X86ISelDAGToDAG.cpp revision 2b87e06d265e83d61873075e8f8e9c51430ff332
1//===- X86ISelDAGToDAG.cpp - A DAG pattern matching inst selector for X86 -===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines a DAG pattern matching instruction selector for X86,
11// converting from a legalized dag to a X86 dag.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "x86-isel"
16#include "X86.h"
17#include "X86InstrBuilder.h"
18#include "X86MachineFunctionInfo.h"
19#include "X86RegisterInfo.h"
20#include "X86Subtarget.h"
21#include "X86TargetMachine.h"
22#include "llvm/Instructions.h"
23#include "llvm/Intrinsics.h"
24#include "llvm/Type.h"
25#include "llvm/CodeGen/FunctionLoweringInfo.h"
26#include "llvm/CodeGen/MachineConstantPool.h"
27#include "llvm/CodeGen/MachineFunction.h"
28#include "llvm/CodeGen/MachineFrameInfo.h"
29#include "llvm/CodeGen/MachineInstrBuilder.h"
30#include "llvm/CodeGen/MachineRegisterInfo.h"
31#include "llvm/CodeGen/SelectionDAGISel.h"
32#include "llvm/Target/TargetMachine.h"
33#include "llvm/Target/TargetOptions.h"
34#include "llvm/Support/CFG.h"
35#include "llvm/Support/Debug.h"
36#include "llvm/Support/ErrorHandling.h"
37#include "llvm/Support/MathExtras.h"
38#include "llvm/Support/raw_ostream.h"
39#include "llvm/ADT/Statistic.h"
40using namespace llvm;
41
42STATISTIC(NumLoadMoved, "Number of loads moved below TokenFactor");
43
44//===----------------------------------------------------------------------===//
45//                      Pattern Matcher Implementation
46//===----------------------------------------------------------------------===//
47
48namespace {
49  /// X86ISelAddressMode - This corresponds to X86AddressMode, but uses
50  /// SDValue's instead of register numbers for the leaves of the matched
51  /// tree.
52  struct X86ISelAddressMode {
53    enum {
54      RegBase,
55      FrameIndexBase
56    } BaseType;
57
58    // This is really a union, discriminated by BaseType!
59    SDValue Base_Reg;
60    int Base_FrameIndex;
61
62    unsigned Scale;
63    SDValue IndexReg;
64    int32_t Disp;
65    SDValue Segment;
66    const GlobalValue *GV;
67    const Constant *CP;
68    const BlockAddress *BlockAddr;
69    const char *ES;
70    int JT;
71    unsigned Align;    // CP alignment.
72    unsigned char SymbolFlags;  // X86II::MO_*
73
74    X86ISelAddressMode()
75      : BaseType(RegBase), Base_FrameIndex(0), Scale(1), IndexReg(), Disp(0),
76        Segment(), GV(0), CP(0), BlockAddr(0), ES(0), JT(-1), Align(0),
77        SymbolFlags(X86II::MO_NO_FLAG) {
78    }
79
80    bool hasSymbolicDisplacement() const {
81      return GV != 0 || CP != 0 || ES != 0 || JT != -1 || BlockAddr != 0;
82    }
83
84    bool hasBaseOrIndexReg() const {
85      return IndexReg.getNode() != 0 || Base_Reg.getNode() != 0;
86    }
87
88    /// isRIPRelative - Return true if this addressing mode is already RIP
89    /// relative.
90    bool isRIPRelative() const {
91      if (BaseType != RegBase) return false;
92      if (RegisterSDNode *RegNode =
93            dyn_cast_or_null<RegisterSDNode>(Base_Reg.getNode()))
94        return RegNode->getReg() == X86::RIP;
95      return false;
96    }
97
98    void setBaseReg(SDValue Reg) {
99      BaseType = RegBase;
100      Base_Reg = Reg;
101    }
102
103#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
104    void dump() {
105      dbgs() << "X86ISelAddressMode " << this << '\n';
106      dbgs() << "Base_Reg ";
107      if (Base_Reg.getNode() != 0)
108        Base_Reg.getNode()->dump();
109      else
110        dbgs() << "nul";
111      dbgs() << " Base.FrameIndex " << Base_FrameIndex << '\n'
112             << " Scale" << Scale << '\n'
113             << "IndexReg ";
114      if (IndexReg.getNode() != 0)
115        IndexReg.getNode()->dump();
116      else
117        dbgs() << "nul";
118      dbgs() << " Disp " << Disp << '\n'
119             << "GV ";
120      if (GV)
121        GV->dump();
122      else
123        dbgs() << "nul";
124      dbgs() << " CP ";
125      if (CP)
126        CP->dump();
127      else
128        dbgs() << "nul";
129      dbgs() << '\n'
130             << "ES ";
131      if (ES)
132        dbgs() << ES;
133      else
134        dbgs() << "nul";
135      dbgs() << " JT" << JT << " Align" << Align << '\n';
136    }
137#endif
138  };
139}
140
141namespace {
142  //===--------------------------------------------------------------------===//
143  /// ISel - X86 specific code to select X86 machine instructions for
144  /// SelectionDAG operations.
145  ///
146  class X86DAGToDAGISel : public SelectionDAGISel {
147    /// X86Lowering - This object fully describes how to lower LLVM code to an
148    /// X86-specific SelectionDAG.
149    const X86TargetLowering &X86Lowering;
150
151    /// Subtarget - Keep a pointer to the X86Subtarget around so that we can
152    /// make the right decision when generating code for different targets.
153    const X86Subtarget *Subtarget;
154
155    /// OptForSize - If true, selector should try to optimize for code size
156    /// instead of performance.
157    bool OptForSize;
158
159  public:
160    explicit X86DAGToDAGISel(X86TargetMachine &tm, CodeGenOpt::Level OptLevel)
161      : SelectionDAGISel(tm, OptLevel),
162        X86Lowering(*tm.getTargetLowering()),
163        Subtarget(&tm.getSubtarget<X86Subtarget>()),
164        OptForSize(false) {}
165
166    virtual const char *getPassName() const {
167      return "X86 DAG->DAG Instruction Selection";
168    }
169
170    virtual void EmitFunctionEntryCode();
171
172    virtual bool IsProfitableToFold(SDValue N, SDNode *U, SDNode *Root) const;
173
174    virtual void PreprocessISelDAG();
175
176    inline bool immSext8(SDNode *N) const {
177      return isInt<8>(cast<ConstantSDNode>(N)->getSExtValue());
178    }
179
180    // i64immSExt32 predicate - True if the 64-bit immediate fits in a 32-bit
181    // sign extended field.
182    inline bool i64immSExt32(SDNode *N) const {
183      uint64_t v = cast<ConstantSDNode>(N)->getZExtValue();
184      return (int64_t)v == (int32_t)v;
185    }
186
187// Include the pieces autogenerated from the target description.
188#include "X86GenDAGISel.inc"
189
190  private:
191    SDNode *Select(SDNode *N);
192    SDNode *SelectGather(SDNode *N, unsigned Opc);
193    SDNode *SelectAtomic64(SDNode *Node, unsigned Opc);
194    SDNode *SelectAtomicLoadArith(SDNode *Node, EVT NVT);
195
196    bool FoldOffsetIntoAddress(uint64_t Offset, X86ISelAddressMode &AM);
197    bool MatchLoadInAddress(LoadSDNode *N, X86ISelAddressMode &AM);
198    bool MatchWrapper(SDValue N, X86ISelAddressMode &AM);
199    bool MatchAddress(SDValue N, X86ISelAddressMode &AM);
200    bool MatchAddressRecursively(SDValue N, X86ISelAddressMode &AM,
201                                 unsigned Depth);
202    bool MatchAddressBase(SDValue N, X86ISelAddressMode &AM);
203    bool SelectAddr(SDNode *Parent, SDValue N, SDValue &Base,
204                    SDValue &Scale, SDValue &Index, SDValue &Disp,
205                    SDValue &Segment);
206    bool SelectLEAAddr(SDValue N, SDValue &Base,
207                       SDValue &Scale, SDValue &Index, SDValue &Disp,
208                       SDValue &Segment);
209    bool SelectTLSADDRAddr(SDValue N, SDValue &Base,
210                           SDValue &Scale, SDValue &Index, SDValue &Disp,
211                           SDValue &Segment);
212    bool SelectScalarSSELoad(SDNode *Root, SDValue N,
213                             SDValue &Base, SDValue &Scale,
214                             SDValue &Index, SDValue &Disp,
215                             SDValue &Segment,
216                             SDValue &NodeWithChain);
217
218    bool TryFoldLoad(SDNode *P, SDValue N,
219                     SDValue &Base, SDValue &Scale,
220                     SDValue &Index, SDValue &Disp,
221                     SDValue &Segment);
222
223    /// SelectInlineAsmMemoryOperand - Implement addressing mode selection for
224    /// inline asm expressions.
225    virtual bool SelectInlineAsmMemoryOperand(const SDValue &Op,
226                                              char ConstraintCode,
227                                              std::vector<SDValue> &OutOps);
228
229    void EmitSpecialCodeForMain(MachineBasicBlock *BB, MachineFrameInfo *MFI);
230
231    inline void getAddressOperands(X86ISelAddressMode &AM, SDValue &Base,
232                                   SDValue &Scale, SDValue &Index,
233                                   SDValue &Disp, SDValue &Segment) {
234      Base  = (AM.BaseType == X86ISelAddressMode::FrameIndexBase) ?
235        CurDAG->getTargetFrameIndex(AM.Base_FrameIndex, TLI.getPointerTy()) :
236        AM.Base_Reg;
237      Scale = getI8Imm(AM.Scale);
238      Index = AM.IndexReg;
239      // These are 32-bit even in 64-bit mode since RIP relative offset
240      // is 32-bit.
241      if (AM.GV)
242        Disp = CurDAG->getTargetGlobalAddress(AM.GV, DebugLoc(),
243                                              MVT::i32, AM.Disp,
244                                              AM.SymbolFlags);
245      else if (AM.CP)
246        Disp = CurDAG->getTargetConstantPool(AM.CP, MVT::i32,
247                                             AM.Align, AM.Disp, AM.SymbolFlags);
248      else if (AM.ES) {
249        assert(!AM.Disp && "Non-zero displacement is ignored with ES.");
250        Disp = CurDAG->getTargetExternalSymbol(AM.ES, MVT::i32, AM.SymbolFlags);
251      } else if (AM.JT != -1) {
252        assert(!AM.Disp && "Non-zero displacement is ignored with JT.");
253        Disp = CurDAG->getTargetJumpTable(AM.JT, MVT::i32, AM.SymbolFlags);
254      } else if (AM.BlockAddr)
255        Disp = CurDAG->getTargetBlockAddress(AM.BlockAddr, MVT::i32, AM.Disp,
256                                             AM.SymbolFlags);
257      else
258        Disp = CurDAG->getTargetConstant(AM.Disp, MVT::i32);
259
260      if (AM.Segment.getNode())
261        Segment = AM.Segment;
262      else
263        Segment = CurDAG->getRegister(0, MVT::i32);
264    }
265
266    /// getI8Imm - Return a target constant with the specified value, of type
267    /// i8.
268    inline SDValue getI8Imm(unsigned Imm) {
269      return CurDAG->getTargetConstant(Imm, MVT::i8);
270    }
271
272    /// getI32Imm - Return a target constant with the specified value, of type
273    /// i32.
274    inline SDValue getI32Imm(unsigned Imm) {
275      return CurDAG->getTargetConstant(Imm, MVT::i32);
276    }
277
278    /// getGlobalBaseReg - Return an SDNode that returns the value of
279    /// the global base register. Output instructions required to
280    /// initialize the global base register, if necessary.
281    ///
282    SDNode *getGlobalBaseReg();
283
284    /// getTargetMachine - Return a reference to the TargetMachine, casted
285    /// to the target-specific type.
286    const X86TargetMachine &getTargetMachine() {
287      return static_cast<const X86TargetMachine &>(TM);
288    }
289
290    /// getInstrInfo - Return a reference to the TargetInstrInfo, casted
291    /// to the target-specific type.
292    const X86InstrInfo *getInstrInfo() {
293      return getTargetMachine().getInstrInfo();
294    }
295  };
296}
297
298
299bool
300X86DAGToDAGISel::IsProfitableToFold(SDValue N, SDNode *U, SDNode *Root) const {
301  if (OptLevel == CodeGenOpt::None) return false;
302
303  if (!N.hasOneUse())
304    return false;
305
306  if (N.getOpcode() != ISD::LOAD)
307    return true;
308
309  // If N is a load, do additional profitability checks.
310  if (U == Root) {
311    switch (U->getOpcode()) {
312    default: break;
313    case X86ISD::ADD:
314    case X86ISD::SUB:
315    case X86ISD::AND:
316    case X86ISD::XOR:
317    case X86ISD::OR:
318    case ISD::ADD:
319    case ISD::ADDC:
320    case ISD::ADDE:
321    case ISD::AND:
322    case ISD::OR:
323    case ISD::XOR: {
324      SDValue Op1 = U->getOperand(1);
325
326      // If the other operand is a 8-bit immediate we should fold the immediate
327      // instead. This reduces code size.
328      // e.g.
329      // movl 4(%esp), %eax
330      // addl $4, %eax
331      // vs.
332      // movl $4, %eax
333      // addl 4(%esp), %eax
334      // The former is 2 bytes shorter. In case where the increment is 1, then
335      // the saving can be 4 bytes (by using incl %eax).
336      if (ConstantSDNode *Imm = dyn_cast<ConstantSDNode>(Op1))
337        if (Imm->getAPIntValue().isSignedIntN(8))
338          return false;
339
340      // If the other operand is a TLS address, we should fold it instead.
341      // This produces
342      // movl    %gs:0, %eax
343      // leal    i@NTPOFF(%eax), %eax
344      // instead of
345      // movl    $i@NTPOFF, %eax
346      // addl    %gs:0, %eax
347      // if the block also has an access to a second TLS address this will save
348      // a load.
349      // FIXME: This is probably also true for non TLS addresses.
350      if (Op1.getOpcode() == X86ISD::Wrapper) {
351        SDValue Val = Op1.getOperand(0);
352        if (Val.getOpcode() == ISD::TargetGlobalTLSAddress)
353          return false;
354      }
355    }
356    }
357  }
358
359  return true;
360}
361
362/// MoveBelowCallOrigChain - Replace the original chain operand of the call with
363/// load's chain operand and move load below the call's chain operand.
364static void MoveBelowOrigChain(SelectionDAG *CurDAG, SDValue Load,
365                               SDValue Call, SDValue OrigChain) {
366  SmallVector<SDValue, 8> Ops;
367  SDValue Chain = OrigChain.getOperand(0);
368  if (Chain.getNode() == Load.getNode())
369    Ops.push_back(Load.getOperand(0));
370  else {
371    assert(Chain.getOpcode() == ISD::TokenFactor &&
372           "Unexpected chain operand");
373    for (unsigned i = 0, e = Chain.getNumOperands(); i != e; ++i)
374      if (Chain.getOperand(i).getNode() == Load.getNode())
375        Ops.push_back(Load.getOperand(0));
376      else
377        Ops.push_back(Chain.getOperand(i));
378    SDValue NewChain =
379      CurDAG->getNode(ISD::TokenFactor, Load.getDebugLoc(),
380                      MVT::Other, &Ops[0], Ops.size());
381    Ops.clear();
382    Ops.push_back(NewChain);
383  }
384  for (unsigned i = 1, e = OrigChain.getNumOperands(); i != e; ++i)
385    Ops.push_back(OrigChain.getOperand(i));
386  CurDAG->UpdateNodeOperands(OrigChain.getNode(), &Ops[0], Ops.size());
387  CurDAG->UpdateNodeOperands(Load.getNode(), Call.getOperand(0),
388                             Load.getOperand(1), Load.getOperand(2));
389
390  bool IsGlued = Call.getOperand(0).getNode()->getGluedUser() == Call.getNode();
391  unsigned NumOps = Call.getNode()->getNumOperands();
392  Ops.clear();
393  Ops.push_back(SDValue(Load.getNode(), 1));
394  for (unsigned i = 1, e = NumOps; i != e; ++i)
395    Ops.push_back(Call.getOperand(i));
396  if (!IsGlued)
397    CurDAG->UpdateNodeOperands(Call.getNode(), &Ops[0], NumOps);
398  else
399    // If call's chain was glued to the call (tailcall), and now the load
400    // is moved between them. Remove the glue to avoid a cycle (where the
401    // call is glued to its old chain and the load is using the old chain
402    // as its new chain).
