X86ISelDAGToDAG.cpp revision 4ae641f4d12c60ee1aaca5e42b6de231c6a02c40
1//===- X86ISelDAGToDAG.cpp - A DAG pattern matching inst selector for X86 -===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines a DAG pattern matching instruction selector for X86,
11// converting from a legalized dag to a X86 dag.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "x86-isel"
16#include "X86.h"
17#include "X86InstrBuilder.h"
18#include "X86ISelLowering.h"
19#include "X86MachineFunctionInfo.h"
20#include "X86RegisterInfo.h"
21#include "X86Subtarget.h"
22#include "X86TargetMachine.h"
23#include "llvm/GlobalValue.h"
24#include "llvm/Instructions.h"
25#include "llvm/Intrinsics.h"
26#include "llvm/Support/CFG.h"
27#include "llvm/Type.h"
28#include "llvm/CodeGen/MachineConstantPool.h"
29#include "llvm/CodeGen/MachineFunction.h"
30#include "llvm/CodeGen/MachineFrameInfo.h"
31#include "llvm/CodeGen/MachineInstrBuilder.h"
32#include "llvm/CodeGen/MachineRegisterInfo.h"
33#include "llvm/CodeGen/SelectionDAGISel.h"
34#include "llvm/Target/TargetMachine.h"
35#include "llvm/Target/TargetOptions.h"
36#include "llvm/Support/Compiler.h"
37#include "llvm/Support/Debug.h"
38#include "llvm/Support/MathExtras.h"
39#include "llvm/Support/Streams.h"
40#include "llvm/ADT/SmallPtrSet.h"
41#include "llvm/ADT/Statistic.h"
42#include <queue>
43#include <set>
44using namespace llvm;
45
46STATISTIC(NumFPKill   , "Number of FP_REG_KILL instructions added");
47STATISTIC(NumLoadMoved, "Number of loads moved below TokenFactor");
48
49//===----------------------------------------------------------------------===//
50//                      Pattern Matcher Implementation
51//===----------------------------------------------------------------------===//
52
53namespace {
54  /// X86ISelAddressMode - This corresponds to X86AddressMode, but uses
55  /// SDValue's instead of register numbers for the leaves of the matched
56  /// tree.
57  struct X86ISelAddressMode {
58    enum {
59      RegBase,
60      FrameIndexBase
61    } BaseType;
62
63    struct {            // This is really a union, discriminated by BaseType!
64      SDValue Reg;
65      int FrameIndex;
66    } Base;
67
68    bool isRIPRel;     // RIP as base?
69    unsigned Scale;
70    SDValue IndexReg;
71    unsigned Disp;
72    GlobalValue *GV;
73    Constant *CP;
74    const char *ES;
75    int JT;
76    unsigned Align;    // CP alignment.
77
78    X86ISelAddressMode()
79      : BaseType(RegBase), isRIPRel(false), Scale(1), IndexReg(), Disp(0),
80        GV(0), CP(0), ES(0), JT(-1), Align(0) {
81    }
82    void dump() {
83      cerr << "X86ISelAddressMode " << this << "\n";
84      cerr << "Base.Reg ";
85              if (Base.Reg.getNode() != 0) Base.Reg.getNode()->dump();
86              else cerr << "nul";
87      cerr << " Base.FrameIndex " << Base.FrameIndex << "\n";
88      cerr << "isRIPRel " << isRIPRel << " Scale" << Scale << "\n";
89      cerr << "IndexReg ";
90              if (IndexReg.getNode() != 0) IndexReg.getNode()->dump();
91              else cerr << "nul";
92      cerr << " Disp " << Disp << "\n";
93      cerr << "GV "; if (GV) GV->dump();
94                     else cerr << "nul";
95      cerr << " CP "; if (CP) CP->dump();
96                     else cerr << "nul";
97      cerr << "\n";
98      cerr << "ES "; if (ES) cerr << ES; else cerr << "nul";
99      cerr  << " JT" << JT << " Align" << Align << "\n";
100    }
101  };
102}
103
104namespace {
105  //===--------------------------------------------------------------------===//
106  /// ISel - X86 specific code to select X86 machine instructions for
107  /// SelectionDAG operations.
108  ///
109  class VISIBILITY_HIDDEN X86DAGToDAGISel : public SelectionDAGISel {
110    /// ContainsFPCode - Every instruction we select that uses or defines a FP
111    /// register should set this to true.
112    bool ContainsFPCode;
113
114    /// TM - Keep a reference to X86TargetMachine.
115    ///
116    X86TargetMachine &TM;
117
118    /// X86Lowering - This object fully describes how to lower LLVM code to an
119    /// X86-specific SelectionDAG.
120    X86TargetLowering X86Lowering;
121
122    /// Subtarget - Keep a pointer to the X86Subtarget around so that we can
123    /// make the right decision when generating code for different targets.
124    const X86Subtarget *Subtarget;
125
126    /// CurBB - Current BB being isel'd.
127    ///
128    MachineBasicBlock *CurBB;
129
130    /// OptForSize - If true, selector should try to optimize for code size
131    /// instead of performance.
132    bool OptForSize;
133
134  public:
135    X86DAGToDAGISel(X86TargetMachine &tm, bool fast)
136      : SelectionDAGISel(X86Lowering, fast),
137        ContainsFPCode(false), TM(tm),
138        X86Lowering(*TM.getTargetLowering()),
139        Subtarget(&TM.getSubtarget<X86Subtarget>()),
140        OptForSize(false) {}
141
142    virtual const char *getPassName() const {
143      return "X86 DAG->DAG Instruction Selection";
144    }
145
146    /// InstructionSelect - This callback is invoked by
147    /// SelectionDAGISel when it has created a SelectionDAG for us to codegen.
148    virtual void InstructionSelect();
149
150    /// InstructionSelectPostProcessing - Post processing of selected and
151    /// scheduled basic blocks.
152    virtual void InstructionSelectPostProcessing();
153
154    virtual void EmitFunctionEntryCode(Function &Fn, MachineFunction &MF);
155
156    virtual bool CanBeFoldedBy(SDNode *N, SDNode *U, SDNode *Root) const;
157
158// Include the pieces autogenerated from the target description.
159#include "X86GenDAGISel.inc"
160
161  private:
162    SDNode *Select(SDValue N);
163
164    bool MatchAddress(SDValue N, X86ISelAddressMode &AM,
165                      bool isRoot = true, unsigned Depth = 0);
166    bool MatchAddressBase(SDValue N, X86ISelAddressMode &AM,
167                          bool isRoot, unsigned Depth);
168    bool SelectAddr(SDValue Op, SDValue N, SDValue &Base,
169                    SDValue &Scale, SDValue &Index, SDValue &Disp);
170    bool SelectLEAAddr(SDValue Op, SDValue N, SDValue &Base,
171                       SDValue &Scale, SDValue &Index, SDValue &Disp);
172    bool SelectScalarSSELoad(SDValue Op, SDValue Pred,
173                             SDValue N, SDValue &Base, SDValue &Scale,
174                             SDValue &Index, SDValue &Disp,
175                             SDValue &InChain, SDValue &OutChain);
176    bool TryFoldLoad(SDValue P, SDValue N,
177                     SDValue &Base, SDValue &Scale,
178                     SDValue &Index, SDValue &Disp);
179    void PreprocessForRMW();
180    void PreprocessForFPConvert();
181
182    /// SelectInlineAsmMemoryOperand - Implement addressing mode selection for
183    /// inline asm expressions.
184    virtual bool SelectInlineAsmMemoryOperand(const SDValue &Op,
185                                              char ConstraintCode,
186                                              std::vector<SDValue> &OutOps);
187
188    void EmitSpecialCodeForMain(MachineBasicBlock *BB, MachineFrameInfo *MFI);
189
190    inline void getAddressOperands(X86ISelAddressMode &AM, SDValue &Base,
191                                   SDValue &Scale, SDValue &Index,
192                                   SDValue &Disp) {
193      Base  = (AM.BaseType == X86ISelAddressMode::FrameIndexBase) ?
194        CurDAG->getTargetFrameIndex(AM.Base.FrameIndex, TLI.getPointerTy()) :
195        AM.Base.Reg;
196      Scale = getI8Imm(AM.Scale);
197      Index = AM.IndexReg;
198      // These are 32-bit even in 64-bit mode since RIP relative offset
199      // is 32-bit.
200      if (AM.GV)
201        Disp = CurDAG->getTargetGlobalAddress(AM.GV, MVT::i32, AM.Disp);
202      else if (AM.CP)
203        Disp = CurDAG->getTargetConstantPool(AM.CP, MVT::i32,
204                                             AM.Align, AM.Disp);
205      else if (AM.ES)
206        Disp = CurDAG->getTargetExternalSymbol(AM.ES, MVT::i32);
207      else if (AM.JT != -1)
208        Disp = CurDAG->getTargetJumpTable(AM.JT, MVT::i32);
209      else
210        Disp = getI32Imm(AM.Disp);
211    }
212
213    /// getI8Imm - Return a target constant with the specified value, of type
214    /// i8.
