X86ISelDAGToDAG.cpp revision 518bb53485df640d7b7e3f6b0544099020c42aa7
1//===- X86ISelDAGToDAG.cpp - A DAG pattern matching inst selector for X86 -===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines a DAG pattern matching instruction selector for X86,
11// converting from a legalized dag to a X86 dag.
12//
13//===----------------------------------------------------------------------===//
14
15// Force NDEBUG on in any optimized build on Darwin.
16//
17// FIXME: This is a huge hack, to work around ridiculously awful compile times
18// on this file with gcc-4.2 on Darwin, in Release mode.
19#if (!defined(__llvm__) && defined(__APPLE__) && \
20     defined(__OPTIMIZE__) && !defined(NDEBUG))
21#define NDEBUG
22#endif
23
24#define DEBUG_TYPE "x86-isel"
25#include "X86.h"
26#include "X86InstrBuilder.h"
27#include "X86ISelLowering.h"
28#include "X86MachineFunctionInfo.h"
29#include "X86RegisterInfo.h"
30#include "X86Subtarget.h"
31#include "X86TargetMachine.h"
32#include "llvm/GlobalValue.h"
33#include "llvm/Instructions.h"
34#include "llvm/Intrinsics.h"
35#include "llvm/Support/CFG.h"
36#include "llvm/Type.h"
37#include "llvm/CodeGen/MachineConstantPool.h"
38#include "llvm/CodeGen/MachineFunction.h"
39#include "llvm/CodeGen/MachineFrameInfo.h"
40#include "llvm/CodeGen/MachineInstrBuilder.h"
41#include "llvm/CodeGen/MachineRegisterInfo.h"
42#include "llvm/CodeGen/SelectionDAGISel.h"
43#include "llvm/Target/TargetMachine.h"
44#include "llvm/Target/TargetOptions.h"
45#include "llvm/Support/Debug.h"
46#include "llvm/Support/ErrorHandling.h"
47#include "llvm/Support/MathExtras.h"
48#include "llvm/Support/raw_ostream.h"
49#include "llvm/ADT/SmallPtrSet.h"
50#include "llvm/ADT/Statistic.h"
51using namespace llvm;
52
53STATISTIC(NumLoadMoved, "Number of loads moved below TokenFactor");
54
55//===----------------------------------------------------------------------===//
56//                      Pattern Matcher Implementation
57//===----------------------------------------------------------------------===//
58
59namespace {
60  /// X86ISelAddressMode - This corresponds to X86AddressMode, but uses
61  /// SDValue's instead of register numbers for the leaves of the matched
62  /// tree.
63  struct X86ISelAddressMode {
64    enum {
65      RegBase,
66      FrameIndexBase
67    } BaseType;
68
69    struct {            // This is really a union, discriminated by BaseType!
70      SDValue Reg;
71      int FrameIndex;
72    } Base;
73
74    unsigned Scale;
75    SDValue IndexReg;
76    int32_t Disp;
77    SDValue Segment;
78    GlobalValue *GV;
79    Constant *CP;
80    BlockAddress *BlockAddr;
81    const char *ES;
82    int JT;
83    unsigned Align;    // CP alignment.
84    unsigned char SymbolFlags;  // X86II::MO_*
85
86    X86ISelAddressMode()
87      : BaseType(RegBase), Scale(1), IndexReg(), Disp(0),
88        Segment(), GV(0), CP(0), BlockAddr(0), ES(0), JT(-1), Align(0),
89        SymbolFlags(X86II::MO_NO_FLAG) {
90    }
91
92    bool hasSymbolicDisplacement() const {
93      return GV != 0 || CP != 0 || ES != 0 || JT != -1 || BlockAddr != 0;
94    }
95
96    bool hasBaseOrIndexReg() const {
97      return IndexReg.getNode() != 0 || Base.Reg.getNode() != 0;
98    }
99
100    /// isRIPRelative - Return true if this addressing mode is already RIP
101    /// relative.
102    bool isRIPRelative() const {
103      if (BaseType != RegBase) return false;
104      if (RegisterSDNode *RegNode =
105            dyn_cast_or_null<RegisterSDNode>(Base.Reg.getNode()))
106        return RegNode->getReg() == X86::RIP;
107      return false;
108    }
109
110    void setBaseReg(SDValue Reg) {
111      BaseType = RegBase;
112      Base.Reg = Reg;
113    }
114
115    void dump() {
116      dbgs() << "X86ISelAddressMode " << this << '\n';
117      dbgs() << "Base.Reg ";
118      if (Base.Reg.getNode() != 0)
119        Base.Reg.getNode()->dump();
120      else
121        dbgs() << "nul";
122      dbgs() << " Base.FrameIndex " << Base.FrameIndex << '\n'
123             << " Scale" << Scale << '\n'
124             << "IndexReg ";
125      if (IndexReg.getNode() != 0)
126        IndexReg.getNode()->dump();
127      else
128        dbgs() << "nul";
129      dbgs() << " Disp " << Disp << '\n'
130             << "GV ";
131      if (GV)
132        GV->dump();
133      else
134        dbgs() << "nul";
135      dbgs() << " CP ";
136      if (CP)
137        CP->dump();
138      else
139        dbgs() << "nul";
140      dbgs() << '\n'
141             << "ES ";
142      if (ES)
143        dbgs() << ES;
144      else
145        dbgs() << "nul";
146      dbgs() << " JT" << JT << " Align" << Align << '\n';
147    }
148  };
149}
150
151namespace {
152  //===--------------------------------------------------------------------===//
153  /// ISel - X86 specific code to select X86 machine instructions for
154  /// SelectionDAG operations.
155  ///
156  class X86DAGToDAGISel : public SelectionDAGISel {
157    /// X86Lowering - This object fully describes how to lower LLVM code to an
158    /// X86-specific SelectionDAG.
159    X86TargetLowering &X86Lowering;
160
161    /// Subtarget - Keep a pointer to the X86Subtarget around so that we can
162    /// make the right decision when generating code for different targets.
163    const X86Subtarget *Subtarget;
164
165    /// OptForSize - If true, selector should try to optimize for code size
166    /// instead of performance.
167    bool OptForSize;
168
169  public:
170    explicit X86DAGToDAGISel(X86TargetMachine &tm, CodeGenOpt::Level OptLevel)
171      : SelectionDAGISel(tm, OptLevel),
172        X86Lowering(*tm.getTargetLowering()),
173        Subtarget(&tm.getSubtarget<X86Subtarget>()),
174        OptForSize(false) {}
175
176    virtual const char *getPassName() const {
177      return "X86 DAG->DAG Instruction Selection";
178    }
179
180    /// InstructionSelect - This callback is invoked by
181    /// SelectionDAGISel when it has created a SelectionDAG for us to codegen.
182    virtual void InstructionSelect();
183
184    virtual void EmitFunctionEntryCode(Function &Fn, MachineFunction &MF);
185
186    virtual
187      bool IsLegalAndProfitableToFold(SDNode *N, SDNode *U, SDNode *Root) const;
188
189// Include the pieces autogenerated from the target description.
190#include "X86GenDAGISel.inc"
191
192  private:
193    SDNode *Select(SDNode *N);
194    SDNode *SelectAtomic64(SDNode *Node, unsigned Opc);
195    SDNode *SelectAtomicLoadAdd(SDNode *Node, EVT NVT);
196
197    bool MatchSegmentBaseAddress(SDValue N, X86ISelAddressMode &AM);
198    bool MatchLoad(SDValue N, X86ISelAddressMode &AM);
199    bool MatchWrapper(SDValue N, X86ISelAddressMode &AM);
200    bool MatchAddress(SDValue N, X86ISelAddressMode &AM);
201    bool MatchAddressRecursively(SDValue N, X86ISelAddressMode &AM,
202                                 unsigned Depth);
203    bool MatchAddressBase(SDValue N, X86ISelAddressMode &AM);
204    bool SelectAddr(SDNode *Op, SDValue N, SDValue &Base,
205                    SDValue &Scale, SDValue &Index, SDValue &Disp,
206                    SDValue &Segment);
207    bool SelectLEAAddr(SDNode *Op, SDValue N, SDValue &Base,
208                       SDValue &Scale, SDValue &Index, SDValue &Disp);
209    bool SelectTLSADDRAddr(SDNode *Op, SDValue N, SDValue &Base,
210                       SDValue &Scale, SDValue &Index, SDValue &Disp);
211    bool SelectScalarSSELoad(SDNode *Op, SDValue Pred,
212                             SDValue N, SDValue &Base, SDValue &Scale,
213                             SDValue &Index, SDValue &Disp,
214                             SDValue &Segment,
215                             SDValue &InChain, SDValue &OutChain);
216    bool TryFoldLoad(SDNode *P, SDValue N,
217                     SDValue &Base, SDValue &Scale,
218                     SDValue &Index, SDValue &Disp,
219                     SDValue &Segment);
220    void PreprocessForRMW();
221    void PreprocessForFPConvert();
222
223    /// SelectInlineAsmMemoryOperand - Implement addressing mode selection for
224    /// inline asm expressions.
225    virtual bool SelectInlineAsmMemoryOperand(const SDValue &Op,
226                                              char ConstraintCode,
227                                              std::vector<SDValue> &OutOps);
228
229    void EmitSpecialCodeForMain(MachineBasicBlock *BB, MachineFrameInfo *MFI);
230
231    inline void getAddressOperands(X86ISelAddressMode &AM, SDValue &Base,
232                                   SDValue &Scale, SDValue &Index,
233                                   SDValue &Disp, SDValue &Segment) {
234      Base  = (AM.BaseType == X86ISelAddressMode::FrameIndexBase) ?
235        CurDAG->getTargetFrameIndex(AM.Base.FrameIndex, TLI.getPointerTy()) :
236        AM.Base.Reg;
237      Scale = getI8Imm(AM.Scale);
238      Index = AM.IndexReg;
239      // These are 32-bit even in 64-bit mode since RIP relative offset
240      // is 32-bit.
241      if (AM.GV)
242        Disp = CurDAG->getTargetGlobalAddress(AM.GV, MVT::i32, AM.Disp,
243                                              AM.SymbolFlags);
244      else if (AM.CP)
245        Disp = CurDAG->getTargetConstantPool(AM.CP, MVT::i32,
246                                             AM.Align, AM.Disp, AM.SymbolFlags);
247      else if (AM.ES)
248        Disp = CurDAG->getTargetExternalSymbol(AM.ES, MVT::i32, AM.SymbolFlags);
249      else if (AM.JT != -1)
250        Disp = CurDAG->getTargetJumpTable(AM.JT, MVT::i32, AM.SymbolFlags);
251      else if (AM.BlockAddr)
252        Disp = CurDAG->getBlockAddress(AM.BlockAddr, MVT::i32,
253                                       true, AM.SymbolFlags);
254      else
255        Disp = CurDAG->getTargetConstant(AM.Disp, MVT::i32);
256
257      if (AM.Segment.getNode())
258        Segment = AM.Segment;
259      else
260        Segment = CurDAG->getRegister(0, MVT::i32);
261    }
262
263    /// getI8Imm - Return a target constant with the specified value, of type
264    /// i8.
265    inline SDValue getI8Imm(unsigned Imm) {
266      return CurDAG->getTargetConstant(Imm, MVT::i8);
267    }
268
269    /// getI16Imm - Return a target constant with the specified value, of type
270    /// i16.
271    inline SDValue getI16Imm(unsigned Imm) {
272      return CurDAG->getTargetConstant(Imm, MVT::i16);
273    }
274
275    /// getI32Imm - Return a target constant with the specified value, of type
276    /// i32.
277    inline SDValue getI32Imm(unsigned Imm) {
278      return CurDAG->getTargetConstant(Imm, MVT::i32);
279    }
280
281    /// getGlobalBaseReg - Return an SDNode that returns the value of
282    /// the global base register. Output instructions required to
283    /// initialize the global base register, if necessary.
284    ///
285    SDNode *getGlobalBaseReg();
286
287    /// getTargetMachine - Return a reference to the TargetMachine, casted
288    /// to the target-specific type.
