X86ISelDAGToDAG.cpp revision 2dc6dc619c89c739550a0fcab96a9f7eac3d9f15
1//===- X86ISelDAGToDAG.cpp - A DAG pattern matching inst selector for X86 -===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the Evan Cheng and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines a DAG pattern matching instruction selector for X86,
11// converting from a legalized dag to a X86 dag.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "x86-isel"
16#include "X86.h"
17#include "X86InstrBuilder.h"
18#include "X86ISelLowering.h"
19#include "X86RegisterInfo.h"
20#include "X86Subtarget.h"
21#include "X86TargetMachine.h"
22#include "llvm/GlobalValue.h"
23#include "llvm/Instructions.h"
24#include "llvm/Intrinsics.h"
25#include "llvm/Support/CFG.h"
26#include "llvm/Type.h"
27#include "llvm/CodeGen/MachineConstantPool.h"
28#include "llvm/CodeGen/MachineFunction.h"
29#include "llvm/CodeGen/MachineFrameInfo.h"
30#include "llvm/CodeGen/MachineInstrBuilder.h"
31#include "llvm/CodeGen/SSARegMap.h"
32#include "llvm/CodeGen/SelectionDAGISel.h"
33#include "llvm/Target/TargetMachine.h"
34#include "llvm/Support/Compiler.h"
35#include "llvm/Support/Debug.h"
36#include "llvm/Support/MathExtras.h"
37#include "llvm/ADT/Statistic.h"
38#include <queue>
39#include <set>
40using namespace llvm;
41
42STATISTIC(NumFPKill   , "Number of FP_REG_KILL instructions added");
43STATISTIC(NumLoadMoved, "Number of loads moved below TokenFactor");
44
45
46//===----------------------------------------------------------------------===//
47//                      Pattern Matcher Implementation
48//===----------------------------------------------------------------------===//
49
50namespace {
51  /// X86ISelAddressMode - This corresponds to X86AddressMode, but uses
52  /// SDOperand's instead of register numbers for the leaves of the matched
53  /// tree.
54  struct X86ISelAddressMode {
55    enum {
56      RegBase,
57      FrameIndexBase
58    } BaseType;
59
60    struct {            // This is really a union, discriminated by BaseType!
61      SDOperand Reg;
62      int FrameIndex;
63    } Base;
64
65    bool isRIPRel;     // RIP relative?
66    unsigned Scale;
67    SDOperand IndexReg;
68    unsigned Disp;
69    GlobalValue *GV;
70    Constant *CP;
71    const char *ES;
72    int JT;
73    unsigned Align;    // CP alignment.
74
75    X86ISelAddressMode()
76      : BaseType(RegBase), isRIPRel(false), Scale(1), IndexReg(), Disp(0),
77        GV(0), CP(0), ES(0), JT(-1), Align(0) {
78    }
79  };
80}
81
82namespace {
83  //===--------------------------------------------------------------------===//
84  /// ISel - X86 specific code to select X86 machine instructions for
85  /// SelectionDAG operations.
86  ///
87  class VISIBILITY_HIDDEN X86DAGToDAGISel : public SelectionDAGISel {
88    /// ContainsFPCode - Every instruction we select that uses or defines a FP
89    /// register should set this to true.
90    bool ContainsFPCode;
91
92    /// FastISel - Enable fast(er) instruction selection.
93    ///
94    bool FastISel;
95
96    /// TM - Keep a reference to X86TargetMachine.
97    ///
98    X86TargetMachine &TM;
99
100    /// X86Lowering - This object fully describes how to lower LLVM code to an
101    /// X86-specific SelectionDAG.
102    X86TargetLowering X86Lowering;
103
104    /// Subtarget - Keep a pointer to the X86Subtarget around so that we can
105    /// make the right decision when generating code for different targets.
106    const X86Subtarget *Subtarget;
107
108    /// GlobalBaseReg - keeps track of the virtual register mapped onto global
109    /// base register.
110    unsigned GlobalBaseReg;
111
112  public:
113    X86DAGToDAGISel(X86TargetMachine &tm, bool fast)
114      : SelectionDAGISel(X86Lowering),
115        ContainsFPCode(false), FastISel(fast), TM(tm),
116        X86Lowering(*TM.getTargetLowering()),
117        Subtarget(&TM.getSubtarget<X86Subtarget>()) {}
118
119    virtual bool runOnFunction(Function &Fn) {
120      // Make sure we re-emit a set of the global base reg if necessary
121      GlobalBaseReg = 0;
122      return SelectionDAGISel::runOnFunction(Fn);
123    }
124
125    virtual const char *getPassName() const {
126      return "X86 DAG->DAG Instruction Selection";
127    }
128
129    /// InstructionSelectBasicBlock - This callback is invoked by
130    /// SelectionDAGISel when it has created a SelectionDAG for us to codegen.
131    virtual void InstructionSelectBasicBlock(SelectionDAG &DAG);
132
133    virtual void EmitFunctionEntryCode(Function &Fn, MachineFunction &MF);
134
135    virtual bool CanBeFoldedBy(SDNode *N, SDNode *U, SDNode *Root) const;
136
137// Include the pieces autogenerated from the target description.
138#include "X86GenDAGISel.inc"
139
140  private:
141    SDNode *Select(SDOperand N);
142
143    bool MatchAddress(SDOperand N, X86ISelAddressMode &AM,
144                      bool isRoot = true, unsigned Depth = 0);
145    bool SelectAddr(SDOperand Op, SDOperand N, SDOperand &Base,
146                    SDOperand &Scale, SDOperand &Index, SDOperand &Disp);
147    bool SelectLEAAddr(SDOperand Op, SDOperand N, SDOperand &Base,
148                       SDOperand &Scale, SDOperand &Index, SDOperand &Disp);
149    bool SelectScalarSSELoad(SDOperand Op, SDOperand Pred,
150                             SDOperand N, SDOperand &Base, SDOperand &Scale,
151                             SDOperand &Index, SDOperand &Disp,
152                             SDOperand &InChain, SDOperand &OutChain);
153    bool TryFoldLoad(SDOperand P, SDOperand N,
154                     SDOperand &Base, SDOperand &Scale,
155                     SDOperand &Index, SDOperand &Disp);
156    void InstructionSelectPreprocess(SelectionDAG &DAG);
157
158    /// SelectInlineAsmMemoryOperand - Implement addressing mode selection for
159    /// inline asm expressions.
160    virtual bool SelectInlineAsmMemoryOperand(const SDOperand &Op,
161                                              char ConstraintCode,
162                                              std::vector<SDOperand> &OutOps,
163                                              SelectionDAG &DAG);
164
165    void EmitSpecialCodeForMain(MachineBasicBlock *BB, MachineFrameInfo *MFI);
166
167    inline void getAddressOperands(X86ISelAddressMode &AM, SDOperand &Base,
168                                   SDOperand &Scale, SDOperand &Index,
169                                   SDOperand &Disp) {
170      Base  = (AM.BaseType == X86ISelAddressMode::FrameIndexBase) ?
171        CurDAG->getTargetFrameIndex(AM.Base.FrameIndex, TLI.getPointerTy()) :
172        AM.Base.Reg;
173      Scale = getI8Imm(AM.Scale);
174      Index = AM.IndexReg;
175      // These are 32-bit even in 64-bit mode since RIP relative offset
176      // is 32-bit.