403    CurDAG->MorphNodeTo(Call.getNode(), Call.getOpcode(),
404                        Call.getNode()->getVTList(), &Ops[0], NumOps-1);
405}
406
407/// isCalleeLoad - Return true if call address is a load and it can be
408/// moved below CALLSEQ_START and the chains leading up to the call.
409/// Return the CALLSEQ_START by reference as a second output.
410/// In the case of a tail call, there isn't a callseq node between the call
411/// chain and the load.
412static bool isCalleeLoad(SDValue Callee, SDValue &Chain, bool HasCallSeq) {
413  if (Callee.getNode() == Chain.getNode() || !Callee.hasOneUse())
414    return false;
415  LoadSDNode *LD = dyn_cast<LoadSDNode>(Callee.getNode());
416  if (!LD ||
417      LD->isVolatile() ||
418      LD->getAddressingMode() != ISD::UNINDEXED ||
419      LD->getExtensionType() != ISD::NON_EXTLOAD)
420    return false;
421
422  // Now let's find the callseq_start.
423  while (HasCallSeq && Chain.getOpcode() != ISD::CALLSEQ_START) {
424    if (!Chain.hasOneUse())
425      return false;
426    Chain = Chain.getOperand(0);
427  }
428
429  if (!Chain.getNumOperands())
430    return false;
431  if (Chain.getOperand(0).getNode() == Callee.getNode())
432    return true;
433  if (Chain.getOperand(0).getOpcode() == ISD::TokenFactor &&
434      Callee.getValue(1).isOperandOf(Chain.getOperand(0).getNode()) &&
435      Callee.getValue(1).hasOneUse())
436    return true;
437  return false;
438}
439
440void X86DAGToDAGISel::PreprocessISelDAG() {
441  // OptForSize is used in pattern predicates that isel is matching.
442  OptForSize = MF->getFunction()->getFnAttributes().hasOptimizeForSizeAttr();
443
444  for (SelectionDAG::allnodes_iterator I = CurDAG->allnodes_begin(),
445       E = CurDAG->allnodes_end(); I != E; ) {
446    SDNode *N = I++;  // Preincrement iterator to avoid invalidation issues.
447
448    if (OptLevel != CodeGenOpt::None &&
449        (N->getOpcode() == X86ISD::CALL ||
450         N->getOpcode() == X86ISD::TC_RETURN)) {
451      /// Also try moving call address load from outside callseq_start to just
452      /// before the call to allow it to be folded.
453      ///
454      ///     [Load chain]
455      ///         ^
456      ///         |
457      ///       [Load]
458      ///       ^    ^
459      ///       |    |
460      ///      /      \--
461      ///     /          |
462      ///[CALLSEQ_START] |
463      ///     ^          |
464      ///     |          |
465      /// [LOAD/C2Reg]   |
466      ///     |          |
467      ///      \        /
468      ///       \      /
469      ///       [CALL]
470      bool HasCallSeq = N->getOpcode() == X86ISD::CALL;
471      SDValue Chain = N->getOperand(0);
472      SDValue Load  = N->getOperand(1);
473      if (!isCalleeLoad(Load, Chain, HasCallSeq))
474        continue;
475      MoveBelowOrigChain(CurDAG, Load, SDValue(N, 0), Chain);
476      ++NumLoadMoved;
477      continue;
478    }
479
480    // Lower fpround and fpextend nodes that target the FP stack to be store and
481    // load to the stack.  This is a gross hack.  We would like to simply mark
482    // these as being illegal, but when we do that, legalize produces these when
483    // it expands calls, then expands these in the same legalize pass.  We would
484    // like dag combine to be able to hack on these between the call expansion
485    // and the node legalization.  As such this pass basically does "really
486    // late" legalization of these inline with the X86 isel pass.
487    // FIXME: This should only happen when not compiled with -O0.
488    if (N->getOpcode() != ISD::FP_ROUND && N->getOpcode() != ISD::FP_EXTEND)
489      continue;
490
491    EVT SrcVT = N->getOperand(0).getValueType();
492    EVT DstVT = N->getValueType(0);
493
494    // If any of the sources are vectors, no fp stack involved.
495    if (SrcVT.isVector() || DstVT.isVector())
496      continue;
497
498    // If the source and destination are SSE registers, then this is a legal
499    // conversion that should not be lowered.
500    bool SrcIsSSE = X86Lowering.isScalarFPTypeInSSEReg(SrcVT);
501    bool DstIsSSE = X86Lowering.isScalarFPTypeInSSEReg(DstVT);
502    if (SrcIsSSE && DstIsSSE)
503      continue;
504
505    if (!SrcIsSSE && !DstIsSSE) {
506      // If this is an FPStack extension, it is a noop.
507      if (N->getOpcode() == ISD::FP_EXTEND)
508        continue;
509      // If this is a value-preserving FPStack truncation, it is a noop.
510      if (N->getConstantOperandVal(1))
511        continue;
512    }
513
514    // Here we could have an FP stack truncation or an FPStack <-> SSE convert.
515    // FPStack has extload and truncstore.  SSE can fold direct loads into other
516    // operations.  Based on this, decide what we want to do.
517    EVT MemVT;
518    if (N->getOpcode() == ISD::FP_ROUND)
519      MemVT = DstVT;  // FP_ROUND must use DstVT, we can't do a 'trunc load'.
520    else
521      MemVT = SrcIsSSE ? SrcVT : DstVT;
522
523    SDValue MemTmp = CurDAG->CreateStackTemporary(MemVT);
524    DebugLoc dl = N->getDebugLoc();
525
526    // FIXME: optimize the case where the src/dest is a load or store?
527    SDValue Store = CurDAG->getTruncStore(CurDAG->getEntryNode(), dl,
528                                          N->getOperand(0),
529                                          MemTmp, MachinePointerInfo(), MemVT,
530                                          false, false, 0);
531    SDValue Result = CurDAG->getExtLoad(ISD::EXTLOAD, dl, DstVT, Store, MemTmp,
532                                        MachinePointerInfo(),
533                                        MemVT, false, false, 0);
534
535    // We're about to replace all uses of the FP_ROUND/FP_EXTEND with the
536    // extload we created.  This will cause general havok on the dag because
537    // anything below the conversion could be folded into other existing nodes.
538    // To avoid invalidating 'I', back it up to the convert node.
539    --I;
540    CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Result);
541
542    // Now that we did that, the node is dead.  Increment the iterator to the
543    // next node to process, then delete N.
544    ++I;
545    CurDAG->DeleteNode(N);
546  }
547}
548
549
550/// EmitSpecialCodeForMain - Emit any code that needs to be executed only in
551/// the main function.
552void X86DAGToDAGISel::EmitSpecialCodeForMain(MachineBasicBlock *BB,
553                                             MachineFrameInfo *MFI) {
554  const TargetInstrInfo *TII = TM.getInstrInfo();
555  if (Subtarget->isTargetCygMing()) {
556    unsigned CallOp =
557      Subtarget->is64Bit() ? X86::CALL64pcrel32 : X86::CALLpcrel32;
558    BuildMI(BB, DebugLoc(),
559            TII->get(CallOp)).addExternalSymbol("__main");
560  }
561}
562
563void X86DAGToDAGISel::EmitFunctionEntryCode() {
564  // If this is main, emit special code for main.
565  if (const Function *Fn = MF->getFunction())
566    if (Fn->hasExternalLinkage() && Fn->getName() == "main")
567      EmitSpecialCodeForMain(MF->begin(), MF->getFrameInfo());
568}
569
570static bool isDispSafeForFrameIndex(int64_t Val) {
571  // On 64-bit platforms, we can run into an issue where a frame index
572  // includes a displacement that, when added to the explicit displacement,
573  // will overflow the displacement field. Assuming that the frame index
574  // displacement fits into a 31-bit integer  (which is only slightly more
575  // aggressive than the current fundamental assumption that it fits into
576  // a 32-bit integer), a 31-bit disp should always be safe.
577  return isInt<31>(Val);
578}
579
580bool X86DAGToDAGISel::FoldOffsetIntoAddress(uint64_t Offset,
581                                            X86ISelAddressMode &AM) {
582  int64_t Val = AM.Disp + Offset;
583  CodeModel::Model M = TM.getCodeModel();
584  if (Subtarget->is64Bit()) {
585    if (!X86::isOffsetSuitableForCodeModel(Val, M,
586                                           AM.hasSymbolicDisplacement()))
587      return true;
588    // In addition to the checks required for a register base, check that
589    // we do not try to use an unsafe Disp with a frame index.
590    if (AM.BaseType == X86ISelAddressMode::FrameIndexBase &&
591        !isDispSafeForFrameIndex(Val))
592      return true;
593  }
594  AM.Disp = Val;
595  return false;
596
597}
598
599bool X86DAGToDAGISel::MatchLoadInAddress(LoadSDNode *N, X86ISelAddressMode &AM){
600  SDValue Address = N->getOperand(1);
601
602  // load gs:0 -> GS segment register.
603  // load fs:0 -> FS segment register.
604  //
605  // This optimization is valid because the GNU TLS model defines that
606  // gs:0 (or fs:0 on X86-64) contains its own address.
607  // For more information see http://people.redhat.com/drepper/tls.pdf
608  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Address))
609    if (C->getSExtValue() == 0 && AM.Segment.getNode() == 0 &&
610        Subtarget->isTargetLinux())
611      switch (N->getPointerInfo().getAddrSpace()) {
612      case 256:
613        AM.Segment = CurDAG->getRegister(X86::GS, MVT::i16);
614        return false;
615      case 257:
616        AM.Segment = CurDAG->getRegister(X86::FS, MVT::i16);
617        return false;
618      }
619
620  return true;
621}
622
623/// MatchWrapper - Try to match X86ISD::Wrapper and X86ISD::WrapperRIP nodes
624/// into an addressing mode.  These wrap things that will resolve down into a
625/// symbol reference.  If no match is possible, this returns true, otherwise it
626/// returns false.
627bool X86DAGToDAGISel::MatchWrapper(SDValue N, X86ISelAddressMode &AM) {
628  // If the addressing mode already has a symbol as the displacement, we can
629  // never match another symbol.
630  if (AM.hasSymbolicDisplacement())
631    return true;
632
633  SDValue N0 = N.getOperand(0);
634  CodeModel::Model M = TM.getCodeModel();
635
636  // Handle X86-64 rip-relative addresses.  We check this before checking direct
637  // folding because RIP is preferable to non-RIP accesses.
638  if (Subtarget->is64Bit() && N.getOpcode() == X86ISD::WrapperRIP &&
639      // Under X86-64 non-small code model, GV (and friends) are 64-bits, so
640      // they cannot be folded into immediate fields.
641      // FIXME: This can be improved for kernel and other models?
642      (M == CodeModel::Small || M == CodeModel::Kernel)) {
643    // Base and index reg must be 0 in order to use %rip as base.
644    if (AM.hasBaseOrIndexReg())
645      return true;
646    if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(N0)) {
647      X86ISelAddressMode Backup = AM;
648      AM.GV = G->getGlobal();
649      AM.SymbolFlags = G->getTargetFlags();
650      if (FoldOffsetIntoAddress(G->getOffset(), AM)) {
651        AM = Backup;
652        return true;
653      }
654    } else if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(N0)) {
655      X86ISelAddressMode Backup = AM;
656      AM.CP = CP->getConstVal();
657      AM.Align = CP->getAlignment();
658      AM.SymbolFlags = CP->getTargetFlags();
659      if (FoldOffsetIntoAddress(CP->getOffset(), AM)) {
660        AM = Backup;
661        return true;
662      }
663    } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(N0)) {
664      AM.ES = S->getSymbol();
665      AM.SymbolFlags = S->getTargetFlags();
666    } else if (JumpTableSDNode *J = dyn_cast<JumpTableSDNode>(N0)) {
667      AM.JT = J->getIndex();
668      AM.SymbolFlags = J->getTargetFlags();
669    } else if (BlockAddressSDNode *BA = dyn_cast<BlockAddressSDNode>(N0)) {
670      X86ISelAddressMode Backup = AM;
671      AM.BlockAddr = BA->getBlockAddress();
672      AM.SymbolFlags = BA->getTargetFlags();
673      if (FoldOffsetIntoAddress(BA->getOffset(), AM)) {
674        AM = Backup;
675        return true;
676      }
677    } else
678      llvm_unreachable("Unhandled symbol reference node.");
679
680    if (N.getOpcode() == X86ISD::WrapperRIP)
681      AM.setBaseReg(CurDAG->getRegister(X86::RIP, MVT::i64));
682    return false;
683  }
684
685  // Handle the case when globals fit in our immediate field: This is true for
686  // X86-32 always and X86-64 when in -mcmodel=small mode.  In 64-bit
687  // mode, this only applies to a non-RIP-relative computation.
688  if (!Subtarget->is64Bit() ||
689      M == CodeModel::Small || M == CodeModel::Kernel) {
690    assert(N.getOpcode() != X86ISD::WrapperRIP &&
691           "RIP-relative addressing already handled");
692    if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(N0)) {
693      AM.GV = G->getGlobal();
694      AM.Disp += G->getOffset();
695      AM.SymbolFlags = G->getTargetFlags();
696    } else if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(N0)) {
697      AM.CP = CP->getConstVal();
698      AM.Align = CP->getAlignment();
699      AM.Disp += CP->getOffset();
700      AM.SymbolFlags = CP->getTargetFlags();
701    } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(N0)) {
702      AM.ES = S->getSymbol();
703      AM.SymbolFlags = S->getTargetFlags();
704    } else if (JumpTableSDNode *J = dyn_cast<JumpTableSDNode>(N0)) {
705      AM.JT = J->getIndex();
706      AM.SymbolFlags = J->getTargetFlags();
707    } else if (BlockAddressSDNode *BA = dyn_cast<BlockAddressSDNode>(N0)) {
708      AM.BlockAddr = BA->getBlockAddress();
709      AM.Disp += BA->getOffset();
710      AM.SymbolFlags = BA->getTargetFlags();
711    } else
712      llvm_unreachable("Unhandled symbol reference node.");
713    return false;
714  }
715
716  return true;
717}
718
719/// MatchAddress - Add the specified node to the specified addressing mode,
720/// returning true if it cannot be done.  This just pattern matches for the
721/// addressing mode.
722bool X86DAGToDAGISel::MatchAddress(SDValue N, X86ISelAddressMode &AM) {
723  if (MatchAddressRecursively(N, AM, 0))
724    return true;
725
726  // Post-processing: Convert lea(,%reg,2) to lea(%reg,%reg), which has
727  // a smaller encoding and avoids a scaled-index.
728  if (AM.Scale == 2 &&
729      AM.BaseType == X86ISelAddressMode::RegBase &&
730      AM.Base_Reg.getNode() == 0) {
731    AM.Base_Reg = AM.IndexReg;
732    AM.Scale = 1;
733  }
734
735  // Post-processing: Convert foo to foo(%rip), even in non-PIC mode,
736  // because it has a smaller encoding.
737  // TODO: Which other code models can use this?
738  if (TM.getCodeModel() == CodeModel::Small &&
739      Subtarget->is64Bit() &&
740      AM.Scale == 1 &&
741      AM.BaseType == X86ISelAddressMode::RegBase &&
742      AM.Base_Reg.getNode() == 0 &&
743      AM.IndexReg.getNode() == 0 &&
744      AM.SymbolFlags == X86II::MO_NO_FLAG &&
745      AM.hasSymbolicDisplacement())
746    AM.Base_Reg = CurDAG->getRegister(X86::RIP, MVT::i64);
747
748  return false;
749}
750
751// Insert a node into the DAG at least before the Pos node's position. This
752// will reposition the node as needed, and will assign it a node ID that is <=
753// the Pos node's ID. Note that this does *not* preserve the uniqueness of node
754// IDs! The selection DAG must no longer depend on their uniqueness when this
755// is used.
