM.Scale = unsigned(CN->getZExtValue())-1;
831
832          SDValue MulVal = N.getNode()->getOperand(0);
833          SDValue Reg;
834
835          // Okay, we know that we have a scale by now.  However, if the scaled
836          // value is an add of something and a constant, we can fold the
837          // constant into the disp field here.
838          if (MulVal.getNode()->getOpcode() == ISD::ADD && MulVal.hasOneUse() &&
839              isa<ConstantSDNode>(MulVal.getNode()->getOperand(1))) {
840            Reg = MulVal.getNode()->getOperand(0);
841            ConstantSDNode *AddVal =
842              cast<ConstantSDNode>(MulVal.getNode()->getOperand(1));
843            uint64_t Disp = AM.Disp + AddVal->getSExtValue() *
844                                      CN->getZExtValue();
845            if (!is64Bit ||
846                X86::isOffsetSuitableForCodeModel(Disp, M,
847                                                  AM.hasSymbolicDisplacement()))
848              AM.Disp = Disp;
849            else
850              Reg = N.getNode()->getOperand(0);
851          } else {
852            Reg = N.getNode()->getOperand(0);
853          }
854
855          AM.IndexReg = AM.Base_Reg = Reg;
856          return false;
857        }
858    }
859    break;
860
861  case ISD::SUB: {
862    // Given A-B, if A can be completely folded into the address and
863    // the index field with the index field unused, use -B as the index.
864    // This is a win if a has multiple parts that can be folded into
865    // the address. Also, this saves a mov if the base register has
866    // other uses, since it avoids a two-address sub instruction, however
867    // it costs an additional mov if the index register has other uses.
868
869    // Add an artificial use to this node so that we can keep track of
870    // it if it gets CSE'd with a different node.
871    HandleSDNode Handle(N);
872
873    // Test if the LHS of the sub can be folded.
874    X86ISelAddressMode Backup = AM;
875    if (MatchAddressRecursively(N.getNode()->getOperand(0), AM, Depth+1)) {
876      AM = Backup;
877      break;
878    }
879    // Test if the index field is free for use.
880    if (AM.IndexReg.getNode() || AM.isRIPRelative()) {
881      AM = Backup;
882      break;
883    }
884
885    int Cost = 0;
886    SDValue RHS = Handle.getValue().getNode()->getOperand(1);
887    // If the RHS involves a register with multiple uses, this
888    // transformation incurs an extra mov, due to the neg instruction
889    // clobbering its operand.
890    if (!RHS.getNode()->hasOneUse() ||
891        RHS.getNode()->getOpcode() == ISD::CopyFromReg ||
892        RHS.getNode()->getOpcode() == ISD::TRUNCATE ||
893        RHS.getNode()->getOpcode() == ISD::ANY_EXTEND ||
894        (RHS.getNode()->getOpcode() == ISD::ZERO_EXTEND &&
895         RHS.getNode()->getOperand(0).getValueType() == MVT::i32))
896      ++Cost;
897    // If the base is a register with multiple uses, this
898    // transformation may save a mov.
899    if ((AM.BaseType == X86ISelAddressMode::RegBase &&
900         AM.Base_Reg.getNode() &&
901         !AM.Base_Reg.getNode()->hasOneUse()) ||
902        AM.BaseType == X86ISelAddressMode::FrameIndexBase)
903      --Cost;
904    // If the folded LHS was interesting, this transformation saves
905    // address arithmetic.
906    if ((AM.hasSymbolicDisplacement() && !Backup.hasSymbolicDisplacement()) +
907        ((AM.Disp != 0) && (Backup.Disp == 0)) +
908        (AM.Segment.getNode() && !Backup.Segment.getNode()) >= 2)
909      --Cost;
910    // If it doesn't look like it may be an overall win, don't do it.
911    if (Cost >= 0) {
912      AM = Backup;
913      break;
914    }
915
916    // Ok, the transformation is legal and appears profitable. Go for it.
917    SDValue Zero = CurDAG->getConstant(0, N.getValueType());
918    SDValue Neg = CurDAG->getNode(ISD::SUB, dl, N.getValueType(), Zero, RHS);
919    AM.IndexReg = Neg;
920    AM.Scale = 1;
921
922    // Insert the new nodes into the topological ordering.
923    if (Zero.getNode()->getNodeId() == -1 ||
924        Zero.getNode()->getNodeId() > N.getNode()->getNodeId()) {
925      CurDAG->RepositionNode(N.getNode(), Zero.getNode());
926      Zero.getNode()->setNodeId(N.getNode()->getNodeId());
927    }
928    if (Neg.getNode()->getNodeId() == -1 ||
929        Neg.getNode()->getNodeId() > N.getNode()->getNodeId()) {
930      CurDAG->RepositionNode(N.getNode(), Neg.getNode());
931      Neg.getNode()->setNodeId(N.getNode()->getNodeId());
932    }
933    return false;
934  }
935
936  case ISD::ADD: {
937    // Add an artificial use to this node so that we can keep track of
938    // it if it gets CSE'd with a different node.
939    HandleSDNode Handle(N);
940    SDValue LHS = Handle.getValue().getNode()->getOperand(0);
941    SDValue RHS = Handle.getValue().getNode()->getOperand(1);
942
943    X86ISelAddressMode Backup = AM;
944    if (!MatchAddressRecursively(LHS, AM, Depth+1) &&
945        !MatchAddressRecursively(RHS, AM, Depth+1))
946      return false;
947    AM = Backup;
948    LHS = Handle.getValue().getNode()->getOperand(0);
949    RHS = Handle.getValue().getNode()->getOperand(1);
950
951    // Try again after commuting the operands.
952    if (!MatchAddressRecursively(RHS, AM, Depth+1) &&
953        !MatchAddressRecursively(LHS, AM, Depth+1))
954      return false;
955    AM = Backup;
956    LHS = Handle.getValue().getNode()->getOperand(0);
957    RHS = Handle.getValue().getNode()->getOperand(1);
958
959    // If we couldn't fold both operands into the address at the same time,
960    // see if we can just put each operand into a register and fold at least
961    // the add.
962    if (AM.BaseType == X86ISelAddressMode::RegBase &&
963        !AM.Base_Reg.getNode() &&
964        !AM.IndexReg.getNode()) {
965      AM.Base_Reg = LHS;
966      AM.IndexReg = RHS;
967      AM.Scale = 1;
968      return false;
969    }
970    break;
971  }
972
973  case ISD::OR:
974    // Handle "X | C" as "X + C" iff X is known to have C bits clear.
975    if (isLogicallyAddWithConstant(N, CurDAG)) {
976      X86ISelAddressMode Backup = AM;
977      ConstantSDNode *CN = cast<ConstantSDNode>(N.getOperand(1));
978      uint64_t Offset = CN->getSExtValue();
979
980      // Start with the LHS as an addr mode.
981      if (!MatchAddressRecursively(N.getOperand(0), AM, Depth+1) &&
982          // Address could not have picked a GV address for the displacement.
983          AM.GV == NULL &&
984          // On x86-64, the resultant disp must fit in 32-bits.
