X86ISelDAGToDAG.cpp revision 51a9ed9b41c881bd485ce76834352eb82c38ee5b
1//===- X86ISelDAGToDAG.cpp - A DAG pattern matching inst selector for X86 -===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the Evan Cheng and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines a DAG pattern matching instruction selector for X86,
11// converting from a legalized dag to a X86 dag.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "isel"
16#include "X86.h"
17#include "X86InstrBuilder.h"
18#include "X86RegisterInfo.h"
19#include "X86Subtarget.h"
20#include "X86ISelLowering.h"
21#include "llvm/GlobalValue.h"
22#include "llvm/Instructions.h"
23#include "llvm/Support/CFG.h"
24#include "llvm/CodeGen/MachineConstantPool.h"
25#include "llvm/CodeGen/MachineFunction.h"
26#include "llvm/CodeGen/MachineFrameInfo.h"
27#include "llvm/CodeGen/MachineInstrBuilder.h"
28#include "llvm/CodeGen/SSARegMap.h"
29#include "llvm/CodeGen/SelectionDAGISel.h"
30#include "llvm/Target/TargetMachine.h"
31#include "llvm/Support/Debug.h"
32#include "llvm/ADT/Statistic.h"
33#include <iostream>
34#include <set>
35using namespace llvm;
36
37//===----------------------------------------------------------------------===//
38//                      Pattern Matcher Implementation
39//===----------------------------------------------------------------------===//
40
41namespace {
42  /// X86ISelAddressMode - This corresponds to X86AddressMode, but uses
43  /// SDOperand's instead of register numbers for the leaves of the matched
44  /// tree.
45  struct X86ISelAddressMode {
46    enum {
47      RegBase,
48      FrameIndexBase,
49    } BaseType;
50
51    struct {            // This is really a union, discriminated by BaseType!
52      SDOperand Reg;
53      int FrameIndex;
54    } Base;
55
56    unsigned Scale;
57    SDOperand IndexReg;
58    unsigned Disp;
59    GlobalValue *GV;
60    Constant *CP;
61    unsigned Align;    // CP alignment.
62
63    X86ISelAddressMode()
64      : BaseType(RegBase), Scale(1), IndexReg(), Disp(0), GV(0),
65        CP(0), Align(0) {
66    }
67  };
68}
69
70namespace {
71  Statistic<>
72  NumFPKill("x86-codegen", "Number of FP_REG_KILL instructions added");
73
74  //===--------------------------------------------------------------------===//
75  /// ISel - X86 specific code to select X86 machine instructions for
76  /// SelectionDAG operations.
77  ///
78  class X86DAGToDAGISel : public SelectionDAGISel {
79    /// ContainsFPCode - Every instruction we select that uses or defines a FP
80    /// register should set this to true.
81    bool ContainsFPCode;
82
83    /// X86Lowering - This object fully describes how to lower LLVM code to an
84    /// X86-specific SelectionDAG.
85    X86TargetLowering X86Lowering;
86
87    /// Subtarget - Keep a pointer to the X86Subtarget around so that we can
88    /// make the right decision when generating code for different targets.
89    const X86Subtarget *Subtarget;
90
91    unsigned GlobalBaseReg;
92  public:
93    X86DAGToDAGISel(TargetMachine &TM)
94      : SelectionDAGISel(X86Lowering), X86Lowering(TM) {
95      Subtarget = &TM.getSubtarget<X86Subtarget>();
96    }
97
98    virtual bool runOnFunction(Function &Fn) {
99      // Make sure we re-emit a set of the global base reg if necessary
100      GlobalBaseReg = 0;
101      return SelectionDAGISel::runOnFunction(Fn);
102    }
103
104    virtual const char *getPassName() const {
105      return "X86 DAG->DAG Instruction Selection";
106    }
107
108    /// InstructionSelectBasicBlock - This callback is invoked by
109    /// SelectionDAGISel when it has created a SelectionDAG for us to codegen.
110    virtual void InstructionSelectBasicBlock(SelectionDAG &DAG);
111
112    virtual void EmitFunctionEntryCode(Function &Fn, MachineFunction &MF);
113
114// Include the pieces autogenerated from the target description.