215    inline SDValue getI8Imm(unsigned Imm) {
216      return CurDAG->getTargetConstant(Imm, MVT::i8);
217    }
218
219    /// getI16Imm - Return a target constant with the specified value, of type
220    /// i16.
221    inline SDValue getI16Imm(unsigned Imm) {
222      return CurDAG->getTargetConstant(Imm, MVT::i16);
223    }
224
225    /// getI32Imm - Return a target constant with the specified value, of type
226    /// i32.
227    inline SDValue getI32Imm(unsigned Imm) {
228      return CurDAG->getTargetConstant(Imm, MVT::i32);
229    }
230
231    /// getGlobalBaseReg - Return an SDNode that returns the value of
232    /// the global base register. Output instructions required to
233    /// initialize the global base register, if necessary.
234    ///
235    SDNode *getGlobalBaseReg();
236
237    /// getTruncateTo8Bit - return an SDNode that implements a subreg based
238    /// truncate of the specified operand to i8. This can be done with tablegen,
239    /// except that this code uses MVT::Flag in a tricky way that happens to
240    /// improve scheduling in some cases.
241    SDNode *getTruncateTo8Bit(SDValue N0);
242
243#ifndef NDEBUG
244    unsigned Indent;
245#endif
246  };
247}
248
249/// findFlagUse - Return use of MVT::Flag value produced by the specified
250/// SDNode.
251///
252static SDNode *findFlagUse(SDNode *N) {
253  unsigned FlagResNo = N->getNumValues()-1;
254  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
255    SDNode *User = *I;
256    for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
257      SDValue Op = User->getOperand(i);
258      if (Op.getNode() == N && Op.getResNo() == FlagResNo)
259        return User;
260    }
261  }
262  return NULL;
263}
264
265/// findNonImmUse - Return true by reference in "found" if "Use" is an
266/// non-immediate use of "Def". This function recursively traversing
267/// up the operand chain ignoring certain nodes.
268static void findNonImmUse(SDNode *Use, SDNode* Def, SDNode *ImmedUse,
269                          SDNode *Root, bool &found,
270                          SmallPtrSet<SDNode*, 16> &Visited) {
271  if (found ||
272      Use->getNodeId() < Def->getNodeId() ||
273      !Visited.insert(Use))
274    return;
275
276  for (unsigned i = 0, e = Use->getNumOperands(); !found && i != e; ++i) {
277    SDNode *N = Use->getOperand(i).getNode();
278    if (N == Def) {
279      if (Use == ImmedUse || Use == Root)
280        continue;  // We are not looking for immediate use.
281      assert(N != Root);
282      found = true;
283      break;
284    }
285
286    // Traverse up the operand chain.
287    findNonImmUse(N, Def, ImmedUse, Root, found, Visited);
288  }
289}
290
291/// isNonImmUse - Start searching from Root up the DAG to check is Def can
292/// be reached. Return true if that's the case. However, ignore direct uses
293/// by ImmedUse (which would be U in the example illustrated in
294/// CanBeFoldedBy) and by Root (which can happen in the store case).
295/// FIXME: to be really generic, we should allow direct use by any node
296/// that is being folded. But realisticly since we only fold loads which
297/// have one non-chain use, we only need to watch out for load/op/store
298/// and load/op/cmp case where the root (store / cmp) may reach the load via
299/// its chain operand.
300static inline bool isNonImmUse(SDNode *Root, SDNode *Def, SDNode *ImmedUse) {
301  SmallPtrSet<SDNode*, 16> Visited;
302  bool found = false;
303  findNonImmUse(Root, Def, ImmedUse, Root, found, Visited);
304  return found;
305}
306
307
308bool X86DAGToDAGISel::CanBeFoldedBy(SDNode *N, SDNode *U, SDNode *Root) const {
309  if (Fast) return false;
310
311  // If Root use can somehow reach N through a path that that doesn't contain
312  // U then folding N would create a cycle. e.g. In the following
313  // diagram, Root can reach N through X. If N is folded into into Root, then
314  // X is both a predecessor and a successor of U.
315  //
316  //          [N*]           //
317  //         ^   ^           //
318  //        /     \          //
319  //      [U*]    [X]?       //
320  //        ^     ^          //
321  //         \   /           //
322  //          \ /            //
323  //         [Root*]         //
324  //
325  // * indicates nodes to be folded together.
326  //
327  // If Root produces a flag, then it gets (even more) interesting. Since it
328  // will be "glued" together with its flag use in the scheduler, we need to
329  // check if it might reach N.
330  //
331  //          [N*]           //
332  //         ^   ^           //
333  //        /     \          //
334  //      [U*]    [X]?       //
335  //        ^       ^        //
336  //         \       \       //
337  //          \      |       //
338  //         [Root*] |       //
339  //          ^      |       //
340  //          f      |       //
341  //          |      /       //
342  //         [Y]    /        //
343  //           ^   /         //
344  //           f  /          //
345  //           | /           //
346  //          [FU]           //
347  //
348  // If FU (flag use) indirectly reaches N (the load), and Root folds N
349  // (call it Fold), then X is a predecessor of FU and a successor of
350  // Fold. But since Fold and FU are flagged together, this will create
351  // a cycle in the scheduling graph.
352
353  MVT VT = Root->getValueType(Root->getNumValues()-1);
354  while (VT == MVT::Flag) {
355    SDNode *FU = findFlagUse(Root);
356    if (FU == NULL)
357      break;
358    Root = FU;
359    VT = Root->getValueType(Root->getNumValues()-1);
360  }
361
362  return !isNonImmUse(Root, N, U);
363}
364
365/// MoveBelowTokenFactor - Replace TokenFactor operand with load's chain operand
366/// and move load below the TokenFactor. Replace store's chain operand with
367/// load's chain result.
368static void MoveBelowTokenFactor(SelectionDAG *CurDAG, SDValue Load,
369                                 SDValue Store, SDValue TF) {
370  SmallVector<SDValue, 4> Ops;
371  for (unsigned i = 0, e = TF.getNode()->getNumOperands(); i != e; ++i)
372    if (Load.getNode() == TF.getOperand(i).getNode())
373      Ops.push_back(Load.getOperand(0));
374    else
375      Ops.push_back(TF.getOperand(i));
376  CurDAG->UpdateNodeOperands(TF, &Ops[0], Ops.size());
377  CurDAG->UpdateNodeOperands(Load, TF, Load.getOperand(1), Load.getOperand(2));
378  CurDAG->UpdateNodeOperands(Store, Load.getValue(1), Store.getOperand(1),
379                             Store.getOperand(2), Store.getOperand(3));
380}
381
382/// isRMWLoad - Return true if N is a load that's part of RMW sub-DAG.
383///
384static bool isRMWLoad(SDValue N, SDValue Chain, SDValue Address,
385                      SDValue &Load) {
386  if (N.getOpcode() == ISD::BIT_CONVERT)
387    N = N.getOperand(0);
388
389  LoadSDNode *LD = dyn_cast<LoadSDNode>(N);
390  if (!LD || LD->isVolatile())
391    return false;
392  if (LD->getAddressingMode() != ISD::UNINDEXED)
393    return false;
394
395  ISD::LoadExtType ExtType = LD->getExtensionType();
396  if (ExtType != ISD::NON_EXTLOAD && ExtType != ISD::EXTLOAD)
397    return false;
398
399  if (N.hasOneUse() &&
400      N.getOperand(1) == Address &&
401      N.getNode()->isOperandOf(Chain.getNode())) {
402    Load = N;
403    return true;
404  }
405  return false;
406}
407
408/// MoveBelowCallSeqStart - Replace CALLSEQ_START operand with load's chain
409/// operand and move load below the call's chain operand.
410static void MoveBelowCallSeqStart(SelectionDAG *CurDAG, SDValue Load,
411                           SDValue Call, SDValue Chain) {
412  SmallVector<SDValue, 8> Ops;
413  for (unsigned i = 0, e = Chain.getNode()->getNumOperands(); i != e; ++i)
414    if (Load.getNode() == Chain.getOperand(i).getNode())
415      Ops.push_back(Load.getOperand(0));
416    else
417      Ops.push_back(Chain.getOperand(i));
418  CurDAG->UpdateNodeOperands(Chain, &Ops[0], Ops.size());
419  CurDAG->UpdateNodeOperands(Load, Call.getOperand(0),
420                             Load.getOperand(1), Load.getOperand(2));
421  Ops.clear();
422  Ops.push_back(SDValue(Load.getNode(), 1));
423  for (unsigned i = 1, e = Call.getNode()->getNumOperands(); i != e; ++i)
424    Ops.push_back(Call.getOperand(i));
425  CurDAG->UpdateNodeOperands(Call, &Ops[0], Ops.size());
426}
427
428/// isCalleeLoad - Return true if call address is a load and it can be
429/// moved below CALLSEQ_START and the chains leading up to the call.
430/// Return the CALLSEQ_START by reference as a second output.
431static bool isCalleeLoad(SDValue Callee, SDValue &Chain) {
432  if (Callee.getNode() == Chain.getNode() || !Callee.hasOneUse())
433    return false;
434  LoadSDNode *LD = dyn_cast<LoadSDNode>(Callee.getNode());
435  if (!LD ||
436      LD->isVolatile() ||
437      LD->getAddressingMode() != ISD::UNINDEXED ||
438      LD->getExtensionType() != ISD::NON_EXTLOAD)
439    return false;
440
441  // Now let's find the callseq_start.