756static void InsertDAGNode(SelectionDAG &DAG, SDValue Pos, SDValue N) {
757  if (N.getNode()->getNodeId() == -1 ||
758      N.getNode()->getNodeId() > Pos.getNode()->getNodeId()) {
759    DAG.RepositionNode(Pos.getNode(), N.getNode());
760    N.getNode()->setNodeId(Pos.getNode()->getNodeId());
761  }
762}
763
764// Transform "(X >> (8-C1)) & C2" to "(X >> 8) & 0xff)" if safe. This
765// allows us to convert the shift and and into an h-register extract and
766// a scaled index. Returns false if the simplification is performed.
767static bool FoldMaskAndShiftToExtract(SelectionDAG &DAG, SDValue N,
768                                      uint64_t Mask,
769                                      SDValue Shift, SDValue X,
770                                      X86ISelAddressMode &AM) {
771  if (Shift.getOpcode() != ISD::SRL ||
772      !isa<ConstantSDNode>(Shift.getOperand(1)) ||
773      !Shift.hasOneUse())
774    return true;
775
776  int ScaleLog = 8 - Shift.getConstantOperandVal(1);
777  if (ScaleLog <= 0 || ScaleLog >= 4 ||
778      Mask != (0xffu << ScaleLog))
779    return true;
780
781  EVT VT = N.getValueType();
782  DebugLoc DL = N.getDebugLoc();
783  SDValue Eight = DAG.getConstant(8, MVT::i8);
784  SDValue NewMask = DAG.getConstant(0xff, VT);
785  SDValue Srl = DAG.getNode(ISD::SRL, DL, VT, X, Eight);
786  SDValue And = DAG.getNode(ISD::AND, DL, VT, Srl, NewMask);
787  SDValue ShlCount = DAG.getConstant(ScaleLog, MVT::i8);
788  SDValue Shl = DAG.getNode(ISD::SHL, DL, VT, And, ShlCount);
789
790  // Insert the new nodes into the topological ordering. We must do this in
791  // a valid topological ordering as nothing is going to go back and re-sort
792  // these nodes. We continually insert before 'N' in sequence as this is
793  // essentially a pre-flattened and pre-sorted sequence of nodes. There is no
794  // hierarchy left to express.
795  InsertDAGNode(DAG, N, Eight);
796  InsertDAGNode(DAG, N, Srl);
797  InsertDAGNode(DAG, N, NewMask);
798  InsertDAGNode(DAG, N, And);
799  InsertDAGNode(DAG, N, ShlCount);
800  InsertDAGNode(DAG, N, Shl);
801  DAG.ReplaceAllUsesWith(N, Shl);
802  AM.IndexReg = And;
803  AM.Scale = (1 << ScaleLog);
804  return false;
805}
806
807// Transforms "(X << C1) & C2" to "(X & (C2>>C1)) << C1" if safe and if this
808// allows us to fold the shift into this addressing mode. Returns false if the
809// transform succeeded.
810static bool FoldMaskedShiftToScaledMask(SelectionDAG &DAG, SDValue N,
811                                        uint64_t Mask,
812                                        SDValue Shift, SDValue X,
813                                        X86ISelAddressMode &AM) {
814  if (Shift.getOpcode() != ISD::SHL ||
815      !isa<ConstantSDNode>(Shift.getOperand(1)))
816    return true;
817
818  // Not likely to be profitable if either the AND or SHIFT node has more
819  // than one use (unless all uses are for address computation). Besides,
820  // isel mechanism requires their node ids to be reused.
821  if (!N.hasOneUse() || !Shift.hasOneUse())
822    return true;
823
824  // Verify that the shift amount is something we can fold.
825  unsigned ShiftAmt = Shift.getConstantOperandVal(1);
826  if (ShiftAmt != 1 && ShiftAmt != 2 && ShiftAmt != 3)
827    return true;
828
829  EVT VT = N.getValueType();
830  DebugLoc DL = N.getDebugLoc();
831  SDValue NewMask = DAG.getConstant(Mask >> ShiftAmt, VT);
832  SDValue NewAnd = DAG.getNode(ISD::AND, DL, VT, X, NewMask);
833  SDValue NewShift = DAG.getNode(ISD::SHL, DL, VT, NewAnd, Shift.getOperand(1));
834
835  // Insert the new nodes into the topological ordering. We must do this in
836  // a valid topological ordering as nothing is going to go back and re-sort
837  // these nodes. We continually insert before 'N' in sequence as this is
838  // essentially a pre-flattened and pre-sorted sequence of nodes. There is no
839  // hierarchy left to express.
840  InsertDAGNode(DAG, N, NewMask);
841  InsertDAGNode(DAG, N, NewAnd);
842  InsertDAGNode(DAG, N, NewShift);
843  DAG.ReplaceAllUsesWith(N, NewShift);
844
845  AM.Scale = 1 << ShiftAmt;
846  AM.IndexReg = NewAnd;
847  return false;
848}
849
850// Implement some heroics to detect shifts of masked values where the mask can
851// be replaced by extending the shift and undoing that in the addressing mode
852// scale. Patterns such as (shl (srl x, c1), c2) are canonicalized into (and
853// (srl x, SHIFT), MASK) by DAGCombines that don't know the shl can be done in
854// the addressing mode. This results in code such as:
855//
856//   int f(short *y, int *lookup_table) {
857//     ...
858//     return *y + lookup_table[*y >> 11];
859//   }
860//
861// Turning into:
862//   movzwl (%rdi), %eax
863//   movl %eax, %ecx
864//   shrl $11, %ecx
865//   addl (%rsi,%rcx,4), %eax
866//
867// Instead of:
868//   movzwl (%rdi), %eax
869//   movl %eax, %ecx
870//   shrl $9, %ecx
871//   andl $124, %rcx
872//   addl (%rsi,%rcx), %eax
873//
874// Note that this function assumes the mask is provided as a mask *after* the
875// value is shifted. The input chain may or may not match that, but computing
876// such a mask is trivial.
877static bool FoldMaskAndShiftToScale(SelectionDAG &DAG, SDValue N,
878                                    uint64_t Mask,
879                                    SDValue Shift, SDValue X,
880                                    X86ISelAddressMode &AM) {
881  if (Shift.getOpcode() != ISD::SRL || !Shift.hasOneUse() ||
882      !isa<ConstantSDNode>(Shift.getOperand(1)))
883    return true;
884
885  unsigned ShiftAmt = Shift.getConstantOperandVal(1);
886  unsigned MaskLZ = CountLeadingZeros_64(Mask);
887  unsigned MaskTZ = CountTrailingZeros_64(Mask);
888
889  // The amount of shift we're trying to fit into the addressing mode is taken
890  // from the trailing zeros of the mask.
891  unsigned AMShiftAmt = MaskTZ;
892
893  // There is nothing we can do here unless the mask is removing some bits.
894  // Also, the addressing mode can only represent shifts of 1, 2, or 3 bits.
895  if (AMShiftAmt <= 0 || AMShiftAmt > 3) return true;
896
897  // We also need to ensure that mask is a continuous run of bits.
898  if (CountTrailingOnes_64(Mask >> MaskTZ) + MaskTZ + MaskLZ != 64) return true;
899
900  // Scale the leading zero count down based on the actual size of the value.
901  // Also scale it down based on the size of the shift.
902  MaskLZ -= (64 - X.getValueSizeInBits()) + ShiftAmt;
903
904  // The final check is to ensure that any masked out high bits of X are
905  // already known to be zero. Otherwise, the mask has a semantic impact
906  // other than masking out a couple of low bits. Unfortunately, because of
907  // the mask, zero extensions will be removed from operands in some cases.
908  // This code works extra hard to look through extensions because we can
909  // replace them with zero extensions cheaply if necessary.
910  bool ReplacingAnyExtend = false;
911  if (X.getOpcode() == ISD::ANY_EXTEND) {
912    unsigned ExtendBits =
913      X.getValueSizeInBits() - X.getOperand(0).getValueSizeInBits();
914    // Assume that we'll replace the any-extend with a zero-extend, and
915    // narrow the search to the extended value.
916    X = X.getOperand(0);
917    MaskLZ = ExtendBits > MaskLZ ? 0 : MaskLZ - ExtendBits;
918    ReplacingAnyExtend = true;
919  }
920  APInt MaskedHighBits = APInt::getHighBitsSet(X.getValueSizeInBits(),
921                                               MaskLZ);
922  APInt KnownZero, KnownOne;
923  DAG.ComputeMaskedBits(X, KnownZero, KnownOne);
924  if (MaskedHighBits != KnownZero) return true;
925
926  // We've identified a pattern that can be transformed into a single shift
927  // and an addressing mode. Make it so.
928  EVT VT = N.getValueType();
929  if (ReplacingAnyExtend) {
930    assert(X.getValueType() != VT);
931    // We looked through an ANY_EXTEND node, insert a ZERO_EXTEND.
932    SDValue NewX = DAG.getNode(ISD::ZERO_EXTEND, X.getDebugLoc(), VT, X);
933    InsertDAGNode(DAG, N, NewX);
934    X = NewX;
935  }
936  DebugLoc DL = N.getDebugLoc();
937  SDValue NewSRLAmt = DAG.getConstant(ShiftAmt + AMShiftAmt, MVT::i8);
938  SDValue NewSRL = DAG.getNode(ISD::SRL, DL, VT, X, NewSRLAmt);
939  SDValue NewSHLAmt = DAG.getConstant(AMShiftAmt, MVT::i8);
940  SDValue NewSHL = DAG.getNode(ISD::SHL, DL, VT, NewSRL, NewSHLAmt);
941
942  // Insert the new nodes into the topological ordering. We must do this in
943  // a valid topological ordering as nothing is going to go back and re-sort
944  // these nodes. We continually insert before 'N' in sequence as this is
945  // essentially a pre-flattened and pre-sorted sequence of nodes. There is no
946  // hierarchy left to express.
947  InsertDAGNode(DAG, N, NewSRLAmt);
948  InsertDAGNode(DAG, N, NewSRL);
949  InsertDAGNode(DAG, N, NewSHLAmt);
950  InsertDAGNode(DAG, N, NewSHL);
951  DAG.ReplaceAllUsesWith(N, NewSHL);
952
953  AM.Scale = 1 << AMShiftAmt;
954  AM.IndexReg = NewSRL;
955  return false;
956}
957
958bool X86DAGToDAGISel::MatchAddressRecursively(SDValue N, X86ISelAddressMode &AM,
959                                              unsigned Depth) {
960  DebugLoc dl = N.getDebugLoc();
961  DEBUG({
962      dbgs() << "MatchAddress: ";
963      AM.dump();
964    });
965  // Limit recursion.
966  if (Depth > 5)
967    return MatchAddressBase(N, AM);
968
969  // If this is already a %rip relative address, we can only merge immediates
970  // into it.  Instead of handling this in every case, we handle it here.
971  // RIP relative addressing: %rip + 32-bit displacement!
972  if (AM.isRIPRelative()) {
973    // FIXME: JumpTable and ExternalSymbol address currently don't like
974    // displacements.  It isn't very important, but this should be fixed for
975    // consistency.
976    if (!AM.ES && AM.JT != -1) return true;
977
978    if (ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(N))
979      if (!FoldOffsetIntoAddress(Cst->getSExtValue(), AM))
980        return false;
981    return true;
982  }
983
984  switch (N.getOpcode()) {
985  default: break;
986  case ISD::Constant: {
987    uint64_t Val = cast<ConstantSDNode>(N)->getSExtValue();
988    if (!FoldOffsetIntoAddress(Val, AM))
989      return false;
990    break;
991  }
992
993  case X86ISD::Wrapper:
994  case X86ISD::WrapperRIP:
995    if (!MatchWrapper(N, AM))
996      return false;
997    break;
998
999  case ISD::LOAD:
1000    if (!MatchLoadInAddress(cast<LoadSDNode>(N), AM))
1001      return false;
1002    break;
1003
1004  case ISD::FrameIndex:
1005    if (AM.BaseType == X86ISelAddressMode::RegBase &&
1006        AM.Base_Reg.getNode() == 0 &&
1007        (!Subtarget->is64Bit() || isDispSafeForFrameIndex(AM.Disp))) {
1008      AM.BaseType = X86ISelAddressMode::FrameIndexBase;
1009      AM.Base_FrameIndex = cast<FrameIndexSDNode>(N)->getIndex();
1010      return false;
1011    }
1012    break;
1013
1014  case ISD::SHL:
1015    if (AM.IndexReg.getNode() != 0 || AM.Scale != 1)
1016      break;
1017
1018    if (ConstantSDNode
1019          *CN = dyn_cast<ConstantSDNode>(N.getNode()->getOperand(1))) {
1020      unsigned Val = CN->getZExtValue();
1021      // Note that we handle x<<1 as (,x,2) rather than (x,x) here so
1022      // that the base operand remains free for further matching. If
1023      // the base doesn't end up getting used, a post-processing step
1024      // in MatchAddress turns (,x,2) into (x,x), which is cheaper.
1025      if (Val == 1 || Val == 2 || Val == 3) {
1026        AM.Scale = 1 << Val;
1027        SDValue ShVal = N.getNode()->getOperand(0);
1028
1029        // Okay, we know that we have a scale by now.  However, if the scaled
1030        // value is an add of something and a constant, we can fold the
1031        // constant into the disp field here.
1032        if (CurDAG->isBaseWithConstantOffset(ShVal)) {
1033          AM.IndexReg = ShVal.getNode()->getOperand(0);
1034          ConstantSDNode *AddVal =
1035            cast<ConstantSDNode>(ShVal.getNode()->getOperand(1));
1036          uint64_t Disp = (uint64_t)AddVal->getSExtValue() << Val;
1037          if (!FoldOffsetIntoAddress(Disp, AM))
1038            return false;
1039        }
1040
1041        AM.IndexReg = ShVal;
1042        return false;
1043      }
1044    break;
1045    }
1046
1047  case ISD::SRL: {
1048    // Scale must not be used already.
1049    if (AM.IndexReg.getNode() != 0 || AM.Scale != 1) break;
1050
1051    SDValue And = N.getOperand(0);
1052    if (And.getOpcode() != ISD::AND) break;
1053    SDValue X = And.getOperand(0);
1054
1055    // We only handle up to 64-bit values here as those are what matter for
1056    // addressing mode optimizations.
1057    if (X.getValueSizeInBits() > 64) break;
1058
1059    // The mask used for the transform is expected to be post-shift, but we
1060    // found the shift first so just apply the shift to the mask before passing
1061    // it down.
1062    if (!isa<ConstantSDNode>(N.getOperand(1)) ||
1063        !isa<ConstantSDNode>(And.getOperand(1)))
1064      break;
1065    uint64_t Mask = And.getConstantOperandVal(1) >> N.getConstantOperandVal(1);
1066
1067    // Try to fold the mask and shift into the scale, and return false if we
1068    // succeed.
1069    if (!FoldMaskAndShiftToScale(*CurDAG, N, Mask, N, X, AM))
1070      return false;
1071    break;
1072  }
1073
1074  case ISD::SMUL_LOHI:
1075  case ISD::UMUL_LOHI:
1076    // A mul_lohi where we need the low part can be folded as a plain multiply.
1077    if (N.getResNo() != 0) break;
1078    // FALL THROUGH
1079  case ISD::MUL:
1080  case X86ISD::MUL_IMM:
1081    // X*[3,5,9] -> X+X*[2,4,8]
1082    if (AM.BaseType == X86ISelAddressMode::RegBase &&
1083        AM.Base_Reg.getNode() == 0 &&
1084        AM.IndexReg.getNode() == 0) {
1085      if (ConstantSDNode
1086            *CN = dyn_cast<ConstantSDNode>(N.getNode()->getOperand(1)))
1087        if (CN->getZExtValue() == 3 || CN->getZExtValue() == 5 ||
1088            CN->getZExtValue() == 9) {
1089          AM.Scale = unsigned(CN->getZExtValue())-1;
1090
1091          SDValue MulVal = N.getNode()->getOperand(0);
1092          SDValue Reg;
1093
1094          // Okay, we know that we have a scale by now.  However, if the scaled
1095          // value is an add of something and a constant, we can fold the
1096          // constant into the disp field here.