289    const X86TargetMachine &getTargetMachine() {
290      return static_cast<const X86TargetMachine &>(TM);
291    }
292
293    /// getInstrInfo - Return a reference to the TargetInstrInfo, casted
294    /// to the target-specific type.
295    const X86InstrInfo *getInstrInfo() {
296      return getTargetMachine().getInstrInfo();
297    }
298
299#ifndef NDEBUG
300    unsigned Indent;
301#endif
302  };
303}
304
305
306bool X86DAGToDAGISel::IsLegalAndProfitableToFold(SDNode *N, SDNode *U,
307                                                 SDNode *Root) const {
308  if (OptLevel == CodeGenOpt::None) return false;
309
310  if (U == Root)
311    switch (U->getOpcode()) {
312    default: break;
313    case X86ISD::ADD:
314    case X86ISD::SUB:
315    case X86ISD::AND:
316    case X86ISD::XOR:
317    case X86ISD::OR:
318    case ISD::ADD:
319    case ISD::ADDC:
320    case ISD::ADDE:
321    case ISD::AND:
322    case ISD::OR:
323    case ISD::XOR: {
324      SDValue Op1 = U->getOperand(1);
325
326      // If the other operand is a 8-bit immediate we should fold the immediate
327      // instead. This reduces code size.
328      // e.g.
329      // movl 4(%esp), %eax
330      // addl $4, %eax
331      // vs.
332      // movl $4, %eax
333      // addl 4(%esp), %eax
334      // The former is 2 bytes shorter. In case where the increment is 1, then
335      // the saving can be 4 bytes (by using incl %eax).
336      if (ConstantSDNode *Imm = dyn_cast<ConstantSDNode>(Op1))
337        if (Imm->getAPIntValue().isSignedIntN(8))
338          return false;
339
340      // If the other operand is a TLS address, we should fold it instead.
341      // This produces
342      // movl    %gs:0, %eax
343      // leal    i@NTPOFF(%eax), %eax
344      // instead of
345      // movl    $i@NTPOFF, %eax
346      // addl    %gs:0, %eax
347      // if the block also has an access to a second TLS address this will save
348      // a load.
349      // FIXME: This is probably also true for non TLS addresses.
350      if (Op1.getOpcode() == X86ISD::Wrapper) {
351        SDValue Val = Op1.getOperand(0);
352        if (Val.getOpcode() == ISD::TargetGlobalTLSAddress)
353          return false;
354      }
355    }
356    }
357
358  // Proceed to 'generic' cycle finder code
359  return SelectionDAGISel::IsLegalAndProfitableToFold(N, U, Root);
360}
361
362/// MoveBelowTokenFactor - Replace TokenFactor operand with load's chain operand
363/// and move load below the TokenFactor. Replace store's chain operand with
364/// load's chain result.
365static void MoveBelowTokenFactor(SelectionDAG *CurDAG, SDValue Load,
366                                 SDValue Store, SDValue TF) {
367  SmallVector<SDValue, 4> Ops;
368  for (unsigned i = 0, e = TF.getNode()->getNumOperands(); i != e; ++i)
369    if (Load.getNode() == TF.getOperand(i).getNode())
370      Ops.push_back(Load.getOperand(0));
371    else
372      Ops.push_back(TF.getOperand(i));
373  SDValue NewTF = CurDAG->UpdateNodeOperands(TF, &Ops[0], Ops.size());
374  SDValue NewLoad = CurDAG->UpdateNodeOperands(Load, NewTF,
375                                               Load.getOperand(1),
376                                               Load.getOperand(2));
377  CurDAG->UpdateNodeOperands(Store, NewLoad.getValue(1), Store.getOperand(1),
378                             Store.getOperand(2), Store.getOperand(3));
379}
380
381/// isRMWLoad - Return true if N is a load that's part of RMW sub-DAG.  The
382/// chain produced by the load must only be used by the store's chain operand,
383/// otherwise this may produce a cycle in the DAG.
384///
385static bool isRMWLoad(SDValue N, SDValue Chain, SDValue Address,
386                      SDValue &Load) {
387  if (N.getOpcode() == ISD::BIT_CONVERT) {
388    if (!N.hasOneUse())
389      return false;
390    N = N.getOperand(0);
391  }
392
393  LoadSDNode *LD = dyn_cast<LoadSDNode>(N);
394  if (!LD || LD->isVolatile())
395    return false;
396  if (LD->getAddressingMode() != ISD::UNINDEXED)
397    return false;
398
399  ISD::LoadExtType ExtType = LD->getExtensionType();
400  if (ExtType != ISD::NON_EXTLOAD && ExtType != ISD::EXTLOAD)
401    return false;
402
403  if (N.hasOneUse() &&
404      LD->hasNUsesOfValue(1, 1) &&
405      N.getOperand(1) == Address &&
406      LD->isOperandOf(Chain.getNode())) {
407    Load = N;
408    return true;
409  }
410  return false;
411}
412
413/// MoveBelowCallSeqStart - Replace CALLSEQ_START operand with load's chain
414/// operand and move load below the call's chain operand.
415static void MoveBelowCallSeqStart(SelectionDAG *CurDAG, SDValue Load,
416                                  SDValue Call, SDValue CallSeqStart) {
417  SmallVector<SDValue, 8> Ops;
418  SDValue Chain = CallSeqStart.getOperand(0);
419  if (Chain.getNode() == Load.getNode())
420    Ops.push_back(Load.getOperand(0));
421  else {
422    assert(Chain.getOpcode() == ISD::TokenFactor &&
423           "Unexpected CallSeqStart chain operand");
424    for (unsigned i = 0, e = Chain.getNumOperands(); i != e; ++i)
425      if (Chain.getOperand(i).getNode() == Load.getNode())
426        Ops.push_back(Load.getOperand(0));
427      else
428        Ops.push_back(Chain.getOperand(i));
429    SDValue NewChain =
430      CurDAG->getNode(ISD::TokenFactor, Load.getDebugLoc(),
431                      MVT::Other, &Ops[0], Ops.size());
432    Ops.clear();
433    Ops.push_back(NewChain);
434  }
435  for (unsigned i = 1, e = CallSeqStart.getNumOperands(); i != e; ++i)
436    Ops.push_back(CallSeqStart.getOperand(i));
437  CurDAG->UpdateNodeOperands(CallSeqStart, &Ops[0], Ops.size());
438  CurDAG->UpdateNodeOperands(Load, Call.getOperand(0),
439                             Load.getOperand(1), Load.getOperand(2));
440  Ops.clear();
441  Ops.push_back(SDValue(Load.getNode(), 1));
442  for (unsigned i = 1, e = Call.getNode()->getNumOperands(); i != e; ++i)
443    Ops.push_back(Call.getOperand(i));
444  CurDAG->UpdateNodeOperands(Call, &Ops[0], Ops.size());
445}
446
447/// isCalleeLoad - Return true if call address is a load and it can be
448/// moved below CALLSEQ_START and the chains leading up to the call.
449/// Return the CALLSEQ_START by reference as a second output.
450static bool isCalleeLoad(SDValue Callee, SDValue &Chain) {
451  if (Callee.getNode() == Chain.getNode() || !Callee.hasOneUse())
452    return false;
453  LoadSDNode *LD = dyn_cast<LoadSDNode>(Callee.getNode());
454  if (!LD ||
455      LD->isVolatile() ||
456      LD->getAddressingMode() != ISD::UNINDEXED ||
457      LD->getExtensionType() != ISD::NON_EXTLOAD)
458    return false;
459
460  // Now let's find the callseq_start.
461  while (Chain.getOpcode() != ISD::CALLSEQ_START) {
462    if (!Chain.hasOneUse())
463      return false;
464    Chain = Chain.getOperand(0);
465  }
466
467  if (Chain.getOperand(0).getNode() == Callee.getNode())
468    return true;
469  if (Chain.getOperand(0).getOpcode() == ISD::TokenFactor &&
470      Callee.getValue(1).isOperandOf(Chain.getOperand(0).getNode()) &&
471      Callee.getValue(1).hasOneUse())
472    return true;
473  return false;
474}
475
476
477/// PreprocessForRMW - Preprocess the DAG to make instruction selection better.
478/// This is only run if not in -O0 mode.
479/// This allows the instruction selector to pick more read-modify-write
480/// instructions. This is a common case:
481///
482///     [Load chain]
483///         ^
484///         |
485///       [Load]
486///       ^    ^
487///       |    |
488///      /      \-
489///     /         |
490/// [TokenFactor] [Op]
491///     ^          ^
492///     |          |
493///      \        /
494///       \      /
495///       [Store]
496///
497/// The fact the store's chain operand != load's chain will prevent the
498/// (store (op (load))) instruction from being selected. We can transform it to:
499///
500///     [Load chain]
501///         ^
502///         |
503///    [TokenFactor]
504///         ^
505///         |
506///       [Load]
507///       ^    ^
508///       |    |
509///       |     \-
510///       |       |
511///       |     [Op]
512///       |       ^
513///       |       |
514///       \      /
515///        \    /
516///       [Store]
517void X86DAGToDAGISel::PreprocessForRMW() {
518  for (SelectionDAG::allnodes_iterator I = CurDAG->allnodes_begin(),
519         E = CurDAG->allnodes_end(); I != E; ++I) {
520    if (I->getOpcode() == X86ISD::CALL) {
521      /// Also try moving call address load from outside callseq_start to just
522      /// before the call to allow it to be folded.
523      ///
524      ///     [Load chain]
525      ///         ^
526      ///         |
527      ///       [Load]
528      ///       ^    ^
529      ///       |    |
530      ///      /      \--
531      ///     /          |
532      ///[CALLSEQ_START] |
533      ///     ^          |
534      ///     |          |
535      /// [LOAD/C2Reg]   |
536      ///     |          |
537      ///      \        /
538      ///       \      /
539      ///       [CALL]
540      SDValue Chain = I->getOperand(0);
541      SDValue Load  = I->getOperand(1);
542      if (!isCalleeLoad(Load, Chain))
543        continue;
544      MoveBelowCallSeqStart(CurDAG, Load, SDValue(I, 0), Chain);
545      ++NumLoadMoved;
546      continue;
547    }
548
549    if (!ISD::isNON_TRUNCStore(I))
550      continue;
551    SDValue Chain = I->getOperand(0);
552
553    if (Chain.getNode()->getOpcode() != ISD::TokenFactor)
554      continue;
555
556    SDValue N1 = I->getOperand(1);
557    SDValue N2 = I->getOperand(2);
558    if ((N1.getValueType().isFloatingPoint() &&
559         !N1.getValueType().isVector()) ||
560        !N1.hasOneUse())
561      continue;
562
563    bool RModW = false;
564    SDValue Load;
565    unsigned Opcode = N1.getNode()->getOpcode();
566    switch (Opcode) {
567    case ISD::ADD:
568    case ISD::MUL:
569    case ISD::AND:
570    case ISD::OR:
571    case ISD::XOR:
572    case ISD::ADDC:
573    case ISD::ADDE:
574    case ISD::VECTOR_SHUFFLE: {
575      SDValue N10 = N1.getOperand(0);
576      SDValue N11 = N1.getOperand(1);
577      RModW = isRMWLoad(N10, Chain, N2, Load);
578      if (!RModW)
579        RModW = isRMWLoad(N11, Chain, N2, Load);
580      break;
581    }
582    case ISD::SUB:
583    case ISD::SHL:
584    case ISD::SRA:
585    case ISD::SRL:
586    case ISD::ROTL:
587    case ISD::ROTR:
588    case ISD::SUBC:
589    case ISD::SUBE:
590    case X86ISD::SHLD:
591    case X86ISD::SHRD: {
592      SDValue N10 = N1.getOperand(0);
593      RModW = isRMWLoad(N10, Chain, N2, Load);
594      break;
595    }
596    }
597
598    if (RModW) {
599      MoveBelowTokenFactor(CurDAG, Load, SDValue(I, 0), Chain);
600      ++NumLoadMoved;
601      checkForCycles(I);
602    }
603  }
604}
605
606
607/// PreprocessForFPConvert - Walk over the dag lowering fpround and fpextend
608/// nodes that target the FP stack to be store and load to the stack.  This is a
609/// gross hack.  We would like to simply mark these as being illegal, but when
610/// we do that, legalize produces these when it expands calls, then expands
611/// these in the same legalize pass.  We would like dag combine to be able to
612/// hack on these between the call expansion and the node legalization.  As such
613/// this pass basically does "really late" legalization of these inline with the
614/// X86 isel pass.