442  while (Chain.getOpcode() != ISD::CALLSEQ_START) {
443    if (!Chain.hasOneUse())
444      return false;
445    Chain = Chain.getOperand(0);
446  }
447  return Chain.getOperand(0).getNode() == Callee.getNode();
448}
449
450
451/// PreprocessForRMW - Preprocess the DAG to make instruction selection better.
452/// This is only run if not in -fast mode (aka -O0).
453/// This allows the instruction selector to pick more read-modify-write
454/// instructions. This is a common case:
455///
456///     [Load chain]
457///         ^
458///         |
459///       [Load]
460///       ^    ^
461///       |    |
462///      /      \-
463///     /         |
464/// [TokenFactor] [Op]
465///     ^          ^
466///     |          |
467///      \        /
468///       \      /
469///       [Store]
470///
471/// The fact the store's chain operand != load's chain will prevent the
472/// (store (op (load))) instruction from being selected. We can transform it to:
473///
474///     [Load chain]
475///         ^
476///         |
477///    [TokenFactor]
478///         ^
479///         |
480///       [Load]
481///       ^    ^
482///       |    |
483///       |     \-
484///       |       |
485///       |     [Op]
486///       |       ^
487///       |       |
488///       \      /
489///        \    /
490///       [Store]
491void X86DAGToDAGISel::PreprocessForRMW() {
492  for (SelectionDAG::allnodes_iterator I = CurDAG->allnodes_begin(),
493         E = CurDAG->allnodes_end(); I != E; ++I) {
494    if (I->getOpcode() == X86ISD::CALL) {
495      /// Also try moving call address load from outside callseq_start to just
496      /// before the call to allow it to be folded.
497      ///
498      ///     [Load chain]
499      ///         ^
500      ///         |
501      ///       [Load]
502      ///       ^    ^
503      ///       |    |
504      ///      /      \--
505      ///     /          |
506      ///[CALLSEQ_START] |
507      ///     ^          |
508      ///     |          |
509      /// [LOAD/C2Reg]   |
510      ///     |          |
511      ///      \        /
512      ///       \      /
513      ///       [CALL]
514      SDValue Chain = I->getOperand(0);
515      SDValue Load  = I->getOperand(1);
516      if (!isCalleeLoad(Load, Chain))
517        continue;
518      MoveBelowCallSeqStart(CurDAG, Load, SDValue(I, 0), Chain);
519      ++NumLoadMoved;
520      continue;
521    }
522
523    if (!ISD::isNON_TRUNCStore(I))
524      continue;
525    SDValue Chain = I->getOperand(0);
526
527    if (Chain.getNode()->getOpcode() != ISD::TokenFactor)
528      continue;
529
530    SDValue N1 = I->getOperand(1);
531    SDValue N2 = I->getOperand(2);
532    if ((N1.getValueType().isFloatingPoint() &&
533         !N1.getValueType().isVector()) ||
534        !N1.hasOneUse())
535      continue;
536
537    bool RModW = false;
538    SDValue Load;
539    unsigned Opcode = N1.getNode()->getOpcode();
540    switch (Opcode) {
541    case ISD::ADD:
542    case ISD::MUL:
543    case ISD::AND:
544    case ISD::OR:
545    case ISD::XOR:
546    case ISD::ADDC:
547    case ISD::ADDE:
548    case ISD::VECTOR_SHUFFLE: {
549      SDValue N10 = N1.getOperand(0);
550      SDValue N11 = N1.getOperand(1);
551      RModW = isRMWLoad(N10, Chain, N2, Load);
552      if (!RModW)
553        RModW = isRMWLoad(N11, Chain, N2, Load);
554      break;
555    }
556    case ISD::SUB:
557    case ISD::SHL:
558    case ISD::SRA:
559    case ISD::SRL:
560    case ISD::ROTL:
561    case ISD::ROTR:
562    case ISD::SUBC:
563    case ISD::SUBE:
564    case X86ISD::SHLD:
565    case X86ISD::SHRD: {
566      SDValue N10 = N1.getOperand(0);
567      RModW = isRMWLoad(N10, Chain, N2, Load);
568      break;
569    }
570    }
571
572    if (RModW) {
573      MoveBelowTokenFactor(CurDAG, Load, SDValue(I, 0), Chain);
574      ++NumLoadMoved;
575    }
576  }
577}
578
579
580/// PreprocessForFPConvert - Walk over the dag lowering fpround and fpextend
581/// nodes that target the FP stack to be store and load to the stack.  This is a
582/// gross hack.  We would like to simply mark these as being illegal, but when
583/// we do that, legalize produces these when it expands calls, then expands
584/// these in the same legalize pass.  We would like dag combine to be able to
585/// hack on these between the call expansion and the node legalization.  As such
586/// this pass basically does "really late" legalization of these inline with the
587/// X86 isel pass.
588void X86DAGToDAGISel::PreprocessForFPConvert() {
589  for (SelectionDAG::allnodes_iterator I = CurDAG->allnodes_begin(),
590       E = CurDAG->allnodes_end(); I != E; ) {
591    SDNode *N = I++;  // Preincrement iterator to avoid invalidation issues.
592    if (N->getOpcode() != ISD::FP_ROUND && N->getOpcode() != ISD::FP_EXTEND)
593      continue;
594
595    // If the source and destination are SSE registers, then this is a legal
596    // conversion that should not be lowered.
597    MVT SrcVT = N->getOperand(0).getValueType();
598    MVT DstVT = N->getValueType(0);
599    bool SrcIsSSE = X86Lowering.isScalarFPTypeInSSEReg(SrcVT);
600    bool DstIsSSE = X86Lowering.isScalarFPTypeInSSEReg(DstVT);
601    if (SrcIsSSE && DstIsSSE)
602      continue;
603
604    if (!SrcIsSSE && !DstIsSSE) {
605      // If this is an FPStack extension, it is a noop.
606      if (N->getOpcode() == ISD::FP_EXTEND)
607        continue;
608      // If this is a value-preserving FPStack truncation, it is a noop.
609      if (N->getConstantOperandVal(1))
610        continue;
611    }
612
613    // Here we could have an FP stack truncation or an FPStack <-> SSE convert.
614    // FPStack has extload and truncstore.  SSE can fold direct loads into other
615    // operations.  Based on this, decide what we want to do.
616    MVT MemVT;
617    if (N->getOpcode() == ISD::FP_ROUND)
618      MemVT = DstVT;  // FP_ROUND must use DstVT, we can't do a 'trunc load'.
619    else
620      MemVT = SrcIsSSE ? SrcVT : DstVT;
621
622    SDValue MemTmp = CurDAG->CreateStackTemporary(MemVT);
623
624    // FIXME: optimize the case where the src/dest is a load or store?
625    SDValue Store = CurDAG->getTruncStore(CurDAG->getEntryNode(),
626                                          N->getOperand(0),
627                                          MemTmp, NULL, 0, MemVT);
628    SDValue Result = CurDAG->getExtLoad(ISD::EXTLOAD, DstVT, Store, MemTmp,
629                                        NULL, 0, MemVT);
630
631    // We're about to replace all uses of the FP_ROUND/FP_EXTEND with the
632    // extload we created.  This will cause general havok on the dag because
633    // anything below the conversion could be folded into other existing nodes.
634    // To avoid invalidating 'I', back it up to the convert node.
635    --I;
636    CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Result);
637
638    // Now that we did that, the node is dead.  Increment the iterator to the
639    // next node to process, then delete N.
640    ++I;
641    CurDAG->DeleteNode(N);
642  }
643}
644
645/// InstructionSelectBasicBlock - This callback is invoked by SelectionDAGISel
646/// when it has created a SelectionDAG for us to codegen.
647void X86DAGToDAGISel::InstructionSelect() {
648  CurBB = BB;  // BB can change as result of isel.
649  if (!OptForSize) {
650    const Function *F = CurDAG->getMachineFunction().getFunction();
651    OptForSize = !F->isDeclaration() &&
652                 F->hasFnAttr(Attribute::OptimizeForSize);
653  }
654
655  DEBUG(BB->dump());
656  if (!Fast)
657    PreprocessForRMW();
658
659  // FIXME: This should only happen when not -fast.
660  PreprocessForFPConvert();
661
662  // Codegen the basic block.
663#ifndef NDEBUG
664  DOUT << "===== Instruction selection begins:\n";
665  Indent = 0;
666#endif
667  SelectRoot();
668#ifndef NDEBUG
669  DOUT << "===== Instruction selection ends:\n";
670#endif
671
672  CurDAG->RemoveDeadNodes();
673}
674
675void X86DAGToDAGISel::InstructionSelectPostProcessing() {
676  // If we are emitting FP stack code, scan the basic block to determine if this
677  // block defines any FP values.  If so, put an FP_REG_KILL instruction before
678  // the terminator of the block.
679
680  // Note that FP stack instructions are used in all modes for long double,
681  // so we always need to do this check.