177      if (AM.GV)
178        Disp = CurDAG->getTargetGlobalAddress(AM.GV, MVT::i32, AM.Disp);
179      else if (AM.CP)
180        Disp = CurDAG->getTargetConstantPool(AM.CP, MVT::i32, AM.Align, AM.Disp);
181      else if (AM.ES)
182        Disp = CurDAG->getTargetExternalSymbol(AM.ES, MVT::i32);
183      else if (AM.JT != -1)
184        Disp = CurDAG->getTargetJumpTable(AM.JT, MVT::i32);
185      else
186        Disp = getI32Imm(AM.Disp);
187    }
188
189    /// getI8Imm - Return a target constant with the specified value, of type
190    /// i8.
191    inline SDOperand getI8Imm(unsigned Imm) {
192      return CurDAG->getTargetConstant(Imm, MVT::i8);
193    }
194
195    /// getI16Imm - Return a target constant with the specified value, of type
196    /// i16.
197    inline SDOperand getI16Imm(unsigned Imm) {
198      return CurDAG->getTargetConstant(Imm, MVT::i16);
199    }
200
201    /// getI32Imm - Return a target constant with the specified value, of type
202    /// i32.
203    inline SDOperand getI32Imm(unsigned Imm) {
204      return CurDAG->getTargetConstant(Imm, MVT::i32);
205    }
206
207    /// getGlobalBaseReg - insert code into the entry mbb to materialize the PIC
208    /// base register.  Return the virtual register that holds this value.
209    SDNode *getGlobalBaseReg();
210
211#ifndef NDEBUG
212    unsigned Indent;
213#endif
214  };
215}
216
217static SDNode *findFlagUse(SDNode *N) {
218  unsigned FlagResNo = N->getNumValues()-1;
219  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
220    SDNode *User = *I;
221    for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
222      SDOperand Op = User->getOperand(i);
223      if (Op.Val == N && Op.ResNo == FlagResNo)
224        return User;
225    }
226  }
227  return NULL;
228}
229
230static void findNonImmUse(SDNode *Use, SDNode* Def, SDNode *ImmedUse,
231                          SDNode *Root, SDNode *Skip, bool &found,
232                          std::set<SDNode *> &Visited) {
233  if (found ||
234      Use->getNodeId() > Def->getNodeId() ||
235      !Visited.insert(Use).second)
236    return;
237
238  for (unsigned i = 0, e = Use->getNumOperands(); !found && i != e; ++i) {
239    SDNode *N = Use->getOperand(i).Val;
240    if (N == Skip)
241      continue;
242    if (N == Def) {
243      if (Use == ImmedUse)
244        continue; // Immediate use is ok.
245      if (Use == Root) {
246        assert(Use->getOpcode() == ISD::STORE ||
247               Use->getOpcode() == X86ISD::CMP);
248        continue;
249      }
250      found = true;
251      break;
252    }
253    findNonImmUse(N, Def, ImmedUse, Root, Skip, found, Visited);
254  }
255}
256
257/// isNonImmUse - Start searching from Root up the DAG to check is Def can
258/// be reached. Return true if that's the case. However, ignore direct uses
259/// by ImmedUse (which would be U in the example illustrated in
260/// CanBeFoldedBy) and by Root (which can happen in the store case).
261/// FIXME: to be really generic, we should allow direct use by any node
262/// that is being folded. But realisticly since we only fold loads which
263/// have one non-chain use, we only need to watch out for load/op/store
264/// and load/op/cmp case where the root (store / cmp) may reach the load via
265/// its chain operand.
266static inline bool isNonImmUse(SDNode *Root, SDNode *Def, SDNode *ImmedUse,
267                               SDNode *Skip = NULL) {
268  std::set<SDNode *> Visited;
269  bool found = false;
270  findNonImmUse(Root, Def, ImmedUse, Root, Skip, found, Visited);
271  return found;
272}
273
274
275bool X86DAGToDAGISel::CanBeFoldedBy(SDNode *N, SDNode *U, SDNode *Root) const {
276  if (FastISel) return false;
277
278  // If U use can somehow reach N through another path then U can't fold N or
279  // it will create a cycle. e.g. In the following diagram, U can reach N
280  // through X. If N is folded into into U, then X is both a predecessor and
281  // a successor of U.
282  //
283  //         [ N ]
284  //         ^  ^
285  //         |  |
286  //        /   \---
287  //      /        [X]
288  //      |         ^
289  //     [U]--------|
290
291  if (isNonImmUse(Root, N, U))
292    return false;
293
294  // If U produces a flag, then it gets (even more) interesting. Since it
295  // would have been "glued" together with its flag use, we need to check if
296  // it might reach N:
297  //
298  //       [ N ]
299  //        ^ ^
300  //        | |
301  //       [U] \--
302  //        ^   [TF]
303  //        |    ^
304  //        |    |
305  //         \  /
306  //          [FU]
307  //
308  // If FU (flag use) indirectly reach N (the load), and U fold N (call it
309  // NU), then TF is a predecessor of FU and a successor of NU. But since
310  // NU and FU are flagged together, this effectively creates a cycle.
311  bool HasFlagUse = false;
312  MVT::ValueType VT = Root->getValueType(Root->getNumValues()-1);
313  while ((VT == MVT::Flag && !Root->use_empty())) {
314    SDNode *FU = findFlagUse(Root);
315    if (FU == NULL)
316      break;
317    else {
318      Root = FU;
319      HasFlagUse = true;
320    }
321    VT = Root->getValueType(Root->getNumValues()-1);
322  }
323
324  if (HasFlagUse)
325    return !isNonImmUse(Root, N, Root, U);
326  return true;
327}
328
329/// MoveBelowTokenFactor - Replace TokenFactor operand with load's chain operand
330/// and move load below the TokenFactor. Replace store's chain operand with
331/// load's chain result.