985          (!is64Bit ||
986           X86::isOffsetSuitableForCodeModel(AM.Disp + Offset, M,
987                                             AM.hasSymbolicDisplacement()))) {
988        AM.Disp += Offset;
989        return false;
990      }
991      AM = Backup;
992    }
993    break;
994
995  case ISD::AND: {
996    // Perform some heroic transforms on an and of a constant-count shift
997    // with a constant to enable use of the scaled offset field.
998
999    SDValue Shift = N.getOperand(0);
1000    if (Shift.getNumOperands() != 2) break;
1001
1002    // Scale must not be used already.
1003    if (AM.IndexReg.getNode() != 0 || AM.Scale != 1) break;
1004
1005    SDValue X = Shift.getOperand(0);
1006    ConstantSDNode *C2 = dyn_cast<ConstantSDNode>(N.getOperand(1));
1007    ConstantSDNode *C1 = dyn_cast<ConstantSDNode>(Shift.getOperand(1));
1008    if (!C1 || !C2) break;
1009
1010    // Handle "(X >> (8-C1)) & C2" as "(X >> 8) & 0xff)" if safe. This
1011    // allows us to convert the shift and and into an h-register extract and
1012    // a scaled index.
1013    if (Shift.getOpcode() == ISD::SRL && Shift.hasOneUse()) {
1014      unsigned ScaleLog = 8 - C1->getZExtValue();
1015      if (ScaleLog > 0 && ScaleLog < 4 &&
1016          C2->getZExtValue() == (UINT64_C(0xff) << ScaleLog)) {
1017        SDValue Eight = CurDAG->getConstant(8, MVT::i8);
1018        SDValue Mask = CurDAG->getConstant(0xff, N.getValueType());
1019        SDValue Srl = CurDAG->getNode(ISD::SRL, dl, N.getValueType(),
1020                                      X, Eight);
1021        SDValue And = CurDAG->getNode(ISD::AND, dl, N.getValueType(),
1022                                      Srl, Mask);
1023        SDValue ShlCount = CurDAG->getConstant(ScaleLog, MVT::i8);
1024        SDValue Shl = CurDAG->getNode(ISD::SHL, dl, N.getValueType(),
1025                                      And, ShlCount);
1026
1027        // Insert the new nodes into the topological ordering.
1028        if (Eight.getNode()->getNodeId() == -1 ||
1029            Eight.getNode()->getNodeId() > X.getNode()->getNodeId()) {
1030          CurDAG->RepositionNode(X.getNode(), Eight.getNode());
1031          Eight.getNode()->setNodeId(X.getNode()->getNodeId());
1032        }
1033        if (Mask.getNode()->getNodeId() == -1 ||
1034            Mask.getNode()->getNodeId() > X.getNode()->getNodeId()) {
1035          CurDAG->RepositionNode(X.getNode(), Mask.getNode());
1036          Mask.getNode()->setNodeId(X.getNode()->getNodeId());
1037        }
1038        if (Srl.getNode()->getNodeId() == -1 ||
1039            Srl.getNode()->getNodeId() > Shift.getNode()->getNodeId()) {
1040          CurDAG->RepositionNode(Shift.getNode(), Srl.getNode());
1041          Srl.getNode()->setNodeId(Shift.getNode()->getNodeId());
1042        }
1043        if (And.getNode()->getNodeId() == -1 ||
1044            And.getNode()->getNodeId() > N.getNode()->getNodeId()) {
1045          CurDAG->RepositionNode(N.getNode(), And.getNode());
1046          And.getNode()->setNodeId(N.getNode()->getNodeId());
1047        }
1048        if (ShlCount.getNode()->getNodeId() == -1 ||
1049            ShlCount.getNode()->getNodeId() > X.getNode()->getNodeId()) {
1050          CurDAG->RepositionNode(X.getNode(), ShlCount.getNode());
1051          ShlCount.getNode()->setNodeId(N.getNode()->getNodeId());
1052        }
1053        if (Shl.getNode()->getNodeId() == -1 ||
1054            Shl.getNode()->getNodeId() > N.getNode()->getNodeId()) {
1055          CurDAG->RepositionNode(N.getNode(), Shl.getNode());
1056          Shl.getNode()->setNodeId(N.getNode()->getNodeId());
1057        }
1058        CurDAG->ReplaceAllUsesWith(N, Shl);
1059        AM.IndexReg = And;
1060        AM.Scale = (1 << ScaleLog);
1061        return false;
1062      }
1063    }
1064
1065    // Handle "(X << C1) & C2" as "(X & (C2>>C1)) << C1" if safe and if this
1066    // allows us to fold the shift into this addressing mode.
1067    if (Shift.getOpcode() != ISD::SHL) break;
1068
1069    // Not likely to be profitable if either the AND or SHIFT node has more
1070    // than one use (unless all uses are for address computation). Besides,
1071    // isel mechanism requires their node ids to be reused.
1072    if (!N.hasOneUse() || !Shift.hasOneUse())
1073      break;
1074
1075    // Verify that the shift amount is something we can fold.
1076    unsigned ShiftCst = C1->getZExtValue();
1077    if (ShiftCst != 1 && ShiftCst != 2 && ShiftCst != 3)
1078      break;
1079
1080    // Get the new AND mask, this folds to a constant.
1081    SDValue NewANDMask = CurDAG->getNode(ISD::SRL, dl, N.getValueType(),
1082                                         SDValue(C2, 0), SDValue(C1, 0));
1083    SDValue NewAND = CurDAG->getNode(ISD::AND, dl, N.getValueType(), X,
1084                                     NewANDMask);
1085    SDValue NewSHIFT = CurDAG->getNode(ISD::SHL, dl, N.getValueType(),
1086                                       NewAND, SDValue(C1, 0));
1087
1088    // Insert the new nodes into the topological ordering.
1089    if (C1->getNodeId() > X.getNode()->getNodeId()) {
1090      CurDAG->RepositionNode(X.getNode(), C1);
1091      C1->setNodeId(X.getNode()->getNodeId());
1092    }
1093    if (NewANDMask.getNode()->getNodeId() == -1 ||
1094        NewANDMask.getNode()->getNodeId() > X.getNode()->getNodeId()) {
1095      CurDAG->RepositionNode(X.getNode(), NewANDMask.getNode());
1096      NewANDMask.getNode()->setNodeId(X.getNode()->getNodeId());
1097    }
1098    if (NewAND.getNode()->getNodeId() == -1 ||
1099        NewAND.getNode()->getNodeId() > Shift.getNode()->getNodeId()) {
1100      CurDAG->RepositionNode(Shift.getNode(), NewAND.getNode());
1101      NewAND.getNode()->setNodeId(Shift.getNode()->getNodeId());
1102    }
1103    if (NewSHIFT.getNode()->getNodeId() == -1 ||
1104        NewSHIFT.getNode()->getNodeId() > N.getNode()->getNodeId()) {
1105      CurDAG->RepositionNode(N.getNode(), NewSHIFT.getNode());
1106      NewSHIFT.getNode()->setNodeId(N.getNode()->getNodeId());
1107    }
1108
1109    CurDAG->ReplaceAllUsesWith(N, NewSHIFT);
1110
1111    AM.Scale = 1 << ShiftCst;
1112    AM.IndexReg = NewAND;
1113    return false;
1114  }
1115  }
1116
1117  return MatchAddressBase(N, AM);
1118}
1119
1120/// MatchAddressBase - Helper for MatchAddress. Add the specified node to the
1121/// specified addressing mode without any further recursion.