682  // Also note that it's possible for an FP stack register to be live across
683  // an instruction that produces multiple basic blocks (SSE CMOV) so we
684  // must check all the generated basic blocks.
685
686  // Scan all of the machine instructions in these MBBs, checking for FP
687  // stores.  (RFP32 and RFP64 will not exist in SSE mode, but RFP80 might.)
688  MachineFunction::iterator MBBI = CurBB;
689  MachineFunction::iterator EndMBB = BB; ++EndMBB;
690  for (; MBBI != EndMBB; ++MBBI) {
691    MachineBasicBlock *MBB = MBBI;
692
693    // If this block returns, ignore it.  We don't want to insert an FP_REG_KILL
694    // before the return.
695    if (!MBB->empty()) {
696      MachineBasicBlock::iterator EndI = MBB->end();
697      --EndI;
698      if (EndI->getDesc().isReturn())
699        continue;
700    }
701
702    bool ContainsFPCode = false;
703    for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end();
704         !ContainsFPCode && I != E; ++I) {
705      if (I->getNumOperands() != 0 && I->getOperand(0).isRegister()) {
706        const TargetRegisterClass *clas;
707        for (unsigned op = 0, e = I->getNumOperands(); op != e; ++op) {
708          if (I->getOperand(op).isRegister() && I->getOperand(op).isDef() &&
709            TargetRegisterInfo::isVirtualRegister(I->getOperand(op).getReg()) &&
710              ((clas = RegInfo->getRegClass(I->getOperand(0).getReg())) ==
711                 X86::RFP32RegisterClass ||
712               clas == X86::RFP64RegisterClass ||
713               clas == X86::RFP80RegisterClass)) {
714            ContainsFPCode = true;
715            break;
716          }
717        }
718      }
719    }
720    // Check PHI nodes in successor blocks.  These PHI's will be lowered to have
721    // a copy of the input value in this block.  In SSE mode, we only care about
722    // 80-bit values.
723    if (!ContainsFPCode) {
724      // Final check, check LLVM BB's that are successors to the LLVM BB
725      // corresponding to BB for FP PHI nodes.
726      const BasicBlock *LLVMBB = BB->getBasicBlock();
727      const PHINode *PN;
728      for (succ_const_iterator SI = succ_begin(LLVMBB), E = succ_end(LLVMBB);
729           !ContainsFPCode && SI != E; ++SI) {
730        for (BasicBlock::const_iterator II = SI->begin();
731             (PN = dyn_cast<PHINode>(II)); ++II) {
732          if (PN->getType()==Type::X86_FP80Ty ||
733              (!Subtarget->hasSSE1() && PN->getType()->isFloatingPoint()) ||
734              (!Subtarget->hasSSE2() && PN->getType()==Type::DoubleTy)) {
735            ContainsFPCode = true;
736            break;
737          }
738        }
739      }
740    }
741    // Finally, if we found any FP code, emit the FP_REG_KILL instruction.
742    if (ContainsFPCode) {
743      BuildMI(*MBB, MBBI->getFirstTerminator(),
744              TM.getInstrInfo()->get(X86::FP_REG_KILL));
745      ++NumFPKill;
746    }
747  }
748}
749
750/// EmitSpecialCodeForMain - Emit any code that needs to be executed only in
751/// the main function.
752void X86DAGToDAGISel::EmitSpecialCodeForMain(MachineBasicBlock *BB,
753                                             MachineFrameInfo *MFI) {
754  const TargetInstrInfo *TII = TM.getInstrInfo();
755  if (Subtarget->isTargetCygMing())
756    BuildMI(BB, TII->get(X86::CALLpcrel32)).addExternalSymbol("__main");
757}
758
759void X86DAGToDAGISel::EmitFunctionEntryCode(Function &Fn, MachineFunction &MF) {
760  // If this is main, emit special code for main.
761  MachineBasicBlock *BB = MF.begin();
762  if (Fn.hasExternalLinkage() && Fn.getName() == "main")
763    EmitSpecialCodeForMain(BB, MF.getFrameInfo());
764}
765
766/// MatchAddress - Add the specified node to the specified addressing mode,
767/// returning true if it cannot be done.  This just pattern matches for the
768/// addressing mode.
769bool X86DAGToDAGISel::MatchAddress(SDValue N, X86ISelAddressMode &AM,
770                                   bool isRoot, unsigned Depth) {
771  DOUT << "MatchAddress: "; DEBUG(AM.dump());
772  // Limit recursion.
773  if (Depth > 5)
774    return MatchAddressBase(N, AM, isRoot, Depth);
775
776  // RIP relative addressing: %rip + 32-bit displacement!
777  if (AM.isRIPRel) {
778    if (!AM.ES && AM.JT != -1 && N.getOpcode() == ISD::Constant) {
779      int64_t Val = cast<ConstantSDNode>(N)->getSExtValue();
780      if (isInt32(AM.Disp + Val)) {
781        AM.Disp += Val;
782        return false;
783      }
784    }
785    return true;
786  }
787
788  int id = N.getNode()->getNodeId();
789  bool AlreadySelected = isSelected(id); // Already selected, not yet replaced.
790
791  switch (N.getOpcode()) {
792  default: break;
793  case ISD::Constant: {
794    int64_t Val = cast<ConstantSDNode>(N)->getSExtValue();
795    if (isInt32(AM.Disp + Val)) {
796      AM.Disp += Val;
797      return false;
798    }
799    break;
800  }
801
802  case X86ISD::Wrapper: {
803DOUT << "Wrapper: 64bit " << Subtarget->is64Bit();
804DOUT << " AM "; DEBUG(AM.dump()); DOUT << "\n";
805DOUT << "AlreadySelected " << AlreadySelected << "\n";
806    bool is64Bit = Subtarget->is64Bit();
807    // Under X86-64 non-small code model, GV (and friends) are 64-bits.
808    // Also, base and index reg must be 0 in order to use rip as base.
809    if (is64Bit && (TM.getCodeModel() != CodeModel::Small ||
810                    AM.Base.Reg.getNode() || AM.IndexReg.getNode()))
811      break;
812    if (AM.GV != 0 || AM.CP != 0 || AM.ES != 0 || AM.JT != -1)
813      break;
814    // If value is available in a register both base and index components have
815    // been picked, we can't fit the result available in the register in the
816    // addressing mode. Duplicate GlobalAddress or ConstantPool as displacement.
817    if (!AlreadySelected || (AM.Base.Reg.getNode() && AM.IndexReg.getNode())) {
818      SDValue N0 = N.getOperand(0);
819      if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(N0)) {
820        GlobalValue *GV = G->getGlobal();
821        AM.GV = GV;
822        AM.Disp += G->getOffset();
823        AM.isRIPRel = TM.symbolicAddressesAreRIPRel();
824        return false;
825      } else if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(N0)) {
826        AM.CP = CP->getConstVal();
827        AM.Align = CP->getAlignment();
828        AM.Disp += CP->getOffset();
829        AM.isRIPRel = TM.symbolicAddressesAreRIPRel();
830        return false;
831      } else if (ExternalSymbolSDNode *S =dyn_cast<ExternalSymbolSDNode>(N0)) {
832        AM.ES = S->getSymbol();
833        AM.isRIPRel = TM.symbolicAddressesAreRIPRel();
834        return false;
835      } else if (JumpTableSDNode *J = dyn_cast<JumpTableSDNode>(N0)) {
836        AM.JT = J->getIndex();
837        AM.isRIPRel = TM.symbolicAddressesAreRIPRel();
838        return false;
839      }
840    }
841    break;
842  }
843
844  case ISD::FrameIndex:
845    if (AM.BaseType == X86ISelAddressMode::RegBase
846        && AM.Base.Reg.getNode() == 0) {
847      AM.BaseType = X86ISelAddressMode::FrameIndexBase;
848      AM.Base.FrameIndex = cast<FrameIndexSDNode>(N)->getIndex();
849      return false;
850    }
851    break;
852
853  case ISD::SHL:
854    if (AlreadySelected || AM.IndexReg.getNode() != 0
855        || AM.Scale != 1 || AM.isRIPRel)
856      break;
857
858    if (ConstantSDNode
859          *CN = dyn_cast<ConstantSDNode>(N.getNode()->getOperand(1))) {
860      unsigned Val = CN->getZExtValue();
861      if (Val == 1 || Val == 2 || Val == 3) {
862        AM.Scale = 1 << Val;
863        SDValue ShVal = N.getNode()->getOperand(0);
864
865        // Okay, we know that we have a scale by now.  However, if the scaled
866        // value is an add of something and a constant, we can fold the
867        // constant into the disp field here.
868        if (ShVal.getNode()->getOpcode() == ISD::ADD && ShVal.hasOneUse() &&
869            isa<ConstantSDNode>(ShVal.getNode()->getOperand(1))) {
870          AM.IndexReg = ShVal.getNode()->getOperand(0);
871          ConstantSDNode *AddVal =
872            cast<ConstantSDNode>(ShVal.getNode()->getOperand(1));
873          uint64_t Disp = AM.Disp + (AddVal->getZExtValue() << Val);
874          if (isInt32(Disp))
875            AM.Disp = Disp;
876          else
877            AM.IndexReg = ShVal;
878        } else {
879          AM.IndexReg = ShVal;
880        }
881        return false;
882      }
883    break;
884    }
885
886  case ISD::SMUL_LOHI:
887  case ISD::UMUL_LOHI:
888    // A mul_lohi where we need the low part can be folded as a plain multiply.