332static void MoveBelowTokenFactor(SelectionDAG &DAG, SDOperand Load,
333                                 SDOperand Store, SDOperand TF) {
334  std::vector<SDOperand> Ops;
335  for (unsigned i = 0, e = TF.Val->getNumOperands(); i != e; ++i)
336    if (Load.Val == TF.Val->getOperand(i).Val)
337      Ops.push_back(Load.Val->getOperand(0));
338    else
339      Ops.push_back(TF.Val->getOperand(i));
340  DAG.UpdateNodeOperands(TF, &Ops[0], Ops.size());
341  DAG.UpdateNodeOperands(Load, TF, Load.getOperand(1), Load.getOperand(2));
342  DAG.UpdateNodeOperands(Store, Load.getValue(1), Store.getOperand(1),
343                         Store.getOperand(2), Store.getOperand(3));
344}
345
346/// InstructionSelectPreprocess - Preprocess the DAG to allow the instruction
347/// selector to pick more load-modify-store instructions. This is a common
348/// case:
349///
350///     [Load chain]
351///         ^
352///         |
353///       [Load]
354///       ^    ^
355///       |    |
356///      /      \-
357///     /         |
358/// [TokenFactor] [Op]
359///     ^          ^
360///     |          |
361///      \        /
362///       \      /
363///       [Store]
364///
365/// The fact the store's chain operand != load's chain will prevent the
366/// (store (op (load))) instruction from being selected. We can transform it to:
367///
368///     [Load chain]
369///         ^
370///         |
371///    [TokenFactor]
372///         ^
373///         |
374///       [Load]
375///       ^    ^
376///       |    |
377///       |     \-
378///       |       |
379///       |     [Op]
380///       |       ^
381///       |       |
382///       \      /
383///        \    /
384///       [Store]
385void X86DAGToDAGISel::InstructionSelectPreprocess(SelectionDAG &DAG) {
386  for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
387         E = DAG.allnodes_end(); I != E; ++I) {
388    if (!ISD::isNON_TRUNCStore(I))
389      continue;
390    SDOperand Chain = I->getOperand(0);
391    if (Chain.Val->getOpcode() != ISD::TokenFactor)
392      continue;
393
394    SDOperand N1 = I->getOperand(1);
395    SDOperand N2 = I->getOperand(2);
396    if (MVT::isFloatingPoint(N1.getValueType()) ||
397        MVT::isVector(N1.getValueType()) ||
398        !N1.hasOneUse())
399      continue;
400
401    bool RModW = false;
402    SDOperand Load;
403    unsigned Opcode = N1.Val->getOpcode();
404    switch (Opcode) {
405      case ISD::ADD:
406      case ISD::MUL:
407      case ISD::AND:
408      case ISD::OR:
409      case ISD::XOR:
410      case ISD::ADDC:
411      case ISD::ADDE: {
412        SDOperand N10 = N1.getOperand(0);
413        SDOperand N11 = N1.getOperand(1);
414        if (ISD::isNON_EXTLoad(N10.Val))
415          RModW = true;
416        else if (ISD::isNON_EXTLoad(N11.Val)) {
417          RModW = true;
418          std::swap(N10, N11);
419        }
420        RModW = RModW && N10.Val->isOperand(Chain.Val) && N10.hasOneUse() &&
421          (N10.getOperand(1) == N2) &&
422          (N10.Val->getValueType(0) == N1.getValueType());
423        if (RModW)
424          Load = N10;
425        break;
426      }
427      case ISD::SUB:
428      case ISD::SHL:
429      case ISD::SRA:
430      case ISD::SRL:
431      case ISD::ROTL:
432      case ISD::ROTR:
433      case ISD::SUBC:
434      case ISD::SUBE:
435      case X86ISD::SHLD:
436      case X86ISD::SHRD: {
437        SDOperand N10 = N1.getOperand(0);
438        if (ISD::isNON_EXTLoad(N10.Val))
439          RModW = N10.Val->isOperand(Chain.Val) && N10.hasOneUse() &&
440            (N10.getOperand(1) == N2) &&
441            (N10.Val->getValueType(0) == N1.getValueType());
442        if (RModW)
443          Load = N10;
444        break;
445      }
446    }
447
448    if (RModW) {
449      MoveBelowTokenFactor(DAG, Load, SDOperand(I, 0), Chain);
450      ++NumLoadMoved;
451    }
452  }
453}
454
455/// InstructionSelectBasicBlock - This callback is invoked by SelectionDAGISel
456/// when it has created a SelectionDAG for us to codegen.
457void X86DAGToDAGISel::InstructionSelectBasicBlock(SelectionDAG &DAG) {
458  DEBUG(BB->dump());
459  MachineFunction::iterator FirstMBB = BB;
460
461  if (!FastISel)
462    InstructionSelectPreprocess(DAG);
463
464  // Codegen the basic block.
465#ifndef NDEBUG
466  DOUT << "===== Instruction selection begins:\n";
467  Indent = 0;
468#endif
469  DAG.setRoot(SelectRoot(DAG.getRoot()));
470#ifndef NDEBUG
471  DOUT << "===== Instruction selection ends:\n";
472#endif
473
474  DAG.RemoveDeadNodes();
475
476  // Emit machine code to BB.
477  ScheduleAndEmitDAG(DAG);
478
479  // If we are emitting FP stack code, scan the basic block to determine if this
480  // block defines any FP values.  If so, put an FP_REG_KILL instruction before
481  // the terminator of the block.
482  if (!Subtarget->hasSSE2()) {
483    // Note that FP stack instructions *are* used in SSE code when returning
484    // values, but these are not live out of the basic block, so we don't need
485    // an FP_REG_KILL in this case either.
486    bool ContainsFPCode = false;
487
488    // Scan all of the machine instructions in these MBBs, checking for FP
489    // stores.
490    MachineFunction::iterator MBBI = FirstMBB;
491    do {
492      for (MachineBasicBlock::iterator I = MBBI->begin(), E = MBBI->end();
493           !ContainsFPCode && I != E; ++I) {
494        if (I->getNumOperands() != 0 && I->getOperand(0).isRegister()) {
495          const TargetRegisterClass *clas;
496          for (unsigned op = 0, e = I->getNumOperands(); op != e; ++op) {
497            if (I->getOperand(op).isRegister() && I->getOperand(op).isDef() &&
498                MRegisterInfo::isVirtualRegister(I->getOperand(op).getReg()) &&
499                ((clas = RegMap->getRegClass(I->getOperand(0).getReg())) ==
500                   X86::RFP32RegisterClass ||
501                 clas == X86::RFP64RegisterClass)) {
502              ContainsFPCode = true;
503              break;
504            }
505          }
506        }
507      }
508    } while (!ContainsFPCode && &*(MBBI++) != BB);
509
510    // Check PHI nodes in successor blocks.  These PHI's will be lowered to have
511    // a copy of the input value in this block.
512    if (!ContainsFPCode) {
513      // Final check, check LLVM BB's that are successors to the LLVM BB
514      // corresponding to BB for FP PHI nodes.
515      const BasicBlock *LLVMBB = BB->getBasicBlock();
516      const PHINode *PN;
517      for (succ_const_iterator SI = succ_begin(LLVMBB), E = succ_end(LLVMBB);
518           !ContainsFPCode && SI != E; ++SI) {
519        for (BasicBlock::const_iterator II = SI->begin();
520             (PN = dyn_cast<PHINode>(II)); ++II) {
521          if (PN->getType()->isFloatingPoint()) {
522            ContainsFPCode = true;
523            break;
524          }
525        }
526      }
527    }
528
529    // Finally, if we found any FP code, emit the FP_REG_KILL instruction.
530    if (ContainsFPCode) {
531      BuildMI(*BB, BB->getFirstTerminator(),
532              TM.getInstrInfo()->get(X86::FP_REG_KILL));
533      ++NumFPKill;
534    }
535  }
536}
537
538/// EmitSpecialCodeForMain - Emit any code that needs to be executed only in
539/// the main function.
540void X86DAGToDAGISel::EmitSpecialCodeForMain(MachineBasicBlock *BB,
541                                             MachineFrameInfo *MFI) {
542  const TargetInstrInfo *TII = TM.getInstrInfo();
543  if (Subtarget->isTargetCygMing())
544    BuildMI(BB, TII->get(X86::CALLpcrel32)).addExternalSymbol("__main");
545
546  // Switch the FPU to 64-bit precision mode for better compatibility and speed.
547  int CWFrameIdx = MFI->CreateStackObject(2, 2);
548  addFrameReference(BuildMI(BB, TII->get(X86::FNSTCW16m)), CWFrameIdx);
549
550  // Set the high part to be 64-bit precision.