1097          if (MulVal.getNode()->getOpcode() == ISD::ADD && MulVal.hasOneUse() &&
1098              isa<ConstantSDNode>(MulVal.getNode()->getOperand(1))) {
1099            Reg = MulVal.getNode()->getOperand(0);
1100            ConstantSDNode *AddVal =
1101              cast<ConstantSDNode>(MulVal.getNode()->getOperand(1));
1102            uint64_t Disp = AddVal->getSExtValue() * CN->getZExtValue();
1103            if (FoldOffsetIntoAddress(Disp, AM))
1104              Reg = N.getNode()->getOperand(0);
1105          } else {
1106            Reg = N.getNode()->getOperand(0);
1107          }
1108
1109          AM.IndexReg = AM.Base_Reg = Reg;
1110          return false;
1111        }
1112    }
1113    break;
1114
1115  case ISD::SUB: {
1116    // Given A-B, if A can be completely folded into the address and
1117    // the index field with the index field unused, use -B as the index.
1118    // This is a win if a has multiple parts that can be folded into
1119    // the address. Also, this saves a mov if the base register has
1120    // other uses, since it avoids a two-address sub instruction, however
1121    // it costs an additional mov if the index register has other uses.
1122
1123    // Add an artificial use to this node so that we can keep track of
1124    // it if it gets CSE'd with a different node.
1125    HandleSDNode Handle(N);
1126
1127    // Test if the LHS of the sub can be folded.
1128    X86ISelAddressMode Backup = AM;
1129    if (MatchAddressRecursively(N.getNode()->getOperand(0), AM, Depth+1)) {
1130      AM = Backup;
1131      break;
1132    }
1133    // Test if the index field is free for use.
1134    if (AM.IndexReg.getNode() || AM.isRIPRelative()) {
1135      AM = Backup;
1136      break;
1137    }
1138
1139    int Cost = 0;
1140    SDValue RHS = Handle.getValue().getNode()->getOperand(1);
1141    // If the RHS involves a register with multiple uses, this
1142    // transformation incurs an extra mov, due to the neg instruction
1143    // clobbering its operand.
1144    if (!RHS.getNode()->hasOneUse() ||
1145        RHS.getNode()->getOpcode() == ISD::CopyFromReg ||
1146        RHS.getNode()->getOpcode() == ISD::TRUNCATE ||
1147        RHS.getNode()->getOpcode() == ISD::ANY_EXTEND ||
1148        (RHS.getNode()->getOpcode() == ISD::ZERO_EXTEND &&
1149         RHS.getNode()->getOperand(0).getValueType() == MVT::i32))
1150      ++Cost;
1151    // If the base is a register with multiple uses, this
1152    // transformation may save a mov.
1153    if ((AM.BaseType == X86ISelAddressMode::RegBase &&
1154         AM.Base_Reg.getNode() &&
1155         !AM.Base_Reg.getNode()->hasOneUse()) ||
1156        AM.BaseType == X86ISelAddressMode::FrameIndexBase)
1157      --Cost;
1158    // If the folded LHS was interesting, this transformation saves
1159    // address arithmetic.
1160    if ((AM.hasSymbolicDisplacement() && !Backup.hasSymbolicDisplacement()) +
1161        ((AM.Disp != 0) && (Backup.Disp == 0)) +
1162        (AM.Segment.getNode() && !Backup.Segment.getNode()) >= 2)
1163      --Cost;
1164    // If it doesn't look like it may be an overall win, don't do it.
1165    if (Cost >= 0) {
1166      AM = Backup;
1167      break;
1168    }
1169
1170    // Ok, the transformation is legal and appears profitable. Go for it.
1171    SDValue Zero = CurDAG->getConstant(0, N.getValueType());
1172    SDValue Neg = CurDAG->getNode(ISD::SUB, dl, N.getValueType(), Zero, RHS);
1173    AM.IndexReg = Neg;
1174    AM.Scale = 1;
1175
1176    // Insert the new nodes into the topological ordering.
1177    InsertDAGNode(*CurDAG, N, Zero);
1178    InsertDAGNode(*CurDAG, N, Neg);
1179    return false;
1180  }
1181
1182  case ISD::ADD: {
1183    // Add an artificial use to this node so that we can keep track of
1184    // it if it gets CSE'd with a different node.
1185    HandleSDNode Handle(N);
1186
1187    X86ISelAddressMode Backup = AM;
1188    if (!MatchAddressRecursively(N.getOperand(0), AM, Depth+1) &&
1189        !MatchAddressRecursively(Handle.getValue().getOperand(1), AM, Depth+1))
1190      return false;
1191    AM = Backup;
1192
1193    // Try again after commuting the operands.
1194    if (!MatchAddressRecursively(Handle.getValue().getOperand(1), AM, Depth+1)&&
1195        !MatchAddressRecursively(Handle.getValue().getOperand(0), AM, Depth+1))
1196      return false;
1197    AM = Backup;
1198
1199    // If we couldn't fold both operands into the address at the same time,
1200    // see if we can just put each operand into a register and fold at least
1201    // the add.
1202    if (AM.BaseType == X86ISelAddressMode::RegBase &&
1203        !AM.Base_Reg.getNode() &&
1204        !AM.IndexReg.getNode()) {
1205      N = Handle.getValue();
1206      AM.Base_Reg = N.getOperand(0);
1207      AM.IndexReg = N.getOperand(1);
1208      AM.Scale = 1;
1209      return false;
1210    }
1211    N = Handle.getValue();
1212    break;
1213  }
1214
1215  case ISD::OR:
1216    // Handle "X | C" as "X + C" iff X is known to have C bits clear.
1217    if (CurDAG->isBaseWithConstantOffset(N)) {
1218      X86ISelAddressMode Backup = AM;
1219      ConstantSDNode *CN = cast<ConstantSDNode>(N.getOperand(1));
1220
1221      // Start with the LHS as an addr mode.
1222      if (!MatchAddressRecursively(N.getOperand(0), AM, Depth+1) &&
1223          !FoldOffsetIntoAddress(CN->getSExtValue(), AM))
1224        return false;
1225      AM = Backup;
1226    }
1227    break;
1228
1229  case ISD::AND: {
1230    // Perform some heroic transforms on an and of a constant-count shift
1231    // with a constant to enable use of the scaled offset field.
1232
1233    // Scale must not be used already.
1234    if (AM.IndexReg.getNode() != 0 || AM.Scale != 1) break;
1235
1236    SDValue Shift = N.getOperand(0);
1237    if (Shift.getOpcode() != ISD::SRL && Shift.getOpcode() != ISD::SHL) break;
1238    SDValue X = Shift.getOperand(0);
1239
1240    // We only handle up to 64-bit values here as those are what matter for
1241    // addressing mode optimizations.
1242    if (X.getValueSizeInBits() > 64) break;
1243
1244    if (!isa<ConstantSDNode>(N.getOperand(1)))
1245      break;
1246    uint64_t Mask = N.getConstantOperandVal(1);
1247
1248    // Try to fold the mask and shift into an extract and scale.
1249    if (!FoldMaskAndShiftToExtract(*CurDAG, N, Mask, Shift, X, AM))
1250      return false;
1251
1252    // Try to fold the mask and shift directly into the scale.
1253    if (!FoldMaskAndShiftToScale(*CurDAG, N, Mask, Shift, X, AM))
1254      return false;
1255
1256    // Try to swap the mask and shift to place shifts which can be done as
1257    // a scale on the outside of the mask.
1258    if (!FoldMaskedShiftToScaledMask(*CurDAG, N, Mask, Shift, X, AM))
1259      return false;
1260    break;
1261  }
1262  }
1263
1264  return MatchAddressBase(N, AM);
1265}
1266
1267/// MatchAddressBase - Helper for MatchAddress. Add the specified node to the
1268/// specified addressing mode without any further recursion.
1269bool X86DAGToDAGISel::MatchAddressBase(SDValue N, X86ISelAddressMode &AM) {
1270  // Is the base register already occupied?
1271  if (AM.BaseType != X86ISelAddressMode::RegBase || AM.Base_Reg.getNode()) {
1272    // If so, check to see if the scale index register is set.
1273    if (AM.IndexReg.getNode() == 0) {
1274      AM.IndexReg = N;
1275      AM.Scale = 1;
1276      return false;
1277    }
1278
1279    // Otherwise, we cannot select it.
1280    return true;
1281  }
1282
1283  // Default, generate it as a register.
1284  AM.BaseType = X86ISelAddressMode::RegBase;
1285  AM.Base_Reg = N;
1286  return false;
1287}
1288
1289/// SelectAddr - returns true if it is able pattern match an addressing mode.
1290/// It returns the operands which make up the maximal addressing mode it can
1291/// match by reference.
1292///
1293/// Parent is the parent node of the addr operand that is being matched.  It
1294/// is always a load, store, atomic node, or null.  It is only null when
1295/// checking memory operands for inline asm nodes.
1296bool X86DAGToDAGISel::SelectAddr(SDNode *Parent, SDValue N, SDValue &Base,
1297                                 SDValue &Scale, SDValue &Index,
1298                                 SDValue &Disp, SDValue &Segment) {
1299  X86ISelAddressMode AM;
1300
1301  if (Parent &&
1302      // This list of opcodes are all the nodes that have an "addr:$ptr" operand
1303      // that are not a MemSDNode, and thus don't have proper addrspace info.
1304      Parent->getOpcode() != ISD::INTRINSIC_W_CHAIN && // unaligned loads, fixme
1305      Parent->getOpcode() != ISD::INTRINSIC_VOID && // nontemporal stores
1306      Parent->getOpcode() != X86ISD::TLSCALL) { // Fixme
1307    unsigned AddrSpace =
1308      cast<MemSDNode>(Parent)->getPointerInfo().getAddrSpace();
1309    // AddrSpace 256 -> GS, 257 -> FS.
1310    if (AddrSpace == 256)
1311      AM.Segment = CurDAG->getRegister(X86::GS, MVT::i16);
1312    if (AddrSpace == 257)
1313      AM.Segment = CurDAG->getRegister(X86::FS, MVT::i16);
1314  }
1315
1316  if (MatchAddress(N, AM))
1317    return false;
1318
1319  EVT VT = N.getValueType();
1320  if (AM.BaseType == X86ISelAddressMode::RegBase) {
1321    if (!AM.Base_Reg.getNode())
1322      AM.Base_Reg = CurDAG->getRegister(0, VT);
1323  }
1324
1325  if (!AM.IndexReg.getNode())
1326    AM.IndexReg = CurDAG->getRegister(0, VT);
1327
1328  getAddressOperands(AM, Base, Scale, Index, Disp, Segment);
1329  return true;
1330}
1331
1332/// SelectScalarSSELoad - Match a scalar SSE load.  In particular, we want to
1333/// match a load whose top elements are either undef or zeros.  The load flavor
1334/// is derived from the type of N, which is either v4f32 or v2f64.
1335///
1336/// We also return:
1337///   PatternChainNode: this is the matched node that has a chain input and
1338///   output.
1339bool X86DAGToDAGISel::SelectScalarSSELoad(SDNode *Root,
1340                                          SDValue N, SDValue &Base,
1341                                          SDValue &Scale, SDValue &Index,
1342                                          SDValue &Disp, SDValue &Segment,
1343                                          SDValue &PatternNodeWithChain) {
1344  if (N.getOpcode() == ISD::SCALAR_TO_VECTOR) {
1345    PatternNodeWithChain = N.getOperand(0);
1346    if (ISD::isNON_EXTLoad(PatternNodeWithChain.getNode()) &&
1347        PatternNodeWithChain.hasOneUse() &&
1348        IsProfitableToFold(N.getOperand(0), N.getNode(), Root) &&
1349        IsLegalToFold(N.getOperand(0), N.getNode(), Root, OptLevel)) {
1350      LoadSDNode *LD = cast<LoadSDNode>(PatternNodeWithChain);
1351      if (!SelectAddr(LD, LD->getBasePtr(), Base, Scale, Index, Disp, Segment))
1352        return false;
1353      return true;
1354    }
1355  }
1356
1357  // Also handle the case where we explicitly require zeros in the top
1358  // elements.  This is a vector shuffle from the zero vector.
1359  if (N.getOpcode() == X86ISD::VZEXT_MOVL && N.getNode()->hasOneUse() &&
1360      // Check to see if the top elements are all zeros (or bitcast of zeros).
1361      N.getOperand(0).getOpcode() == ISD::SCALAR_TO_VECTOR &&
1362      N.getOperand(0).getNode()->hasOneUse() &&
1363      ISD::isNON_EXTLoad(N.getOperand(0).getOperand(0).getNode()) &&
1364      N.getOperand(0).getOperand(0).hasOneUse() &&
1365      IsProfitableToFold(N.getOperand(0), N.getNode(), Root) &&
1366      IsLegalToFold(N.getOperand(0), N.getNode(), Root, OptLevel)) {
1367    // Okay, this is a zero extending load.  Fold it.
1368    LoadSDNode *LD = cast<LoadSDNode>(N.getOperand(0).getOperand(0));
1369    if (!SelectAddr(LD, LD->getBasePtr(), Base, Scale, Index, Disp, Segment))
1370      return false;
1371    PatternNodeWithChain = SDValue(LD, 0);
1372    return true;
1373  }
1374  return false;
1375}
1376
1377
1378/// SelectLEAAddr - it calls SelectAddr and determines if the maximal addressing
1379/// mode it matches can be cost effectively emitted as an LEA instruction.
1380bool X86DAGToDAGISel::SelectLEAAddr(SDValue N,
1381                                    SDValue &Base, SDValue &Scale,
1382                                    SDValue &Index, SDValue &Disp,
1383                                    SDValue &Segment) {
1384  X86ISelAddressMode AM;
1385
1386  // Set AM.Segment to prevent MatchAddress from using one. LEA doesn't support
1387  // segments.
1388  SDValue Copy = AM.Segment;
1389  SDValue T = CurDAG->getRegister(0, MVT::i32);
1390  AM.Segment = T;
1391  if (MatchAddress(N, AM))
1392    return false;
1393  assert (T == AM.Segment);
1394  AM.Segment = Copy;
1395
1396  EVT VT = N.getValueType();
1397  unsigned Complexity = 0;
1398  if (AM.BaseType == X86ISelAddressMode::RegBase)
1399    if (AM.Base_Reg.getNode())
1400      Complexity = 1;
1401    else
1402      AM.Base_Reg = CurDAG->getRegister(0, VT);
1403  else if (AM.BaseType == X86ISelAddressMode::FrameIndexBase)
1404    Complexity = 4;
1405
1406  if (AM.IndexReg.getNode())
1407    Complexity++;
1408  else
1409    AM.IndexReg = CurDAG->getRegister(0, VT);
1410
1411  // Don't match just leal(,%reg,2). It's cheaper to do addl %reg, %reg, or with
1412  // a simple shift.
1413  if (AM.Scale > 1)
1414    Complexity++;
1415
1416  // FIXME: We are artificially lowering the criteria to turn ADD %reg, $GA
1417  // to a LEA. This is determined with some expermentation but is by no means
1418  // optimal (especially for code size consideration). LEA is nice because of
1419  // its three-address nature. Tweak the cost function again when we can run
1420  // convertToThreeAddress() at register allocation time.
1421  if (AM.hasSymbolicDisplacement()) {
1422    // For X86-64, we should always use lea to materialize RIP relative
1423    // addresses.
1424    if (Subtarget->is64Bit())
1425      Complexity = 4;
1426    else
1427      Complexity += 2;
1428  }
1429
1430  if (AM.Disp && (AM.Base_Reg.getNode() || AM.IndexReg.getNode()))
1431    Complexity++;
1432
1433  // If it isn't worth using an LEA, reject it.
1434  if (Complexity <= 2)
1435    return false;
1436
1437  getAddressOperands(AM, Base, Scale, Index, Disp, Segment);
1438  return true;
1439}
1440
1441/// SelectTLSADDRAddr - This is only run on TargetGlobalTLSAddress nodes.