1122bool X86DAGToDAGISel::MatchAddressBase(SDValue N, X86ISelAddressMode &AM) {
1123  // Is the base register already occupied?
1124  if (AM.BaseType != X86ISelAddressMode::RegBase || AM.Base_Reg.getNode()) {
1125    // If so, check to see if the scale index register is set.
1126    if (AM.IndexReg.getNode() == 0) {
1127      AM.IndexReg = N;
1128      AM.Scale = 1;
1129      return false;
1130    }
1131
1132    // Otherwise, we cannot select it.
1133    return true;
1134  }
1135
1136  // Default, generate it as a register.
1137  AM.BaseType = X86ISelAddressMode::RegBase;
1138  AM.Base_Reg = N;
1139  return false;
1140}
1141
1142/// SelectAddr - returns true if it is able pattern match an addressing mode.
1143/// It returns the operands which make up the maximal addressing mode it can
1144/// match by reference.
1145bool X86DAGToDAGISel::SelectAddr(SDNode *Op, SDValue N, SDValue &Base,
1146                                 SDValue &Scale, SDValue &Index,
1147                                 SDValue &Disp, SDValue &Segment) {
1148  X86ISelAddressMode AM;
1149  if (MatchAddress(N, AM))
1150    return false;
1151
1152  EVT VT = N.getValueType();
1153  if (AM.BaseType == X86ISelAddressMode::RegBase) {
1154    if (!AM.Base_Reg.getNode())
1155      AM.Base_Reg = CurDAG->getRegister(0, VT);
1156  }
1157
1158  if (!AM.IndexReg.getNode())
1159    AM.IndexReg = CurDAG->getRegister(0, VT);
1160
1161  getAddressOperands(AM, Base, Scale, Index, Disp, Segment);
1162  return true;
1163}
1164
1165/// SelectScalarSSELoad - Match a scalar SSE load.  In particular, we want to
1166/// match a load whose top elements are either undef or zeros.  The load flavor
1167/// is derived from the type of N, which is either v4f32 or v2f64.
1168///
1169/// We also return:
1170///   PatternChainNode: this is the matched node that has a chain input and
1171///   output.
1172bool X86DAGToDAGISel::SelectScalarSSELoad(SDNode *Root,
1173                                          SDValue N, SDValue &Base,
1174                                          SDValue &Scale, SDValue &Index,
1175                                          SDValue &Disp, SDValue &Segment,
1176                                          SDValue &PatternNodeWithChain) {
1177  if (N.getOpcode() == ISD::SCALAR_TO_VECTOR) {
1178    PatternNodeWithChain = N.getOperand(0);
1179    if (ISD::isNON_EXTLoad(PatternNodeWithChain.getNode()) &&
1180        PatternNodeWithChain.hasOneUse() &&
1181        IsProfitableToFold(N.getOperand(0), N.getNode(), Root) &&
1182        IsLegalToFold(N.getOperand(0), N.getNode(), Root, OptLevel)) {
1183      LoadSDNode *LD = cast<LoadSDNode>(PatternNodeWithChain);
1184      if (!SelectAddr(Root, LD->getBasePtr(), Base, Scale, Index, Disp,Segment))
1185        return false;
1186      return true;
1187    }
1188  }
1189
1190  // Also handle the case where we explicitly require zeros in the top
1191  // elements.  This is a vector shuffle from the zero vector.
1192  if (N.getOpcode() == X86ISD::VZEXT_MOVL && N.getNode()->hasOneUse() &&
1193      // Check to see if the top elements are all zeros (or bitcast of zeros).
1194      N.getOperand(0).getOpcode() == ISD::SCALAR_TO_VECTOR &&
1195      N.getOperand(0).getNode()->hasOneUse() &&
1196      ISD::isNON_EXTLoad(N.getOperand(0).getOperand(0).getNode()) &&
1197      N.getOperand(0).getOperand(0).hasOneUse() &&
1198      IsProfitableToFold(N.getOperand(0), N.getNode(), Root) &&
1199      IsLegalToFold(N.getOperand(0), N.getNode(), Root, OptLevel)) {
1200    // Okay, this is a zero extending load.  Fold it.
1201    LoadSDNode *LD = cast<LoadSDNode>(N.getOperand(0).getOperand(0));
1202    if (!SelectAddr(Root, LD->getBasePtr(), Base, Scale, Index, Disp, Segment))
1203      return false;
1204    PatternNodeWithChain = SDValue(LD, 0);
1205    return true;
1206  }
1207  return false;
1208}
1209
1210
1211/// SelectLEAAddr - it calls SelectAddr and determines if the maximal addressing
1212/// mode it matches can be cost effectively emitted as an LEA instruction.
1213bool X86DAGToDAGISel::SelectLEAAddr(SDNode *Op, SDValue N,
1214                                    SDValue &Base, SDValue &Scale,
1215                                    SDValue &Index, SDValue &Disp,
1216                                    SDValue &Segment) {
1217  X86ISelAddressMode AM;
1218
1219  // Set AM.Segment to prevent MatchAddress from using one. LEA doesn't support
1220  // segments.
1221  SDValue Copy = AM.Segment;
1222  SDValue T = CurDAG->getRegister(0, MVT::i32);
1223  AM.Segment = T;
1224  if (MatchAddress(N, AM))
1225    return false;
1226  assert (T == AM.Segment);
1227  AM.Segment = Copy;
1228
1229  EVT VT = N.getValueType();
1230  unsigned Complexity = 0;
1231  if (AM.BaseType == X86ISelAddressMode::RegBase)
1232    if (AM.Base_Reg.getNode())
1233      Complexity = 1;
1234    else
1235      AM.Base_Reg = CurDAG->getRegister(0, VT);
1236  else if (AM.BaseType == X86ISelAddressMode::FrameIndexBase)
1237    Complexity = 4;
1238
1239  if (AM.IndexReg.getNode())
1240    Complexity++;
1241  else
1242    AM.IndexReg = CurDAG->getRegister(0, VT);
1243
1244  // Don't match just leal(,%reg,2). It's cheaper to do addl %reg, %reg, or with
1245  // a simple shift.
1246  if (AM.Scale > 1)
1247    Complexity++;
1248
1249  // FIXME: We are artificially lowering the criteria to turn ADD %reg, $GA
1250  // to a LEA. This is determined with some expermentation but is by no means
1251  // optimal (especially for code size consideration). LEA is nice because of
1252  // its three-address nature. Tweak the cost function again when we can run
1253  // convertToThreeAddress() at register allocation time.
1254  if (AM.hasSymbolicDisplacement()) {
1255    // For X86-64, we should always use lea to materialize RIP relative
1256    // addresses.