551  addFrameReference(BuildMI(BB, TII->get(X86::MOV8mi)),
552                    CWFrameIdx, 1).addImm(2);
553
554  // Reload the modified control word now.
555  addFrameReference(BuildMI(BB, TII->get(X86::FLDCW16m)), CWFrameIdx);
556}
557
558void X86DAGToDAGISel::EmitFunctionEntryCode(Function &Fn, MachineFunction &MF) {
559  // If this is main, emit special code for main.
560  MachineBasicBlock *BB = MF.begin();
561  if (Fn.hasExternalLinkage() && Fn.getName() == "main")
562    EmitSpecialCodeForMain(BB, MF.getFrameInfo());
563}
564
565/// MatchAddress - Add the specified node to the specified addressing mode,
566/// returning true if it cannot be done.  This just pattern matches for the
567/// addressing mode
568bool X86DAGToDAGISel::MatchAddress(SDOperand N, X86ISelAddressMode &AM,
569                                   bool isRoot, unsigned Depth) {
570  if (Depth > 5) {
571    // Default, generate it as a register.
572    AM.BaseType = X86ISelAddressMode::RegBase;
573    AM.Base.Reg = N;
574    return false;
575  }
576
577  // RIP relative addressing: %rip + 32-bit displacement!
578  if (AM.isRIPRel) {
579    if (!AM.ES && AM.JT != -1 && N.getOpcode() == ISD::Constant) {
580      int64_t Val = cast<ConstantSDNode>(N)->getSignExtended();
581      if (isInt32(AM.Disp + Val)) {
582        AM.Disp += Val;
583        return false;
584      }
585    }
586    return true;
587  }
588
589  int id = N.Val->getNodeId();
590  bool Available = isSelected(id);
591
592  switch (N.getOpcode()) {
593  default: break;
594  case ISD::Constant: {
595    int64_t Val = cast<ConstantSDNode>(N)->getSignExtended();
596    if (isInt32(AM.Disp + Val)) {
597      AM.Disp += Val;
598      return false;
599    }
600    break;
601  }
602
603  case X86ISD::Wrapper: {
604    bool is64Bit = Subtarget->is64Bit();
605    // Under X86-64 non-small code model, GV (and friends) are 64-bits.
606    if (is64Bit && TM.getCodeModel() != CodeModel::Small)
607      break;
608    if (AM.GV != 0 || AM.CP != 0 || AM.ES != 0 || AM.JT != -1)
609      break;
610    // If value is available in a register both base and index components have
611    // been picked, we can't fit the result available in the register in the
612    // addressing mode. Duplicate GlobalAddress or ConstantPool as displacement.
613    if (!Available || (AM.Base.Reg.Val && AM.IndexReg.Val)) {
614      bool isStatic = TM.getRelocationModel() == Reloc::Static;
615      SDOperand N0 = N.getOperand(0);
616      // Mac OS X X86-64 lower 4G address is not available.
617      bool isAbs32 = !is64Bit || (isStatic && !Subtarget->isTargetDarwin());
618      if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(N0)) {
619        GlobalValue *GV = G->getGlobal();
620        if (isAbs32 || isRoot) {
621          AM.GV = GV;
622          AM.Disp += G->getOffset();
623          AM.isRIPRel = !isAbs32;
624          return false;
625        }
626      } else if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(N0)) {
627        if (isAbs32 || isRoot) {
628          AM.CP = CP->getConstVal();
629          AM.Align = CP->getAlignment();
630          AM.Disp += CP->getOffset();
631          AM.isRIPRel = !isAbs32;
632          return false;
633        }
634      } else if (ExternalSymbolSDNode *S =dyn_cast<ExternalSymbolSDNode>(N0)) {
635        if (isAbs32 || isRoot) {
636          AM.ES = S->getSymbol();
637          AM.isRIPRel = !isAbs32;
638          return false;
639        }
640      } else if (JumpTableSDNode *J = dyn_cast<JumpTableSDNode>(N0)) {
641        if (isAbs32 || isRoot) {
642          AM.JT = J->getIndex();
643          AM.isRIPRel = !isAbs32;
644          return false;
645        }
646      }
647    }
648    break;
649  }
650
651  case ISD::FrameIndex:
652    if (AM.BaseType == X86ISelAddressMode::RegBase && AM.Base.Reg.Val == 0) {
653      AM.BaseType = X86ISelAddressMode::FrameIndexBase;
654      AM.Base.FrameIndex = cast<FrameIndexSDNode>(N)->getIndex();
655      return false;
656    }
657    break;
658
659  case ISD::SHL:
660    if (!Available && AM.IndexReg.Val == 0 && AM.Scale == 1)
661      if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N.Val->getOperand(1))) {
662        unsigned Val = CN->getValue();
663        if (Val == 1 || Val == 2 || Val == 3) {
664          AM.Scale = 1 << Val;
665          SDOperand ShVal = N.Val->getOperand(0);
666
667          // Okay, we know that we have a scale by now.  However, if the scaled
668          // value is an add of something and a constant, we can fold the
669          // constant into the disp field here.
670          if (ShVal.Val->getOpcode() == ISD::ADD && ShVal.hasOneUse() &&
671              isa<ConstantSDNode>(ShVal.Val->getOperand(1))) {
672            AM.IndexReg = ShVal.Val->getOperand(0);
673            ConstantSDNode *AddVal =
674              cast<ConstantSDNode>(ShVal.Val->getOperand(1));
675            uint64_t Disp = AM.Disp + (AddVal->getValue() << Val);
676            if (isInt32(Disp))
677              AM.Disp = Disp;
678            else
679              AM.IndexReg = ShVal;
680          } else {
681            AM.IndexReg = ShVal;
682          }
683          return false;
684        }
685      }
686    break;
687
688  case ISD::MUL:
689    // X*[3,5,9] -> X+X*[2,4,8]
690    if (!Available &&
691        AM.BaseType == X86ISelAddressMode::RegBase &&
692        AM.Base.Reg.Val == 0 &&
693        AM.IndexReg.Val == 0) {
694      if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N.Val->getOperand(1)))
695        if (CN->getValue() == 3 || CN->getValue() == 5 || CN->getValue() == 9) {
696          AM.Scale = unsigned(CN->getValue())-1;
697
698          SDOperand MulVal = N.Val->getOperand(0);
699          SDOperand Reg;
700
701          // Okay, we know that we have a scale by now.  However, if the scaled
702          // value is an add of something and a constant, we can fold the
703          // constant into the disp field here.
704          if (MulVal.Val->getOpcode() == ISD::ADD && MulVal.hasOneUse() &&
705              isa<ConstantSDNode>(MulVal.Val->getOperand(1))) {
706            Reg = MulVal.Val->getOperand(0);
707            ConstantSDNode *AddVal =
708              cast<ConstantSDNode>(MulVal.Val->getOperand(1));
709            uint64_t Disp = AM.Disp + AddVal->getValue() * CN->getValue();
710            if (isInt32(Disp))
711              AM.Disp = Disp;
712            else
713              Reg = N.Val->getOperand(0);
714          } else {
715            Reg = N.Val->getOperand(0);
716          }
717
718          AM.IndexReg = AM.Base.Reg = Reg;
719          return false;
720        }
721    }
722    break;
723
724  case ISD::ADD:
725    if (!Available) {
726      X86ISelAddressMode Backup = AM;
727      if (!MatchAddress(N.Val->getOperand(0), AM, false, Depth+1) &&
728          !MatchAddress(N.Val->getOperand(1), AM, false, Depth+1))
729        return false;
730      AM = Backup;
731      if (!MatchAddress(N.Val->getOperand(1), AM, false, Depth+1) &&
732          !MatchAddress(N.Val->getOperand(0), AM, false, Depth+1))
733        return false;
734      AM = Backup;
735    }
736    break;
737
738  case ISD::OR:
739    // Handle "X | C" as "X + C" iff X is known to have C bits clear.