1442bool X86DAGToDAGISel::SelectTLSADDRAddr(SDValue N, SDValue &Base,
1443                                        SDValue &Scale, SDValue &Index,
1444                                        SDValue &Disp, SDValue &Segment) {
1445  assert(N.getOpcode() == ISD::TargetGlobalTLSAddress);
1446  const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
1447
1448  X86ISelAddressMode AM;
1449  AM.GV = GA->getGlobal();
1450  AM.Disp += GA->getOffset();
1451  AM.Base_Reg = CurDAG->getRegister(0, N.getValueType());
1452  AM.SymbolFlags = GA->getTargetFlags();
1453
1454  if (N.getValueType() == MVT::i32) {
1455    AM.Scale = 1;
1456    AM.IndexReg = CurDAG->getRegister(X86::EBX, MVT::i32);
1457  } else {
1458    AM.IndexReg = CurDAG->getRegister(0, MVT::i64);
1459  }
1460
1461  getAddressOperands(AM, Base, Scale, Index, Disp, Segment);
1462  return true;
1463}
1464
1465
1466bool X86DAGToDAGISel::TryFoldLoad(SDNode *P, SDValue N,
1467                                  SDValue &Base, SDValue &Scale,
1468                                  SDValue &Index, SDValue &Disp,
1469                                  SDValue &Segment) {
1470  if (!ISD::isNON_EXTLoad(N.getNode()) ||
1471      !IsProfitableToFold(N, P, P) ||
1472      !IsLegalToFold(N, P, P, OptLevel))
1473    return false;
1474
1475  return SelectAddr(N.getNode(),
1476                    N.getOperand(1), Base, Scale, Index, Disp, Segment);
1477}
1478
1479/// getGlobalBaseReg - Return an SDNode that returns the value of
1480/// the global base register. Output instructions required to
1481/// initialize the global base register, if necessary.
1482///
1483SDNode *X86DAGToDAGISel::getGlobalBaseReg() {
1484  unsigned GlobalBaseReg = getInstrInfo()->getGlobalBaseReg(MF);
1485  return CurDAG->getRegister(GlobalBaseReg, TLI.getPointerTy()).getNode();
1486}
1487
1488SDNode *X86DAGToDAGISel::SelectAtomic64(SDNode *Node, unsigned Opc) {
1489  SDValue Chain = Node->getOperand(0);
1490  SDValue In1 = Node->getOperand(1);
1491  SDValue In2L = Node->getOperand(2);
1492  SDValue In2H = Node->getOperand(3);
1493
1494  SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
1495  if (!SelectAddr(Node, In1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4))
1496    return NULL;
1497  MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
1498  MemOp[0] = cast<MemSDNode>(Node)->getMemOperand();
1499  const SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, In2L, In2H, Chain};
1500  SDNode *ResNode = CurDAG->getMachineNode(Opc, Node->getDebugLoc(),
1501                                           MVT::i32, MVT::i32, MVT::Other, Ops,
1502                                           array_lengthof(Ops));
1503  cast<MachineSDNode>(ResNode)->setMemRefs(MemOp, MemOp + 1);
1504  return ResNode;
1505}
1506
1507/// Atomic opcode table
1508///
1509enum AtomicOpc {
1510  ADD,
1511  SUB,
1512  INC,
1513  DEC,
1514  OR,
1515  AND,
1516  XOR,
1517  AtomicOpcEnd
1518};
1519
1520enum AtomicSz {
1521  ConstantI8,
1522  I8,
1523  SextConstantI16,
1524  ConstantI16,
1525  I16,
1526  SextConstantI32,
1527  ConstantI32,
1528  I32,
1529  SextConstantI64,
1530  ConstantI64,
1531  I64,
1532  AtomicSzEnd
1533};
1534
1535static const uint16_t AtomicOpcTbl[AtomicOpcEnd][AtomicSzEnd] = {
1536  {
1537    X86::LOCK_ADD8mi,
1538    X86::LOCK_ADD8mr,
1539    X86::LOCK_ADD16mi8,
1540    X86::LOCK_ADD16mi,
1541    X86::LOCK_ADD16mr,
1542    X86::LOCK_ADD32mi8,
1543    X86::LOCK_ADD32mi,
1544    X86::LOCK_ADD32mr,
1545    X86::LOCK_ADD64mi8,
1546    X86::LOCK_ADD64mi32,
1547    X86::LOCK_ADD64mr,
1548  },
1549  {
1550    X86::LOCK_SUB8mi,
1551    X86::LOCK_SUB8mr,
1552    X86::LOCK_SUB16mi8,
1553    X86::LOCK_SUB16mi,
1554    X86::LOCK_SUB16mr,
1555    X86::LOCK_SUB32mi8,
1556    X86::LOCK_SUB32mi,
1557    X86::LOCK_SUB32mr,
1558    X86::LOCK_SUB64mi8,
1559    X86::LOCK_SUB64mi32,
1560    X86::LOCK_SUB64mr,
1561  },
1562  {
1563    0,
1564    X86::LOCK_INC8m,
1565    0,
1566    0,
1567    X86::LOCK_INC16m,
1568    0,
1569    0,
1570    X86::LOCK_INC32m,
1571    0,
1572    0,
1573    X86::LOCK_INC64m,
1574  },
1575  {
1576    0,
1577    X86::LOCK_DEC8m,
1578    0,
1579    0,
1580    X86::LOCK_DEC16m,
1581    0,
1582    0,
1583    X86::LOCK_DEC32m,
1584    0,
1585    0,
1586    X86::LOCK_DEC64m,
1587  },
1588  {
1589    X86::LOCK_OR8mi,
1590    X86::LOCK_OR8mr,
1591    X86::LOCK_OR16mi8,
1592    X86::LOCK_OR16mi,
1593    X86::LOCK_OR16mr,
1594    X86::LOCK_OR32mi8,
1595    X86::LOCK_OR32mi,
1596    X86::LOCK_OR32mr,
1597    X86::LOCK_OR64mi8,
1598    X86::LOCK_OR64mi32,
1599    X86::LOCK_OR64mr,
1600  },
1601  {
1602    X86::LOCK_AND8mi,
1603    X86::LOCK_AND8mr,
1604    X86::LOCK_AND16mi8,
1605    X86::LOCK_AND16mi,
1606    X86::LOCK_AND16mr,
1607    X86::LOCK_AND32mi8,
1608    X86::LOCK_AND32mi,
1609    X86::LOCK_AND32mr,
1610    X86::LOCK_AND64mi8,
1611    X86::LOCK_AND64mi32,
1612    X86::LOCK_AND64mr,
1613  },
1614  {
1615    X86::LOCK_XOR8mi,
1616    X86::LOCK_XOR8mr,
1617    X86::LOCK_XOR16mi8,
1618    X86::LOCK_XOR16mi,
1619    X86::LOCK_XOR16mr,
1620    X86::LOCK_XOR32mi8,
1621    X86::LOCK_XOR32mi,
1622    X86::LOCK_XOR32mr,
1623    X86::LOCK_XOR64mi8,
1624    X86::LOCK_XOR64mi32,
1625    X86::LOCK_XOR64mr,
1626  }
1627};
1628
1629// Return the target constant operand for atomic-load-op and do simple
1630// translations, such as from atomic-load-add to lock-sub. The return value is
1631// one of the following 3 cases:
1632// + target-constant, the operand could be supported as a target constant.
1633// + empty, the operand is not needed any more with the new op selected.
1634// + non-empty, otherwise.
1635static SDValue getAtomicLoadArithTargetConstant(SelectionDAG *CurDAG,
1636                                                DebugLoc dl,
1637                                                enum AtomicOpc &Op, EVT NVT,
1638                                                SDValue Val) {
1639  if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Val)) {
1640    int64_t CNVal = CN->getSExtValue();
1641    // Quit if not 32-bit imm.
1642    if ((int32_t)CNVal != CNVal)
1643      return Val;
1644    // For atomic-load-add, we could do some optimizations.
1645    if (Op == ADD) {
1646      // Translate to INC/DEC if ADD by 1 or -1.
1647      if ((CNVal == 1) || (CNVal == -1)) {
1648        Op = (CNVal == 1) ? INC : DEC;
1649        // No more constant operand after being translated into INC/DEC.
1650        return SDValue();
1651      }
1652      // Translate to SUB if ADD by negative value.
1653      if (CNVal < 0) {
1654        Op = SUB;
1655        CNVal = -CNVal;
1656      }
1657    }
1658    return CurDAG->getTargetConstant(CNVal, NVT);
1659  }
1660
1661  // If the value operand is single-used, try to optimize it.
1662  if (Op == ADD && Val.hasOneUse()) {
1663    // Translate (atomic-load-add ptr (sub 0 x)) back to (lock-sub x).
1664    if (Val.getOpcode() == ISD::SUB && X86::isZeroNode(Val.getOperand(0))) {
1665      Op = SUB;
1666      return Val.getOperand(1);
1667    }
1668    // A special case for i16, which needs truncating as, in most cases, it's
1669    // promoted to i32. We will translate
1670    // (atomic-load-add (truncate (sub 0 x))) to (lock-sub (EXTRACT_SUBREG x))
1671    if (Val.getOpcode() == ISD::TRUNCATE && NVT == MVT::i16 &&
1672        Val.getOperand(0).getOpcode() == ISD::SUB &&
1673        X86::isZeroNode(Val.getOperand(0).getOperand(0))) {
1674      Op = SUB;
1675      Val = Val.getOperand(0);
1676      return CurDAG->getTargetExtractSubreg(X86::sub_16bit, dl, NVT,
1677                                            Val.getOperand(1));
1678    }
1679  }
1680
1681  return Val;
1682}
1683
1684SDNode *X86DAGToDAGISel::SelectAtomicLoadArith(SDNode *Node, EVT NVT) {
1685  if (Node->hasAnyUseOfValue(0))
1686    return 0;
1687
1688  DebugLoc dl = Node->getDebugLoc();
1689
1690  // Optimize common patterns for __sync_or_and_fetch and similar arith
1691  // operations where the result is not used. This allows us to use the "lock"
1692  // version of the arithmetic instruction.
1693  SDValue Chain = Node->getOperand(0);
1694  SDValue Ptr = Node->getOperand(1);
1695  SDValue Val = Node->getOperand(2);
1696  SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
1697  if (!SelectAddr(Node, Ptr, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4))
1698    return 0;
1699
1700  // Which index into the table.
1701  enum AtomicOpc Op;
1702  switch (Node->getOpcode()) {
1703    default:
1704      return 0;
1705    case ISD::ATOMIC_LOAD_OR:
1706      Op = OR;
1707      break;
1708    case ISD::ATOMIC_LOAD_AND:
1709      Op = AND;
1710      break;
1711    case ISD::ATOMIC_LOAD_XOR:
1712      Op = XOR;
1713      break;
1714    case ISD::ATOMIC_LOAD_ADD:
1715      Op = ADD;
1716      break;
1717  }
1718
1719  Val = getAtomicLoadArithTargetConstant(CurDAG, dl, Op, NVT, Val);
1720  bool isUnOp = !Val.getNode();
1721  bool isCN = Val.getNode() && (Val.getOpcode() == ISD::TargetConstant);
1722
1723  unsigned Opc = 0;
1724  switch (NVT.getSimpleVT().SimpleTy) {
1725    default: return 0;
1726    case MVT::i8:
1727      if (isCN)
1728        Opc = AtomicOpcTbl[Op][ConstantI8];
1729      else
1730        Opc = AtomicOpcTbl[Op][I8];
1731      break;
1732    case MVT::i16:
1733      if (isCN) {
1734        if (immSext8(Val.getNode()))
1735          Opc = AtomicOpcTbl[Op][SextConstantI16];
1736        else
1737          Opc = AtomicOpcTbl[Op][ConstantI16];
1738      } else
1739        Opc = AtomicOpcTbl[Op][I16];
1740      break;
1741    case MVT::i32:
1742      if (isCN) {
1743        if (immSext8(Val.getNode()))
1744          Opc = AtomicOpcTbl[Op][SextConstantI32];
1745        else
1746          Opc = AtomicOpcTbl[Op][ConstantI32];
1747      } else
1748        Opc = AtomicOpcTbl[Op][I32];
1749      break;
1750    case MVT::i64:
1751      Opc = AtomicOpcTbl[Op][I64];
1752      if (isCN) {
1753        if (immSext8(Val.getNode()))
1754          Opc = AtomicOpcTbl[Op][SextConstantI64];
1755        else if (i64immSExt32(Val.getNode()))
1756          Opc = AtomicOpcTbl[Op][ConstantI64];
1757      }
1758      break;
1759  }
1760
1761  assert(Opc != 0 && "Invalid arith lock transform!");
1762
1763  SDValue Ret;
1764  SDValue Undef = SDValue(CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF,
1765                                                 dl, NVT), 0);
1766  MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
1767  MemOp[0] = cast<MemSDNode>(Node)->getMemOperand();
1768  if (isUnOp) {
1769    SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Chain };
1770    Ret = SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Other, Ops,
1771                                         array_lengthof(Ops)), 0);
1772  } else {
1773    SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Val, Chain };
1774    Ret = SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Other, Ops,
1775                                         array_lengthof(Ops)), 0);
1776  }
1777  cast<MachineSDNode>(Ret)->setMemRefs(MemOp, MemOp + 1);
1778  SDValue RetVals[] = { Undef, Ret };
1779  return CurDAG->getMergeValues(RetVals, 2, dl).getNode();
1780}
1781
1782/// HasNoSignedComparisonUses - Test whether the given X86ISD::CMP node has
1783/// any uses which require the SF or OF bits to be accurate.
1784static bool HasNoSignedComparisonUses(SDNode *N) {
1785  // Examine each user of the node.
1786  for (SDNode::use_iterator UI = N->use_begin(),
1787         UE = N->use_end(); UI != UE; ++UI) {
1788    // Only examine CopyToReg uses.
1789    if (UI->getOpcode() != ISD::CopyToReg)
1790      return false;
1791    // Only examine CopyToReg uses that copy to EFLAGS.
1792    if (cast<RegisterSDNode>(UI->getOperand(1))->getReg() !=
1793          X86::EFLAGS)
1794      return false;
1795    // Examine each user of the CopyToReg use.
1796    for (SDNode::use_iterator FlagUI = UI->use_begin(),
1797           FlagUE = UI->use_end(); FlagUI != FlagUE; ++FlagUI) {
1798      // Only examine the Flag result.
1799      if (FlagUI.getUse().getResNo() != 1) continue;
1800      // Anything unusual: assume conservatively.
1801      if (!FlagUI->isMachineOpcode()) return false;
1802      // Examine the opcode of the user.
1803      switch (FlagUI->getMachineOpcode()) {
1804      // These comparisons don't treat the most significant bit specially.
1805      case X86::SETAr: case X86::SETAEr: case X86::SETBr: case X86::SETBEr:
1806      case X86::SETEr: case X86::SETNEr: case X86::SETPr: case X86::SETNPr:
1807      case X86::SETAm: case X86::SETAEm: case X86::SETBm: case X86::SETBEm:
1808      case X86::SETEm: case X86::SETNEm: case X86::SETPm: case X86::SETNPm:
1809      case X86::JA_4: case X86::JAE_4: case X86::JB_4: case X86::JBE_4:
1810      case X86::JE_4: case X86::JNE_4: case X86::JP_4: case X86::JNP_4:
1811      case X86::CMOVA16rr: case X86::CMOVA16rm:
1812      case X86::CMOVA32rr: case X86::CMOVA32rm:
1813      case X86::CMOVA64rr: case X86::CMOVA64rm:
1814      case X86::CMOVAE16rr: case X86::CMOVAE16rm:
1815      case X86::CMOVAE32rr: case X86::CMOVAE32rm:
1816      case X86::CMOVAE64rr: case X86::CMOVAE64rm:
1817      case X86::CMOVB16rr: case X86::CMOVB16rm:
1818      case X86::CMOVB32rr: case X86::CMOVB32rm:
1819      case X86::CMOVB64rr: case X86::CMOVB64rm:
1820      case X86::CMOVBE16rr: case X86::CMOVBE16rm:
1821      case X86::CMOVBE32rr: case X86::CMOVBE32rm:
1822      case X86::CMOVBE64rr: case X86::CMOVBE64rm:
1823      case X86::CMOVE16rr: case X86::CMOVE16rm:
1824      case X86::CMOVE32rr: case X86::CMOVE32rm:
1825      case X86::CMOVE64rr: case X86::CMOVE64rm:
1826      case X86::CMOVNE16rr: case X86::CMOVNE16rm:
1827      case X86::CMOVNE32rr: case X86::CMOVNE32rm:
1828      case X86::CMOVNE64rr: case X86::CMOVNE64rm:
1829      case X86::CMOVNP16rr: case X86::CMOVNP16rm:
1830      case X86::CMOVNP32rr: case X86::CMOVNP32rm:
1831      case X86::CMOVNP64rr: case X86::CMOVNP64rm:
1832      case X86::CMOVP16rr: case X86::CMOVP16rm:
1833      case X86::CMOVP32rr: case X86::CMOVP32rm:
1834      case X86::CMOVP64rr: case X86::CMOVP64rm:
1835        continue;
1836      // Anything else: assume conservatively.