615void X86DAGToDAGISel::PreprocessForFPConvert() {
616  for (SelectionDAG::allnodes_iterator I = CurDAG->allnodes_begin(),
617       E = CurDAG->allnodes_end(); I != E; ) {
618    SDNode *N = I++;  // Preincrement iterator to avoid invalidation issues.
619    if (N->getOpcode() != ISD::FP_ROUND && N->getOpcode() != ISD::FP_EXTEND)
620      continue;
621
622    // If the source and destination are SSE registers, then this is a legal
623    // conversion that should not be lowered.
624    EVT SrcVT = N->getOperand(0).getValueType();
625    EVT DstVT = N->getValueType(0);
626    bool SrcIsSSE = X86Lowering.isScalarFPTypeInSSEReg(SrcVT);
627    bool DstIsSSE = X86Lowering.isScalarFPTypeInSSEReg(DstVT);
628    if (SrcIsSSE && DstIsSSE)
629      continue;
630
631    if (!SrcIsSSE && !DstIsSSE) {
632      // If this is an FPStack extension, it is a noop.
633      if (N->getOpcode() == ISD::FP_EXTEND)
634        continue;
635      // If this is a value-preserving FPStack truncation, it is a noop.
636      if (N->getConstantOperandVal(1))
637        continue;
638    }
639
640    // Here we could have an FP stack truncation or an FPStack <-> SSE convert.
641    // FPStack has extload and truncstore.  SSE can fold direct loads into other
642    // operations.  Based on this, decide what we want to do.
643    EVT MemVT;
644    if (N->getOpcode() == ISD::FP_ROUND)
645      MemVT = DstVT;  // FP_ROUND must use DstVT, we can't do a 'trunc load'.
646    else
647      MemVT = SrcIsSSE ? SrcVT : DstVT;
648
649    SDValue MemTmp = CurDAG->CreateStackTemporary(MemVT);
650    DebugLoc dl = N->getDebugLoc();
651
652    // FIXME: optimize the case where the src/dest is a load or store?
653    SDValue Store = CurDAG->getTruncStore(CurDAG->getEntryNode(), dl,
654                                          N->getOperand(0),
655                                          MemTmp, NULL, 0, MemVT);
656    SDValue Result = CurDAG->getExtLoad(ISD::EXTLOAD, dl, DstVT, Store, MemTmp,
657                                        NULL, 0, MemVT);
658
659    // We're about to replace all uses of the FP_ROUND/FP_EXTEND with the
660    // extload we created.  This will cause general havok on the dag because
661    // anything below the conversion could be folded into other existing nodes.
662    // To avoid invalidating 'I', back it up to the convert node.
663    --I;
664    CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Result);
665
666    // Now that we did that, the node is dead.  Increment the iterator to the
667    // next node to process, then delete N.
668    ++I;
669    CurDAG->DeleteNode(N);
670  }
671}
672
673/// InstructionSelectBasicBlock - This callback is invoked by SelectionDAGISel
674/// when it has created a SelectionDAG for us to codegen.
675void X86DAGToDAGISel::InstructionSelect() {
676  const Function *F = MF->getFunction();
677  OptForSize = F->hasFnAttr(Attribute::OptimizeForSize);
678
679  if (OptLevel != CodeGenOpt::None)
680    PreprocessForRMW();
681
682  // FIXME: This should only happen when not compiled with -O0.
683  PreprocessForFPConvert();
684
685  // Codegen the basic block.
686#ifndef NDEBUG
687  DEBUG(dbgs() << "===== Instruction selection begins:\n");
688  Indent = 0;
689#endif
690  SelectRoot(*CurDAG);
691#ifndef NDEBUG
692  DEBUG(dbgs() << "===== Instruction selection ends:\n");
693#endif
694
695  CurDAG->RemoveDeadNodes();
696}
697
698/// EmitSpecialCodeForMain - Emit any code that needs to be executed only in
699/// the main function.
700void X86DAGToDAGISel::EmitSpecialCodeForMain(MachineBasicBlock *BB,
701                                             MachineFrameInfo *MFI) {
702  const TargetInstrInfo *TII = TM.getInstrInfo();
703  if (Subtarget->isTargetCygMing())
704    BuildMI(BB, DebugLoc::getUnknownLoc(),
705            TII->get(X86::CALLpcrel32)).addExternalSymbol("__main");
706}
707
708void X86DAGToDAGISel::EmitFunctionEntryCode(Function &Fn, MachineFunction &MF) {
709  // If this is main, emit special code for main.
710  MachineBasicBlock *BB = MF.begin();
711  if (Fn.hasExternalLinkage() && Fn.getName() == "main")
712    EmitSpecialCodeForMain(BB, MF.getFrameInfo());
713}
714
715
716bool X86DAGToDAGISel::MatchSegmentBaseAddress(SDValue N,
717                                              X86ISelAddressMode &AM) {
718  assert(N.getOpcode() == X86ISD::SegmentBaseAddress);
719  SDValue Segment = N.getOperand(0);
720
721  if (AM.Segment.getNode() == 0) {
722    AM.Segment = Segment;
723    return false;
724  }
725
726  return true;
727}
728
729bool X86DAGToDAGISel::MatchLoad(SDValue N, X86ISelAddressMode &AM) {
730  // This optimization is valid because the GNU TLS model defines that
731  // gs:0 (or fs:0 on X86-64) contains its own address.
732  // For more information see http://people.redhat.com/drepper/tls.pdf
733
734  SDValue Address = N.getOperand(1);
735  if (Address.getOpcode() == X86ISD::SegmentBaseAddress &&
736      !MatchSegmentBaseAddress (Address, AM))
737    return false;
738
739  return true;
740}
741
742/// MatchWrapper - Try to match X86ISD::Wrapper and X86ISD::WrapperRIP nodes
743/// into an addressing mode.  These wrap things that will resolve down into a
744/// symbol reference.  If no match is possible, this returns true, otherwise it
745/// returns false.
746bool X86DAGToDAGISel::MatchWrapper(SDValue N, X86ISelAddressMode &AM) {
747  // If the addressing mode already has a symbol as the displacement, we can
748  // never match another symbol.
749  if (AM.hasSymbolicDisplacement())
750    return true;
751
752  SDValue N0 = N.getOperand(0);
753  CodeModel::Model M = TM.getCodeModel();
754
755  // Handle X86-64 rip-relative addresses.  We check this before checking direct
756  // folding because RIP is preferable to non-RIP accesses.
757  if (Subtarget->is64Bit() &&
758      // Under X86-64 non-small code model, GV (and friends) are 64-bits, so
759      // they cannot be folded into immediate fields.
760      // FIXME: This can be improved for kernel and other models?
761      (M == CodeModel::Small || M == CodeModel::Kernel) &&
762      // Base and index reg must be 0 in order to use %rip as base and lowering
763      // must allow RIP.
764      !AM.hasBaseOrIndexReg() && N.getOpcode() == X86ISD::WrapperRIP) {
765    if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(N0)) {
766      int64_t Offset = AM.Disp + G->getOffset();
767      if (!X86::isOffsetSuitableForCodeModel(Offset, M)) return true;
768      AM.GV = G->getGlobal();
769      AM.Disp = Offset;
770      AM.SymbolFlags = G->getTargetFlags();
771    } else if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(N0)) {
772      int64_t Offset = AM.Disp + CP->getOffset();
773      if (!X86::isOffsetSuitableForCodeModel(Offset, M)) return true;
774      AM.CP = CP->getConstVal();
775      AM.Align = CP->getAlignment();
776      AM.Disp = Offset;
777      AM.SymbolFlags = CP->getTargetFlags();
778    } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(N0)) {
779      AM.ES = S->getSymbol();
780      AM.SymbolFlags = S->getTargetFlags();
781    } else if (JumpTableSDNode *J = dyn_cast<JumpTableSDNode>(N0)) {
782      AM.JT = J->getIndex();
783      AM.SymbolFlags = J->getTargetFlags();
784    } else {
785      AM.BlockAddr = cast<BlockAddressSDNode>(N0)->getBlockAddress();
786      AM.SymbolFlags = cast<BlockAddressSDNode>(N0)->getTargetFlags();
787    }
788
789    if (N.getOpcode() == X86ISD::WrapperRIP)
790      AM.setBaseReg(CurDAG->getRegister(X86::RIP, MVT::i64));
791    return false;
792  }
793
794  // Handle the case when globals fit in our immediate field: This is true for
795  // X86-32 always and X86-64 when in -static -mcmodel=small mode.  In 64-bit
796  // mode, this results in a non-RIP-relative computation.
797  if (!Subtarget->is64Bit() ||
798      ((M == CodeModel::Small || M == CodeModel::Kernel) &&
799       TM.getRelocationModel() == Reloc::Static)) {
800    if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(N0)) {
801      AM.GV = G->getGlobal();
802      AM.Disp += G->getOffset();
803      AM.SymbolFlags = G->getTargetFlags();
804    } else if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(N0)) {
805      AM.CP = CP->getConstVal();
806      AM.Align = CP->getAlignment();
807      AM.Disp += CP->getOffset();
808      AM.SymbolFlags = CP->getTargetFlags();
809    } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(N0)) {
810      AM.ES = S->getSymbol();
811      AM.SymbolFlags = S->getTargetFlags();
812    } else if (JumpTableSDNode *J = dyn_cast<JumpTableSDNode>(N0)) {
813      AM.JT = J->getIndex();
814      AM.SymbolFlags = J->getTargetFlags();
815    } else {
816      AM.BlockAddr = cast<BlockAddressSDNode>(N0)->getBlockAddress();
817      AM.SymbolFlags = cast<BlockAddressSDNode>(N0)->getTargetFlags();
818    }
819    return false;
820  }
821
822  return true;
823}
824
825/// MatchAddress - Add the specified node to the specified addressing mode,
826/// returning true if it cannot be done.  This just pattern matches for the
827/// addressing mode.
828bool X86DAGToDAGISel::MatchAddress(SDValue N, X86ISelAddressMode &AM) {
829  if (MatchAddressRecursively(N, AM, 0))
830    return true;
831
832  // Post-processing: Convert lea(,%reg,2) to lea(%reg,%reg), which has
833  // a smaller encoding and avoids a scaled-index.
834  if (AM.Scale == 2 &&
835      AM.BaseType == X86ISelAddressMode::RegBase &&
836      AM.Base.Reg.getNode() == 0) {
837    AM.Base.Reg = AM.IndexReg;
838    AM.Scale = 1;
839  }
840
841  // Post-processing: Convert foo to foo(%rip), even in non-PIC mode,
842  // because it has a smaller encoding.
843  // TODO: Which other code models can use this?
844  if (TM.getCodeModel() == CodeModel::Small &&
845      Subtarget->is64Bit() &&
846      AM.Scale == 1 &&
847      AM.BaseType == X86ISelAddressMode::RegBase &&
848      AM.Base.Reg.getNode() == 0 &&
849      AM.IndexReg.getNode() == 0 &&
850      AM.SymbolFlags == X86II::MO_NO_FLAG &&
851      AM.hasSymbolicDisplacement())
852    AM.Base.Reg = CurDAG->getRegister(X86::RIP, MVT::i64);
853
854  return false;
855}
856
857bool X86DAGToDAGISel::MatchAddressRecursively(SDValue N, X86ISelAddressMode &AM,
858                                              unsigned Depth) {
859  bool is64Bit = Subtarget->is64Bit();
860  DebugLoc dl = N.getDebugLoc();
861  DEBUG({
862      dbgs() << "MatchAddress: ";
863      AM.dump();
864    });
865  // Limit recursion.
866  if (Depth > 5)
867    return MatchAddressBase(N, AM);
868
869  CodeModel::Model M = TM.getCodeModel();
870
871  // If this is already a %rip relative address, we can only merge immediates
872  // into it.  Instead of handling this in every case, we handle it here.