1257    if (Subtarget->is64Bit())
1258      Complexity = 4;
1259    else
1260      Complexity += 2;
1261  }
1262
1263  if (AM.Disp && (AM.Base_Reg.getNode() || AM.IndexReg.getNode()))
1264    Complexity++;
1265
1266  // If it isn't worth using an LEA, reject it.
1267  if (Complexity <= 2)
1268    return false;
1269
1270  getAddressOperands(AM, Base, Scale, Index, Disp, Segment);
1271  return true;
1272}
1273
1274/// SelectTLSADDRAddr - This is only run on TargetGlobalTLSAddress nodes.
1275bool X86DAGToDAGISel::SelectTLSADDRAddr(SDNode *Op, SDValue N, SDValue &Base,
1276                                        SDValue &Scale, SDValue &Index,
1277                                        SDValue &Disp, SDValue &Segment) {
1278  assert(N.getOpcode() == ISD::TargetGlobalTLSAddress);
1279  const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
1280
1281  X86ISelAddressMode AM;
1282  AM.GV = GA->getGlobal();
1283  AM.Disp += GA->getOffset();
1284  AM.Base_Reg = CurDAG->getRegister(0, N.getValueType());
1285  AM.SymbolFlags = GA->getTargetFlags();
1286
1287  if (N.getValueType() == MVT::i32) {
1288    AM.Scale = 1;
1289    AM.IndexReg = CurDAG->getRegister(X86::EBX, MVT::i32);
1290  } else {
1291    AM.IndexReg = CurDAG->getRegister(0, MVT::i64);
1292  }
1293
1294  getAddressOperands(AM, Base, Scale, Index, Disp, Segment);
1295  return true;
1296}
1297
1298
1299bool X86DAGToDAGISel::TryFoldLoad(SDNode *P, SDValue N,
1300                                  SDValue &Base, SDValue &Scale,
1301                                  SDValue &Index, SDValue &Disp,
1302                                  SDValue &Segment) {
1303  if (!ISD::isNON_EXTLoad(N.getNode()) ||
1304      !IsProfitableToFold(N, P, P) ||
1305      !IsLegalToFold(N, P, P, OptLevel))
1306    return false;
1307
1308  return SelectAddr(P, N.getOperand(1), Base, Scale, Index, Disp, Segment);
1309}
1310
1311/// getGlobalBaseReg - Return an SDNode that returns the value of
1312/// the global base register. Output instructions required to
1313/// initialize the global base register, if necessary.
1314///
1315SDNode *X86DAGToDAGISel::getGlobalBaseReg() {
1316  unsigned GlobalBaseReg = getInstrInfo()->getGlobalBaseReg(MF);
1317  return CurDAG->getRegister(GlobalBaseReg, TLI.getPointerTy()).getNode();
1318}
1319
1320SDNode *X86DAGToDAGISel::SelectAtomic64(SDNode *Node, unsigned Opc) {
1321  SDValue Chain = Node->getOperand(0);
1322  SDValue In1 = Node->getOperand(1);
1323  SDValue In2L = Node->getOperand(2);
1324  SDValue In2H = Node->getOperand(3);
1325  SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
1326  if (!SelectAddr(In1.getNode(), In1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4))
1327    return NULL;
1328  MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
1329  MemOp[0] = cast<MemSDNode>(Node)->getMemOperand();
1330  const SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, In2L, In2H, Chain};
1331  SDNode *ResNode = CurDAG->getMachineNode(Opc, Node->getDebugLoc(),
1332                                           MVT::i32, MVT::i32, MVT::Other, Ops,
1333                                           array_lengthof(Ops));
1334  cast<MachineSDNode>(ResNode)->setMemRefs(MemOp, MemOp + 1);
1335  return ResNode;
1336}
1337
1338SDNode *X86DAGToDAGISel::SelectAtomicLoadAdd(SDNode *Node, EVT NVT) {
1339  if (Node->hasAnyUseOfValue(0))
1340    return 0;
1341
1342  // Optimize common patterns for __sync_add_and_fetch and
1343  // __sync_sub_and_fetch where the result is not used. This allows us
1344  // to use "lock" version of add, sub, inc, dec instructions.
1345  // FIXME: Do not use special instructions but instead add the "lock"
1346  // prefix to the target node somehow. The extra information will then be
1347  // transferred to machine instruction and it denotes the prefix.
1348  SDValue Chain = Node->getOperand(0);
1349  SDValue Ptr = Node->getOperand(1);
1350  SDValue Val = Node->getOperand(2);
1351  SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
1352  if (!SelectAddr(Ptr.getNode(), Ptr, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4))
1353    return 0;
1354
1355  bool isInc = false, isDec = false, isSub = false, isCN = false;
1356  ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Val);
1357  if (CN) {
1358    isCN = true;
1359    int64_t CNVal = CN->getSExtValue();
1360    if (CNVal == 1)
1361      isInc = true;
1362    else if (CNVal == -1)
1363      isDec = true;
1364    else if (CNVal >= 0)
1365      Val = CurDAG->getTargetConstant(CNVal, NVT);
1366    else {
1367      isSub = true;
1368      Val = CurDAG->getTargetConstant(-CNVal, NVT);
1369    }
1370  } else if (Val.hasOneUse() &&
1371             Val.getOpcode() == ISD::SUB &&
1372             X86::isZeroNode(Val.getOperand(0))) {
1373    isSub = true;
1374    Val = Val.getOperand(1);
1375  }
1376
1377  unsigned Opc = 0;
1378  switch (NVT.getSimpleVT().SimpleTy) {
1379  default: return 0;
1380  case MVT::i8:
1381    if (isInc)
1382      Opc = X86::LOCK_INC8m;
1383    else if (isDec)
1384      Opc = X86::LOCK_DEC8m;
1385    else if (isSub) {
1386      if (isCN)
1387        Opc = X86::LOCK_SUB8mi;
1388      else
1389        Opc = X86::LOCK_SUB8mr;
1390    } else {
1391      if (isCN)
1392        Opc = X86::LOCK_ADD8mi;
1393      else
1394        Opc = X86::LOCK_ADD8mr;
1395    }
1396    break;
1397  case MVT::i16:
1398    if (isInc)
1399      Opc = X86::LOCK_INC16m;
1400    else if (isDec)
1401      Opc = X86::LOCK_DEC16m;
1402    else if (isSub) {
1403      if (isCN) {
1404        if (immSext8(Val.getNode()))
1405          Opc = X86::LOCK_SUB16mi8;
1406        else
1407          Opc = X86::LOCK_SUB16mi;
1408      } else
1409        Opc = X86::LOCK_SUB16mr;
1410    } else {
1411      if (isCN) {
1412        if (immSext8(Val.getNode()))
1413          Opc = X86::LOCK_ADD16mi8;
1414        else
1415          Opc = X86::LOCK_ADD16mi;
1416      } else
1417        Opc = X86::LOCK_ADD16mr;