1837      default: return false;
1838      }
1839    }
1840  }
1841  return true;
1842}
1843
1844/// isLoadIncOrDecStore - Check whether or not the chain ending in StoreNode
1845/// is suitable for doing the {load; increment or decrement; store} to modify
1846/// transformation.
1847static bool isLoadIncOrDecStore(StoreSDNode *StoreNode, unsigned Opc,
1848                                SDValue StoredVal, SelectionDAG *CurDAG,
1849                                LoadSDNode* &LoadNode, SDValue &InputChain) {
1850
1851  // is the value stored the result of a DEC or INC?
1852  if (!(Opc == X86ISD::DEC || Opc == X86ISD::INC)) return false;
1853
1854  // is the stored value result 0 of the load?
1855  if (StoredVal.getResNo() != 0) return false;
1856
1857  // are there other uses of the loaded value than the inc or dec?
1858  if (!StoredVal.getNode()->hasNUsesOfValue(1, 0)) return false;
1859
1860  // is the store non-extending and non-indexed?
1861  if (!ISD::isNormalStore(StoreNode) || StoreNode->isNonTemporal())
1862    return false;
1863
1864  SDValue Load = StoredVal->getOperand(0);
1865  // Is the stored value a non-extending and non-indexed load?
1866  if (!ISD::isNormalLoad(Load.getNode())) return false;
1867
1868  // Return LoadNode by reference.
1869  LoadNode = cast<LoadSDNode>(Load);
1870  // is the size of the value one that we can handle? (i.e. 64, 32, 16, or 8)
1871  EVT LdVT = LoadNode->getMemoryVT();
1872  if (LdVT != MVT::i64 && LdVT != MVT::i32 && LdVT != MVT::i16 &&
1873      LdVT != MVT::i8)
1874    return false;
1875
1876  // Is store the only read of the loaded value?
1877  if (!Load.hasOneUse())
1878    return false;
1879
1880  // Is the address of the store the same as the load?
1881  if (LoadNode->getBasePtr() != StoreNode->getBasePtr() ||
1882      LoadNode->getOffset() != StoreNode->getOffset())
1883    return false;
1884
1885  // Check if the chain is produced by the load or is a TokenFactor with
1886  // the load output chain as an operand. Return InputChain by reference.
1887  SDValue Chain = StoreNode->getChain();
1888
1889  bool ChainCheck = false;
1890  if (Chain == Load.getValue(1)) {
1891    ChainCheck = true;
1892    InputChain = LoadNode->getChain();
1893  } else if (Chain.getOpcode() == ISD::TokenFactor) {
1894    SmallVector<SDValue, 4> ChainOps;
1895    for (unsigned i = 0, e = Chain.getNumOperands(); i != e; ++i) {
1896      SDValue Op = Chain.getOperand(i);
1897      if (Op == Load.getValue(1)) {
1898        ChainCheck = true;
1899        continue;
1900      }
1901
1902      // Make sure using Op as part of the chain would not cause a cycle here.
1903      // In theory, we could check whether the chain node is a predecessor of
1904      // the load. But that can be very expensive. Instead visit the uses and
1905      // make sure they all have smaller node id than the load.
1906      int LoadId = LoadNode->getNodeId();
1907      for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
1908             UE = UI->use_end(); UI != UE; ++UI) {
1909        if (UI.getUse().getResNo() != 0)
1910          continue;
1911        if (UI->getNodeId() > LoadId)
1912          return false;
1913      }
1914
1915      ChainOps.push_back(Op);
1916    }
1917
1918    if (ChainCheck)
1919      // Make a new TokenFactor with all the other input chains except
1920      // for the load.
1921      InputChain = CurDAG->getNode(ISD::TokenFactor, Chain.getDebugLoc(),
1922                                   MVT::Other, &ChainOps[0], ChainOps.size());
1923  }
1924  if (!ChainCheck)
1925    return false;
1926
1927  return true;
1928}
1929
1930/// getFusedLdStOpcode - Get the appropriate X86 opcode for an in memory
1931/// increment or decrement. Opc should be X86ISD::DEC or X86ISD::INC.
1932static unsigned getFusedLdStOpcode(EVT &LdVT, unsigned Opc) {
1933  if (Opc == X86ISD::DEC) {
1934    if (LdVT == MVT::i64) return X86::DEC64m;
1935    if (LdVT == MVT::i32) return X86::DEC32m;
1936    if (LdVT == MVT::i16) return X86::DEC16m;
1937    if (LdVT == MVT::i8)  return X86::DEC8m;
1938  } else {
1939    assert(Opc == X86ISD::INC && "unrecognized opcode");
1940    if (LdVT == MVT::i64) return X86::INC64m;
1941    if (LdVT == MVT::i32) return X86::INC32m;
1942    if (LdVT == MVT::i16) return X86::INC16m;
1943    if (LdVT == MVT::i8)  return X86::INC8m;
1944  }
1945  llvm_unreachable("unrecognized size for LdVT");
1946}
1947
1948/// SelectGather - Customized ISel for GATHER operations.
1949///
1950SDNode *X86DAGToDAGISel::SelectGather(SDNode *Node, unsigned Opc) {
1951  // Operands of Gather: VSrc, Base, VIdx, VMask, Scale
1952  SDValue Chain = Node->getOperand(0);
1953  SDValue VSrc = Node->getOperand(2);
1954  SDValue Base = Node->getOperand(3);
1955  SDValue VIdx = Node->getOperand(4);
1956  SDValue VMask = Node->getOperand(5);
1957  ConstantSDNode *Scale = dyn_cast<ConstantSDNode>(Node->getOperand(6));
1958  if (!Scale)
1959    return 0;
1960
1961  SDVTList VTs = CurDAG->getVTList(VSrc.getValueType(), VSrc.getValueType(),
1962                                   MVT::Other);
1963
1964  // Memory Operands: Base, Scale, Index, Disp, Segment
1965  SDValue Disp = CurDAG->getTargetConstant(0, MVT::i32);
1966  SDValue Segment = CurDAG->getRegister(0, MVT::i32);
1967  const SDValue Ops[] = { VSrc, Base, getI8Imm(Scale->getSExtValue()), VIdx,
1968                          Disp, Segment, VMask, Chain};
1969  SDNode *ResNode = CurDAG->getMachineNode(Opc, Node->getDebugLoc(),
1970                                           VTs, Ops, array_lengthof(Ops));
1971  // Node has 2 outputs: VDst and MVT::Other.
1972  // ResNode has 3 outputs: VDst, VMask_wb, and MVT::Other.
1973  // We replace VDst of Node with VDst of ResNode, and Other of Node with Other
1974  // of ResNode.
1975  ReplaceUses(SDValue(Node, 0), SDValue(ResNode, 0));
1976  ReplaceUses(SDValue(Node, 1), SDValue(ResNode, 2));
1977  return ResNode;
1978}
1979
1980SDNode *X86DAGToDAGISel::Select(SDNode *Node) {
1981  EVT NVT = Node->getValueType(0);
1982  unsigned Opc, MOpc;
1983  unsigned Opcode = Node->getOpcode();
1984  DebugLoc dl = Node->getDebugLoc();
1985
1986  DEBUG(dbgs() << "Selecting: "; Node->dump(CurDAG); dbgs() << '\n');
1987
1988  if (Node->isMachineOpcode()) {
1989    DEBUG(dbgs() << "== ";  Node->dump(CurDAG); dbgs() << '\n');
1990    return NULL;   // Already selected.
1991  }
1992
1993  switch (Opcode) {
1994  default: break;
1995  case ISD::INTRINSIC_W_CHAIN: {
1996    unsigned IntNo = cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue();
1997    switch (IntNo) {
1998    default: break;
1999    case Intrinsic::x86_avx2_gather_d_pd:
2000    case Intrinsic::x86_avx2_gather_d_pd_256:
2001    case Intrinsic::x86_avx2_gather_q_pd:
2002    case Intrinsic::x86_avx2_gather_q_pd_256:
2003    case Intrinsic::x86_avx2_gather_d_ps:
2004    case Intrinsic::x86_avx2_gather_d_ps_256:
2005    case Intrinsic::x86_avx2_gather_q_ps:
2006    case Intrinsic::x86_avx2_gather_q_ps_256:
2007    case Intrinsic::x86_avx2_gather_d_q:
2008    case Intrinsic::x86_avx2_gather_d_q_256:
2009    case Intrinsic::x86_avx2_gather_q_q:
2010    case Intrinsic::x86_avx2_gather_q_q_256:
2011    case Intrinsic::x86_avx2_gather_d_d:
2012    case Intrinsic::x86_avx2_gather_d_d_256:
2013    case Intrinsic::x86_avx2_gather_q_d:
2014    case Intrinsic::x86_avx2_gather_q_d_256: {
2015      unsigned Opc;
2016      switch (IntNo) {
2017      default: llvm_unreachable("Impossible intrinsic");
2018      case Intrinsic::x86_avx2_gather_d_pd:     Opc = X86::VGATHERDPDrm;  break;
2019      case Intrinsic::x86_avx2_gather_d_pd_256: Opc = X86::VGATHERDPDYrm; break;
2020      case Intrinsic::x86_avx2_gather_q_pd:     Opc = X86::VGATHERQPDrm;  break;
2021      case Intrinsic::x86_avx2_gather_q_pd_256: Opc = X86::VGATHERQPDYrm; break;
2022      case Intrinsic::x86_avx2_gather_d_ps:     Opc = X86::VGATHERDPSrm;  break;
2023      case Intrinsic::x86_avx2_gather_d_ps_256: Opc = X86::VGATHERDPSYrm; break;
2024      case Intrinsic::x86_avx2_gather_q_ps:     Opc = X86::VGATHERQPSrm;  break;
2025      case Intrinsic::x86_avx2_gather_q_ps_256: Opc = X86::VGATHERQPSYrm; break;
2026      case Intrinsic::x86_avx2_gather_d_q:      Opc = X86::VPGATHERDQrm;  break;
2027      case Intrinsic::x86_avx2_gather_d_q_256:  Opc = X86::VPGATHERDQYrm; break;
2028      case Intrinsic::x86_avx2_gather_q_q:      Opc = X86::VPGATHERQQrm;  break;
2029      case Intrinsic::x86_avx2_gather_q_q_256:  Opc = X86::VPGATHERQQYrm; break;
2030      case Intrinsic::x86_avx2_gather_d_d:      Opc = X86::VPGATHERDDrm;  break;
2031      case Intrinsic::x86_avx2_gather_d_d_256:  Opc = X86::VPGATHERDDYrm; break;
2032      case Intrinsic::x86_avx2_gather_q_d:      Opc = X86::VPGATHERQDrm;  break;
2033      case Intrinsic::x86_avx2_gather_q_d_256:  Opc = X86::VPGATHERQDYrm; break;
2034      }
2035      SDNode *RetVal = SelectGather(Node, Opc);
2036      if (RetVal)
2037        // We already called ReplaceUses inside SelectGather.
2038        return NULL;
2039      break;
2040    }
2041    }
2042    break;
2043  }
2044  case X86ISD::GlobalBaseReg:
2045    return getGlobalBaseReg();
2046
2047
2048  case X86ISD::ATOMOR64_DAG:
2049  case X86ISD::ATOMXOR64_DAG:
2050  case X86ISD::ATOMADD64_DAG:
2051  case X86ISD::ATOMSUB64_DAG:
2052  case X86ISD::ATOMNAND64_DAG:
2053  case X86ISD::ATOMAND64_DAG:
2054  case X86ISD::ATOMMAX64_DAG:
2055  case X86ISD::ATOMMIN64_DAG:
2056  case X86ISD::ATOMUMAX64_DAG:
2057  case X86ISD::ATOMUMIN64_DAG:
2058  case X86ISD::ATOMSWAP64_DAG: {
2059    unsigned Opc;
2060    switch (Opcode) {
2061    default: llvm_unreachable("Impossible opcode");
2062    case X86ISD::ATOMOR64_DAG:   Opc = X86::ATOMOR6432;   break;
2063    case X86ISD::ATOMXOR64_DAG:  Opc = X86::ATOMXOR6432;  break;
2064    case X86ISD::ATOMADD64_DAG:  Opc = X86::ATOMADD6432;  break;
2065    case X86ISD::ATOMSUB64_DAG:  Opc = X86::ATOMSUB6432;  break;
2066    case X86ISD::ATOMNAND64_DAG: Opc = X86::ATOMNAND6432; break;
2067    case X86ISD::ATOMAND64_DAG:  Opc = X86::ATOMAND6432;  break;
2068    case X86ISD::ATOMMAX64_DAG:  Opc = X86::ATOMMAX6432;  break;
2069    case X86ISD::ATOMMIN64_DAG:  Opc = X86::ATOMMIN6432;  break;
2070    case X86ISD::ATOMUMAX64_DAG: Opc = X86::ATOMUMAX6432; break;
2071    case X86ISD::ATOMUMIN64_DAG: Opc = X86::ATOMUMIN6432; break;
2072    case X86ISD::ATOMSWAP64_DAG: Opc = X86::ATOMSWAP6432; break;
2073    }
2074    SDNode *RetVal = SelectAtomic64(Node, Opc);
2075    if (RetVal)
2076      return RetVal;
2077    break;
2078  }
2079
2080  case ISD::ATOMIC_LOAD_XOR:
2081  case ISD::ATOMIC_LOAD_AND:
2082  case ISD::ATOMIC_LOAD_OR:
2083  case ISD::ATOMIC_LOAD_ADD: {
2084    SDNode *RetVal = SelectAtomicLoadArith(Node, NVT);
2085    if (RetVal)
2086      return RetVal;
2087    break;
2088  }
2089  case ISD::AND:
2090  case ISD::OR:
2091  case ISD::XOR: {
2092    // For operations of the form (x << C1) op C2, check if we can use a smaller
2093    // encoding for C2 by transforming it into (x op (C2>>C1)) << C1.
2094    SDValue N0 = Node->getOperand(0);
2095    SDValue N1 = Node->getOperand(1);
2096
2097    if (N0->getOpcode() != ISD::SHL || !N0->hasOneUse())
2098      break;
2099
2100    // i8 is unshrinkable, i16 should be promoted to i32.
2101    if (NVT != MVT::i32 && NVT != MVT::i64)
2102      break;
2103
2104    ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(N1);
2105    ConstantSDNode *ShlCst = dyn_cast<ConstantSDNode>(N0->getOperand(1));
2106    if (!Cst || !ShlCst)
2107      break;
2108
2109    int64_t Val = Cst->getSExtValue();
2110    uint64_t ShlVal = ShlCst->getZExtValue();
2111
2112    // Make sure that we don't change the operation by removing bits.
2113    // This only matters for OR and XOR, AND is unaffected.
2114    uint64_t RemovedBitsMask = (1ULL << ShlVal) - 1;
2115    if (Opcode != ISD::AND && (Val & RemovedBitsMask) != 0)
2116      break;
2117
2118    unsigned ShlOp, Op;
2119    EVT CstVT = NVT;
2120
2121    // Check the minimum bitwidth for the new constant.
2122    // TODO: AND32ri is the same as AND64ri32 with zext imm.
2123    // TODO: MOV32ri+OR64r is cheaper than MOV64ri64+OR64rr
2124    // TODO: Using 16 and 8 bit operations is also possible for or32 & xor32.
2125    if (!isInt<8>(Val) && isInt<8>(Val >> ShlVal))
2126      CstVT = MVT::i8;
2127    else if (!isInt<32>(Val) && isInt<32>(Val >> ShlVal))
2128      CstVT = MVT::i32;
2129
2130    // Bail if there is no smaller encoding.