115#include "X86GenDAGISel.inc"
116
117  private:
118    void Select(SDOperand &Result, SDOperand N);
119
120    bool MatchAddress(SDOperand N, X86ISelAddressMode &AM, bool isRoot = true);
121    bool SelectAddr(SDOperand N, SDOperand &Base, SDOperand &Scale,
122                    SDOperand &Index, SDOperand &Disp);
123    bool SelectLEAAddr(SDOperand N, SDOperand &Base, SDOperand &Scale,
124                       SDOperand &Index, SDOperand &Disp);
125    bool TryFoldLoad(SDOperand P, SDOperand N,
126                     SDOperand &Base, SDOperand &Scale,
127                     SDOperand &Index, SDOperand &Disp);
128
129    inline void getAddressOperands(X86ISelAddressMode &AM, SDOperand &Base,
130                                   SDOperand &Scale, SDOperand &Index,
131                                   SDOperand &Disp) {
132      Base  = (AM.BaseType == X86ISelAddressMode::FrameIndexBase) ?
133        CurDAG->getTargetFrameIndex(AM.Base.FrameIndex, MVT::i32) : AM.Base.Reg;
134      Scale = getI8Imm(AM.Scale);
135      Index = AM.IndexReg;
136      Disp  = AM.GV ? CurDAG->getTargetGlobalAddress(AM.GV, MVT::i32, AM.Disp)
137        : (AM.CP ?
138           CurDAG->getTargetConstantPool(AM.CP, MVT::i32, AM.Align, AM.Disp)
139           : getI32Imm(AM.Disp));
140    }
141
142    /// getI8Imm - Return a target constant with the specified value, of type
143    /// i8.
144    inline SDOperand getI8Imm(unsigned Imm) {
145      return CurDAG->getTargetConstant(Imm, MVT::i8);
146    }
147
148    /// getI16Imm - Return a target constant with the specified value, of type
149    /// i16.
150    inline SDOperand getI16Imm(unsigned Imm) {
151      return CurDAG->getTargetConstant(Imm, MVT::i16);
152    }
153
154    /// getI32Imm - Return a target constant with the specified value, of type
155    /// i32.
156    inline SDOperand getI32Imm(unsigned Imm) {
157      return CurDAG->getTargetConstant(Imm, MVT::i32);
158    }
159
160    /// getGlobalBaseReg - insert code into the entry mbb to materialize the PIC
161    /// base register.  Return the virtual register that holds this value.
162    SDOperand getGlobalBaseReg();
163
164#ifndef NDEBUG
165    unsigned Indent;
166#endif
167  };
168}
169
170/// InstructionSelectBasicBlock - This callback is invoked by SelectionDAGISel
171/// when it has created a SelectionDAG for us to codegen.
172void X86DAGToDAGISel::InstructionSelectBasicBlock(SelectionDAG &DAG) {
173  DEBUG(BB->dump());
174  MachineFunction::iterator FirstMBB = BB;
175
176  // Codegen the basic block.
177#ifndef NDEBUG
178  DEBUG(std::cerr << "===== Instruction selection begins:\n");
179  Indent = 0;
180#endif
181  DAG.setRoot(SelectRoot(DAG.getRoot()));
182#ifndef NDEBUG
183  DEBUG(std::cerr << "===== Instruction selection ends:\n");
184#endif
185  CodeGenMap.clear();
186  DAG.RemoveDeadNodes();
187
188  // Emit machine code to BB.
189  ScheduleAndEmitDAG(DAG);
190
191  // If we are emitting FP stack code, scan the basic block to determine if this
192  // block defines any FP values.  If so, put an FP_REG_KILL instruction before
193  // the terminator of the block.
194  if (!Subtarget->hasSSE2()) {
195    // Note that FP stack instructions *are* used in SSE code when returning
196    // values, but these are not live out of the basic block, so we don't need
197    // an FP_REG_KILL in this case either.
198    bool ContainsFPCode = false;
199
200    // Scan all of the machine instructions in these MBBs, checking for FP
201    // stores.