873  // RIP relative addressing: %rip + 32-bit displacement!
874  if (AM.isRIPRelative()) {
875    // FIXME: JumpTable and ExternalSymbol address currently don't like
876    // displacements.  It isn't very important, but this should be fixed for
877    // consistency.
878    if (!AM.ES && AM.JT != -1) return true;
879
880    if (ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(N)) {
881      int64_t Val = AM.Disp + Cst->getSExtValue();
882      if (X86::isOffsetSuitableForCodeModel(Val, M,
883                                            AM.hasSymbolicDisplacement())) {
884        AM.Disp = Val;
885        return false;
886      }
887    }
888    return true;
889  }
890
891  switch (N.getOpcode()) {
892  default: break;
893  case ISD::Constant: {
894    uint64_t Val = cast<ConstantSDNode>(N)->getSExtValue();
895    if (!is64Bit ||
896        X86::isOffsetSuitableForCodeModel(AM.Disp + Val, M,
897                                          AM.hasSymbolicDisplacement())) {
898      AM.Disp += Val;
899      return false;
900    }
901    break;
902  }
903
904  case X86ISD::SegmentBaseAddress:
905    if (!MatchSegmentBaseAddress(N, AM))
906      return false;
907    break;
908
909  case X86ISD::Wrapper:
910  case X86ISD::WrapperRIP:
911    if (!MatchWrapper(N, AM))
912      return false;
913    break;
914
915  case ISD::LOAD:
916    if (!MatchLoad(N, AM))
917      return false;
918    break;
919
920  case ISD::FrameIndex:
921    if (AM.BaseType == X86ISelAddressMode::RegBase
922        && AM.Base.Reg.getNode() == 0) {
923      AM.BaseType = X86ISelAddressMode::FrameIndexBase;
924      AM.Base.FrameIndex = cast<FrameIndexSDNode>(N)->getIndex();
925      return false;
926    }
927    break;
928
929  case ISD::SHL:
930    if (AM.IndexReg.getNode() != 0 || AM.Scale != 1)
931      break;
932
933    if (ConstantSDNode
934          *CN = dyn_cast<ConstantSDNode>(N.getNode()->getOperand(1))) {
935      unsigned Val = CN->getZExtValue();
936      // Note that we handle x<<1 as (,x,2) rather than (x,x) here so
937      // that the base operand remains free for further matching. If
938      // the base doesn't end up getting used, a post-processing step
939      // in MatchAddress turns (,x,2) into (x,x), which is cheaper.
940      if (Val == 1 || Val == 2 || Val == 3) {
941        AM.Scale = 1 << Val;
942        SDValue ShVal = N.getNode()->getOperand(0);
943
944        // Okay, we know that we have a scale by now.  However, if the scaled
945        // value is an add of something and a constant, we can fold the
946        // constant into the disp field here.
947        if (ShVal.getNode()->getOpcode() == ISD::ADD &&
948            isa<ConstantSDNode>(ShVal.getNode()->getOperand(1))) {
949          AM.IndexReg = ShVal.getNode()->getOperand(0);
950          ConstantSDNode *AddVal =
951            cast<ConstantSDNode>(ShVal.getNode()->getOperand(1));
952          uint64_t Disp = AM.Disp + (AddVal->getSExtValue() << Val);
953          if (!is64Bit ||
954              X86::isOffsetSuitableForCodeModel(Disp, M,
955                                                AM.hasSymbolicDisplacement()))
956            AM.Disp = Disp;
957          else
958            AM.IndexReg = ShVal;
959        } else {
960          AM.IndexReg = ShVal;
961        }
962        return false;
963      }
964    break;
965    }
966
967  case ISD::SMUL_LOHI:
968  case ISD::UMUL_LOHI:
969    // A mul_lohi where we need the low part can be folded as a plain multiply.
970    if (N.getResNo() != 0) break;
971    // FALL THROUGH
972  case ISD::MUL:
973  case X86ISD::MUL_IMM:
974    // X*[3,5,9] -> X+X*[2,4,8]
975    if (AM.BaseType == X86ISelAddressMode::RegBase &&
976        AM.Base.Reg.getNode() == 0 &&
977        AM.IndexReg.getNode() == 0) {
978      if (ConstantSDNode
979            *CN = dyn_cast<ConstantSDNode>(N.getNode()->getOperand(1)))
980        if (CN->getZExtValue() == 3 || CN->getZExtValue() == 5 ||
981            CN->getZExtValue() == 9) {
982          AM.Scale = unsigned(CN->getZExtValue())-1;
983
984          SDValue MulVal = N.getNode()->getOperand(0);
985          SDValue Reg;
986
987          // Okay, we know that we have a scale by now.  However, if the scaled
988          // value is an add of something and a constant, we can fold the
989          // constant into the disp field here.
990          if (MulVal.getNode()->getOpcode() == ISD::ADD && MulVal.hasOneUse() &&
991              isa<ConstantSDNode>(MulVal.getNode()->getOperand(1))) {
992            Reg = MulVal.getNode()->getOperand(0);
993            ConstantSDNode *AddVal =
994              cast<ConstantSDNode>(MulVal.getNode()->getOperand(1));
995            uint64_t Disp = AM.Disp + AddVal->getSExtValue() *
996                                      CN->getZExtValue();
997            if (!is64Bit ||
998                X86::isOffsetSuitableForCodeModel(Disp, M,
999                                                  AM.hasSymbolicDisplacement()))
1000              AM.Disp = Disp;
1001            else
1002              Reg = N.getNode()->getOperand(0);
1003          } else {
1004            Reg = N.getNode()->getOperand(0);
1005          }
1006
1007          AM.IndexReg = AM.Base.Reg = Reg;
1008          return false;
1009        }
1010    }
1011    break;
1012
1013  case ISD::SUB: {
1014    // Given A-B, if A can be completely folded into the address and
1015    // the index field with the index field unused, use -B as the index.
1016    // This is a win if a has multiple parts that can be folded into
1017    // the address. Also, this saves a mov if the base register has
1018    // other uses, since it avoids a two-address sub instruction, however
1019    // it costs an additional mov if the index register has other uses.
1020
1021    // Test if the LHS of the sub can be folded.
1022    X86ISelAddressMode Backup = AM;
1023    if (MatchAddressRecursively(N.getNode()->getOperand(0), AM, Depth+1)) {
1024      AM = Backup;
1025      break;
1026    }
1027    // Test if the index field is free for use.
1028    if (AM.IndexReg.getNode() || AM.isRIPRelative()) {
1029      AM = Backup;
1030      break;
1031    }
1032    int Cost = 0;
1033    SDValue RHS = N.getNode()->getOperand(1);
1034    // If the RHS involves a register with multiple uses, this
1035    // transformation incurs an extra mov, due to the neg instruction
1036    // clobbering its operand.
1037    if (!RHS.getNode()->hasOneUse() ||
1038        RHS.getNode()->getOpcode() == ISD::CopyFromReg ||
1039        RHS.getNode()->getOpcode() == ISD::TRUNCATE ||
1040        RHS.getNode()->getOpcode() == ISD::ANY_EXTEND ||
1041        (RHS.getNode()->getOpcode() == ISD::ZERO_EXTEND &&
1042         RHS.getNode()->getOperand(0).getValueType() == MVT::i32))
1043      ++Cost;
1044    // If the base is a register with multiple uses, this
1045    // transformation may save a mov.
1046    if ((AM.BaseType == X86ISelAddressMode::RegBase &&
1047         AM.Base.Reg.getNode() &&
1048         !AM.Base.Reg.getNode()->hasOneUse()) ||
1049        AM.BaseType == X86ISelAddressMode::FrameIndexBase)
1050      --Cost;
1051    // If the folded LHS was interesting, this transformation saves
1052    // address arithmetic.
1053    if ((AM.hasSymbolicDisplacement() && !Backup.hasSymbolicDisplacement()) +
1054        ((AM.Disp != 0) && (Backup.Disp == 0)) +
1055        (AM.Segment.getNode() && !Backup.Segment.getNode()) >= 2)
1056      --Cost;
1057    // If it doesn't look like it may be an overall win, don't do it.
1058    if (Cost >= 0) {
1059      AM = Backup;
1060      break;
1061    }
1062
1063    // Ok, the transformation is legal and appears profitable. Go for it.
1064    SDValue Zero = CurDAG->getConstant(0, N.getValueType());
1065    SDValue Neg = CurDAG->getNode(ISD::SUB, dl, N.getValueType(), Zero, RHS);
1066    AM.IndexReg = Neg;
1067    AM.Scale = 1;
1068
1069    // Insert the new nodes into the topological ordering.
1070    if (Zero.getNode()->getNodeId() == -1 ||
1071        Zero.getNode()->getNodeId() > N.getNode()->getNodeId()) {
1072      CurDAG->RepositionNode(N.getNode(), Zero.getNode());
1073      Zero.getNode()->setNodeId(N.getNode()->getNodeId());
1074    }
1075    if (Neg.getNode()->getNodeId() == -1 ||
1076        Neg.getNode()->getNodeId() > N.getNode()->getNodeId()) {
1077      CurDAG->RepositionNode(N.getNode(), Neg.getNode());
1078      Neg.getNode()->setNodeId(N.getNode()->getNodeId());
1079    }
1080    return false;
1081  }
1082
1083  case ISD::ADD: {
1084    X86ISelAddressMode Backup = AM;
1085    if (!MatchAddressRecursively(N.getNode()->getOperand(0), AM, Depth+1) &&
1086        !MatchAddressRecursively(N.getNode()->getOperand(1), AM, Depth+1))
1087      return false;
1088    AM = Backup;
1089    if (!MatchAddressRecursively(N.getNode()->getOperand(1), AM, Depth+1) &&
1090        !MatchAddressRecursively(N.getNode()->getOperand(0), AM, Depth+1))
1091      return false;
1092    AM = Backup;
1093
1094    // If we couldn't fold both operands into the address at the same time,
1095    // see if we can just put each operand into a register and fold at least
1096    // the add.
1097    if (AM.BaseType == X86ISelAddressMode::RegBase &&
1098        !AM.Base.Reg.getNode() &&
1099        !AM.IndexReg.getNode()) {
1100      AM.Base.Reg = N.getNode()->getOperand(0);
1101      AM.IndexReg = N.getNode()->getOperand(1);
1102      AM.Scale = 1;
1103      return false;
1104    }
1105    break;
1106  }
1107
1108  case ISD::OR:
1109    // Handle "X | C" as "X + C" iff X is known to have C bits clear.
1110    if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
1111      X86ISelAddressMode Backup = AM;
1112      uint64_t Offset = CN->getSExtValue();
1113      // Start with the LHS as an addr mode.
1114      if (!MatchAddressRecursively(N.getOperand(0), AM, Depth+1) &&
1115          // Address could not have picked a GV address for the displacement.
1116          AM.GV == NULL &&
1117          // On x86-64, the resultant disp must fit in 32-bits.
1118          (!is64Bit ||
1119           X86::isOffsetSuitableForCodeModel(AM.Disp + Offset, M,
1120                                             AM.hasSymbolicDisplacement())) &&
1121          // Check to see if the LHS & C is zero.
1122          CurDAG->MaskedValueIsZero(N.getOperand(0), CN->getAPIntValue())) {
1123        AM.Disp += Offset;
1124        return false;
1125      }
1126      AM = Backup;
1127    }
1128    break;
1129
1130  case ISD::AND: {
1131    // Perform some heroic transforms on an and of a constant-count shift
1132    // with a constant to enable use of the scaled offset field.
1133
1134    SDValue Shift = N.getOperand(0);
1135    if (Shift.getNumOperands() != 2) break;
1136
1137    // Scale must not be used already.
1138    if (AM.IndexReg.getNode() != 0 || AM.Scale != 1) break;
1139
1140    SDValue X = Shift.getOperand(0);
1141    ConstantSDNode *C2 = dyn_cast<ConstantSDNode>(N.getOperand(1));
1142    ConstantSDNode *C1 = dyn_cast<ConstantSDNode>(Shift.getOperand(1));
1143    if (!C1 || !C2) break;
1144
1145    // Handle "(X >> (8-C1)) & C2" as "(X >> 8) & 0xff)" if safe. This
1146    // allows us to convert the shift and and into an h-register extract and
1147    // a scaled index.