2131    if (NVT == CstVT)
2132      break;
2133
2134    switch (NVT.getSimpleVT().SimpleTy) {
2135    default: llvm_unreachable("Unsupported VT!");
2136    case MVT::i32:
2137      assert(CstVT == MVT::i8);
2138      ShlOp = X86::SHL32ri;
2139
2140      switch (Opcode) {
2141      default: llvm_unreachable("Impossible opcode");
2142      case ISD::AND: Op = X86::AND32ri8; break;
2143      case ISD::OR:  Op =  X86::OR32ri8; break;
2144      case ISD::XOR: Op = X86::XOR32ri8; break;
2145      }
2146      break;
2147    case MVT::i64:
2148      assert(CstVT == MVT::i8 || CstVT == MVT::i32);
2149      ShlOp = X86::SHL64ri;
2150
2151      switch (Opcode) {
2152      default: llvm_unreachable("Impossible opcode");
2153      case ISD::AND: Op = CstVT==MVT::i8? X86::AND64ri8 : X86::AND64ri32; break;
2154      case ISD::OR:  Op = CstVT==MVT::i8?  X86::OR64ri8 :  X86::OR64ri32; break;
2155      case ISD::XOR: Op = CstVT==MVT::i8? X86::XOR64ri8 : X86::XOR64ri32; break;
2156      }
2157      break;
2158    }
2159
2160    // Emit the smaller op and the shift.
2161    SDValue NewCst = CurDAG->getTargetConstant(Val >> ShlVal, CstVT);
2162    SDNode *New = CurDAG->getMachineNode(Op, dl, NVT, N0->getOperand(0),NewCst);
2163    return CurDAG->SelectNodeTo(Node, ShlOp, NVT, SDValue(New, 0),
2164                                getI8Imm(ShlVal));
2165  }
2166  case X86ISD::UMUL: {
2167    SDValue N0 = Node->getOperand(0);
2168    SDValue N1 = Node->getOperand(1);
2169
2170    unsigned LoReg;
2171    switch (NVT.getSimpleVT().SimpleTy) {
2172    default: llvm_unreachable("Unsupported VT!");
2173    case MVT::i8:  LoReg = X86::AL;  Opc = X86::MUL8r; break;
2174    case MVT::i16: LoReg = X86::AX;  Opc = X86::MUL16r; break;
2175    case MVT::i32: LoReg = X86::EAX; Opc = X86::MUL32r; break;
2176    case MVT::i64: LoReg = X86::RAX; Opc = X86::MUL64r; break;
2177    }
2178
2179    SDValue InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, LoReg,
2180                                          N0, SDValue()).getValue(1);
2181
2182    SDVTList VTs = CurDAG->getVTList(NVT, NVT, MVT::i32);
2183    SDValue Ops[] = {N1, InFlag};
2184    SDNode *CNode = CurDAG->getMachineNode(Opc, dl, VTs, Ops, 2);
2185
2186    ReplaceUses(SDValue(Node, 0), SDValue(CNode, 0));
2187    ReplaceUses(SDValue(Node, 1), SDValue(CNode, 1));
2188    ReplaceUses(SDValue(Node, 2), SDValue(CNode, 2));
2189    return NULL;
2190  }
2191
2192  case ISD::SMUL_LOHI:
2193  case ISD::UMUL_LOHI: {
2194    SDValue N0 = Node->getOperand(0);
2195    SDValue N1 = Node->getOperand(1);
2196
2197    bool isSigned = Opcode == ISD::SMUL_LOHI;
2198    bool hasBMI2 = Subtarget->hasBMI2();
2199    if (!isSigned) {
2200      switch (NVT.getSimpleVT().SimpleTy) {
2201      default: llvm_unreachable("Unsupported VT!");
2202      case MVT::i8:  Opc = X86::MUL8r;  MOpc = X86::MUL8m;  break;
2203      case MVT::i16: Opc = X86::MUL16r; MOpc = X86::MUL16m; break;
2204      case MVT::i32: Opc = hasBMI2 ? X86::MULX32rr : X86::MUL32r;
2205                     MOpc = hasBMI2 ? X86::MULX32rm : X86::MUL32m; break;
2206      case MVT::i64: Opc = hasBMI2 ? X86::MULX64rr : X86::MUL64r;
2207                     MOpc = hasBMI2 ? X86::MULX64rm : X86::MUL64m; break;
2208      }
2209    } else {
2210      switch (NVT.getSimpleVT().SimpleTy) {
2211      default: llvm_unreachable("Unsupported VT!");
2212      case MVT::i8:  Opc = X86::IMUL8r;  MOpc = X86::IMUL8m;  break;
2213      case MVT::i16: Opc = X86::IMUL16r; MOpc = X86::IMUL16m; break;
2214      case MVT::i32: Opc = X86::IMUL32r; MOpc = X86::IMUL32m; break;
2215      case MVT::i64: Opc = X86::IMUL64r; MOpc = X86::IMUL64m; break;
2216      }
2217    }
2218
2219    unsigned SrcReg, LoReg, HiReg;
2220    switch (Opc) {
2221    default: llvm_unreachable("Unknown MUL opcode!");
2222    case X86::IMUL8r:
2223    case X86::MUL8r:
2224      SrcReg = LoReg = X86::AL; HiReg = X86::AH;
2225      break;
2226    case X86::IMUL16r:
2227    case X86::MUL16r:
2228      SrcReg = LoReg = X86::AX; HiReg = X86::DX;
2229      break;
2230    case X86::IMUL32r:
2231    case X86::MUL32r:
2232      SrcReg = LoReg = X86::EAX; HiReg = X86::EDX;
2233      break;
2234    case X86::IMUL64r:
2235    case X86::MUL64r:
2236      SrcReg = LoReg = X86::RAX; HiReg = X86::RDX;
2237      break;
2238    case X86::MULX32rr:
2239      SrcReg = X86::EDX; LoReg = HiReg = 0;
2240      break;
2241    case X86::MULX64rr:
2242      SrcReg = X86::RDX; LoReg = HiReg = 0;
2243      break;
2244    }
2245
2246    SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
2247    bool foldedLoad = TryFoldLoad(Node, N1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4);
2248    // Multiply is commmutative.
2249    if (!foldedLoad) {
2250      foldedLoad = TryFoldLoad(Node, N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4);
2251      if (foldedLoad)
2252        std::swap(N0, N1);
2253    }
2254
2255    SDValue InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, SrcReg,
2256                                          N0, SDValue()).getValue(1);
2257    SDValue ResHi, ResLo;
2258
2259    if (foldedLoad) {
2260      SDValue Chain;
2261      SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N1.getOperand(0),
2262                        InFlag };
2263      if (MOpc == X86::MULX32rm || MOpc == X86::MULX64rm) {
2264        SDVTList VTs = CurDAG->getVTList(NVT, NVT, MVT::Other, MVT::Glue);
2265        SDNode *CNode = CurDAG->getMachineNode(MOpc, dl, VTs, Ops,
2266                                               array_lengthof(Ops));
2267        ResHi = SDValue(CNode, 0);
2268        ResLo = SDValue(CNode, 1);
2269        Chain = SDValue(CNode, 2);
2270        InFlag = SDValue(CNode, 3);
2271      } else {
2272        SDVTList VTs = CurDAG->getVTList(MVT::Other, MVT::Glue);
2273        SDNode *CNode = CurDAG->getMachineNode(MOpc, dl, VTs, Ops,
2274                                               array_lengthof(Ops));
2275        Chain = SDValue(CNode, 0);
2276        InFlag = SDValue(CNode, 1);
2277      }
2278
2279      // Update the chain.
2280      ReplaceUses(N1.getValue(1), Chain);
2281    } else {
2282      SDValue Ops[] = { N1, InFlag };
2283      if (Opc == X86::MULX32rr || Opc == X86::MULX64rr) {
2284        SDVTList VTs = CurDAG->getVTList(NVT, NVT, MVT::Glue);
2285        SDNode *CNode = CurDAG->getMachineNode(Opc, dl, VTs, Ops,
2286                                               array_lengthof(Ops));
2287        ResHi = SDValue(CNode, 0);
2288        ResLo = SDValue(CNode, 1);
2289        InFlag = SDValue(CNode, 2);
2290      } else {
2291        SDVTList VTs = CurDAG->getVTList(MVT::Glue);
2292        SDNode *CNode = CurDAG->getMachineNode(Opc, dl, VTs, Ops,
2293                                               array_lengthof(Ops));
2294        InFlag = SDValue(CNode, 0);
2295      }
2296    }
2297
2298    // Prevent use of AH in a REX instruction by referencing AX instead.
2299    if (HiReg == X86::AH && Subtarget->is64Bit() &&
2300        !SDValue(Node, 1).use_empty()) {
2301      SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
2302                                              X86::AX, MVT::i16, InFlag);
2303      InFlag = Result.getValue(2);
2304      // Get the low part if needed. Don't use getCopyFromReg for aliasing
2305      // registers.
2306      if (!SDValue(Node, 0).use_empty())
2307        ReplaceUses(SDValue(Node, 1),
2308          CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl, MVT::i8, Result));
2309
2310      // Shift AX down 8 bits.
2311      Result = SDValue(CurDAG->getMachineNode(X86::SHR16ri, dl, MVT::i16,
2312                                              Result,
2313                                     CurDAG->getTargetConstant(8, MVT::i8)), 0);
2314      // Then truncate it down to i8.
2315      ReplaceUses(SDValue(Node, 1),
2316        CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl, MVT::i8, Result));
2317    }
2318    // Copy the low half of the result, if it is needed.
2319    if (!SDValue(Node, 0).use_empty()) {
2320      if (ResLo.getNode() == 0) {
2321        assert(LoReg && "Register for low half is not defined!");
2322        ResLo = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl, LoReg, NVT,
2323                                       InFlag);
2324        InFlag = ResLo.getValue(2);
2325      }
2326      ReplaceUses(SDValue(Node, 0), ResLo);
2327      DEBUG(dbgs() << "=> "; ResLo.getNode()->dump(CurDAG); dbgs() << '\n');
2328    }
2329    // Copy the high half of the result, if it is needed.
2330    if (!SDValue(Node, 1).use_empty()) {
2331      if (ResHi.getNode() == 0) {
2332        assert(HiReg && "Register for high half is not defined!");
2333        ResHi = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl, HiReg, NVT,
2334                                       InFlag);
2335        InFlag = ResHi.getValue(2);
2336      }
2337      ReplaceUses(SDValue(Node, 1), ResHi);
2338      DEBUG(dbgs() << "=> "; ResHi.getNode()->dump(CurDAG); dbgs() << '\n');
2339    }
2340
2341    return NULL;
2342  }
2343
2344  case ISD::SDIVREM:
2345  case ISD::UDIVREM: {
2346    SDValue N0 = Node->getOperand(0);
2347    SDValue N1 = Node->getOperand(1);
2348
2349    bool isSigned = Opcode == ISD::SDIVREM;
2350    if (!isSigned) {
2351      switch (NVT.getSimpleVT().SimpleTy) {
2352      default: llvm_unreachable("Unsupported VT!");
2353      case MVT::i8:  Opc = X86::DIV8r;  MOpc = X86::DIV8m;  break;
2354      case MVT::i16: Opc = X86::DIV16r; MOpc = X86::DIV16m; break;
2355      case MVT::i32: Opc = X86::DIV32r; MOpc = X86::DIV32m; break;
2356      case MVT::i64: Opc = X86::DIV64r; MOpc = X86::DIV64m; break;
2357      }
2358    } else {
2359      switch (NVT.getSimpleVT().SimpleTy) {
2360      default: llvm_unreachable("Unsupported VT!");
2361      case MVT::i8:  Opc = X86::IDIV8r;  MOpc = X86::IDIV8m;  break;
2362      case MVT::i16: Opc = X86::IDIV16r; MOpc = X86::IDIV16m; break;
2363      case MVT::i32: Opc = X86::IDIV32r; MOpc = X86::IDIV32m; break;
2364      case MVT::i64: Opc = X86::IDIV64r; MOpc = X86::IDIV64m; break;
2365      }
2366    }
2367
2368    unsigned LoReg, HiReg, ClrReg;
2369    unsigned ClrOpcode, SExtOpcode;
2370    switch (NVT.getSimpleVT().SimpleTy) {
2371    default: llvm_unreachable("Unsupported VT!");
2372    case MVT::i8:
2373      LoReg = X86::AL;  ClrReg = HiReg = X86::AH;
2374      ClrOpcode  = 0;
2375      SExtOpcode = X86::CBW;
2376      break;
2377    case MVT::i16:
2378      LoReg = X86::AX;  HiReg = X86::DX;
2379      ClrOpcode  = X86::MOV16r0; ClrReg = X86::DX;
2380      SExtOpcode = X86::CWD;
2381      break;
2382    case MVT::i32:
2383      LoReg = X86::EAX; ClrReg = HiReg = X86::EDX;
2384      ClrOpcode  = X86::MOV32r0;
2385      SExtOpcode = X86::CDQ;
2386      break;
2387    case MVT::i64:
2388      LoReg = X86::RAX; ClrReg = HiReg = X86::RDX;
2389      ClrOpcode  = X86::MOV64r0;
2390      SExtOpcode = X86::CQO;
2391      break;
2392    }
2393
2394    SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
2395    bool foldedLoad = TryFoldLoad(Node, N1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4);
2396    bool signBitIsZero = CurDAG->SignBitIsZero(N0);
2397
2398    SDValue InFlag;
2399    if (NVT == MVT::i8 && (!isSigned || signBitIsZero)) {
2400      // Special case for div8, just use a move with zero extension to AX to
2401      // clear the upper 8 bits (AH).
2402      SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Move, Chain;
2403      if (TryFoldLoad(Node, N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4)) {
2404        SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N0.getOperand(0) };
2405        Move =
2406          SDValue(CurDAG->getMachineNode(X86::MOVZX32rm8, dl, MVT::i32,
2407                                         MVT::Other, Ops,
2408                                         array_lengthof(Ops)), 0);
2409        Chain = Move.getValue(1);
2410        ReplaceUses(N0.getValue(1), Chain);
2411      } else {
2412        Move =
2413          SDValue(CurDAG->getMachineNode(X86::MOVZX32rr8, dl, MVT::i32, N0),0);
2414        Chain = CurDAG->getEntryNode();
2415      }
2416      Chain  = CurDAG->getCopyToReg(Chain, dl, X86::EAX, Move, SDValue());
2417      InFlag = Chain.getValue(1);
2418    } else {
2419      InFlag =
2420        CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl,
2421                             LoReg, N0, SDValue()).getValue(1);
2422      if (isSigned && !signBitIsZero) {
2423        // Sign extend the low part into the high part.
2424        InFlag =
2425          SDValue(CurDAG->getMachineNode(SExtOpcode, dl, MVT::Glue, InFlag),0);
2426      } else {
2427        // Zero out the high part, effectively zero extending the input.
2428        SDValue ClrNode =
2429          SDValue(CurDAG->getMachineNode(ClrOpcode, dl, NVT), 0);
2430        InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, ClrReg,
2431                                      ClrNode, InFlag).getValue(1);
2432      }
2433    }
2434
2435    if (foldedLoad) {
2436      SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N1.getOperand(0),
2437                        InFlag };
2438      SDNode *CNode =
2439        CurDAG->getMachineNode(MOpc, dl, MVT::Other, MVT::Glue, Ops,
2440                               array_lengthof(Ops));
2441      InFlag = SDValue(CNode, 1);
2442      // Update the chain.
2443      ReplaceUses(N1.getValue(1), SDValue(CNode, 0));
2444    } else {
2445      InFlag =
2446        SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Glue, N1, InFlag), 0);
2447    }
2448
2449    // Prevent use of AH in a REX instruction by referencing AX instead.
2450    // Shift it down 8 bits.
2451    if (HiReg == X86::AH && Subtarget->is64Bit() &&
2452        !SDValue(Node, 1).use_empty()) {
2453      SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
2454                                              X86::AX, MVT::i16, InFlag);
2455      InFlag = Result.getValue(2);
2456
2457      // If we also need AL (the quotient), get it by extracting a subreg from
2458      // Result. The fast register allocator does not like multiple CopyFromReg
2459      // nodes using aliasing registers.
2460      if (!SDValue(Node, 0).use_empty())
2461        ReplaceUses(SDValue(Node, 0),
2462          CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl, MVT::i8, Result));
2463
2464      // Shift AX right by 8 bits instead of using AH.