740    if (!Available) {
741      if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
742        X86ISelAddressMode Backup = AM;
743        // Start with the LHS as an addr mode.
744        if (!MatchAddress(N.getOperand(0), AM, false) &&
745            // Address could not have picked a GV address for the displacement.
746            AM.GV == NULL &&
747            // On x86-64, the resultant disp must fit in 32-bits.
748            isInt32(AM.Disp + CN->getSignExtended()) &&
749            // Check to see if the LHS & C is zero.
750            CurDAG->MaskedValueIsZero(N.getOperand(0), CN->getValue())) {
751          AM.Disp += CN->getValue();
752          return false;
753        }
754        AM = Backup;
755      }
756    }
757    break;
758  }
759
760  // Is the base register already occupied?
761  if (AM.BaseType != X86ISelAddressMode::RegBase || AM.Base.Reg.Val) {
762    // If so, check to see if the scale index register is set.
763    if (AM.IndexReg.Val == 0) {
764      AM.IndexReg = N;
765      AM.Scale = 1;
766      return false;
767    }
768
769    // Otherwise, we cannot select it.
770    return true;
771  }
772
773  // Default, generate it as a register.
774  AM.BaseType = X86ISelAddressMode::RegBase;
775  AM.Base.Reg = N;
776  return false;
777}
778
779/// SelectAddr - returns true if it is able pattern match an addressing mode.
780/// It returns the operands which make up the maximal addressing mode it can
781/// match by reference.
782bool X86DAGToDAGISel::SelectAddr(SDOperand Op, SDOperand N, SDOperand &Base,
783                                 SDOperand &Scale, SDOperand &Index,
784                                 SDOperand &Disp) {
785  X86ISelAddressMode AM;
786  if (MatchAddress(N, AM))
787    return false;
788
789  MVT::ValueType VT = N.getValueType();
790  if (AM.BaseType == X86ISelAddressMode::RegBase) {
791    if (!AM.Base.Reg.Val)
792      AM.Base.Reg = CurDAG->getRegister(0, VT);
793  }
794
795  if (!AM.IndexReg.Val)
796    AM.IndexReg = CurDAG->getRegister(0, VT);
797
798  getAddressOperands(AM, Base, Scale, Index, Disp);
799  return true;
800}
801
802/// isZeroNode - Returns true if Elt is a constant zero or a floating point
803/// constant +0.0.
804static inline bool isZeroNode(SDOperand Elt) {
805  return ((isa<ConstantSDNode>(Elt) &&
806  cast<ConstantSDNode>(Elt)->getValue() == 0) ||
807  (isa<ConstantFPSDNode>(Elt) &&
808  cast<ConstantFPSDNode>(Elt)->isExactlyValue(0.0)));
809}
810
811
812/// SelectScalarSSELoad - Match a scalar SSE load.  In particular, we want to
813/// match a load whose top elements are either undef or zeros.  The load flavor
814/// is derived from the type of N, which is either v4f32 or v2f64.
815bool X86DAGToDAGISel::SelectScalarSSELoad(SDOperand Op, SDOperand Pred,
816                                          SDOperand N, SDOperand &Base,
817                                          SDOperand &Scale, SDOperand &Index,
818                                          SDOperand &Disp, SDOperand &InChain,
819                                          SDOperand &OutChain) {
820  if (N.getOpcode() == ISD::SCALAR_TO_VECTOR) {
821    InChain = N.getOperand(0).getValue(1);
822    if (ISD::isNON_EXTLoad(InChain.Val) &&
823        InChain.getValue(0).hasOneUse() &&
824        N.hasOneUse() &&
825        CanBeFoldedBy(N.Val, Pred.Val, Op.Val)) {
826      LoadSDNode *LD = cast<LoadSDNode>(InChain);
827      if (!SelectAddr(Op, LD->getBasePtr(), Base, Scale, Index, Disp))
828        return false;
829      OutChain = LD->getChain();
830      return true;
831    }
832  }
833
834  // Also handle the case where we explicitly require zeros in the top
835  // elements.  This is a vector shuffle from the zero vector.
836  if (N.getOpcode() == ISD::VECTOR_SHUFFLE && N.Val->hasOneUse() &&
837      N.getOperand(0).getOpcode() == ISD::BUILD_VECTOR &&
838      N.getOperand(1).getOpcode() == ISD::SCALAR_TO_VECTOR &&
839      N.getOperand(1).Val->hasOneUse() &&
840      ISD::isNON_EXTLoad(N.getOperand(1).getOperand(0).Val) &&
841      N.getOperand(1).getOperand(0).hasOneUse()) {
842    // Check to see if the BUILD_VECTOR is building a zero vector.
843    SDOperand BV = N.getOperand(0);
844    for (unsigned i = 0, e = BV.getNumOperands(); i != e; ++i)
845      if (!isZeroNode(BV.getOperand(i)) &&
846          BV.getOperand(i).getOpcode() != ISD::UNDEF)
847        return false;  // Not a zero/undef vector.
848    // Check to see if the shuffle mask is 4/L/L/L or 2/L, where L is something
849    // from the LHS.
850    unsigned VecWidth = BV.getNumOperands();
851    SDOperand ShufMask = N.getOperand(2);
852    assert(ShufMask.getOpcode() == ISD::BUILD_VECTOR && "Invalid shuf mask!");
853    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(ShufMask.getOperand(0))) {
854      if (C->getValue() == VecWidth) {
855        for (unsigned i = 1; i != VecWidth; ++i) {
856          if (ShufMask.getOperand(i).getOpcode() == ISD::UNDEF) {
857            // ok.
858          } else {
859            ConstantSDNode *C = cast<ConstantSDNode>(ShufMask.getOperand(i));
860            if (C->getValue() >= VecWidth) return false;
861          }
862        }
863      }
864
865      // Okay, this is a zero extending load.  Fold it.
866      LoadSDNode *LD = cast<LoadSDNode>(N.getOperand(1).getOperand(0));
867      if (!SelectAddr(Op, LD->getBasePtr(), Base, Scale, Index, Disp))
868        return false;
869      OutChain = LD->getChain();
870      InChain = SDOperand(LD, 1);
871      return true;
872    }
873  }
874  return false;
875}
876
877
878/// SelectLEAAddr - it calls SelectAddr and determines if the maximal addressing
879/// mode it matches can be cost effectively emitted as an LEA instruction.