1148    if (Shift.getOpcode() == ISD::SRL && Shift.hasOneUse()) {
1149      unsigned ScaleLog = 8 - C1->getZExtValue();
1150      if (ScaleLog > 0 && ScaleLog < 4 &&
1151          C2->getZExtValue() == (UINT64_C(0xff) << ScaleLog)) {
1152        SDValue Eight = CurDAG->getConstant(8, MVT::i8);
1153        SDValue Mask = CurDAG->getConstant(0xff, N.getValueType());
1154        SDValue Srl = CurDAG->getNode(ISD::SRL, dl, N.getValueType(),
1155                                      X, Eight);
1156        SDValue And = CurDAG->getNode(ISD::AND, dl, N.getValueType(),
1157                                      Srl, Mask);
1158        SDValue ShlCount = CurDAG->getConstant(ScaleLog, MVT::i8);
1159        SDValue Shl = CurDAG->getNode(ISD::SHL, dl, N.getValueType(),
1160                                      And, ShlCount);
1161
1162        // Insert the new nodes into the topological ordering.
1163        if (Eight.getNode()->getNodeId() == -1 ||
1164            Eight.getNode()->getNodeId() > X.getNode()->getNodeId()) {
1165          CurDAG->RepositionNode(X.getNode(), Eight.getNode());
1166          Eight.getNode()->setNodeId(X.getNode()->getNodeId());
1167        }
1168        if (Mask.getNode()->getNodeId() == -1 ||
1169            Mask.getNode()->getNodeId() > X.getNode()->getNodeId()) {
1170          CurDAG->RepositionNode(X.getNode(), Mask.getNode());
1171          Mask.getNode()->setNodeId(X.getNode()->getNodeId());
1172        }
1173        if (Srl.getNode()->getNodeId() == -1 ||
1174            Srl.getNode()->getNodeId() > Shift.getNode()->getNodeId()) {
1175          CurDAG->RepositionNode(Shift.getNode(), Srl.getNode());
1176          Srl.getNode()->setNodeId(Shift.getNode()->getNodeId());
1177        }
1178        if (And.getNode()->getNodeId() == -1 ||
1179            And.getNode()->getNodeId() > N.getNode()->getNodeId()) {
1180          CurDAG->RepositionNode(N.getNode(), And.getNode());
1181          And.getNode()->setNodeId(N.getNode()->getNodeId());
1182        }
1183        if (ShlCount.getNode()->getNodeId() == -1 ||
1184            ShlCount.getNode()->getNodeId() > X.getNode()->getNodeId()) {
1185          CurDAG->RepositionNode(X.getNode(), ShlCount.getNode());
1186          ShlCount.getNode()->setNodeId(N.getNode()->getNodeId());
1187        }
1188        if (Shl.getNode()->getNodeId() == -1 ||
1189            Shl.getNode()->getNodeId() > N.getNode()->getNodeId()) {
1190          CurDAG->RepositionNode(N.getNode(), Shl.getNode());
1191          Shl.getNode()->setNodeId(N.getNode()->getNodeId());
1192        }
1193        CurDAG->ReplaceAllUsesWith(N, Shl);
1194        AM.IndexReg = And;
1195        AM.Scale = (1 << ScaleLog);
1196        return false;
1197      }
1198    }
1199
1200    // Handle "(X << C1) & C2" as "(X & (C2>>C1)) << C1" if safe and if this
1201    // allows us to fold the shift into this addressing mode.
1202    if (Shift.getOpcode() != ISD::SHL) break;
1203
1204    // Not likely to be profitable if either the AND or SHIFT node has more
1205    // than one use (unless all uses are for address computation). Besides,
1206    // isel mechanism requires their node ids to be reused.
1207    if (!N.hasOneUse() || !Shift.hasOneUse())
1208      break;
1209
1210    // Verify that the shift amount is something we can fold.
1211    unsigned ShiftCst = C1->getZExtValue();
1212    if (ShiftCst != 1 && ShiftCst != 2 && ShiftCst != 3)
1213      break;
1214
1215    // Get the new AND mask, this folds to a constant.
1216    SDValue NewANDMask = CurDAG->getNode(ISD::SRL, dl, N.getValueType(),
1217                                         SDValue(C2, 0), SDValue(C1, 0));
1218    SDValue NewAND = CurDAG->getNode(ISD::AND, dl, N.getValueType(), X,
1219                                     NewANDMask);
1220    SDValue NewSHIFT = CurDAG->getNode(ISD::SHL, dl, N.getValueType(),
1221                                       NewAND, SDValue(C1, 0));
1222
1223    // Insert the new nodes into the topological ordering.
1224    if (C1->getNodeId() > X.getNode()->getNodeId()) {
1225      CurDAG->RepositionNode(X.getNode(), C1);
1226      C1->setNodeId(X.getNode()->getNodeId());
1227    }
1228    if (NewANDMask.getNode()->getNodeId() == -1 ||
1229        NewANDMask.getNode()->getNodeId() > X.getNode()->getNodeId()) {
1230      CurDAG->RepositionNode(X.getNode(), NewANDMask.getNode());
1231      NewANDMask.getNode()->setNodeId(X.getNode()->getNodeId());
1232    }
1233    if (NewAND.getNode()->getNodeId() == -1 ||
1234        NewAND.getNode()->getNodeId() > Shift.getNode()->getNodeId()) {
1235      CurDAG->RepositionNode(Shift.getNode(), NewAND.getNode());
1236      NewAND.getNode()->setNodeId(Shift.getNode()->getNodeId());
1237    }
1238    if (NewSHIFT.getNode()->getNodeId() == -1 ||
1239        NewSHIFT.getNode()->getNodeId() > N.getNode()->getNodeId()) {
1240      CurDAG->RepositionNode(N.getNode(), NewSHIFT.getNode());
1241      NewSHIFT.getNode()->setNodeId(N.getNode()->getNodeId());
1242    }
1243
1244    CurDAG->ReplaceAllUsesWith(N, NewSHIFT);
1245
1246    AM.Scale = 1 << ShiftCst;
1247    AM.IndexReg = NewAND;
1248    return false;
1249  }
1250  }
1251
1252  return MatchAddressBase(N, AM);
1253}
1254
1255/// MatchAddressBase - Helper for MatchAddress. Add the specified node to the
1256/// specified addressing mode without any further recursion.
1257bool X86DAGToDAGISel::MatchAddressBase(SDValue N, X86ISelAddressMode &AM) {
1258  // Is the base register already occupied?
1259  if (AM.BaseType != X86ISelAddressMode::RegBase || AM.Base.Reg.getNode()) {
1260    // If so, check to see if the scale index register is set.
1261    if (AM.IndexReg.getNode() == 0) {
1262      AM.IndexReg = N;
1263      AM.Scale = 1;
1264      return false;
1265    }
1266
1267    // Otherwise, we cannot select it.
1268    return true;
1269  }
1270
1271  // Default, generate it as a register.
1272  AM.BaseType = X86ISelAddressMode::RegBase;
1273  AM.Base.Reg = N;
1274  return false;
1275}
1276
1277/// SelectAddr - returns true if it is able pattern match an addressing mode.
1278/// It returns the operands which make up the maximal addressing mode it can
1279/// match by reference.
1280bool X86DAGToDAGISel::SelectAddr(SDNode *Op, SDValue N, SDValue &Base,
1281                                 SDValue &Scale, SDValue &Index,
1282                                 SDValue &Disp, SDValue &Segment) {
1283  X86ISelAddressMode AM;
1284  if (MatchAddress(N, AM))
1285    return false;
1286
1287  EVT VT = N.getValueType();
1288  if (AM.BaseType == X86ISelAddressMode::RegBase) {
1289    if (!AM.Base.Reg.getNode())
1290      AM.Base.Reg = CurDAG->getRegister(0, VT);
1291  }
1292
1293  if (!AM.IndexReg.getNode())
1294    AM.IndexReg = CurDAG->getRegister(0, VT);
1295
1296  getAddressOperands(AM, Base, Scale, Index, Disp, Segment);
1297  return true;
1298}
1299
1300/// SelectScalarSSELoad - Match a scalar SSE load.  In particular, we want to
1301/// match a load whose top elements are either undef or zeros.  The load flavor
1302/// is derived from the type of N, which is either v4f32 or v2f64.
1303bool X86DAGToDAGISel::SelectScalarSSELoad(SDNode *Op, SDValue Pred,
1304                                          SDValue N, SDValue &Base,
1305                                          SDValue &Scale, SDValue &Index,
1306                                          SDValue &Disp, SDValue &Segment,
1307                                          SDValue &InChain,
1308                                          SDValue &OutChain) {
1309  if (N.getOpcode() == ISD::SCALAR_TO_VECTOR) {
1310    InChain = N.getOperand(0).getValue(1);
1311    if (ISD::isNON_EXTLoad(InChain.getNode()) &&
1312        InChain.getValue(0).hasOneUse() &&
1313        N.hasOneUse() &&
1314        IsLegalAndProfitableToFold(N.getNode(), Pred.getNode(), Op)) {
1315      LoadSDNode *LD = cast<LoadSDNode>(InChain);
1316      if (!SelectAddr(Op, LD->getBasePtr(), Base, Scale, Index, Disp, Segment))
1317        return false;
1318      OutChain = LD->getChain();
1319      return true;
1320    }
1321  }
1322
1323  // Also handle the case where we explicitly require zeros in the top
1324  // elements.  This is a vector shuffle from the zero vector.
1325  if (N.getOpcode() == X86ISD::VZEXT_MOVL && N.getNode()->hasOneUse() &&
1326      // Check to see if the top elements are all zeros (or bitcast of zeros).
1327      N.getOperand(0).getOpcode() == ISD::SCALAR_TO_VECTOR &&
1328      N.getOperand(0).getNode()->hasOneUse() &&
1329      ISD::isNON_EXTLoad(N.getOperand(0).getOperand(0).getNode()) &&
1330      N.getOperand(0).getOperand(0).hasOneUse()) {
1331    // Okay, this is a zero extending load.  Fold it.
1332    LoadSDNode *LD = cast<LoadSDNode>(N.getOperand(0).getOperand(0));
1333    if (!SelectAddr(Op, LD->getBasePtr(), Base, Scale, Index, Disp, Segment))
1334      return false;
1335    OutChain = LD->getChain();
1336    InChain = SDValue(LD, 1);
1337    return true;
1338  }
1339  return false;
1340}
1341
1342
1343/// SelectLEAAddr - it calls SelectAddr and determines if the maximal addressing
1344/// mode it matches can be cost effectively emitted as an LEA instruction.
1345bool X86DAGToDAGISel::SelectLEAAddr(SDNode *Op, SDValue N,
1346                                    SDValue &Base, SDValue &Scale,
1347                                    SDValue &Index, SDValue &Disp) {
1348  X86ISelAddressMode AM;
1349
1350  // Set AM.Segment to prevent MatchAddress from using one. LEA doesn't support
1351  // segments.
1352  SDValue Copy = AM.Segment;
1353  SDValue T = CurDAG->getRegister(0, MVT::i32);
1354  AM.Segment = T;
1355  if (MatchAddress(N, AM))
1356    return false;
1357  assert (T == AM.Segment);
1358  AM.Segment = Copy;
1359
1360  EVT VT = N.getValueType();
1361  unsigned Complexity = 0;
1362  if (AM.BaseType == X86ISelAddressMode::RegBase)
1363    if (AM.Base.Reg.getNode())
1364      Complexity = 1;
1365    else
1366      AM.Base.Reg = CurDAG->getRegister(0, VT);
1367  else if (AM.BaseType == X86ISelAddressMode::FrameIndexBase)
1368    Complexity = 4;
1369
1370  if (AM.IndexReg.getNode())
1371    Complexity++;
1372  else
1373    AM.IndexReg = CurDAG->getRegister(0, VT);
1374
1375  // Don't match just leal(,%reg,2). It's cheaper to do addl %reg, %reg, or with
1376  // a simple shift.