889    if (N.getResNo() != 0) break;
890    // FALL THROUGH
891  case ISD::MUL:
892    // X*[3,5,9] -> X+X*[2,4,8]
893    if (!AlreadySelected &&
894        AM.BaseType == X86ISelAddressMode::RegBase &&
895        AM.Base.Reg.getNode() == 0 &&
896        AM.IndexReg.getNode() == 0 &&
897        !AM.isRIPRel) {
898      if (ConstantSDNode
899            *CN = dyn_cast<ConstantSDNode>(N.getNode()->getOperand(1)))
900        if (CN->getZExtValue() == 3 || CN->getZExtValue() == 5 ||
901            CN->getZExtValue() == 9) {
902          AM.Scale = unsigned(CN->getZExtValue())-1;
903
904          SDValue MulVal = N.getNode()->getOperand(0);
905          SDValue Reg;
906
907          // Okay, we know that we have a scale by now.  However, if the scaled
908          // value is an add of something and a constant, we can fold the
909          // constant into the disp field here.
910          if (MulVal.getNode()->getOpcode() == ISD::ADD && MulVal.hasOneUse() &&
911              isa<ConstantSDNode>(MulVal.getNode()->getOperand(1))) {
912            Reg = MulVal.getNode()->getOperand(0);
913            ConstantSDNode *AddVal =
914              cast<ConstantSDNode>(MulVal.getNode()->getOperand(1));
915            uint64_t Disp = AM.Disp + AddVal->getZExtValue() *
916                                      CN->getZExtValue();
917            if (isInt32(Disp))
918              AM.Disp = Disp;
919            else
920              Reg = N.getNode()->getOperand(0);
921          } else {
922            Reg = N.getNode()->getOperand(0);
923          }
924
925          AM.IndexReg = AM.Base.Reg = Reg;
926          return false;
927        }
928    }
929    break;
930
931  case ISD::ADD:
932    if (!AlreadySelected) {
933      X86ISelAddressMode Backup = AM;
934      if (!MatchAddress(N.getNode()->getOperand(0), AM, false, Depth+1) &&
935          !MatchAddress(N.getNode()->getOperand(1), AM, false, Depth+1))
936        return false;
937      AM = Backup;
938      if (!MatchAddress(N.getNode()->getOperand(1), AM, false, Depth+1) &&
939          !MatchAddress(N.getNode()->getOperand(0), AM, false, Depth+1))
940        return false;
941      AM = Backup;
942    }
943    break;
944
945  case ISD::OR:
946    // Handle "X | C" as "X + C" iff X is known to have C bits clear.
947    if (AlreadySelected) break;
948
949    if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
950      X86ISelAddressMode Backup = AM;
951      // Start with the LHS as an addr mode.
952      if (!MatchAddress(N.getOperand(0), AM, false) &&
953          // Address could not have picked a GV address for the displacement.
954          AM.GV == NULL &&
955          // On x86-64, the resultant disp must fit in 32-bits.
956          isInt32(AM.Disp + CN->getSExtValue()) &&
957          // Check to see if the LHS & C is zero.
958          CurDAG->MaskedValueIsZero(N.getOperand(0), CN->getAPIntValue())) {
959        AM.Disp += CN->getZExtValue();
960        return false;
961      }
962      AM = Backup;
963    }
964    break;
965
966  case ISD::AND: {
967    // Handle "(x << C1) & C2" as "(X & (C2>>C1)) << C1" if safe and if this
968    // allows us to fold the shift into this addressing mode.
969    if (AlreadySelected) break;
970    SDValue Shift = N.getOperand(0);
971    if (Shift.getOpcode() != ISD::SHL) break;
972
973    // Scale must not be used already.
974    if (AM.IndexReg.getNode() != 0 || AM.Scale != 1) break;
975
976    // Not when RIP is used as the base.
977    if (AM.isRIPRel) break;
978
979    ConstantSDNode *C2 = dyn_cast<ConstantSDNode>(N.getOperand(1));
980    ConstantSDNode *C1 = dyn_cast<ConstantSDNode>(Shift.getOperand(1));
981    if (!C1 || !C2) break;
982
983    // Not likely to be profitable if either the AND or SHIFT node has more
984    // than one use (unless all uses are for address computation). Besides,
985    // isel mechanism requires their node ids to be reused.
986    if (!N.hasOneUse() || !Shift.hasOneUse())
987      break;
988
989    // Verify that the shift amount is something we can fold.
990    unsigned ShiftCst = C1->getZExtValue();
991    if (ShiftCst != 1 && ShiftCst != 2 && ShiftCst != 3)
992      break;
993
994    // Get the new AND mask, this folds to a constant.
995    SDValue NewANDMask = CurDAG->getNode(ISD::SRL, N.getValueType(),
996                                           SDValue(C2, 0), SDValue(C1, 0));
997    SDValue NewAND = CurDAG->getNode(ISD::AND, N.getValueType(),
998                                       Shift.getOperand(0), NewANDMask);
999    NewANDMask.getNode()->setNodeId(Shift.getNode()->getNodeId());
1000    NewAND.getNode()->setNodeId(N.getNode()->getNodeId());
1001
1002    AM.Scale = 1 << ShiftCst;
1003    AM.IndexReg = NewAND;
1004    return false;
1005  }
1006  }
1007
1008  return MatchAddressBase(N, AM, isRoot, Depth);
1009}
1010
1011/// MatchAddressBase - Helper for MatchAddress. Add the specified node to the
1012/// specified addressing mode without any further recursion.
1013bool X86DAGToDAGISel::MatchAddressBase(SDValue N, X86ISelAddressMode &AM,
1014                                       bool isRoot, unsigned Depth) {
1015  // Is the base register already occupied?
1016  if (AM.BaseType != X86ISelAddressMode::RegBase || AM.Base.Reg.getNode()) {
1017    // If so, check to see if the scale index register is set.
1018    if (AM.IndexReg.getNode() == 0 && !AM.isRIPRel) {
1019      AM.IndexReg = N;
1020      AM.Scale = 1;
1021      return false;
1022    }
1023
1024    // Otherwise, we cannot select it.
1025    return true;
1026  }
1027
1028  // Default, generate it as a register.
1029  AM.BaseType = X86ISelAddressMode::RegBase;
1030  AM.Base.Reg = N;
1031  return false;
1032}
1033
1034/// SelectAddr - returns true if it is able pattern match an addressing mode.
1035/// It returns the operands which make up the maximal addressing mode it can
1036/// match by reference.
1037bool X86DAGToDAGISel::SelectAddr(SDValue Op, SDValue N, SDValue &Base,
1038                                 SDValue &Scale, SDValue &Index,
1039                                 SDValue &Disp) {
1040  X86ISelAddressMode AM;
1041  if (MatchAddress(N, AM))
1042    return false;
1043
1044  MVT VT = N.getValueType();
1045  if (AM.BaseType == X86ISelAddressMode::RegBase) {
1046    if (!AM.Base.Reg.getNode())
1047      AM.Base.Reg = CurDAG->getRegister(0, VT);
1048  }
1049
1050  if (!AM.IndexReg.getNode())
1051    AM.IndexReg = CurDAG->getRegister(0, VT);
1052
1053  getAddressOperands(AM, Base, Scale, Index, Disp);
1054  return true;
1055}
1056
1057/// SelectScalarSSELoad - Match a scalar SSE load.  In particular, we want to
1058/// match a load whose top elements are either undef or zeros.  The load flavor
1059/// is derived from the type of N, which is either v4f32 or v2f64.
1060bool X86DAGToDAGISel::SelectScalarSSELoad(SDValue Op, SDValue Pred,
1061                                          SDValue N, SDValue &Base,
1062                                          SDValue &Scale, SDValue &Index,
1063                                          SDValue &Disp, SDValue &InChain,
1064                                          SDValue &OutChain) {
1065  if (N.getOpcode() == ISD::SCALAR_TO_VECTOR) {
1066    InChain = N.getOperand(0).getValue(1);
1067    if (ISD::isNON_EXTLoad(InChain.getNode()) &&
1068        InChain.getValue(0).hasOneUse() &&
1069        N.hasOneUse() &&
1070        CanBeFoldedBy(N.getNode(), Pred.getNode(), Op.getNode())) {
1071      LoadSDNode *LD = cast<LoadSDNode>(InChain);
1072      if (!SelectAddr(Op, LD->getBasePtr(), Base, Scale, Index, Disp))
1073        return false;
1074      OutChain = LD->getChain();
1075      return true;
1076    }
1077  }
1078
1079  // Also handle the case where we explicitly require zeros in the top
1080  // elements.  This is a vector shuffle from the zero vector.
1081  if (N.getOpcode() == X86ISD::VZEXT_MOVL && N.getNode()->hasOneUse() &&
1082      // Check to see if the top elements are all zeros (or bitcast of zeros).