1418    }
1419    break;
1420  case MVT::i32:
1421    if (isInc)
1422      Opc = X86::LOCK_INC32m;
1423    else if (isDec)
1424      Opc = X86::LOCK_DEC32m;
1425    else if (isSub) {
1426      if (isCN) {
1427        if (immSext8(Val.getNode()))
1428          Opc = X86::LOCK_SUB32mi8;
1429        else
1430          Opc = X86::LOCK_SUB32mi;
1431      } else
1432        Opc = X86::LOCK_SUB32mr;
1433    } else {
1434      if (isCN) {
1435        if (immSext8(Val.getNode()))
1436          Opc = X86::LOCK_ADD32mi8;
1437        else
1438          Opc = X86::LOCK_ADD32mi;
1439      } else
1440        Opc = X86::LOCK_ADD32mr;
1441    }
1442    break;
1443  case MVT::i64:
1444    if (isInc)
1445      Opc = X86::LOCK_INC64m;
1446    else if (isDec)
1447      Opc = X86::LOCK_DEC64m;
1448    else if (isSub) {
1449      Opc = X86::LOCK_SUB64mr;
1450      if (isCN) {
1451        if (immSext8(Val.getNode()))
1452          Opc = X86::LOCK_SUB64mi8;
1453        else if (i64immSExt32(Val.getNode()))
1454          Opc = X86::LOCK_SUB64mi32;
1455      }
1456    } else {
1457      Opc = X86::LOCK_ADD64mr;
1458      if (isCN) {
1459        if (immSext8(Val.getNode()))
1460          Opc = X86::LOCK_ADD64mi8;
1461        else if (i64immSExt32(Val.getNode()))
1462          Opc = X86::LOCK_ADD64mi32;
1463      }
1464    }
1465    break;
1466  }
1467
1468  DebugLoc dl = Node->getDebugLoc();
1469  SDValue Undef = SDValue(CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF,
1470                                                 dl, NVT), 0);
1471  MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
1472  MemOp[0] = cast<MemSDNode>(Node)->getMemOperand();
1473  if (isInc || isDec) {
1474    SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Chain };
1475    SDValue Ret = SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Other, Ops, 6), 0);
1476    cast<MachineSDNode>(Ret)->setMemRefs(MemOp, MemOp + 1);
1477    SDValue RetVals[] = { Undef, Ret };
1478    return CurDAG->getMergeValues(RetVals, 2, dl).getNode();
1479  } else {
1480    SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Val, Chain };
1481    SDValue Ret = SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Other, Ops, 7), 0);
1482    cast<MachineSDNode>(Ret)->setMemRefs(MemOp, MemOp + 1);
1483    SDValue RetVals[] = { Undef, Ret };
1484    return CurDAG->getMergeValues(RetVals, 2, dl).getNode();
1485  }
1486}
1487
1488/// HasNoSignedComparisonUses - Test whether the given X86ISD::CMP node has
1489/// any uses which require the SF or OF bits to be accurate.
1490static bool HasNoSignedComparisonUses(SDNode *N) {
1491  // Examine each user of the node.
1492  for (SDNode::use_iterator UI = N->use_begin(),
1493         UE = N->use_end(); UI != UE; ++UI) {
1494    // Only examine CopyToReg uses.
1495    if (UI->getOpcode() != ISD::CopyToReg)
1496      return false;
1497    // Only examine CopyToReg uses that copy to EFLAGS.
1498    if (cast<RegisterSDNode>(UI->getOperand(1))->getReg() !=
1499          X86::EFLAGS)
1500      return false;
1501    // Examine each user of the CopyToReg use.
1502    for (SDNode::use_iterator FlagUI = UI->use_begin(),
1503           FlagUE = UI->use_end(); FlagUI != FlagUE; ++FlagUI) {
1504      // Only examine the Flag result.
1505      if (FlagUI.getUse().getResNo() != 1) continue;
1506      // Anything unusual: assume conservatively.
1507      if (!FlagUI->isMachineOpcode()) return false;
1508      // Examine the opcode of the user.
1509      switch (FlagUI->getMachineOpcode()) {
1510      // These comparisons don't treat the most significant bit specially.
1511      case X86::SETAr: case X86::SETAEr: case X86::SETBr: case X86::SETBEr:
1512      case X86::SETEr: case X86::SETNEr: case X86::SETPr: case X86::SETNPr:
1513      case X86::SETAm: case X86::SETAEm: case X86::SETBm: case X86::SETBEm:
1514      case X86::SETEm: case X86::SETNEm: case X86::SETPm: case X86::SETNPm:
1515      case X86::JA_4: case X86::JAE_4: case X86::JB_4: case X86::JBE_4:
1516      case X86::JE_4: case X86::JNE_4: case X86::JP_4: case X86::JNP_4:
1517      case X86::CMOVA16rr: case X86::CMOVA16rm:
1518      case X86::CMOVA32rr: case X86::CMOVA32rm:
1519      case X86::CMOVA64rr: case X86::CMOVA64rm:
1520      case X86::CMOVAE16rr: case X86::CMOVAE16rm:
1521      case X86::CMOVAE32rr: case X86::CMOVAE32rm:
1522      case X86::CMOVAE64rr: case X86::CMOVAE64rm:
1523      case X86::CMOVB16rr: case X86::CMOVB16rm:
1524      case X86::CMOVB32rr: case X86::CMOVB32rm:
1525      case X86::CMOVB64rr: case X86::CMOVB64rm:
1526      case X86::CMOVBE16rr: case X86::CMOVBE16rm:
1527      case X86::CMOVBE32rr: case X86::CMOVBE32rm:
1528      case X86::CMOVBE64rr: case X86::CMOVBE64rm:
1529      case X86::CMOVE16rr: case X86::CMOVE16rm:
1530      case X86::CMOVE32rr: case X86::CMOVE32rm:
1531      case X86::CMOVE64rr: case X86::CMOVE64rm:
1532      case X86::CMOVNE16rr: case X86::CMOVNE16rm:
1533      case X86::CMOVNE32rr: case X86::CMOVNE32rm:
1534      case X86::CMOVNE64rr: case X86::CMOVNE64rm:
1535      case X86::CMOVNP16rr: case X86::CMOVNP16rm:
1536      case X86::CMOVNP32rr: case X86::CMOVNP32rm:
1537      case X86::CMOVNP64rr: case X86::CMOVNP64rm:
1538      case X86::CMOVP16rr: case X86::CMOVP16rm:
1539      case X86::CMOVP32rr: case X86::CMOVP32rm:
1540      case X86::CMOVP64rr: case X86::CMOVP64rm:
1541        continue;
1542      // Anything else: assume conservatively.
1543      default: return false;
1544      }
1545    }
1546  }
1547  return true;
1548}
1549
1550SDNode *X86DAGToDAGISel::Select(SDNode *Node) {
1551  EVT NVT = Node->getValueType(0);
1552  unsigned Opc, MOpc;
1553  unsigned Opcode = Node->getOpcode();
1554  DebugLoc dl = Node->getDebugLoc();
1555
1556  DEBUG(dbgs() << "Selecting: "; Node->dump(CurDAG); dbgs() << '\n');
1557
1558  if (Node->isMachineOpcode()) {
1559    DEBUG(dbgs() << "== ";  Node->dump(CurDAG); dbgs() << '\n');
1560    return NULL;   // Already selected.