1377  if (AM.Scale > 1)
1378    Complexity++;
1379
1380  // FIXME: We are artificially lowering the criteria to turn ADD %reg, $GA
1381  // to a LEA. This is determined with some expermentation but is by no means
1382  // optimal (especially for code size consideration). LEA is nice because of
1383  // its three-address nature. Tweak the cost function again when we can run
1384  // convertToThreeAddress() at register allocation time.
1385  if (AM.hasSymbolicDisplacement()) {
1386    // For X86-64, we should always use lea to materialize RIP relative
1387    // addresses.
1388    if (Subtarget->is64Bit())
1389      Complexity = 4;
1390    else
1391      Complexity += 2;
1392  }
1393
1394  if (AM.Disp && (AM.Base.Reg.getNode() || AM.IndexReg.getNode()))
1395    Complexity++;
1396
1397  // If it isn't worth using an LEA, reject it.
1398  if (Complexity <= 2)
1399    return false;
1400
1401  SDValue Segment;
1402  getAddressOperands(AM, Base, Scale, Index, Disp, Segment);
1403  return true;
1404}
1405
1406/// SelectTLSADDRAddr - This is only run on TargetGlobalTLSAddress nodes.
1407bool X86DAGToDAGISel::SelectTLSADDRAddr(SDNode *Op, SDValue N, SDValue &Base,
1408                                        SDValue &Scale, SDValue &Index,
1409                                        SDValue &Disp) {
1410  assert(Op->getOpcode() == X86ISD::TLSADDR);
1411  assert(N.getOpcode() == ISD::TargetGlobalTLSAddress);
1412  const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
1413
1414  X86ISelAddressMode AM;
1415  AM.GV = GA->getGlobal();
1416  AM.Disp += GA->getOffset();
1417  AM.Base.Reg = CurDAG->getRegister(0, N.getValueType());
1418  AM.SymbolFlags = GA->getTargetFlags();
1419
1420  if (N.getValueType() == MVT::i32) {
1421    AM.Scale = 1;
1422    AM.IndexReg = CurDAG->getRegister(X86::EBX, MVT::i32);
1423  } else {
1424    AM.IndexReg = CurDAG->getRegister(0, MVT::i64);
1425  }
1426
1427  SDValue Segment;
1428  getAddressOperands(AM, Base, Scale, Index, Disp, Segment);
1429  return true;
1430}
1431
1432
1433bool X86DAGToDAGISel::TryFoldLoad(SDNode *P, SDValue N,
1434                                  SDValue &Base, SDValue &Scale,
1435                                  SDValue &Index, SDValue &Disp,
1436                                  SDValue &Segment) {
1437  if (ISD::isNON_EXTLoad(N.getNode()) &&
1438      N.hasOneUse() &&
1439      IsLegalAndProfitableToFold(N.getNode(), P, P))
1440    return SelectAddr(P, N.getOperand(1), Base, Scale, Index, Disp, Segment);
1441  return false;
1442}
1443
1444/// getGlobalBaseReg - Return an SDNode that returns the value of
1445/// the global base register. Output instructions required to
1446/// initialize the global base register, if necessary.
1447///
1448SDNode *X86DAGToDAGISel::getGlobalBaseReg() {
1449  unsigned GlobalBaseReg = getInstrInfo()->getGlobalBaseReg(MF);
1450  return CurDAG->getRegister(GlobalBaseReg, TLI.getPointerTy()).getNode();
1451}
1452
1453static SDNode *FindCallStartFromCall(SDNode *Node) {
1454  if (Node->getOpcode() == ISD::CALLSEQ_START) return Node;
1455    assert(Node->getOperand(0).getValueType() == MVT::Other &&
1456         "Node doesn't have a token chain argument!");
1457  return FindCallStartFromCall(Node->getOperand(0).getNode());
1458}
1459
1460SDNode *X86DAGToDAGISel::SelectAtomic64(SDNode *Node, unsigned Opc) {
1461  SDValue Chain = Node->getOperand(0);
1462  SDValue In1 = Node->getOperand(1);
1463  SDValue In2L = Node->getOperand(2);
1464  SDValue In2H = Node->getOperand(3);
1465  SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
1466  if (!SelectAddr(In1.getNode(), In1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4))
1467    return NULL;
1468  MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
1469  MemOp[0] = cast<MemSDNode>(Node)->getMemOperand();
1470  const SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, In2L, In2H, Chain};
1471  SDNode *ResNode = CurDAG->getMachineNode(Opc, Node->getDebugLoc(),
1472                                           MVT::i32, MVT::i32, MVT::Other, Ops,
1473                                           array_lengthof(Ops));
1474  cast<MachineSDNode>(ResNode)->setMemRefs(MemOp, MemOp + 1);
1475  return ResNode;
1476}
1477
1478SDNode *X86DAGToDAGISel::SelectAtomicLoadAdd(SDNode *Node, EVT NVT) {
1479  if (Node->hasAnyUseOfValue(0))
1480    return 0;
1481
1482  // Optimize common patterns for __sync_add_and_fetch and
1483  // __sync_sub_and_fetch where the result is not used. This allows us
1484  // to use "lock" version of add, sub, inc, dec instructions.
1485  // FIXME: Do not use special instructions but instead add the "lock"
1486  // prefix to the target node somehow. The extra information will then be
1487  // transferred to machine instruction and it denotes the prefix.
1488  SDValue Chain = Node->getOperand(0);
1489  SDValue Ptr = Node->getOperand(1);
1490  SDValue Val = Node->getOperand(2);
1491  SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
1492  if (!SelectAddr(Ptr.getNode(), Ptr, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4))
1493    return 0;
1494
1495  bool isInc = false, isDec = false, isSub = false, isCN = false;
1496  ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Val);
1497  if (CN) {
1498    isCN = true;
1499    int64_t CNVal = CN->getSExtValue();
1500    if (CNVal == 1)
1501      isInc = true;
1502    else if (CNVal == -1)
1503      isDec = true;
1504    else if (CNVal >= 0)
1505      Val = CurDAG->getTargetConstant(CNVal, NVT);
1506    else {
1507      isSub = true;
1508      Val = CurDAG->getTargetConstant(-CNVal, NVT);
1509    }
1510  } else if (Val.hasOneUse() &&
1511             Val.getOpcode() == ISD::SUB &&
1512             X86::isZeroNode(Val.getOperand(0))) {
1513    isSub = true;
1514    Val = Val.getOperand(1);
1515  }
1516
1517  unsigned Opc = 0;
1518  switch (NVT.getSimpleVT().SimpleTy) {
1519  default: return 0;
1520  case MVT::i8:
1521    if (isInc)
1522      Opc = X86::LOCK_INC8m;
1523    else if (isDec)
1524      Opc = X86::LOCK_DEC8m;
1525    else if (isSub) {
1526      if (isCN)
1527        Opc = X86::LOCK_SUB8mi;
1528      else
1529        Opc = X86::LOCK_SUB8mr;
1530    } else {
1531      if (isCN)
1532        Opc = X86::LOCK_ADD8mi;
1533      else
1534        Opc = X86::LOCK_ADD8mr;
1535    }
1536    break;
1537  case MVT::i16:
1538    if (isInc)
1539      Opc = X86::LOCK_INC16m;
1540    else if (isDec)
1541      Opc = X86::LOCK_DEC16m;
1542    else if (isSub) {
1543      if (isCN) {
1544        if (Predicate_i16immSExt8(Val.getNode()))
1545          Opc = X86::LOCK_SUB16mi8;
1546        else
1547          Opc = X86::LOCK_SUB16mi;
1548      } else
1549        Opc = X86::LOCK_SUB16mr;
1550    } else {
1551      if (isCN) {
1552        if (Predicate_i16immSExt8(Val.getNode()))
1553          Opc = X86::LOCK_ADD16mi8;
1554        else
1555          Opc = X86::LOCK_ADD16mi;
1556      } else
1557        Opc = X86::LOCK_ADD16mr;
1558    }
1559    break;
1560  case MVT::i32:
1561    if (isInc)
1562      Opc = X86::LOCK_INC32m;
1563    else if (isDec)
1564      Opc = X86::LOCK_DEC32m;
1565    else if (isSub) {
1566      if (isCN) {
1567        if (Predicate_i32immSExt8(Val.getNode()))
1568          Opc = X86::LOCK_SUB32mi8;
1569        else
1570          Opc = X86::LOCK_SUB32mi;
1571      } else
1572        Opc = X86::LOCK_SUB32mr;
1573    } else {
1574      if (isCN) {
1575        if (Predicate_i32immSExt8(Val.getNode()))
1576          Opc = X86::LOCK_ADD32mi8;
1577        else
1578          Opc = X86::LOCK_ADD32mi;
1579      } else
1580        Opc = X86::LOCK_ADD32mr;
1581    }
1582    break;
1583  case MVT::i64:
1584    if (isInc)
1585      Opc = X86::LOCK_INC64m;
1586    else if (isDec)
1587      Opc = X86::LOCK_DEC64m;
1588    else if (isSub) {
1589      Opc = X86::LOCK_SUB64mr;
1590      if (isCN) {
1591        if (Predicate_i64immSExt8(Val.getNode()))
1592          Opc = X86::LOCK_SUB64mi8;
1593        else if (Predicate_i64immSExt32(Val.getNode()))
1594          Opc = X86::LOCK_SUB64mi32;
1595      }
1596    } else {
1597      Opc = X86::LOCK_ADD64mr;
1598      if (isCN) {
1599        if (Predicate_i64immSExt8(Val.getNode()))
1600          Opc = X86::LOCK_ADD64mi8;
1601        else if (Predicate_i64immSExt32(Val.getNode()))
1602          Opc = X86::LOCK_ADD64mi32;
1603      }
1604    }
1605    break;
1606  }
1607
1608  DebugLoc dl = Node->getDebugLoc();
1609  SDValue Undef = SDValue(CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF,
1610                                                 dl, NVT), 0);
1611  MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
1612  MemOp[0] = cast<MemSDNode>(Node)->getMemOperand();
1613  if (isInc || isDec) {
1614    SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Chain };
1615    SDValue Ret = SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Other, Ops, 6), 0);
1616    cast<MachineSDNode>(Ret)->setMemRefs(MemOp, MemOp + 1);
1617    SDValue RetVals[] = { Undef, Ret };
1618    return CurDAG->getMergeValues(RetVals, 2, dl).getNode();
1619  } else {
1620    SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Val, Chain };
1621    SDValue Ret = SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Other, Ops, 7), 0);
1622    cast<MachineSDNode>(Ret)->setMemRefs(MemOp, MemOp + 1);
1623    SDValue RetVals[] = { Undef, Ret };
1624    return CurDAG->getMergeValues(RetVals, 2, dl).getNode();
1625  }
1626}
1627
1628/// HasNoSignedComparisonUses - Test whether the given X86ISD::CMP node has
1629/// any uses which require the SF or OF bits to be accurate.
1630static bool HasNoSignedComparisonUses(SDNode *N) {
1631  // Examine each user of the node.
1632  for (SDNode::use_iterator UI = N->use_begin(),
1633         UE = N->use_end(); UI != UE; ++UI) {
1634    // Only examine CopyToReg uses.
1635    if (UI->getOpcode() != ISD::CopyToReg)
1636      return false;
1637    // Only examine CopyToReg uses that copy to EFLAGS.
1638    if (cast<RegisterSDNode>(UI->getOperand(1))->getReg() !=
1639          X86::EFLAGS)
1640      return false;
1641    // Examine each user of the CopyToReg use.
1642    for (SDNode::use_iterator FlagUI = UI->use_begin(),
1643           FlagUE = UI->use_end(); FlagUI != FlagUE; ++FlagUI) {
1644      // Only examine the Flag result.
1645      if (FlagUI.getUse().getResNo() != 1) continue;
1646      // Anything unusual: assume conservatively.
1647      if (!FlagUI->isMachineOpcode()) return false;
1648      // Examine the opcode of the user.
1649      switch (FlagUI->getMachineOpcode()) {
1650      // These comparisons don't treat the most significant bit specially.