1083      N.getOperand(0).getOpcode() == ISD::SCALAR_TO_VECTOR &&
1084      N.getOperand(0).getNode()->hasOneUse() &&
1085      ISD::isNON_EXTLoad(N.getOperand(0).getOperand(0).getNode()) &&
1086      N.getOperand(0).getOperand(0).hasOneUse()) {
1087    // Okay, this is a zero extending load.  Fold it.
1088    LoadSDNode *LD = cast<LoadSDNode>(N.getOperand(0).getOperand(0));
1089    if (!SelectAddr(Op, LD->getBasePtr(), Base, Scale, Index, Disp))
1090      return false;
1091    OutChain = LD->getChain();
1092    InChain = SDValue(LD, 1);
1093    return true;
1094  }
1095  return false;
1096}
1097
1098
1099/// SelectLEAAddr - it calls SelectAddr and determines if the maximal addressing
1100/// mode it matches can be cost effectively emitted as an LEA instruction.
1101bool X86DAGToDAGISel::SelectLEAAddr(SDValue Op, SDValue N,
1102                                    SDValue &Base, SDValue &Scale,
1103                                    SDValue &Index, SDValue &Disp) {
1104  X86ISelAddressMode AM;
1105  if (MatchAddress(N, AM))
1106    return false;
1107
1108  MVT VT = N.getValueType();
1109  unsigned Complexity = 0;
1110  if (AM.BaseType == X86ISelAddressMode::RegBase)
1111    if (AM.Base.Reg.getNode())
1112      Complexity = 1;
1113    else
1114      AM.Base.Reg = CurDAG->getRegister(0, VT);
1115  else if (AM.BaseType == X86ISelAddressMode::FrameIndexBase)
1116    Complexity = 4;
1117
1118  if (AM.IndexReg.getNode())
1119    Complexity++;
1120  else
1121    AM.IndexReg = CurDAG->getRegister(0, VT);
1122
1123  // Don't match just leal(,%reg,2). It's cheaper to do addl %reg, %reg, or with
1124  // a simple shift.
1125  if (AM.Scale > 1)
1126    Complexity++;
1127
1128  // FIXME: We are artificially lowering the criteria to turn ADD %reg, $GA
1129  // to a LEA. This is determined with some expermentation but is by no means
1130  // optimal (especially for code size consideration). LEA is nice because of
1131  // its three-address nature. Tweak the cost function again when we can run
1132  // convertToThreeAddress() at register allocation time.
1133  if (AM.GV || AM.CP || AM.ES || AM.JT != -1) {
1134    // For X86-64, we should always use lea to materialize RIP relative
1135    // addresses.
1136    if (Subtarget->is64Bit())
1137      Complexity = 4;
1138    else
1139      Complexity += 2;
1140  }
1141
1142  if (AM.Disp && (AM.Base.Reg.getNode() || AM.IndexReg.getNode()))
1143    Complexity++;
1144
1145  if (Complexity > 2) {
1146    getAddressOperands(AM, Base, Scale, Index, Disp);
1147    return true;
1148  }
1149  return false;
1150}
1151
1152bool X86DAGToDAGISel::TryFoldLoad(SDValue P, SDValue N,
1153                                  SDValue &Base, SDValue &Scale,
1154                                  SDValue &Index, SDValue &Disp) {
1155  if (ISD::isNON_EXTLoad(N.getNode()) &&
1156      N.hasOneUse() &&
1157      CanBeFoldedBy(N.getNode(), P.getNode(), P.getNode()))
1158    return SelectAddr(P, N.getOperand(1), Base, Scale, Index, Disp);
1159  return false;
1160}
1161
1162/// getGlobalBaseReg - Return an SDNode that returns the value of
1163/// the global base register. Output instructions required to
1164/// initialize the global base register, if necessary.
1165///
1166SDNode *X86DAGToDAGISel::getGlobalBaseReg() {
1167  MachineFunction *MF = CurBB->getParent();
1168  unsigned GlobalBaseReg = TM.getInstrInfo()->getGlobalBaseReg(MF);
1169  return CurDAG->getRegister(GlobalBaseReg, TLI.getPointerTy()).getNode();
1170}
1171
1172static SDNode *FindCallStartFromCall(SDNode *Node) {
1173  if (Node->getOpcode() == ISD::CALLSEQ_START) return Node;
1174    assert(Node->getOperand(0).getValueType() == MVT::Other &&
1175         "Node doesn't have a token chain argument!");
1176  return FindCallStartFromCall(Node->getOperand(0).getNode());
1177}
1178
1179/// getTruncateTo8Bit - return an SDNode that implements a subreg based
1180/// truncate of the specified operand to i8. This can be done with tablegen,
1181/// except that this code uses MVT::Flag in a tricky way that happens to
1182/// improve scheduling in some cases.
1183SDNode *X86DAGToDAGISel::getTruncateTo8Bit(SDValue N0) {
1184  assert(!Subtarget->is64Bit() &&
1185         "getTruncateTo8Bit is only needed on x86-32!");
1186  SDValue SRIdx = CurDAG->getTargetConstant(1, MVT::i32); // SubRegSet 1
1187
1188  // Ensure that the source register has an 8-bit subreg on 32-bit targets
1189  unsigned Opc;
1190  MVT N0VT = N0.getValueType();
1191  switch (N0VT.getSimpleVT()) {
1192  default: assert(0 && "Unknown truncate!");
1193  case MVT::i16:
1194    Opc = X86::MOV16to16_;
1195    break;
1196  case MVT::i32:
1197    Opc = X86::MOV32to32_;
1198    break;
1199  }
1200
1201  // The use of MVT::Flag here is not strictly accurate, but it helps
1202  // scheduling in some cases.
1203  N0 = SDValue(CurDAG->getTargetNode(Opc, N0VT, MVT::Flag, N0), 0);
1204  return CurDAG->getTargetNode(X86::EXTRACT_SUBREG,
1205                               MVT::i8, N0, SRIdx, N0.getValue(1));
1206}
1207
1208
1209SDNode *X86DAGToDAGISel::Select(SDValue N) {
1210  SDNode *Node = N.getNode();
1211  MVT NVT = Node->getValueType(0);
1212  unsigned Opc, MOpc;
1213  unsigned Opcode = Node->getOpcode();
1214
1215#ifndef NDEBUG
1216  DOUT << std::string(Indent, ' ') << "Selecting: ";
1217  DEBUG(Node->dump(CurDAG));
1218  DOUT << "\n";
1219  Indent += 2;
1220#endif
1221
1222  if (Node->isMachineOpcode()) {
1223#ifndef NDEBUG
1224    DOUT << std::string(Indent-2, ' ') << "== ";
1225    DEBUG(Node->dump(CurDAG));
1226    DOUT << "\n";
1227    Indent -= 2;
1228#endif
1229    return NULL;   // Already selected.
1230  }
1231
1232  switch (Opcode) {
1233    default: break;
1234    case X86ISD::GlobalBaseReg:
1235      return getGlobalBaseReg();
1236
1237    case ISD::ADD: {
1238      // Turn ADD X, c to MOV32ri X+c. This cannot be done with tblgen'd
1239      // code and is matched first so to prevent it from being turned into
1240      // LEA32r X+c.
1241      // In 64-bit small code size mode, use LEA to take advantage of
1242      // RIP-relative addressing.
1243      if (TM.getCodeModel() != CodeModel::Small)
1244        break;
1245      MVT PtrVT = TLI.getPointerTy();
1246      SDValue N0 = N.getOperand(0);
1247      SDValue N1 = N.getOperand(1);
1248      if (N.getNode()->getValueType(0) == PtrVT &&
1249          N0.getOpcode() == X86ISD::Wrapper &&
1250          N1.getOpcode() == ISD::Constant) {
1251        unsigned Offset = (unsigned)cast<ConstantSDNode>(N1)->getZExtValue();
1252        SDValue C(0, 0);
1253        // TODO: handle ExternalSymbolSDNode.
1254        if (GlobalAddressSDNode *G =
1255            dyn_cast<GlobalAddressSDNode>(N0.getOperand(0))) {
1256          C = CurDAG->getTargetGlobalAddress(G->getGlobal(), PtrVT,
1257                                             G->getOffset() + Offset);
1258        } else if (ConstantPoolSDNode *CP =
1259                   dyn_cast<ConstantPoolSDNode>(N0.getOperand(0))) {
1260          C = CurDAG->getTargetConstantPool(CP->getConstVal(), PtrVT,
1261                                            CP->getAlignment(),
1262                                            CP->getOffset()+Offset);
1263        }
1264
1265        if (C.getNode()) {
1266          if (Subtarget->is64Bit()) {
1267            SDValue Ops[] = { CurDAG->getRegister(0, PtrVT), getI8Imm(1),
1268                                CurDAG->getRegister(0, PtrVT), C };
1269            return CurDAG->SelectNodeTo(N.getNode(), X86::LEA64r,
1270                                        MVT::i64, Ops, 4);
1271          } else
1272            return CurDAG->SelectNodeTo(N.getNode(), X86::MOV32ri, PtrVT, C);
1273        }
1274      }
1275
1276      // Other cases are handled by auto-generated code.