880bool X86DAGToDAGISel::SelectLEAAddr(SDOperand Op, SDOperand N,
881                                    SDOperand &Base, SDOperand &Scale,
882                                    SDOperand &Index, SDOperand &Disp) {
883  X86ISelAddressMode AM;
884  if (MatchAddress(N, AM))
885    return false;
886
887  MVT::ValueType VT = N.getValueType();
888  unsigned Complexity = 0;
889  if (AM.BaseType == X86ISelAddressMode::RegBase)
890    if (AM.Base.Reg.Val)
891      Complexity = 1;
892    else
893      AM.Base.Reg = CurDAG->getRegister(0, VT);
894  else if (AM.BaseType == X86ISelAddressMode::FrameIndexBase)
895    Complexity = 4;
896
897  if (AM.IndexReg.Val)
898    Complexity++;
899  else
900    AM.IndexReg = CurDAG->getRegister(0, VT);
901
902  // Don't match just leal(,%reg,2). It's cheaper to do addl %reg, %reg, or with
903  // a simple shift.
904  if (AM.Scale > 1)
905    Complexity++;
906
907  // FIXME: We are artificially lowering the criteria to turn ADD %reg, $GA
908  // to a LEA. This is determined with some expermentation but is by no means
909  // optimal (especially for code size consideration). LEA is nice because of
910  // its three-address nature. Tweak the cost function again when we can run
911  // convertToThreeAddress() at register allocation time.
912  if (AM.GV || AM.CP || AM.ES || AM.JT != -1) {
913    // For X86-64, we should always use lea to materialize RIP relative
914    // addresses.
915    if (Subtarget->is64Bit())
916      Complexity = 4;
917    else
918      Complexity += 2;
919  }
920
921  if (AM.Disp && (AM.Base.Reg.Val || AM.IndexReg.Val))
922    Complexity++;
923
924  if (Complexity > 2) {
925    getAddressOperands(AM, Base, Scale, Index, Disp);
926    return true;
927  }
928  return false;
929}
930
931bool X86DAGToDAGISel::TryFoldLoad(SDOperand P, SDOperand N,
932                                  SDOperand &Base, SDOperand &Scale,
933                                  SDOperand &Index, SDOperand &Disp) {
934  if (ISD::isNON_EXTLoad(N.Val) &&
935      N.hasOneUse() &&
936      CanBeFoldedBy(N.Val, P.Val, P.Val))
937    return SelectAddr(P, N.getOperand(1), Base, Scale, Index, Disp);
938  return false;
939}
940
941/// getGlobalBaseReg - Output the instructions required to put the
942/// base address to use for accessing globals into a register.
943///
944SDNode *X86DAGToDAGISel::getGlobalBaseReg() {
945  assert(!Subtarget->is64Bit() && "X86-64 PIC uses RIP relative addressing");
946  if (!GlobalBaseReg) {
947    // Insert the set of GlobalBaseReg into the first MBB of the function
948    MachineBasicBlock &FirstMBB = BB->getParent()->front();
949    MachineBasicBlock::iterator MBBI = FirstMBB.begin();
950    SSARegMap *RegMap = BB->getParent()->getSSARegMap();
951    unsigned PC = RegMap->createVirtualRegister(X86::GR32RegisterClass);
952
953    const TargetInstrInfo *TII = TM.getInstrInfo();
954    BuildMI(FirstMBB, MBBI, TII->get(X86::MovePCtoStack));
955    BuildMI(FirstMBB, MBBI, TII->get(X86::POP32r), PC);
956
957    // If we're using vanilla 'GOT' PIC style, we should use relative addressing
958    // not to pc, but to _GLOBAL_ADDRESS_TABLE_ external
959    if (TM.getRelocationModel() == Reloc::PIC_ &&
960        Subtarget->isPICStyleGOT()) {
961      GlobalBaseReg = RegMap->createVirtualRegister(X86::GR32RegisterClass);
962      BuildMI(FirstMBB, MBBI, TII->get(X86::ADD32ri), GlobalBaseReg).
963        addReg(PC).
964        addExternalSymbol("_GLOBAL_OFFSET_TABLE_");
965    } else {
966      GlobalBaseReg = PC;
967    }
968
969  }
970  return CurDAG->getRegister(GlobalBaseReg, TLI.getPointerTy()).Val;
971}
972
973static SDNode *FindCallStartFromCall(SDNode *Node) {
974  if (Node->getOpcode() == ISD::CALLSEQ_START) return Node;
975    assert(Node->getOperand(0).getValueType() == MVT::Other &&
976         "Node doesn't have a token chain argument!");
977  return FindCallStartFromCall(Node->getOperand(0).Val);
978}
979
980SDNode *X86DAGToDAGISel::Select(SDOperand N) {
981  SDNode *Node = N.Val;
982  MVT::ValueType NVT = Node->getValueType(0);
983  unsigned Opc, MOpc;
984  unsigned Opcode = Node->getOpcode();
985
986#ifndef NDEBUG
987  DOUT << std::string(Indent, ' ') << "Selecting: ";
988  DEBUG(Node->dump(CurDAG));
989  DOUT << "\n";
990  Indent += 2;
991#endif
992
993  if (Opcode >= ISD::BUILTIN_OP_END && Opcode < X86ISD::FIRST_NUMBER) {
994#ifndef NDEBUG
995    DOUT << std::string(Indent-2, ' ') << "== ";
996    DEBUG(Node->dump(CurDAG));
997    DOUT << "\n";
998    Indent -= 2;
999#endif
1000    return NULL;   // Already selected.
1001  }
1002
1003  switch (Opcode) {
1004    default: break;
1005    case X86ISD::GlobalBaseReg:
1006      return getGlobalBaseReg();
1007
1008    case ISD::ADD: {
1009      // Turn ADD X, c to MOV32ri X+c. This cannot be done with tblgen'd
1010      // code and is matched first so to prevent it from being turned into
1011      // LEA32r X+c.
1012      // In 64-bit mode, use LEA to take advantage of RIP-relative addressing.
1013      MVT::ValueType PtrVT = TLI.getPointerTy();
1014      SDOperand N0 = N.getOperand(0);
1015      SDOperand N1 = N.getOperand(1);
1016      if (N.Val->getValueType(0) == PtrVT &&
1017          N0.getOpcode() == X86ISD::Wrapper &&
1018          N1.getOpcode() == ISD::Constant) {
1019        unsigned Offset = (unsigned)cast<ConstantSDNode>(N1)->getValue();
1020        SDOperand C(0, 0);
1021        // TODO: handle ExternalSymbolSDNode.
1022        if (GlobalAddressSDNode *G =
1023            dyn_cast<GlobalAddressSDNode>(N0.getOperand(0))) {
1024          C = CurDAG->getTargetGlobalAddress(G->getGlobal(), PtrVT,
1025                                             G->getOffset() + Offset);
1026        } else if (ConstantPoolSDNode *CP =
1027                   dyn_cast<ConstantPoolSDNode>(N0.getOperand(0))) {
1028          C = CurDAG->getTargetConstantPool(CP->getConstVal(), PtrVT,
1029                                            CP->getAlignment(),
1030                                            CP->getOffset()+Offset);
1031        }
1032
1033        if (C.Val) {
1034          if (Subtarget->is64Bit()) {
1035            SDOperand Ops[] = { CurDAG->getRegister(0, PtrVT), getI8Imm(1),
1036                                CurDAG->getRegister(0, PtrVT), C };
1037            return CurDAG->SelectNodeTo(N.Val, X86::LEA64r, MVT::i64, Ops, 4);
1038          } else
1039            return CurDAG->SelectNodeTo(N.Val, X86::MOV32ri, PtrVT, C);
1040        }
1041      }
1042
1043      // Other cases are handled by auto-generated code.