1651      case X86::SETAr: case X86::SETAEr: case X86::SETBr: case X86::SETBEr:
1652      case X86::SETEr: case X86::SETNEr: case X86::SETPr: case X86::SETNPr:
1653      case X86::SETAm: case X86::SETAEm: case X86::SETBm: case X86::SETBEm:
1654      case X86::SETEm: case X86::SETNEm: case X86::SETPm: case X86::SETNPm:
1655      case X86::JA: case X86::JAE: case X86::JB: case X86::JBE:
1656      case X86::JE: case X86::JNE: case X86::JP: case X86::JNP:
1657      case X86::CMOVA16rr: case X86::CMOVA16rm:
1658      case X86::CMOVA32rr: case X86::CMOVA32rm:
1659      case X86::CMOVA64rr: case X86::CMOVA64rm:
1660      case X86::CMOVAE16rr: case X86::CMOVAE16rm:
1661      case X86::CMOVAE32rr: case X86::CMOVAE32rm:
1662      case X86::CMOVAE64rr: case X86::CMOVAE64rm:
1663      case X86::CMOVB16rr: case X86::CMOVB16rm:
1664      case X86::CMOVB32rr: case X86::CMOVB32rm:
1665      case X86::CMOVB64rr: case X86::CMOVB64rm:
1666      case X86::CMOVBE16rr: case X86::CMOVBE16rm:
1667      case X86::CMOVBE32rr: case X86::CMOVBE32rm:
1668      case X86::CMOVBE64rr: case X86::CMOVBE64rm:
1669      case X86::CMOVE16rr: case X86::CMOVE16rm:
1670      case X86::CMOVE32rr: case X86::CMOVE32rm:
1671      case X86::CMOVE64rr: case X86::CMOVE64rm:
1672      case X86::CMOVNE16rr: case X86::CMOVNE16rm:
1673      case X86::CMOVNE32rr: case X86::CMOVNE32rm:
1674      case X86::CMOVNE64rr: case X86::CMOVNE64rm:
1675      case X86::CMOVNP16rr: case X86::CMOVNP16rm:
1676      case X86::CMOVNP32rr: case X86::CMOVNP32rm:
1677      case X86::CMOVNP64rr: case X86::CMOVNP64rm:
1678      case X86::CMOVP16rr: case X86::CMOVP16rm:
1679      case X86::CMOVP32rr: case X86::CMOVP32rm:
1680      case X86::CMOVP64rr: case X86::CMOVP64rm:
1681        continue;
1682      // Anything else: assume conservatively.
1683      default: return false;
1684      }
1685    }
1686  }
1687  return true;
1688}
1689
1690SDNode *X86DAGToDAGISel::Select(SDNode *Node) {
1691  EVT NVT = Node->getValueType(0);
1692  unsigned Opc, MOpc;
1693  unsigned Opcode = Node->getOpcode();
1694  DebugLoc dl = Node->getDebugLoc();
1695
1696#ifndef NDEBUG
1697  DEBUG({
1698      dbgs() << std::string(Indent, ' ') << "Selecting: ";
1699      Node->dump(CurDAG);
1700      dbgs() << '\n';
1701    });
1702  Indent += 2;
1703#endif
1704
1705  if (Node->isMachineOpcode()) {
1706#ifndef NDEBUG
1707    DEBUG({
1708        dbgs() << std::string(Indent-2, ' ') << "== ";
1709        Node->dump(CurDAG);
1710        dbgs() << '\n';
1711      });
1712    Indent -= 2;
1713#endif
1714    return NULL;   // Already selected.
1715  }
1716
1717  switch (Opcode) {
1718  default: break;
1719  case X86ISD::GlobalBaseReg:
1720    return getGlobalBaseReg();
1721
1722  case X86ISD::ATOMOR64_DAG:
1723    return SelectAtomic64(Node, X86::ATOMOR6432);
1724  case X86ISD::ATOMXOR64_DAG:
1725    return SelectAtomic64(Node, X86::ATOMXOR6432);
1726  case X86ISD::ATOMADD64_DAG:
1727    return SelectAtomic64(Node, X86::ATOMADD6432);
1728  case X86ISD::ATOMSUB64_DAG:
1729    return SelectAtomic64(Node, X86::ATOMSUB6432);
1730  case X86ISD::ATOMNAND64_DAG:
1731    return SelectAtomic64(Node, X86::ATOMNAND6432);
1732  case X86ISD::ATOMAND64_DAG:
1733    return SelectAtomic64(Node, X86::ATOMAND6432);
1734  case X86ISD::ATOMSWAP64_DAG:
1735    return SelectAtomic64(Node, X86::ATOMSWAP6432);
1736
1737  case ISD::ATOMIC_LOAD_ADD: {
1738    SDNode *RetVal = SelectAtomicLoadAdd(Node, NVT);
1739    if (RetVal)
1740      return RetVal;
1741    break;
1742  }
1743
1744  case ISD::SMUL_LOHI:
1745  case ISD::UMUL_LOHI: {
1746    SDValue N0 = Node->getOperand(0);
1747    SDValue N1 = Node->getOperand(1);
1748
1749    bool isSigned = Opcode == ISD::SMUL_LOHI;
1750    if (!isSigned) {
1751      switch (NVT.getSimpleVT().SimpleTy) {
1752      default: llvm_unreachable("Unsupported VT!");
1753      case MVT::i8:  Opc = X86::MUL8r;  MOpc = X86::MUL8m;  break;
1754      case MVT::i16: Opc = X86::MUL16r; MOpc = X86::MUL16m; break;
1755      case MVT::i32: Opc = X86::MUL32r; MOpc = X86::MUL32m; break;
1756      case MVT::i64: Opc = X86::MUL64r; MOpc = X86::MUL64m; break;
1757      }
1758    } else {
1759      switch (NVT.getSimpleVT().SimpleTy) {
1760      default: llvm_unreachable("Unsupported VT!");
1761      case MVT::i8:  Opc = X86::IMUL8r;  MOpc = X86::IMUL8m;  break;
1762      case MVT::i16: Opc = X86::IMUL16r; MOpc = X86::IMUL16m; break;
1763      case MVT::i32: Opc = X86::IMUL32r; MOpc = X86::IMUL32m; break;
1764      case MVT::i64: Opc = X86::IMUL64r; MOpc = X86::IMUL64m; break;
1765      }
1766    }
1767
1768    unsigned LoReg, HiReg;
1769    switch (NVT.getSimpleVT().SimpleTy) {
1770    default: llvm_unreachable("Unsupported VT!");
1771    case MVT::i8:  LoReg = X86::AL;  HiReg = X86::AH;  break;
1772    case MVT::i16: LoReg = X86::AX;  HiReg = X86::DX;  break;
1773    case MVT::i32: LoReg = X86::EAX; HiReg = X86::EDX; break;
1774    case MVT::i64: LoReg = X86::RAX; HiReg = X86::RDX; break;
1775    }
1776
1777    SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
1778    bool foldedLoad = TryFoldLoad(Node, N1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4);
1779    // Multiply is commmutative.
1780    if (!foldedLoad) {
1781      foldedLoad = TryFoldLoad(Node, N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4);
1782      if (foldedLoad)
1783        std::swap(N0, N1);
1784    }
1785
1786    SDValue InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, LoReg,
1787                                            N0, SDValue()).getValue(1);
1788
1789    if (foldedLoad) {
1790      SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N1.getOperand(0),
1791                        InFlag };
1792      SDNode *CNode =
1793        CurDAG->getMachineNode(MOpc, dl, MVT::Other, MVT::Flag, Ops,
1794                               array_lengthof(Ops));
1795      InFlag = SDValue(CNode, 1);
1796      // Update the chain.
1797      ReplaceUses(N1.getValue(1), SDValue(CNode, 0));
1798    } else {
1799      InFlag =
1800        SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Flag, N1, InFlag), 0);
1801    }
1802
1803    // Copy the low half of the result, if it is needed.
1804    if (!SDValue(Node, 0).use_empty()) {
1805      SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
1806                                                LoReg, NVT, InFlag);
1807      InFlag = Result.getValue(2);
1808      ReplaceUses(SDValue(Node, 0), Result);
1809#ifndef NDEBUG
1810      DEBUG({
1811          dbgs() << std::string(Indent-2, ' ') << "=> ";
1812          Result.getNode()->dump(CurDAG);
1813          dbgs() << '\n';
1814        });
1815#endif
1816    }
1817    // Copy the high half of the result, if it is needed.
1818    if (!SDValue(Node, 1).use_empty()) {
1819      SDValue Result;
1820      if (HiReg == X86::AH && Subtarget->is64Bit()) {
1821        // Prevent use of AH in a REX instruction by referencing AX instead.
1822        // Shift it down 8 bits.
1823        Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
1824                                        X86::AX, MVT::i16, InFlag);
1825        InFlag = Result.getValue(2);
1826        Result = SDValue(CurDAG->getMachineNode(X86::SHR16ri, dl, MVT::i16,
1827                                                Result,
1828                                   CurDAG->getTargetConstant(8, MVT::i8)), 0);
1829        // Then truncate it down to i8.
1830        Result = CurDAG->getTargetExtractSubreg(X86::SUBREG_8BIT, dl,
1831                                                MVT::i8, Result);
1832      } else {
1833        Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
1834                                        HiReg, NVT, InFlag);
1835        InFlag = Result.getValue(2);
1836      }
1837      ReplaceUses(SDValue(Node, 1), Result);
1838#ifndef NDEBUG
1839      DEBUG({
1840          dbgs() << std::string(Indent-2, ' ') << "=> ";
1841          Result.getNode()->dump(CurDAG);
1842          dbgs() << '\n';
1843        });
1844#endif
1845    }
1846
1847#ifndef NDEBUG
1848    Indent -= 2;
1849#endif
1850
1851    return NULL;
1852  }
1853
1854  case ISD::SDIVREM:
1855  case ISD::UDIVREM: {
1856    SDValue N0 = Node->getOperand(0);
1857    SDValue N1 = Node->getOperand(1);
1858
1859    bool isSigned = Opcode == ISD::SDIVREM;
1860    if (!isSigned) {
1861      switch (NVT.getSimpleVT().SimpleTy) {
1862      default: llvm_unreachable("Unsupported VT!");
1863      case MVT::i8:  Opc = X86::DIV8r;  MOpc = X86::DIV8m;  break;
1864      case MVT::i16: Opc = X86::DIV16r; MOpc = X86::DIV16m; break;
1865      case MVT::i32: Opc = X86::DIV32r; MOpc = X86::DIV32m; break;
1866      case MVT::i64: Opc = X86::DIV64r; MOpc = X86::DIV64m; break;
1867      }
1868    } else {
1869      switch (NVT.getSimpleVT().SimpleTy) {
1870      default: llvm_unreachable("Unsupported VT!");
1871      case MVT::i8:  Opc = X86::IDIV8r;  MOpc = X86::IDIV8m;  break;
1872      case MVT::i16: Opc = X86::IDIV16r; MOpc = X86::IDIV16m; break;
1873      case MVT::i32: Opc = X86::IDIV32r; MOpc = X86::IDIV32m; break;
1874      case MVT::i64: Opc = X86::IDIV64r; MOpc = X86::IDIV64m; break;
1875      }
1876    }
1877
1878    unsigned LoReg, HiReg, ClrReg;
1879    unsigned ClrOpcode, SExtOpcode;
1880    switch (NVT.getSimpleVT().SimpleTy) {
1881    default: llvm_unreachable("Unsupported VT!");
1882    case MVT::i8:
1883      LoReg = X86::AL;  ClrReg = HiReg = X86::AH;
1884      ClrOpcode  = 0;
1885      SExtOpcode = X86::CBW;
1886      break;
1887    case MVT::i16:
1888      LoReg = X86::AX;  HiReg = X86::DX;
1889      ClrOpcode  = X86::MOV16r0; ClrReg = X86::DX;
1890      SExtOpcode = X86::CWD;
1891      break;
1892    case MVT::i32:
1893      LoReg = X86::EAX; ClrReg = HiReg = X86::EDX;
1894      ClrOpcode  = X86::MOV32r0;
1895      SExtOpcode = X86::CDQ;
1896      break;
1897    case MVT::i64:
1898      LoReg = X86::RAX; ClrReg = HiReg = X86::RDX;
1899      ClrOpcode  = X86::MOV64r0;
1900      SExtOpcode = X86::CQO;
1901      break;
1902    }
1903
1904    SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
1905    bool foldedLoad = TryFoldLoad(Node, N1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4);
1906    bool signBitIsZero = CurDAG->SignBitIsZero(N0);
1907
1908    SDValue InFlag;
1909    if (NVT == MVT::i8 && (!isSigned || signBitIsZero)) {
1910      // Special case for div8, just use a move with zero extension to AX to
1911      // clear the upper 8 bits (AH).