1561  }
1562
1563  switch (Opcode) {
1564  default: break;
1565  case X86ISD::GlobalBaseReg:
1566    return getGlobalBaseReg();
1567
1568  case X86ISD::ATOMOR64_DAG:
1569    return SelectAtomic64(Node, X86::ATOMOR6432);
1570  case X86ISD::ATOMXOR64_DAG:
1571    return SelectAtomic64(Node, X86::ATOMXOR6432);
1572  case X86ISD::ATOMADD64_DAG:
1573    return SelectAtomic64(Node, X86::ATOMADD6432);
1574  case X86ISD::ATOMSUB64_DAG:
1575    return SelectAtomic64(Node, X86::ATOMSUB6432);
1576  case X86ISD::ATOMNAND64_DAG:
1577    return SelectAtomic64(Node, X86::ATOMNAND6432);
1578  case X86ISD::ATOMAND64_DAG:
1579    return SelectAtomic64(Node, X86::ATOMAND6432);
1580  case X86ISD::ATOMSWAP64_DAG:
1581    return SelectAtomic64(Node, X86::ATOMSWAP6432);
1582
1583  case ISD::ATOMIC_LOAD_ADD: {
1584    SDNode *RetVal = SelectAtomicLoadAdd(Node, NVT);
1585    if (RetVal)
1586      return RetVal;
1587    break;
1588  }
1589
1590  case ISD::SMUL_LOHI:
1591  case ISD::UMUL_LOHI: {
1592    SDValue N0 = Node->getOperand(0);
1593    SDValue N1 = Node->getOperand(1);
1594
1595    bool isSigned = Opcode == ISD::SMUL_LOHI;
1596    if (!isSigned) {
1597      switch (NVT.getSimpleVT().SimpleTy) {
1598      default: llvm_unreachable("Unsupported VT!");
1599      case MVT::i8:  Opc = X86::MUL8r;  MOpc = X86::MUL8m;  break;
1600      case MVT::i16: Opc = X86::MUL16r; MOpc = X86::MUL16m; break;
1601      case MVT::i32: Opc = X86::MUL32r; MOpc = X86::MUL32m; break;
1602      case MVT::i64: Opc = X86::MUL64r; MOpc = X86::MUL64m; break;
1603      }
1604    } else {
1605      switch (NVT.getSimpleVT().SimpleTy) {
1606      default: llvm_unreachable("Unsupported VT!");
1607      case MVT::i8:  Opc = X86::IMUL8r;  MOpc = X86::IMUL8m;  break;
1608      case MVT::i16: Opc = X86::IMUL16r; MOpc = X86::IMUL16m; break;
1609      case MVT::i32: Opc = X86::IMUL32r; MOpc = X86::IMUL32m; break;
1610      case MVT::i64: Opc = X86::IMUL64r; MOpc = X86::IMUL64m; break;
1611      }
1612    }
1613
1614    unsigned LoReg, HiReg;
1615    switch (NVT.getSimpleVT().SimpleTy) {
1616    default: llvm_unreachable("Unsupported VT!");
1617    case MVT::i8:  LoReg = X86::AL;  HiReg = X86::AH;  break;
1618    case MVT::i16: LoReg = X86::AX;  HiReg = X86::DX;  break;
1619    case MVT::i32: LoReg = X86::EAX; HiReg = X86::EDX; break;
1620    case MVT::i64: LoReg = X86::RAX; HiReg = X86::RDX; break;
1621    }
1622
1623    SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
1624    bool foldedLoad = TryFoldLoad(Node, N1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4);
1625    // Multiply is commmutative.
1626    if (!foldedLoad) {
1627      foldedLoad = TryFoldLoad(Node, N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4);
1628      if (foldedLoad)
1629        std::swap(N0, N1);
1630    }
1631
1632    SDValue InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, LoReg,
1633                                            N0, SDValue()).getValue(1);
1634
1635    if (foldedLoad) {
1636      SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N1.getOperand(0),
1637                        InFlag };
1638      SDNode *CNode =
1639        CurDAG->getMachineNode(MOpc, dl, MVT::Other, MVT::Flag, Ops,
1640                               array_lengthof(Ops));
1641      InFlag = SDValue(CNode, 1);
1642      // Update the chain.
1643      ReplaceUses(N1.getValue(1), SDValue(CNode, 0));
1644    } else {
1645      InFlag =
1646        SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Flag, N1, InFlag), 0);
1647    }
1648
1649    // Prevent use of AH in a REX instruction by referencing AX instead.
1650    if (HiReg == X86::AH && Subtarget->is64Bit() &&
1651        !SDValue(Node, 1).use_empty()) {
1652      SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
1653                                              X86::AX, MVT::i16, InFlag);
1654      InFlag = Result.getValue(2);
1655      // Get the low part if needed. Don't use getCopyFromReg for aliasing
1656      // registers.
1657      if (!SDValue(Node, 0).use_empty())
1658        ReplaceUses(SDValue(Node, 1),
1659          CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl, MVT::i8, Result));
1660
1661      // Shift AX down 8 bits.
1662      Result = SDValue(CurDAG->getMachineNode(X86::SHR16ri, dl, MVT::i16,
1663                                              Result,
1664                                     CurDAG->getTargetConstant(8, MVT::i8)), 0);
1665      // Then truncate it down to i8.
1666      ReplaceUses(SDValue(Node, 1),
1667        CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl, MVT::i8, Result));
1668    }
1669    // Copy the low half of the result, if it is needed.
1670    if (!SDValue(Node, 0).use_empty()) {
1671      SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
1672                                                LoReg, NVT, InFlag);
1673      InFlag = Result.getValue(2);
1674      ReplaceUses(SDValue(Node, 0), Result);
1675      DEBUG(dbgs() << "=> "; Result.getNode()->dump(CurDAG); dbgs() << '\n');
1676    }
1677    // Copy the high half of the result, if it is needed.