1044      break;
1045    }
1046
1047    case ISD::MULHU:
1048    case ISD::MULHS: {
1049      if (Opcode == ISD::MULHU)
1050        switch (NVT) {
1051        default: assert(0 && "Unsupported VT!");
1052        case MVT::i8:  Opc = X86::MUL8r;  MOpc = X86::MUL8m;  break;
1053        case MVT::i16: Opc = X86::MUL16r; MOpc = X86::MUL16m; break;
1054        case MVT::i32: Opc = X86::MUL32r; MOpc = X86::MUL32m; break;
1055        case MVT::i64: Opc = X86::MUL64r; MOpc = X86::MUL64m; break;
1056        }
1057      else
1058        switch (NVT) {
1059        default: assert(0 && "Unsupported VT!");
1060        case MVT::i8:  Opc = X86::IMUL8r;  MOpc = X86::IMUL8m;  break;
1061        case MVT::i16: Opc = X86::IMUL16r; MOpc = X86::IMUL16m; break;
1062        case MVT::i32: Opc = X86::IMUL32r; MOpc = X86::IMUL32m; break;
1063        case MVT::i64: Opc = X86::IMUL64r; MOpc = X86::IMUL64m; break;
1064        }
1065
1066      unsigned LoReg, HiReg;
1067      switch (NVT) {
1068      default: assert(0 && "Unsupported VT!");
1069      case MVT::i8:  LoReg = X86::AL;  HiReg = X86::AH;  break;
1070      case MVT::i16: LoReg = X86::AX;  HiReg = X86::DX;  break;
1071      case MVT::i32: LoReg = X86::EAX; HiReg = X86::EDX; break;
1072      case MVT::i64: LoReg = X86::RAX; HiReg = X86::RDX; break;
1073      }
1074
1075      SDOperand N0 = Node->getOperand(0);
1076      SDOperand N1 = Node->getOperand(1);
1077
1078      bool foldedLoad = false;
1079      SDOperand Tmp0, Tmp1, Tmp2, Tmp3;
1080      foldedLoad = TryFoldLoad(N, N1, Tmp0, Tmp1, Tmp2, Tmp3);
1081      // MULHU and MULHS are commmutative
1082      if (!foldedLoad) {
1083        foldedLoad = TryFoldLoad(N, N0, Tmp0, Tmp1, Tmp2, Tmp3);
1084        if (foldedLoad) {
1085          N0 = Node->getOperand(1);
1086          N1 = Node->getOperand(0);
1087        }
1088      }
1089
1090      SDOperand Chain;
1091      if (foldedLoad) {
1092        Chain = N1.getOperand(0);
1093        AddToISelQueue(Chain);
1094      } else
1095        Chain = CurDAG->getEntryNode();
1096
1097      SDOperand InFlag(0, 0);
1098      AddToISelQueue(N0);
1099      Chain  = CurDAG->getCopyToReg(Chain, CurDAG->getRegister(LoReg, NVT),
1100                                    N0, InFlag);
1101      InFlag = Chain.getValue(1);
1102
1103      if (foldedLoad) {
1104        AddToISelQueue(Tmp0);
1105        AddToISelQueue(Tmp1);
1106        AddToISelQueue(Tmp2);
1107        AddToISelQueue(Tmp3);
1108        SDOperand Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Chain, InFlag };
1109        SDNode *CNode =
1110          CurDAG->getTargetNode(MOpc, MVT::Other, MVT::Flag, Ops, 6);
1111        Chain  = SDOperand(CNode, 0);
1112        InFlag = SDOperand(CNode, 1);
1113      } else {
1114        AddToISelQueue(N1);
1115        InFlag =
1116          SDOperand(CurDAG->getTargetNode(Opc, MVT::Flag, N1, InFlag), 0);
1117      }
1118
1119      SDOperand Result = CurDAG->getCopyFromReg(Chain, HiReg, NVT, InFlag);
1120      ReplaceUses(N.getValue(0), Result);
1121      if (foldedLoad)
1122        ReplaceUses(N1.getValue(1), Result.getValue(1));
1123
1124#ifndef NDEBUG
1125      DOUT << std::string(Indent-2, ' ') << "=> ";
1126      DEBUG(Result.Val->dump(CurDAG));
1127      DOUT << "\n";
1128      Indent -= 2;
1129#endif
1130      return NULL;
1131    }
1132
1133    case ISD::SDIV:
1134    case ISD::UDIV:
1135    case ISD::SREM:
1136    case ISD::UREM: {
1137      bool isSigned = Opcode == ISD::SDIV || Opcode == ISD::SREM;
1138      bool isDiv    = Opcode == ISD::SDIV || Opcode == ISD::UDIV;
1139      if (!isSigned)
1140        switch (NVT) {
1141        default: assert(0 && "Unsupported VT!");
1142        case MVT::i8:  Opc = X86::DIV8r;  MOpc = X86::DIV8m;  break;
1143        case MVT::i16: Opc = X86::DIV16r; MOpc = X86::DIV16m; break;
1144        case MVT::i32: Opc = X86::DIV32r; MOpc = X86::DIV32m; break;
1145        case MVT::i64: Opc = X86::DIV64r; MOpc = X86::DIV64m; break;
1146        }
1147      else
1148        switch (NVT) {
1149        default: assert(0 && "Unsupported VT!");
1150        case MVT::i8:  Opc = X86::IDIV8r;  MOpc = X86::IDIV8m;  break;
1151        case MVT::i16: Opc = X86::IDIV16r; MOpc = X86::IDIV16m; break;
1152        case MVT::i32: Opc = X86::IDIV32r; MOpc = X86::IDIV32m; break;
1153        case MVT::i64: Opc = X86::IDIV64r; MOpc = X86::IDIV64m; break;
1154        }
1155
1156      unsigned LoReg, HiReg;
1157      unsigned ClrOpcode, SExtOpcode;
1158      switch (NVT) {
1159      default: assert(0 && "Unsupported VT!");
1160      case MVT::i8:
1161        LoReg = X86::AL;  HiReg = X86::AH;
1162        ClrOpcode  = 0;
1163        SExtOpcode = X86::CBW;
1164        break;
1165      case MVT::i16:
1166        LoReg = X86::AX;  HiReg = X86::DX;
1167        ClrOpcode  = X86::MOV16r0;
1168        SExtOpcode = X86::CWD;
1169        break;
1170      case MVT::i32:
1171        LoReg = X86::EAX; HiReg = X86::EDX;
1172        ClrOpcode  = X86::MOV32r0;
1173        SExtOpcode = X86::CDQ;
1174        break;
1175      case MVT::i64:
1176        LoReg = X86::RAX; HiReg = X86::RDX;
1177        ClrOpcode  = X86::MOV64r0;
1178        SExtOpcode = X86::CQO;
1179        break;
1180      }
1181
1182      SDOperand N0 = Node->getOperand(0);
1183      SDOperand N1 = Node->getOperand(1);
1184      SDOperand InFlag(0, 0);
1185      if (NVT == MVT::i8 && !isSigned) {
1186        // Special case for div8, just use a move with zero extension to AX to
1187        // clear the upper 8 bits (AH).