1912      SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Move, Chain;
1913      if (TryFoldLoad(Node, N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4)) {
1914        SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N0.getOperand(0) };
1915        Move =
1916          SDValue(CurDAG->getMachineNode(X86::MOVZX16rm8, dl, MVT::i16,
1917                                         MVT::Other, Ops,
1918                                         array_lengthof(Ops)), 0);
1919        Chain = Move.getValue(1);
1920        ReplaceUses(N0.getValue(1), Chain);
1921      } else {
1922        Move =
1923          SDValue(CurDAG->getMachineNode(X86::MOVZX16rr8, dl, MVT::i16, N0),0);
1924        Chain = CurDAG->getEntryNode();
1925      }
1926      Chain  = CurDAG->getCopyToReg(Chain, dl, X86::AX, Move, SDValue());
1927      InFlag = Chain.getValue(1);
1928    } else {
1929      InFlag =
1930        CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl,
1931                             LoReg, N0, SDValue()).getValue(1);
1932      if (isSigned && !signBitIsZero) {
1933        // Sign extend the low part into the high part.
1934        InFlag =
1935          SDValue(CurDAG->getMachineNode(SExtOpcode, dl, MVT::Flag, InFlag),0);
1936      } else {
1937        // Zero out the high part, effectively zero extending the input.
1938        SDValue ClrNode =
1939          SDValue(CurDAG->getMachineNode(ClrOpcode, dl, NVT), 0);
1940        InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, ClrReg,
1941                                      ClrNode, InFlag).getValue(1);
1942      }
1943    }
1944
1945    if (foldedLoad) {
1946      SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N1.getOperand(0),
1947                        InFlag };
1948      SDNode *CNode =
1949        CurDAG->getMachineNode(MOpc, dl, MVT::Other, MVT::Flag, Ops,
1950                               array_lengthof(Ops));
1951      InFlag = SDValue(CNode, 1);
1952      // Update the chain.
1953      ReplaceUses(N1.getValue(1), SDValue(CNode, 0));
1954    } else {
1955      InFlag =
1956        SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Flag, N1, InFlag), 0);
1957    }
1958
1959    // Copy the division (low) result, if it is needed.
1960    if (!SDValue(Node, 0).use_empty()) {
1961      SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
1962                                                LoReg, NVT, InFlag);
1963      InFlag = Result.getValue(2);
1964      ReplaceUses(SDValue(Node, 0), Result);
1965#ifndef NDEBUG
1966      DEBUG({
1967          dbgs() << std::string(Indent-2, ' ') << "=> ";
1968          Result.getNode()->dump(CurDAG);
1969          dbgs() << '\n';
1970        });
1971#endif
1972    }
1973    // Copy the remainder (high) result, if it is needed.
1974    if (!SDValue(Node, 1).use_empty()) {
1975      SDValue Result;
1976      if (HiReg == X86::AH && Subtarget->is64Bit()) {
1977        // Prevent use of AH in a REX instruction by referencing AX instead.
1978        // Shift it down 8 bits.
1979        Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
1980                                        X86::AX, MVT::i16, InFlag);
1981        InFlag = Result.getValue(2);
1982        Result = SDValue(CurDAG->getMachineNode(X86::SHR16ri, dl, MVT::i16,
1983                                      Result,
1984                                      CurDAG->getTargetConstant(8, MVT::i8)),
1985                         0);
1986        // Then truncate it down to i8.
1987        Result = CurDAG->getTargetExtractSubreg(X86::SUBREG_8BIT, dl,
1988                                                MVT::i8, Result);
1989      } else {
1990        Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
1991                                        HiReg, NVT, InFlag);
1992        InFlag = Result.getValue(2);
1993      }
1994      ReplaceUses(SDValue(Node, 1), Result);
1995#ifndef NDEBUG
1996      DEBUG({
1997          dbgs() << std::string(Indent-2, ' ') << "=> ";
1998          Result.getNode()->dump(CurDAG);
1999          dbgs() << '\n';
2000        });
2001#endif
2002    }
2003
2004#ifndef NDEBUG
2005    Indent -= 2;
2006#endif
2007
2008    return NULL;
2009  }
2010
2011  case X86ISD::CMP: {
2012    SDValue N0 = Node->getOperand(0);
2013    SDValue N1 = Node->getOperand(1);
2014
2015    // Look for (X86cmp (and $op, $imm), 0) and see if we can convert it to
2016    // use a smaller encoding.
2017    if (N0.getNode()->getOpcode() == ISD::AND && N0.getNode()->hasOneUse() &&
2018        N0.getValueType() != MVT::i8 &&
2019        X86::isZeroNode(N1)) {
2020      ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getNode()->getOperand(1));
2021      if (!C) break;
2022
2023      // For example, convert "testl %eax, $8" to "testb %al, $8"
2024      if ((C->getZExtValue() & ~UINT64_C(0xff)) == 0 &&
2025          (!(C->getZExtValue() & 0x80) ||
2026           HasNoSignedComparisonUses(Node))) {
2027        SDValue Imm = CurDAG->getTargetConstant(C->getZExtValue(), MVT::i8);
2028        SDValue Reg = N0.getNode()->getOperand(0);
2029
2030        // On x86-32, only the ABCD registers have 8-bit subregisters.
2031        if (!Subtarget->is64Bit()) {
2032          TargetRegisterClass *TRC = 0;
2033          switch (N0.getValueType().getSimpleVT().SimpleTy) {
2034          case MVT::i32: TRC = &X86::GR32_ABCDRegClass; break;
2035          case MVT::i16: TRC = &X86::GR16_ABCDRegClass; break;
2036          default: llvm_unreachable("Unsupported TEST operand type!");
2037          }
2038          SDValue RC = CurDAG->getTargetConstant(TRC->getID(), MVT::i32);
2039          Reg = SDValue(CurDAG->getMachineNode(X86::COPY_TO_REGCLASS, dl,
2040                                               Reg.getValueType(), Reg, RC), 0);
2041        }
2042
2043        // Extract the l-register.
2044        SDValue Subreg = CurDAG->getTargetExtractSubreg(X86::SUBREG_8BIT, dl,
2045                                                        MVT::i8, Reg);
2046
2047        // Emit a testb.
2048        return CurDAG->getMachineNode(X86::TEST8ri, dl, MVT::i32, Subreg, Imm);
2049      }
2050
2051      // For example, "testl %eax, $2048" to "testb %ah, $8".
2052      if ((C->getZExtValue() & ~UINT64_C(0xff00)) == 0 &&
2053          (!(C->getZExtValue() & 0x8000) ||
2054           HasNoSignedComparisonUses(Node))) {
2055        // Shift the immediate right by 8 bits.
2056        SDValue ShiftedImm = CurDAG->getTargetConstant(C->getZExtValue() >> 8,
2057                                                       MVT::i8);
2058        SDValue Reg = N0.getNode()->getOperand(0);
2059
2060        // Put the value in an ABCD register.
2061        TargetRegisterClass *TRC = 0;
2062        switch (N0.getValueType().getSimpleVT().SimpleTy) {
2063        case MVT::i64: TRC = &X86::GR64_ABCDRegClass; break;
2064        case MVT::i32: TRC = &X86::GR32_ABCDRegClass; break;
2065        case MVT::i16: TRC = &X86::GR16_ABCDRegClass; break;
2066        default: llvm_unreachable("Unsupported TEST operand type!");
2067        }
2068        SDValue RC = CurDAG->getTargetConstant(TRC->getID(), MVT::i32);
2069        Reg = SDValue(CurDAG->getMachineNode(X86::COPY_TO_REGCLASS, dl,
2070                                             Reg.getValueType(), Reg, RC), 0);
2071
2072        // Extract the h-register.
2073        SDValue Subreg = CurDAG->getTargetExtractSubreg(X86::SUBREG_8BIT_HI, dl,
2074                                                        MVT::i8, Reg);
2075
2076        // Emit a testb. No special NOREX tricks are needed since there's
2077        // only one GPR operand!
2078        return CurDAG->getMachineNode(X86::TEST8ri, dl, MVT::i32,
2079                                      Subreg, ShiftedImm);
2080      }
2081
2082      // For example, "testl %eax, $32776" to "testw %ax, $32776".
2083      if ((C->getZExtValue() & ~UINT64_C(0xffff)) == 0 &&
2084          N0.getValueType() != MVT::i16 &&
2085          (!(C->getZExtValue() & 0x8000) ||
2086           HasNoSignedComparisonUses(Node))) {
2087        SDValue Imm = CurDAG->getTargetConstant(C->getZExtValue(), MVT::i16);
2088        SDValue Reg = N0.getNode()->getOperand(0);
2089
2090        // Extract the 16-bit subregister.
2091        SDValue Subreg = CurDAG->getTargetExtractSubreg(X86::SUBREG_16BIT, dl,
2092                                                        MVT::i16, Reg);
2093
2094        // Emit a testw.
2095        return CurDAG->getMachineNode(X86::TEST16ri, dl, MVT::i32, Subreg, Imm);
2096      }
2097
2098      // For example, "testq %rax, $268468232" to "testl %eax, $268468232".
2099      if ((C->getZExtValue() & ~UINT64_C(0xffffffff)) == 0 &&
2100          N0.getValueType() == MVT::i64 &&
2101          (!(C->getZExtValue() & 0x80000000) ||
2102           HasNoSignedComparisonUses(Node))) {
2103        SDValue Imm = CurDAG->getTargetConstant(C->getZExtValue(), MVT::i32);
2104        SDValue Reg = N0.getNode()->getOperand(0);
2105
2106        // Extract the 32-bit subregister.
2107        SDValue Subreg = CurDAG->getTargetExtractSubreg(X86::SUBREG_32BIT, dl,
2108                                                        MVT::i32, Reg);
2109
2110        // Emit a testl.
2111        return CurDAG->getMachineNode(X86::TEST32ri, dl, MVT::i32, Subreg, Imm);
2112      }
2113    }
2114    break;
2115  }
2116  }
2117
2118  SDNode *ResNode = SelectCode(Node);
2119
2120#ifndef NDEBUG
2121  DEBUG({
2122      dbgs() << std::string(Indent-2, ' ') << "=> ";
2123      if (ResNode == NULL || ResNode == Node)
2124        Node->dump(CurDAG);
2125      else
2126        ResNode->dump(CurDAG);
2127      dbgs() << '\n';
2128    });
2129  Indent -= 2;
2130#endif
2131
2132  return ResNode;
2133}
2134
2135bool X86DAGToDAGISel::
2136SelectInlineAsmMemoryOperand(const SDValue &Op, char ConstraintCode,
2137                             std::vector<SDValue> &OutOps) {
2138  SDValue Op0, Op1, Op2, Op3, Op4;
2139  switch (ConstraintCode) {
2140  case 'o':   // offsetable        ??
2141  case 'v':   // not offsetable    ??
2142  default: return true;
2143  case 'm':   // memory
2144    if (!SelectAddr(Op.getNode(), Op, Op0, Op1, Op2, Op3, Op4))
2145      return true;
2146    break;
2147  }
2148
2149  OutOps.push_back(Op0);
2150  OutOps.push_back(Op1);
2151  OutOps.push_back(Op2);
2152  OutOps.push_back(Op3);
2153  OutOps.push_back(Op4);
2154  return false;
2155}
2156
2157/// createX86ISelDag - This pass converts a legalized DAG into a
2158/// X86-specific DAG, ready for instruction scheduling.
2159///
2160FunctionPass *llvm::createX86ISelDag(X86TargetMachine &TM,
2161                                     llvm::CodeGenOpt::Level OptLevel) {
2162  return new X86DAGToDAGISel(TM, OptLevel);
2163}
2164