1678    if (!SDValue(Node, 1).use_empty()) {
1679      SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
1680                                              HiReg, NVT, InFlag);
1681      InFlag = Result.getValue(2);
1682      ReplaceUses(SDValue(Node, 1), Result);
1683      DEBUG(dbgs() << "=> "; Result.getNode()->dump(CurDAG); dbgs() << '\n');
1684    }
1685
1686    return NULL;
1687  }
1688
1689  case ISD::SDIVREM:
1690  case ISD::UDIVREM: {
1691    SDValue N0 = Node->getOperand(0);
1692    SDValue N1 = Node->getOperand(1);
1693
1694    bool isSigned = Opcode == ISD::SDIVREM;
1695    if (!isSigned) {
1696      switch (NVT.getSimpleVT().SimpleTy) {
1697      default: llvm_unreachable("Unsupported VT!");
1698      case MVT::i8:  Opc = X86::DIV8r;  MOpc = X86::DIV8m;  break;
1699      case MVT::i16: Opc = X86::DIV16r; MOpc = X86::DIV16m; break;
1700      case MVT::i32: Opc = X86::DIV32r; MOpc = X86::DIV32m; break;
1701      case MVT::i64: Opc = X86::DIV64r; MOpc = X86::DIV64m; break;
1702      }
1703    } else {
1704      switch (NVT.getSimpleVT().SimpleTy) {
1705      default: llvm_unreachable("Unsupported VT!");
1706      case MVT::i8:  Opc = X86::IDIV8r;  MOpc = X86::IDIV8m;  break;
1707      case MVT::i16: Opc = X86::IDIV16r; MOpc = X86::IDIV16m; break;
1708      case MVT::i32: Opc = X86::IDIV32r; MOpc = X86::IDIV32m; break;
1709      case MVT::i64: Opc = X86::IDIV64r; MOpc = X86::IDIV64m; break;
1710      }
1711    }
1712
1713    unsigned LoReg, HiReg, ClrReg;
1714    unsigned ClrOpcode, SExtOpcode;
1715    switch (NVT.getSimpleVT().SimpleTy) {
1716    default: llvm_unreachable("Unsupported VT!");
1717    case MVT::i8:
1718      LoReg = X86::AL;  ClrReg = HiReg = X86::AH;
1719      ClrOpcode  = 0;
1720      SExtOpcode = X86::CBW;
1721      break;
1722    case MVT::i16:
1723      LoReg = X86::AX;  HiReg = X86::DX;
1724      ClrOpcode  = X86::MOV16r0; ClrReg = X86::DX;
1725      SExtOpcode = X86::CWD;
1726      break;
1727    case MVT::i32:
1728      LoReg = X86::EAX; ClrReg = HiReg = X86::EDX;
1729      ClrOpcode  = X86::MOV32r0;
1730      SExtOpcode = X86::CDQ;
1731      break;
1732    case MVT::i64:
1733      LoReg = X86::RAX; ClrReg = HiReg = X86::RDX;
1734      ClrOpcode  = X86::MOV64r0;
1735      SExtOpcode = X86::CQO;
1736      break;
1737    }
1738
1739    SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
1740    bool foldedLoad = TryFoldLoad(Node, N1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4);
1741    bool signBitIsZero = CurDAG->SignBitIsZero(N0);
1742
1743    SDValue InFlag;
1744    if (NVT == MVT::i8 && (!isSigned || signBitIsZero)) {
1745      // Special case for div8, just use a move with zero extension to AX to
1746      // clear the upper 8 bits (AH).
1747      SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Move, Chain;
1748      if (TryFoldLoad(Node, N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4)) {
1749        SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N0.getOperand(0) };
1750        Move =
1751          SDValue(CurDAG->getMachineNode(X86::MOVZX16rm8, dl, MVT::i16,
1752                                         MVT::Other, Ops,
1753                                         array_lengthof(Ops)), 0);
1754        Chain = Move.getValue(1);
1755        ReplaceUses(N0.getValue(1), Chain);
1756      } else {
1757        Move =
1758          SDValue(CurDAG->getMachineNode(X86::MOVZX16rr8, dl, MVT::i16, N0),0);
1759        Chain = CurDAG->getEntryNode();
1760      }
1761      Chain  = CurDAG->getCopyToReg(Chain, dl, X86::AX, Move, SDValue());
1762      InFlag = Chain.getValue(1);
1763    } else {
1764      InFlag =
1765        CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl,
1766                             LoReg, N0, SDValue()).getValue(1);
1767      if (isSigned && !signBitIsZero) {
1768        // Sign extend the low part into the high part.
1769        InFlag =
1770          SDValue(CurDAG->getMachineNode(SExtOpcode, dl, MVT::Flag, InFlag),0);
1771      } else {
1772        // Zero out the high part, effectively zero extending the input.
1773        SDValue ClrNode =
1774          SDValue(CurDAG->getMachineNode(ClrOpcode, dl, NVT), 0);
1775        InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, ClrReg,
1776                                      ClrNode, InFlag).getValue(1);
1777      }
1778    }
1779
1780    if (foldedLoad) {
1781      SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N1.getOperand(0),
1782                        InFlag };
1783      SDNode *CNode =
1784        CurDAG->getMachineNode(MOpc, dl, MVT::Other, MVT::Flag, Ops,
1785                               array_lengthof(Ops));
1786      InFlag = SDValue(CNode, 1);
1787      // Update the chain.
1788      ReplaceUses(N1.getValue(1), SDValue(CNode, 0));
1789    } else {
1790      InFlag =
1791        SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Flag, N1, InFlag), 0);
1792    }
1793
1794    // Prevent use of AH in a REX instruction by referencing AX instead.
1795    // Shift it down 8 bits.
1796    if (HiReg == X86::AH && Subtarget->is64Bit() &&
1797        !SDValue(Node, 1).use_empty()) {
1798      SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
1799                                              X86::AX, MVT::i16, InFlag);
1800      InFlag = Result.getValue(2);
1801
1802      // If we also need AL (the quotient), get it by extracting a subreg from
1803      // Result. The fast register allocator does not like multiple CopyFromReg
1804      // nodes using aliasing registers.
1805      if (!SDValue(Node, 0).use_empty())
1806        ReplaceUses(SDValue(Node, 0),
1807          CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl, MVT::i8, Result));
1808
1809      // Shift AX right by 8 bits instead of using AH.
1810      Result = SDValue(CurDAG->getMachineNode(X86::SHR16ri, dl, MVT::i16,
1811                                         Result,
1812                                         CurDAG->getTargetConstant(8, MVT::i8)),
1813                       0);
1814      ReplaceUses(SDValue(Node, 1),
1815        CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl, MVT::i8, Result));
1816    }
1817    // Copy the division (low) result, if it is needed.
1818    if (!SDValue(Node, 0).use_empty()) {
1819      SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
1820                                                LoReg, NVT, InFlag);
1821      InFlag = Result.getValue(2);
1822      ReplaceUses(SDValue(Node, 0), Result);
1823      DEBUG(dbgs() << "=> "; Result.getNode()->dump(CurDAG); dbgs() << '\n');
1824    }
1825    // Copy the remainder (high) result, if it is needed.
1826    if (!SDValue(Node, 1).use_empty()) {
1827      SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
1828                                              HiReg, NVT, InFlag);
1829      InFlag = Result.getValue(2);
1830      ReplaceUses(SDValue(Node, 1), Result);
1831      DEBUG(dbgs() << "=> "; Result.getNode()->dump(CurDAG); dbgs() << '\n');
1832    }
1833    return NULL;
1834  }
1835
1836  case X86ISD::CMP: {
1837    SDValue N0 = Node->getOperand(0);
1838    SDValue N1 = Node->getOperand(1);
1839
1840    // Look for (X86cmp (and $op, $imm), 0) and see if we can convert it to
1841    // use a smaller encoding.
1842    if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse() &&
1843        HasNoSignedComparisonUses(Node))
1844      // Look past the truncate if CMP is the only use of it.