202    MachineFunction::iterator MBBI = FirstMBB;
203    do {
204      for (MachineBasicBlock::iterator I = MBBI->begin(), E = MBBI->end();
205           !ContainsFPCode && I != E; ++I) {
206        for (unsigned op = 0, e = I->getNumOperands(); op != e; ++op) {
207          if (I->getOperand(op).isRegister() && I->getOperand(op).isDef() &&
208              MRegisterInfo::isVirtualRegister(I->getOperand(op).getReg()) &&
209              RegMap->getRegClass(I->getOperand(0).getReg()) ==
210                X86::RFPRegisterClass) {
211            ContainsFPCode = true;
212            break;
213          }
214        }
215      }
216    } while (!ContainsFPCode && &*(MBBI++) != BB);
217
218    // Check PHI nodes in successor blocks.  These PHI's will be lowered to have
219    // a copy of the input value in this block.
220    if (!ContainsFPCode) {
221      // Final check, check LLVM BB's that are successors to the LLVM BB
222      // corresponding to BB for FP PHI nodes.
223      const BasicBlock *LLVMBB = BB->getBasicBlock();
224      const PHINode *PN;
225      for (succ_const_iterator SI = succ_begin(LLVMBB), E = succ_end(LLVMBB);
226           !ContainsFPCode && SI != E; ++SI) {
227        for (BasicBlock::const_iterator II = SI->begin();
228             (PN = dyn_cast<PHINode>(II)); ++II) {
229          if (PN->getType()->isFloatingPoint()) {
230            ContainsFPCode = true;
231            break;
232          }
233        }
234      }
235    }
236
237    // Finally, if we found any FP code, emit the FP_REG_KILL instruction.
238    if (ContainsFPCode) {
239      BuildMI(*BB, BB->getFirstTerminator(), X86::FP_REG_KILL, 0);
240      ++NumFPKill;
241    }
242  }
243}
244
245/// EmitSpecialCodeForMain - Emit any code that needs to be executed only in
246/// the main function.
247static void EmitSpecialCodeForMain(MachineBasicBlock *BB,
248                                   MachineFrameInfo *MFI) {
249  // Switch the FPU to 64-bit precision mode for better compatibility and speed.
250  int CWFrameIdx = MFI->CreateStackObject(2, 2);
251  addFrameReference(BuildMI(BB, X86::FNSTCW16m, 4), CWFrameIdx);
252
253  // Set the high part to be 64-bit precision.
254  addFrameReference(BuildMI(BB, X86::MOV8mi, 5),
255                    CWFrameIdx, 1).addImm(2);
256
257  // Reload the modified control word now.
258  addFrameReference(BuildMI(BB, X86::FLDCW16m, 4), CWFrameIdx);
259}
260
261void X86DAGToDAGISel::EmitFunctionEntryCode(Function &Fn, MachineFunction &MF) {
262  // If this is main, emit special code for main.
263  MachineBasicBlock *BB = MF.begin();
264  if (Fn.hasExternalLinkage() && Fn.getName() == "main")
265    EmitSpecialCodeForMain(BB, MF.getFrameInfo());
266}
267
268/// MatchAddress - Add the specified node to the specified addressing mode,
269/// returning true if it cannot be done.  This just pattern matches for the
270/// addressing mode
271bool X86DAGToDAGISel::MatchAddress(SDOperand N, X86ISelAddressMode &AM,
272                                   bool isRoot) {
273  bool Available = false;
274  // If N has already been selected, reuse the result unless in some very
275  // specific cases.
276  std::map<SDOperand, SDOperand>::iterator CGMI= CodeGenMap.find(N.getValue(0));
277  if (CGMI != CodeGenMap.end()) {
278    Available = true;
279  }
280
281  switch (N.getOpcode()) {
282  default: break;
283  case ISD::Constant:
284    AM.Disp += cast<ConstantSDNode>(N)->getValue();
285    return false;
286
287  case X86ISD::Wrapper:
288    // If both base and index components have been picked, we can't fit
289    // the result available in the register in the addressing mode. Duplicate
290    // GlobalAddress or ConstantPool as displacement.