1188        SDOperand Tmp0, Tmp1, Tmp2, Tmp3, Move, Chain;
1189        if (TryFoldLoad(N, N0, Tmp0, Tmp1, Tmp2, Tmp3)) {
1190          SDOperand Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, N0.getOperand(0) };
1191          AddToISelQueue(N0.getOperand(0));
1192          AddToISelQueue(Tmp0);
1193          AddToISelQueue(Tmp1);
1194          AddToISelQueue(Tmp2);
1195          AddToISelQueue(Tmp3);
1196          Move =
1197            SDOperand(CurDAG->getTargetNode(X86::MOVZX16rm8, MVT::i16, MVT::Other,
1198                                            Ops, 5), 0);
1199          Chain = Move.getValue(1);
1200          ReplaceUses(N0.getValue(1), Chain);
1201        } else {
1202          AddToISelQueue(N0);
1203          Move =
1204            SDOperand(CurDAG->getTargetNode(X86::MOVZX16rr8, MVT::i16, N0), 0);
1205          Chain = CurDAG->getEntryNode();
1206        }
1207        Chain  = CurDAG->getCopyToReg(Chain, X86::AX, Move, InFlag);
1208        InFlag = Chain.getValue(1);
1209      } else {
1210        AddToISelQueue(N0);
1211        InFlag =
1212          CurDAG->getCopyToReg(CurDAG->getEntryNode(), LoReg, N0,
1213                               InFlag).getValue(1);
1214        if (isSigned) {
1215          // Sign extend the low part into the high part.
1216          InFlag =
1217            SDOperand(CurDAG->getTargetNode(SExtOpcode, MVT::Flag, InFlag), 0);
1218        } else {
1219          // Zero out the high part, effectively zero extending the input.
1220          SDOperand ClrNode = SDOperand(CurDAG->getTargetNode(ClrOpcode, NVT), 0);
1221          InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), HiReg, ClrNode,
1222                                        InFlag).getValue(1);
1223        }
1224      }
1225
1226      SDOperand Tmp0, Tmp1, Tmp2, Tmp3, Chain;
1227      bool foldedLoad = TryFoldLoad(N, N1, Tmp0, Tmp1, Tmp2, Tmp3);
1228      if (foldedLoad) {
1229        AddToISelQueue(N1.getOperand(0));
1230        AddToISelQueue(Tmp0);
1231        AddToISelQueue(Tmp1);
1232        AddToISelQueue(Tmp2);
1233        AddToISelQueue(Tmp3);
1234        SDOperand Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, N1.getOperand(0), InFlag };
1235        SDNode *CNode =
1236          CurDAG->getTargetNode(MOpc, MVT::Other, MVT::Flag, Ops, 6);
1237        Chain  = SDOperand(CNode, 0);
1238        InFlag = SDOperand(CNode, 1);
1239      } else {
1240        AddToISelQueue(N1);
1241        Chain = CurDAG->getEntryNode();
1242        InFlag =
1243          SDOperand(CurDAG->getTargetNode(Opc, MVT::Flag, N1, InFlag), 0);
1244      }
1245
1246      SDOperand Result =
1247        CurDAG->getCopyFromReg(Chain, isDiv ? LoReg : HiReg, NVT, InFlag);
1248      ReplaceUses(N.getValue(0), Result);
1249      if (foldedLoad)
1250        ReplaceUses(N1.getValue(1), Result.getValue(1));
1251
1252#ifndef NDEBUG
1253      DOUT << std::string(Indent-2, ' ') << "=> ";
1254      DEBUG(Result.Val->dump(CurDAG));
1255      DOUT << "\n";
1256      Indent -= 2;
1257#endif
1258
1259      return NULL;
1260    }
1261
1262    case ISD::TRUNCATE: {
1263      SDOperand Tmp;
1264      SDOperand Input = Node->getOperand(0);
1265      AddToISelQueue(Node->getOperand(0));
1266      switch (NVT) {
1267      case MVT::i8:
1268        Tmp = CurDAG->getTargetConstant(1, MVT::i32); // SubRegSet 1
1269        // Ensure that the source register has an 8-bit subreg on 32-bit targets
1270        if (!Subtarget->is64Bit()) {
1271          unsigned Opc;
1272          MVT::ValueType VT;
1273          switch (Node->getOperand(0).getValueType()) {
1274          default: assert(0 && "Unknown truncate!");
1275          case MVT::i16:
1276            Opc = X86::MOV16to16_;
1277            VT = MVT::i16;
1278            break;
1279          case MVT::i32:
1280            Opc = X86::MOV32to32_;
1281            VT = MVT::i32;
1282            break;
1283          }
1284          Input =
1285            SDOperand(CurDAG->getTargetNode(Opc, VT, Node->getOperand(0)), 0);
1286        }
1287        break;
1288      case MVT::i16:
1289        Tmp = CurDAG->getTargetConstant(2, MVT::i32); // SubRegSet 2
1290        break;
1291      case MVT::i32:
1292        Tmp = CurDAG->getTargetConstant(3, MVT::i32); // SubRegSet 3
1293        break;
1294      default: assert(0 && "Unknown truncate!");
1295      }
1296      SDNode *ResNode = CurDAG->getTargetNode(X86::EXTRACT_SUBREG,
1297                                              NVT,
1298                                              Input, Tmp);
1299#ifndef NDEBUG
1300        DOUT << std::string(Indent-2, ' ') << "=> ";
1301        DEBUG(ResNode->dump(CurDAG));
1302        DOUT << "\n";
1303        Indent -= 2;
1304#endif
1305      return ResNode;
1306      break;
1307    }
1308  }
1309
1310  SDNode *ResNode = SelectCode(N);
1311
1312#ifndef NDEBUG
1313  DOUT << std::string(Indent-2, ' ') << "=> ";
1314  if (ResNode == NULL || ResNode == N.Val)
1315    DEBUG(N.Val->dump(CurDAG));
1316  else
1317    DEBUG(ResNode->dump(CurDAG));
1318  DOUT << "\n";
1319  Indent -= 2;
1320#endif
1321
1322  return ResNode;
1323}
1324
1325bool X86DAGToDAGISel::
1326SelectInlineAsmMemoryOperand(const SDOperand &Op, char ConstraintCode,
1327                             std::vector<SDOperand> &OutOps, SelectionDAG &DAG){
1328  SDOperand Op0, Op1, Op2, Op3;
1329  switch (ConstraintCode) {
1330  case 'o':   // offsetable        ??
1331  case 'v':   // not offsetable    ??
1332  default: return true;
1333  case 'm':   // memory
1334    if (!SelectAddr(Op, Op, Op0, Op1, Op2, Op3))
1335      return true;
1336    break;
1337  }
1338
1339  OutOps.push_back(Op0);
1340  OutOps.push_back(Op1);
1341  OutOps.push_back(Op2);
1342  OutOps.push_back(Op3);
1343  AddToISelQueue(Op0);
1344  AddToISelQueue(Op1);
1345  AddToISelQueue(Op2);
1346  AddToISelQueue(Op3);
1347  return false;
1348}
1349
1350/// createX86ISelDag - This pass converts a legalized DAG into a
1351/// X86-specific DAG, ready for instruction scheduling.
1352///
1353FunctionPass *llvm::createX86ISelDag(X86TargetMachine &TM, bool Fast) {
1354  return new X86DAGToDAGISel(TM, Fast);
1355}
1356