1845      N0 = N0.getOperand(0);
1846    if (N0.getNode()->getOpcode() == ISD::AND && N0.getNode()->hasOneUse() &&
1847        N0.getValueType() != MVT::i8 &&
1848        X86::isZeroNode(N1)) {
1849      ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getNode()->getOperand(1));
1850      if (!C) break;
1851
1852      // For example, convert "testl %eax, $8" to "testb %al, $8"
1853      if ((C->getZExtValue() & ~UINT64_C(0xff)) == 0 &&
1854          (!(C->getZExtValue() & 0x80) ||
1855           HasNoSignedComparisonUses(Node))) {
1856        SDValue Imm = CurDAG->getTargetConstant(C->getZExtValue(), MVT::i8);
1857        SDValue Reg = N0.getNode()->getOperand(0);
1858
1859        // On x86-32, only the ABCD registers have 8-bit subregisters.
1860        if (!Subtarget->is64Bit()) {
1861          TargetRegisterClass *TRC = 0;
1862          switch (N0.getValueType().getSimpleVT().SimpleTy) {
1863          case MVT::i32: TRC = &X86::GR32_ABCDRegClass; break;
1864          case MVT::i16: TRC = &X86::GR16_ABCDRegClass; break;
1865          default: llvm_unreachable("Unsupported TEST operand type!");
1866          }
1867          SDValue RC = CurDAG->getTargetConstant(TRC->getID(), MVT::i32);
1868          Reg = SDValue(CurDAG->getMachineNode(X86::COPY_TO_REGCLASS, dl,
1869                                               Reg.getValueType(), Reg, RC), 0);
1870        }
1871
1872        // Extract the l-register.
1873        SDValue Subreg = CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl,
1874                                                        MVT::i8, Reg);
1875
1876        // Emit a testb.
1877        return CurDAG->getMachineNode(X86::TEST8ri, dl, MVT::i32, Subreg, Imm);
1878      }
1879
1880      // For example, "testl %eax, $2048" to "testb %ah, $8".
1881      if ((C->getZExtValue() & ~UINT64_C(0xff00)) == 0 &&
1882          (!(C->getZExtValue() & 0x8000) ||
1883           HasNoSignedComparisonUses(Node))) {
1884        // Shift the immediate right by 8 bits.
1885        SDValue ShiftedImm = CurDAG->getTargetConstant(C->getZExtValue() >> 8,
1886                                                       MVT::i8);
1887        SDValue Reg = N0.getNode()->getOperand(0);
1888
1889        // Put the value in an ABCD register.
1890        TargetRegisterClass *TRC = 0;
1891        switch (N0.getValueType().getSimpleVT().SimpleTy) {
1892        case MVT::i64: TRC = &X86::GR64_ABCDRegClass; break;
1893        case MVT::i32: TRC = &X86::GR32_ABCDRegClass; break;
1894        case MVT::i16: TRC = &X86::GR16_ABCDRegClass; break;
1895        default: llvm_unreachable("Unsupported TEST operand type!");
1896        }
1897        SDValue RC = CurDAG->getTargetConstant(TRC->getID(), MVT::i32);
1898        Reg = SDValue(CurDAG->getMachineNode(X86::COPY_TO_REGCLASS, dl,
1899                                             Reg.getValueType(), Reg, RC), 0);
1900
1901        // Extract the h-register.
1902        SDValue Subreg = CurDAG->getTargetExtractSubreg(X86::sub_8bit_hi, dl,
1903                                                        MVT::i8, Reg);
1904
1905        // Emit a testb. No special NOREX tricks are needed since there's
1906        // only one GPR operand!
1907        return CurDAG->getMachineNode(X86::TEST8ri, dl, MVT::i32,
1908                                      Subreg, ShiftedImm);
1909      }
1910
1911      // For example, "testl %eax, $32776" to "testw %ax, $32776".
1912      if ((C->getZExtValue() & ~UINT64_C(0xffff)) == 0 &&
1913          N0.getValueType() != MVT::i16 &&
1914          (!(C->getZExtValue() & 0x8000) ||
1915           HasNoSignedComparisonUses(Node))) {
1916        SDValue Imm = CurDAG->getTargetConstant(C->getZExtValue(), MVT::i16);
1917        SDValue Reg = N0.getNode()->getOperand(0);
1918
1919        // Extract the 16-bit subregister.
1920        SDValue Subreg = CurDAG->getTargetExtractSubreg(X86::sub_16bit, dl,
1921                                                        MVT::i16, Reg);
1922
1923        // Emit a testw.
1924        return CurDAG->getMachineNode(X86::TEST16ri, dl, MVT::i32, Subreg, Imm);
1925      }
1926
1927      // For example, "testq %rax, $268468232" to "testl %eax, $268468232".
1928      if ((C->getZExtValue() & ~UINT64_C(0xffffffff)) == 0 &&
1929          N0.getValueType() == MVT::i64 &&
1930          (!(C->getZExtValue() & 0x80000000) ||
1931           HasNoSignedComparisonUses(Node))) {
1932        SDValue Imm = CurDAG->getTargetConstant(C->getZExtValue(), MVT::i32);
1933        SDValue Reg = N0.getNode()->getOperand(0);
1934
1935        // Extract the 32-bit subregister.
1936        SDValue Subreg = CurDAG->getTargetExtractSubreg(X86::sub_32bit, dl,
1937                                                        MVT::i32, Reg);
1938
1939        // Emit a testl.
1940        return CurDAG->getMachineNode(X86::TEST32ri, dl, MVT::i32, Subreg, Imm);
1941      }
1942    }
1943    break;
1944  }
1945  }
1946
1947  SDNode *ResNode = SelectCode(Node);
1948
1949  DEBUG(dbgs() << "=> ";
1950        if (ResNode == NULL || ResNode == Node)
1951          Node->dump(CurDAG);
1952        else
1953          ResNode->dump(CurDAG);
1954        dbgs() << '\n');
1955
1956  return ResNode;
1957}
1958
1959bool X86DAGToDAGISel::
1960SelectInlineAsmMemoryOperand(const SDValue &Op, char ConstraintCode,
1961                             std::vector<SDValue> &OutOps) {
1962  SDValue Op0, Op1, Op2, Op3, Op4;
1963  switch (ConstraintCode) {
1964  case 'o':   // offsetable        ??
1965  case 'v':   // not offsetable    ??
1966  default: return true;
1967  case 'm':   // memory
1968    if (!SelectAddr(Op.getNode(), Op, Op0, Op1, Op2, Op3, Op4))
1969      return true;
1970    break;
1971  }
1972
1973  OutOps.push_back(Op0);
1974  OutOps.push_back(Op1);
1975  OutOps.push_back(Op2);
1976  OutOps.push_back(Op3);
1977  OutOps.push_back(Op4);
1978  return false;
1979}
1980
1981/// createX86ISelDag - This pass converts a legalized DAG into a
1982/// X86-specific DAG, ready for instruction scheduling.
1983///
1984FunctionPass *llvm::createX86ISelDag(X86TargetMachine &TM,
1985                                     llvm::CodeGenOpt::Level OptLevel) {
1986  return new X86DAGToDAGISel(TM, OptLevel);
1987}
1988