1277      break;
1278    }
1279
1280    case ISD::SMUL_LOHI:
1281    case ISD::UMUL_LOHI: {
1282      SDValue N0 = Node->getOperand(0);
1283      SDValue N1 = Node->getOperand(1);
1284
1285      bool isSigned = Opcode == ISD::SMUL_LOHI;
1286      if (!isSigned)
1287        switch (NVT.getSimpleVT()) {
1288        default: assert(0 && "Unsupported VT!");
1289        case MVT::i8:  Opc = X86::MUL8r;  MOpc = X86::MUL8m;  break;
1290        case MVT::i16: Opc = X86::MUL16r; MOpc = X86::MUL16m; break;
1291        case MVT::i32: Opc = X86::MUL32r; MOpc = X86::MUL32m; break;
1292        case MVT::i64: Opc = X86::MUL64r; MOpc = X86::MUL64m; break;
1293        }
1294      else
1295        switch (NVT.getSimpleVT()) {
1296        default: assert(0 && "Unsupported VT!");
1297        case MVT::i8:  Opc = X86::IMUL8r;  MOpc = X86::IMUL8m;  break;
1298        case MVT::i16: Opc = X86::IMUL16r; MOpc = X86::IMUL16m; break;
1299        case MVT::i32: Opc = X86::IMUL32r; MOpc = X86::IMUL32m; break;
1300        case MVT::i64: Opc = X86::IMUL64r; MOpc = X86::IMUL64m; break;
1301        }
1302
1303      unsigned LoReg, HiReg;
1304      switch (NVT.getSimpleVT()) {
1305      default: assert(0 && "Unsupported VT!");
1306      case MVT::i8:  LoReg = X86::AL;  HiReg = X86::AH;  break;
1307      case MVT::i16: LoReg = X86::AX;  HiReg = X86::DX;  break;
1308      case MVT::i32: LoReg = X86::EAX; HiReg = X86::EDX; break;
1309      case MVT::i64: LoReg = X86::RAX; HiReg = X86::RDX; break;
1310      }
1311
1312      SDValue Tmp0, Tmp1, Tmp2, Tmp3;
1313      bool foldedLoad = TryFoldLoad(N, N1, Tmp0, Tmp1, Tmp2, Tmp3);
1314      // multiplty is commmutative
1315      if (!foldedLoad) {
1316        foldedLoad = TryFoldLoad(N, N0, Tmp0, Tmp1, Tmp2, Tmp3);
1317        if (foldedLoad)
1318          std::swap(N0, N1);
1319      }
1320
1321      AddToISelQueue(N0);
1322      SDValue InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), LoReg,
1323                                              N0, SDValue()).getValue(1);
1324
1325      if (foldedLoad) {
1326        AddToISelQueue(N1.getOperand(0));
1327        AddToISelQueue(Tmp0);
1328        AddToISelQueue(Tmp1);
1329        AddToISelQueue(Tmp2);
1330        AddToISelQueue(Tmp3);
1331        SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, N1.getOperand(0), InFlag };
1332        SDNode *CNode =
1333          CurDAG->getTargetNode(MOpc, MVT::Other, MVT::Flag, Ops, 6);
1334        InFlag = SDValue(CNode, 1);
1335        // Update the chain.
1336        ReplaceUses(N1.getValue(1), SDValue(CNode, 0));
1337      } else {
1338        AddToISelQueue(N1);
1339        InFlag =
1340          SDValue(CurDAG->getTargetNode(Opc, MVT::Flag, N1, InFlag), 0);
1341      }
1342
1343      // Copy the low half of the result, if it is needed.
1344      if (!N.getValue(0).use_empty()) {
1345        SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(),
1346                                                  LoReg, NVT, InFlag);
1347        InFlag = Result.getValue(2);
1348        ReplaceUses(N.getValue(0), Result);
1349#ifndef NDEBUG
1350        DOUT << std::string(Indent-2, ' ') << "=> ";
1351        DEBUG(Result.getNode()->dump(CurDAG));
1352        DOUT << "\n";
1353#endif
1354      }
1355      // Copy the high half of the result, if it is needed.
1356      if (!N.getValue(1).use_empty()) {
1357        SDValue Result;
1358        if (HiReg == X86::AH && Subtarget->is64Bit()) {
1359          // Prevent use of AH in a REX instruction by referencing AX instead.
1360          // Shift it down 8 bits.
1361          Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(),
1362                                          X86::AX, MVT::i16, InFlag);
1363          InFlag = Result.getValue(2);
1364          Result = SDValue(CurDAG->getTargetNode(X86::SHR16ri, MVT::i16, Result,
1365                                     CurDAG->getTargetConstant(8, MVT::i8)), 0);
1366          // Then truncate it down to i8.
1367          SDValue SRIdx = CurDAG->getTargetConstant(1, MVT::i32); // SubRegSet 1
1368          Result = SDValue(CurDAG->getTargetNode(X86::EXTRACT_SUBREG,
1369                                                   MVT::i8, Result, SRIdx), 0);
1370        } else {
1371          Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(),
1372                                          HiReg, NVT, InFlag);
1373          InFlag = Result.getValue(2);
1374        }
1375        ReplaceUses(N.getValue(1), Result);
1376#ifndef NDEBUG
1377        DOUT << std::string(Indent-2, ' ') << "=> ";
1378        DEBUG(Result.getNode()->dump(CurDAG));
1379        DOUT << "\n";
1380#endif
1381      }
1382
1383#ifndef NDEBUG
1384      Indent -= 2;
1385#endif
1386
1387      return NULL;
1388    }
1389
1390    case ISD::SDIVREM:
1391    case ISD::UDIVREM: {
1392      SDValue N0 = Node->getOperand(0);
1393      SDValue N1 = Node->getOperand(1);
1394
1395      bool isSigned = Opcode == ISD::SDIVREM;
1396      if (!isSigned)
1397        switch (NVT.getSimpleVT()) {
1398        default: assert(0 && "Unsupported VT!");
1399        case MVT::i8:  Opc = X86::DIV8r;  MOpc = X86::DIV8m;  break;
1400        case MVT::i16: Opc = X86::DIV16r; MOpc = X86::DIV16m; break;
1401        case MVT::i32: Opc = X86::DIV32r; MOpc = X86::DIV32m; break;
1402        case MVT::i64: Opc = X86::DIV64r; MOpc = X86::DIV64m; break;
1403        }
1404      else
1405        switch (NVT.getSimpleVT()) {
1406        default: assert(0 && "Unsupported VT!");
1407        case MVT::i8:  Opc = X86::IDIV8r;  MOpc = X86::IDIV8m;  break;
1408        case MVT::i16: Opc = X86::IDIV16r; MOpc = X86::IDIV16m; break;
1409        case MVT::i32: Opc = X86::IDIV32r; MOpc = X86::IDIV32m; break;
1410        case MVT::i64: Opc = X86::IDIV64r; MOpc = X86::IDIV64m; break;
1411        }
1412
1413      unsigned LoReg, HiReg;
1414      unsigned ClrOpcode, SExtOpcode;
1415      switch (NVT.getSimpleVT()) {
1416      default: assert(0 && "Unsupported VT!");
1417      case MVT::i8:
1418        LoReg = X86::AL;  HiReg = X86::AH;
1419        ClrOpcode  = 0;
1420        SExtOpcode = X86::CBW;
1421        break;
1422      case MVT::i16:
1423        LoReg = X86::AX;  HiReg = X86::DX;
1424        ClrOpcode  = X86::MOV16r0;
1425        SExtOpcode = X86::CWD;
1426        break;
1427      case MVT::i32:
1428        LoReg = X86::EAX; HiReg = X86::EDX;
1429        ClrOpcode  = X86::MOV32r0;
1430        SExtOpcode = X86::CDQ;
1431        break;
1432      case MVT::i64:
1433        LoReg = X86::RAX; HiReg = X86::RDX;
1434        ClrOpcode  = X86::MOV64r0;
1435        SExtOpcode = X86::CQO;
1436        break;
1437      }
1438
1439      SDValue Tmp0, Tmp1, Tmp2, Tmp3;
1440      bool foldedLoad = TryFoldLoad(N, N1, Tmp0, Tmp1, Tmp2, Tmp3);
1441
1442      SDValue InFlag;
1443      if (NVT == MVT::i8 && !isSigned) {
1444        // Special case for div8, just use a move with zero extension to AX to
1445        // clear the upper 8 bits (AH).
1446        SDValue Tmp0, Tmp1, Tmp2, Tmp3, Move, Chain;
1447        if (TryFoldLoad(N, N0, Tmp0, Tmp1, Tmp2, Tmp3)) {
1448          SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, N0.getOperand(0) };
1449          AddToISelQueue(N0.getOperand(0));
1450          AddToISelQueue(Tmp0);
1451          AddToISelQueue(Tmp1);
1452          AddToISelQueue(Tmp2);
1453          AddToISelQueue(Tmp3);
1454          Move =
1455            SDValue(CurDAG->getTargetNode(X86::MOVZX16rm8, MVT::i16, MVT::Other,
1456                                            Ops, 5), 0);
1457          Chain = Move.getValue(1);
1458          ReplaceUses(N0.getValue(1), Chain);
1459        } else {
1460          AddToISelQueue(N0);
1461          Move =
1462            SDValue(CurDAG->getTargetNode(X86::MOVZX16rr8, MVT::i16, N0), 0);
1463          Chain = CurDAG->getEntryNode();
1464        }
1465        Chain  = CurDAG->getCopyToReg(Chain, X86::AX, Move, SDValue());
1466        InFlag = Chain.getValue(1);
1467      } else {
1468        AddToISelQueue(N0);
1469        InFlag =
1470          CurDAG->getCopyToReg(CurDAG->getEntryNode(),
1471                               LoReg, N0, SDValue()).getValue(1);
1472        if (isSigned) {
1473          // Sign extend the low part into the high part.