2465      Result = SDValue(CurDAG->getMachineNode(X86::SHR16ri, dl, MVT::i16,
2466                                         Result,
2467                                         CurDAG->getTargetConstant(8, MVT::i8)),
2468                       0);
2469      ReplaceUses(SDValue(Node, 1),
2470        CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl, MVT::i8, Result));
2471    }
2472    // Copy the division (low) result, if it is needed.
2473    if (!SDValue(Node, 0).use_empty()) {
2474      SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
2475                                                LoReg, NVT, InFlag);
2476      InFlag = Result.getValue(2);
2477      ReplaceUses(SDValue(Node, 0), Result);
2478      DEBUG(dbgs() << "=> "; Result.getNode()->dump(CurDAG); dbgs() << '\n');
2479    }
2480    // Copy the remainder (high) result, if it is needed.
2481    if (!SDValue(Node, 1).use_empty()) {
2482      SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
2483                                              HiReg, NVT, InFlag);
2484      InFlag = Result.getValue(2);
2485      ReplaceUses(SDValue(Node, 1), Result);
2486      DEBUG(dbgs() << "=> "; Result.getNode()->dump(CurDAG); dbgs() << '\n');
2487    }
2488    return NULL;
2489  }
2490
2491  case X86ISD::CMP:
2492  case X86ISD::SUB: {
2493    // Sometimes a SUB is used to perform comparison.
2494    if (Opcode == X86ISD::SUB && Node->hasAnyUseOfValue(0))
2495      // This node is not a CMP.
2496      break;
2497    SDValue N0 = Node->getOperand(0);
2498    SDValue N1 = Node->getOperand(1);
2499
2500    // Look for (X86cmp (and $op, $imm), 0) and see if we can convert it to
2501    // use a smaller encoding.
2502    if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse() &&
2503        HasNoSignedComparisonUses(Node))
2504      // Look past the truncate if CMP is the only use of it.
2505      N0 = N0.getOperand(0);
2506    if ((N0.getNode()->getOpcode() == ISD::AND ||
2507         (N0.getResNo() == 0 && N0.getNode()->getOpcode() == X86ISD::AND)) &&
2508        N0.getNode()->hasOneUse() &&
2509        N0.getValueType() != MVT::i8 &&
2510        X86::isZeroNode(N1)) {
2511      ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getNode()->getOperand(1));
2512      if (!C) break;
2513
2514      // For example, convert "testl %eax, $8" to "testb %al, $8"
2515      if ((C->getZExtValue() & ~UINT64_C(0xff)) == 0 &&
2516          (!(C->getZExtValue() & 0x80) ||
2517           HasNoSignedComparisonUses(Node))) {
2518        SDValue Imm = CurDAG->getTargetConstant(C->getZExtValue(), MVT::i8);
2519        SDValue Reg = N0.getNode()->getOperand(0);
2520
2521        // On x86-32, only the ABCD registers have 8-bit subregisters.
2522        if (!Subtarget->is64Bit()) {
2523          const TargetRegisterClass *TRC;
2524          switch (N0.getValueType().getSimpleVT().SimpleTy) {
2525          case MVT::i32: TRC = &X86::GR32_ABCDRegClass; break;
2526          case MVT::i16: TRC = &X86::GR16_ABCDRegClass; break;
2527          default: llvm_unreachable("Unsupported TEST operand type!");
2528          }
2529          SDValue RC = CurDAG->getTargetConstant(TRC->getID(), MVT::i32);
2530          Reg = SDValue(CurDAG->getMachineNode(X86::COPY_TO_REGCLASS, dl,
2531                                               Reg.getValueType(), Reg, RC), 0);
2532        }
2533
2534        // Extract the l-register.
2535        SDValue Subreg = CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl,
2536                                                        MVT::i8, Reg);
2537
2538        // Emit a testb.
2539        SDNode *NewNode = CurDAG->getMachineNode(X86::TEST8ri, dl, MVT::i32,
2540                                                 Subreg, Imm);
2541        // Replace SUB|CMP with TEST, since SUB has two outputs while TEST has
2542        // one, do not call ReplaceAllUsesWith.
2543        ReplaceUses(SDValue(Node, (Opcode == X86ISD::SUB ? 1 : 0)),
2544                    SDValue(NewNode, 0));
2545        return NULL;
2546      }
2547
2548      // For example, "testl %eax, $2048" to "testb %ah, $8".
2549      if ((C->getZExtValue() & ~UINT64_C(0xff00)) == 0 &&
2550          (!(C->getZExtValue() & 0x8000) ||
2551           HasNoSignedComparisonUses(Node))) {
2552        // Shift the immediate right by 8 bits.
2553        SDValue ShiftedImm = CurDAG->getTargetConstant(C->getZExtValue() >> 8,
2554                                                       MVT::i8);
2555        SDValue Reg = N0.getNode()->getOperand(0);
2556
2557        // Put the value in an ABCD register.
2558        const TargetRegisterClass *TRC;
2559        switch (N0.getValueType().getSimpleVT().SimpleTy) {
2560        case MVT::i64: TRC = &X86::GR64_ABCDRegClass; break;
2561        case MVT::i32: TRC = &X86::GR32_ABCDRegClass; break;
2562        case MVT::i16: TRC = &X86::GR16_ABCDRegClass; break;
2563        default: llvm_unreachable("Unsupported TEST operand type!");
2564        }
2565        SDValue RC = CurDAG->getTargetConstant(TRC->getID(), MVT::i32);
2566        Reg = SDValue(CurDAG->getMachineNode(X86::COPY_TO_REGCLASS, dl,
2567                                             Reg.getValueType(), Reg, RC), 0);
2568
2569        // Extract the h-register.
2570        SDValue Subreg = CurDAG->getTargetExtractSubreg(X86::sub_8bit_hi, dl,
2571                                                        MVT::i8, Reg);
2572
2573        // Emit a testb.  The EXTRACT_SUBREG becomes a COPY that can only
2574        // target GR8_NOREX registers, so make sure the register class is
2575        // forced.
2576        SDNode *NewNode = CurDAG->getMachineNode(X86::TEST8ri_NOREX, dl,
2577                                                 MVT::i32, Subreg, ShiftedImm);
2578        // Replace SUB|CMP with TEST, since SUB has two outputs while TEST has
2579        // one, do not call ReplaceAllUsesWith.
2580        ReplaceUses(SDValue(Node, (Opcode == X86ISD::SUB ? 1 : 0)),
2581                    SDValue(NewNode, 0));
2582        return NULL;
2583      }
2584
2585      // For example, "testl %eax, $32776" to "testw %ax, $32776".
2586      if ((C->getZExtValue() & ~UINT64_C(0xffff)) == 0 &&
2587          N0.getValueType() != MVT::i16 &&
2588          (!(C->getZExtValue() & 0x8000) ||
2589           HasNoSignedComparisonUses(Node))) {
2590        SDValue Imm = CurDAG->getTargetConstant(C->getZExtValue(), MVT::i16);
2591        SDValue Reg = N0.getNode()->getOperand(0);
2592
2593        // Extract the 16-bit subregister.
2594        SDValue Subreg = CurDAG->getTargetExtractSubreg(X86::sub_16bit, dl,
2595                                                        MVT::i16, Reg);
2596
2597        // Emit a testw.
2598        SDNode *NewNode = CurDAG->getMachineNode(X86::TEST16ri, dl, MVT::i32,
2599                                                 Subreg, Imm);
2600        // Replace SUB|CMP with TEST, since SUB has two outputs while TEST has
2601        // one, do not call ReplaceAllUsesWith.
2602        ReplaceUses(SDValue(Node, (Opcode == X86ISD::SUB ? 1 : 0)),
2603                    SDValue(NewNode, 0));
2604        return NULL;
2605      }
2606
2607      // For example, "testq %rax, $268468232" to "testl %eax, $268468232".
2608      if ((C->getZExtValue() & ~UINT64_C(0xffffffff)) == 0 &&
2609          N0.getValueType() == MVT::i64 &&
2610          (!(C->getZExtValue() & 0x80000000) ||
2611           HasNoSignedComparisonUses(Node))) {
2612        SDValue Imm = CurDAG->getTargetConstant(C->getZExtValue(), MVT::i32);
2613        SDValue Reg = N0.getNode()->getOperand(0);
2614
2615        // Extract the 32-bit subregister.
2616        SDValue Subreg = CurDAG->getTargetExtractSubreg(X86::sub_32bit, dl,
2617                                                        MVT::i32, Reg);
2618
2619        // Emit a testl.
2620        SDNode *NewNode = CurDAG->getMachineNode(X86::TEST32ri, dl, MVT::i32,
2621                                                 Subreg, Imm);
2622        // Replace SUB|CMP with TEST, since SUB has two outputs while TEST has
2623        // one, do not call ReplaceAllUsesWith.
2624        ReplaceUses(SDValue(Node, (Opcode == X86ISD::SUB ? 1 : 0)),
2625                    SDValue(NewNode, 0));
2626        return NULL;
2627      }
2628    }
2629    break;
2630  }
2631  case ISD::STORE: {
2632    // Change a chain of {load; incr or dec; store} of the same value into
2633    // a simple increment or decrement through memory of that value, if the
2634    // uses of the modified value and its address are suitable.
2635    // The DEC64m tablegen pattern is currently not able to match the case where
2636    // the EFLAGS on the original DEC are used. (This also applies to
2637    // {INC,DEC}X{64,32,16,8}.)
2638    // We'll need to improve tablegen to allow flags to be transferred from a
2639    // node in the pattern to the result node.  probably with a new keyword
2640    // for example, we have this
2641    // def DEC64m : RI<0xFF, MRM1m, (outs), (ins i64mem:$dst), "dec{q}\t$dst",
2642    //  [(store (add (loadi64 addr:$dst), -1), addr:$dst),
2643    //   (implicit EFLAGS)]>;
2644    // but maybe need something like this
2645    // def DEC64m : RI<0xFF, MRM1m, (outs), (ins i64mem:$dst), "dec{q}\t$dst",
2646    //  [(store (add (loadi64 addr:$dst), -1), addr:$dst),
2647    //   (transferrable EFLAGS)]>;
2648
2649    StoreSDNode *StoreNode = cast<StoreSDNode>(Node);
2650    SDValue StoredVal = StoreNode->getOperand(1);
2651    unsigned Opc = StoredVal->getOpcode();
2652
2653    LoadSDNode *LoadNode = 0;
2654    SDValue InputChain;
2655    if (!isLoadIncOrDecStore(StoreNode, Opc, StoredVal, CurDAG,
2656                             LoadNode, InputChain))
2657      break;
2658
2659    SDValue Base, Scale, Index, Disp, Segment;
2660    if (!SelectAddr(LoadNode, LoadNode->getBasePtr(),
2661                    Base, Scale, Index, Disp, Segment))
2662      break;
2663
2664    MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(2);
2665    MemOp[0] = StoreNode->getMemOperand();
2666    MemOp[1] = LoadNode->getMemOperand();
2667    const SDValue Ops[] = { Base, Scale, Index, Disp, Segment, InputChain };
2668    EVT LdVT = LoadNode->getMemoryVT();
2669    unsigned newOpc = getFusedLdStOpcode(LdVT, Opc);
2670    MachineSDNode *Result = CurDAG->getMachineNode(newOpc,
2671                                                   Node->getDebugLoc(),
2672                                                   MVT::i32, MVT::Other, Ops,
2673                                                   array_lengthof(Ops));
2674    Result->setMemRefs(MemOp, MemOp + 2);
2675
2676    ReplaceUses(SDValue(StoreNode, 0), SDValue(Result, 1));
2677    ReplaceUses(SDValue(StoredVal.getNode(), 1), SDValue(Result, 0));
2678
2679    return Result;
2680  }
2681
2682  // FIXME: Custom handling because TableGen doesn't support multiple implicit
2683  // defs in an instruction pattern
2684  case X86ISD::PCMPESTRI: {
2685    SDValue N0 = Node->getOperand(0);
2686    SDValue N1 = Node->getOperand(1);
2687    SDValue N2 = Node->getOperand(2);
2688    SDValue N3 = Node->getOperand(3);
2689    SDValue N4 = Node->getOperand(4);
2690
2691    // Make sure last argument is a constant
2692    ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(N4);
2693    if (!Cst)
2694      break;
2695
2696    uint64_t Imm = Cst->getZExtValue();
2697
2698    SDValue InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl,
2699                                          X86::EAX, N1, SDValue()).getValue(1);
2700    InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, X86::EDX,
2701                                  N3, InFlag).getValue(1);
2702
2703    SDValue Ops[] = { N0, N2, getI8Imm(Imm), InFlag };
2704    unsigned Opc = Subtarget->hasAVX() ? X86::VPCMPESTRIrr :
2705                                         X86::PCMPESTRIrr;
2706    InFlag = SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Glue, Ops,
2707                                            array_lengthof(Ops)), 0);
2708
2709    if (!SDValue(Node, 0).use_empty()) {
2710      SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
2711                                              X86::ECX, NVT, InFlag);
2712      InFlag = Result.getValue(2);
2713      ReplaceUses(SDValue(Node, 0), Result);
2714    }
2715    if (!SDValue(Node, 1).use_empty()) {
2716      SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
2717                                              X86::EFLAGS, NVT, InFlag);
2718      InFlag = Result.getValue(2);
2719      ReplaceUses(SDValue(Node, 1), Result);
2720    }
2721
2722    return NULL;
2723  }
2724
2725  // FIXME: Custom handling because TableGen doesn't support multiple implicit
2726  // defs in an instruction pattern
2727  case X86ISD::PCMPISTRI: {
2728    SDValue N0 = Node->getOperand(0);
2729    SDValue N1 = Node->getOperand(1);
2730    SDValue N2 = Node->getOperand(2);
2731
2732    // Make sure last argument is a constant
2733    ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(N2);
2734    if (!Cst)
2735      break;
2736
2737    uint64_t Imm = Cst->getZExtValue();
2738
2739    SDValue Ops[] = { N0, N1, getI8Imm(Imm) };
2740    unsigned Opc = Subtarget->hasAVX() ? X86::VPCMPISTRIrr :
2741                                         X86::PCMPISTRIrr;
2742    SDValue InFlag = SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Glue, Ops,
2743                                                    array_lengthof(Ops)), 0);
2744
2745    if (!SDValue(Node, 0).use_empty()) {
2746      SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
2747                                              X86::ECX, NVT, InFlag);
2748      InFlag = Result.getValue(2);
2749      ReplaceUses(SDValue(Node, 0), Result);
2750    }
2751    if (!SDValue(Node, 1).use_empty()) {
2752      SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
2753                                              X86::EFLAGS, NVT, InFlag);
2754      InFlag = Result.getValue(2);
2755      ReplaceUses(SDValue(Node, 1), Result);
2756    }
2757
2758    return NULL;
2759  }
2760  }
2761
2762  SDNode *ResNode = SelectCode(Node);
2763
2764  DEBUG(dbgs() << "=> ";
2765        if (ResNode == NULL || ResNode == Node)
2766          Node->dump(CurDAG);
2767        else
2768          ResNode->dump(CurDAG);
2769        dbgs() << '\n');
2770
2771  return ResNode;
2772}
2773
2774bool X86DAGToDAGISel::
2775SelectInlineAsmMemoryOperand(const SDValue &Op, char ConstraintCode,
2776                             std::vector<SDValue> &OutOps) {
2777  SDValue Op0, Op1, Op2, Op3, Op4;
2778  switch (ConstraintCode) {
2779  case 'o':   // offsetable        ??
2780  case 'v':   // not offsetable    ??
2781  default: return true;
2782  case 'm':   // memory
2783    if (!SelectAddr(0, Op, Op0, Op1, Op2, Op3, Op4))
2784      return true;
2785    break;
2786  }
2787
2788  OutOps.push_back(Op0);
2789  OutOps.push_back(Op1);
2790  OutOps.push_back(Op2);
2791  OutOps.push_back(Op3);
2792  OutOps.push_back(Op4);
2793  return false;
2794}
2795
2796/// createX86ISelDag - This pass converts a legalized DAG into a
2797/// X86-specific DAG, ready for instruction scheduling.
2798///
2799FunctionPass *llvm::createX86ISelDag(X86TargetMachine &TM,
2800                                     CodeGenOpt::Level OptLevel) {
2801  return new X86DAGToDAGISel(TM, OptLevel);
2802}
2803