1474          InFlag =
1475            SDValue(CurDAG->getTargetNode(SExtOpcode, MVT::Flag, InFlag), 0);
1476        } else {
1477          // Zero out the high part, effectively zero extending the input.
1478          SDValue ClrNode = SDValue(CurDAG->getTargetNode(ClrOpcode, NVT), 0);
1479          InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), HiReg,
1480                                        ClrNode, InFlag).getValue(1);
1481        }
1482      }
1483
1484      if (foldedLoad) {
1485        AddToISelQueue(N1.getOperand(0));
1486        AddToISelQueue(Tmp0);
1487        AddToISelQueue(Tmp1);
1488        AddToISelQueue(Tmp2);
1489        AddToISelQueue(Tmp3);
1490        SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, N1.getOperand(0), InFlag };
1491        SDNode *CNode =
1492          CurDAG->getTargetNode(MOpc, MVT::Other, MVT::Flag, Ops, 6);
1493        InFlag = SDValue(CNode, 1);
1494        // Update the chain.
1495        ReplaceUses(N1.getValue(1), SDValue(CNode, 0));
1496      } else {
1497        AddToISelQueue(N1);
1498        InFlag =
1499          SDValue(CurDAG->getTargetNode(Opc, MVT::Flag, N1, InFlag), 0);
1500      }
1501
1502      // Copy the division (low) result, if it is needed.
1503      if (!N.getValue(0).use_empty()) {
1504        SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(),
1505                                                  LoReg, NVT, InFlag);
1506        InFlag = Result.getValue(2);
1507        ReplaceUses(N.getValue(0), Result);
1508#ifndef NDEBUG
1509        DOUT << std::string(Indent-2, ' ') << "=> ";
1510        DEBUG(Result.getNode()->dump(CurDAG));
1511        DOUT << "\n";
1512#endif
1513      }
1514      // Copy the remainder (high) result, if it is needed.
1515      if (!N.getValue(1).use_empty()) {
1516        SDValue Result;
1517        if (HiReg == X86::AH && Subtarget->is64Bit()) {
1518          // Prevent use of AH in a REX instruction by referencing AX instead.
1519          // Shift it down 8 bits.
1520          Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(),
1521                                          X86::AX, MVT::i16, InFlag);
1522          InFlag = Result.getValue(2);
1523          Result = SDValue(CurDAG->getTargetNode(X86::SHR16ri, MVT::i16, Result,
1524                                     CurDAG->getTargetConstant(8, MVT::i8)), 0);
1525          // Then truncate it down to i8.
1526          SDValue SRIdx = CurDAG->getTargetConstant(1, MVT::i32); // SubRegSet 1
1527          Result = SDValue(CurDAG->getTargetNode(X86::EXTRACT_SUBREG,
1528                                                   MVT::i8, Result, SRIdx), 0);
1529        } else {
1530          Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(),
1531                                          HiReg, NVT, InFlag);
1532          InFlag = Result.getValue(2);
1533        }
1534        ReplaceUses(N.getValue(1), Result);
1535#ifndef NDEBUG
1536        DOUT << std::string(Indent-2, ' ') << "=> ";
1537        DEBUG(Result.getNode()->dump(CurDAG));
1538        DOUT << "\n";
1539#endif
1540      }
1541
1542#ifndef NDEBUG
1543      Indent -= 2;
1544#endif
1545
1546      return NULL;
1547    }
1548
1549    case ISD::SIGN_EXTEND_INREG: {
1550      MVT SVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
1551      if (SVT == MVT::i8 && !Subtarget->is64Bit()) {
1552        SDValue N0 = Node->getOperand(0);
1553        AddToISelQueue(N0);
1554
1555        SDValue TruncOp = SDValue(getTruncateTo8Bit(N0), 0);
1556        unsigned Opc = 0;
1557        switch (NVT.getSimpleVT()) {
1558        default: assert(0 && "Unknown sign_extend_inreg!");
1559        case MVT::i16:
1560          Opc = X86::MOVSX16rr8;
1561          break;
1562        case MVT::i32:
1563          Opc = X86::MOVSX32rr8;
1564          break;
1565        }
1566
1567        SDNode *ResNode = CurDAG->getTargetNode(Opc, NVT, TruncOp);
1568
1569#ifndef NDEBUG
1570        DOUT << std::string(Indent-2, ' ') << "=> ";
1571        DEBUG(TruncOp.getNode()->dump(CurDAG));
1572        DOUT << "\n";
1573        DOUT << std::string(Indent-2, ' ') << "=> ";
1574        DEBUG(ResNode->dump(CurDAG));
1575        DOUT << "\n";
1576        Indent -= 2;
1577#endif
1578        return ResNode;
1579      }
1580      break;
1581    }
1582
1583    case ISD::TRUNCATE: {
1584      if (NVT == MVT::i8 && !Subtarget->is64Bit()) {
1585        SDValue Input = Node->getOperand(0);
1586        AddToISelQueue(Node->getOperand(0));
1587        SDNode *ResNode = getTruncateTo8Bit(Input);
1588
1589#ifndef NDEBUG
1590        DOUT << std::string(Indent-2, ' ') << "=> ";
1591        DEBUG(ResNode->dump(CurDAG));
1592        DOUT << "\n";
1593        Indent -= 2;
1594#endif
1595        return ResNode;
1596      }
1597      break;
1598    }
1599
1600    case ISD::DECLARE: {
1601      // Handle DECLARE nodes here because the second operand may have been
1602      // wrapped in X86ISD::Wrapper.
1603      SDValue Chain = Node->getOperand(0);
1604      SDValue N1 = Node->getOperand(1);
1605      SDValue N2 = Node->getOperand(2);
1606      if (!isa<FrameIndexSDNode>(N1))
1607        break;
1608      int FI = cast<FrameIndexSDNode>(N1)->getIndex();
1609      if (N2.getOpcode() == ISD::ADD &&
1610          N2.getOperand(0).getOpcode() == X86ISD::GlobalBaseReg)
1611        N2 = N2.getOperand(1);
1612      if (N2.getOpcode() == X86ISD::Wrapper &&
1613          isa<GlobalAddressSDNode>(N2.getOperand(0))) {
1614        GlobalValue *GV =
1615          cast<GlobalAddressSDNode>(N2.getOperand(0))->getGlobal();
1616        SDValue Tmp1 = CurDAG->getTargetFrameIndex(FI, TLI.getPointerTy());
1617        SDValue Tmp2 = CurDAG->getTargetGlobalAddress(GV, TLI.getPointerTy());
1618        AddToISelQueue(Chain);
1619        SDValue Ops[] = { Tmp1, Tmp2, Chain };
1620        return CurDAG->getTargetNode(TargetInstrInfo::DECLARE,
1621                                     MVT::Other, Ops, 3);
1622      }
1623      break;
1624    }
1625  }
1626
1627  SDNode *ResNode = SelectCode(N);
1628
1629#ifndef NDEBUG
1630  DOUT << std::string(Indent-2, ' ') << "=> ";
1631  if (ResNode == NULL || ResNode == N.getNode())
1632    DEBUG(N.getNode()->dump(CurDAG));
1633  else
1634    DEBUG(ResNode->dump(CurDAG));
1635  DOUT << "\n";
1636  Indent -= 2;
1637#endif
1638
1639  return ResNode;
1640}
1641
1642bool X86DAGToDAGISel::
1643SelectInlineAsmMemoryOperand(const SDValue &Op, char ConstraintCode,
1644                             std::vector<SDValue> &OutOps) {
1645  SDValue Op0, Op1, Op2, Op3;
1646  switch (ConstraintCode) {
1647  case 'o':   // offsetable        ??
1648  case 'v':   // not offsetable    ??
1649  default: return true;
1650  case 'm':   // memory
1651    if (!SelectAddr(Op, Op, Op0, Op1, Op2, Op3))
1652      return true;
1653    break;
1654  }
1655
1656  OutOps.push_back(Op0);
1657  OutOps.push_back(Op1);
1658  OutOps.push_back(Op2);
1659  OutOps.push_back(Op3);
1660  AddToISelQueue(Op0);
1661  AddToISelQueue(Op1);
1662  AddToISelQueue(Op2);
1663  AddToISelQueue(Op3);
1664  return false;
1665}
1666
1667/// createX86ISelDag - This pass converts a legalized DAG into a
1668/// X86-specific DAG, ready for instruction scheduling.
1669///
1670FunctionPass *llvm::createX86ISelDag(X86TargetMachine &TM, bool Fast) {
1671  return new X86DAGToDAGISel(TM, Fast);
1672}
1673