291    if (!Available || (AM.Base.Reg.Val && AM.IndexReg.Val)) {
292      if (ConstantPoolSDNode *CP =
293          dyn_cast<ConstantPoolSDNode>(N.getOperand(0))) {
294        if (AM.CP == 0) {
295          AM.CP = CP->get();
296          AM.Align = CP->getAlignment();
297          AM.Disp += CP->getOffset();
298          return false;
299        }
300      } else if (GlobalAddressSDNode *G =
301                 dyn_cast<GlobalAddressSDNode>(N.getOperand(0))) {
302        if (AM.GV == 0) {
303          AM.GV = G->getGlobal();
304          AM.Disp += G->getOffset();
305          return false;
306        }
307      }
308    }
309    break;
310
311  case ISD::FrameIndex:
312    if (AM.BaseType == X86ISelAddressMode::RegBase && AM.Base.Reg.Val == 0) {
313      AM.BaseType = X86ISelAddressMode::FrameIndexBase;
314      AM.Base.FrameIndex = cast<FrameIndexSDNode>(N)->getIndex();
315      return false;
316    }
317    break;
318
319  case ISD::SHL:
320    if (!Available && AM.IndexReg.Val == 0 && AM.Scale == 1)
321      if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N.Val->getOperand(1))) {
322        unsigned Val = CN->getValue();
323        if (Val == 1 || Val == 2 || Val == 3) {
324          AM.Scale = 1 << Val;
325          SDOperand ShVal = N.Val->getOperand(0);
326
327          // Okay, we know that we have a scale by now.  However, if the scaled
328          // value is an add of something and a constant, we can fold the
329          // constant into the disp field here.
330          if (ShVal.Val->getOpcode() == ISD::ADD && ShVal.hasOneUse() &&
331              isa<ConstantSDNode>(ShVal.Val->getOperand(1))) {
332            AM.IndexReg = ShVal.Val->getOperand(0);
333            ConstantSDNode *AddVal =
334              cast<ConstantSDNode>(ShVal.Val->getOperand(1));
335            AM.Disp += AddVal->getValue() << Val;
336          } else {
337            AM.IndexReg = ShVal;
338          }
339          return false;
340        }
341      }
342    break;
343
344  case ISD::MUL:
345    // X*[3,5,9] -> X+X*[2,4,8]
346    if (!Available &&
347        AM.BaseType == X86ISelAddressMode::RegBase &&
348        AM.Base.Reg.Val == 0 &&
349        AM.IndexReg.Val == 0)
350      if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N.Val->getOperand(1)))
351        if (CN->getValue() == 3 || CN->getValue() == 5 || CN->getValue() == 9) {
352          AM.Scale = unsigned(CN->getValue())-1;
353
354          SDOperand MulVal = N.Val->getOperand(0);
355          SDOperand Reg;
356
357          // Okay, we know that we have a scale by now.  However, if the scaled
358          // value is an add of something and a constant, we can fold the
359          // constant into the disp field here.
360          if (MulVal.Val->getOpcode() == ISD::ADD && MulVal.hasOneUse() &&
361              isa<ConstantSDNode>(MulVal.Val->getOperand(1))) {
362            Reg = MulVal.Val->getOperand(0);
363            ConstantSDNode *AddVal =
364              cast<ConstantSDNode>(MulVal.Val->getOperand(1));
365            AM.Disp += AddVal->getValue() * CN->getValue();
366          } else {
367            Reg = N.Val->getOperand(0);
368          }
369
370          AM.IndexReg = AM.Base.Reg = Reg;
371          return false;
372        }
373    break;
374
375  case ISD::ADD: {
376    if (!Available) {
377      X86ISelAddressMode Backup = AM;
378      if (!MatchAddress(N.Val->getOperand(0), AM, false) &&
379          !MatchAddress(N.Val->getOperand(1), AM, false))
380        return false;
381      AM = Backup;
382      if (!MatchAddress(N.Val->getOperand(1), AM, false) &&
383          !MatchAddress(N.Val->getOperand(0), AM, false))
384        return false;
385      AM = Backup;
386    }
387    break;
388  }
389  }
390
391  // Is the base register already occupied?
392  if (AM.BaseType != X86ISelAddressMode::RegBase || AM.Base.Reg.Val) {
393    // If so, check to see if the scale index register is set.
394    if (AM.IndexReg.Val == 0) {
395      AM.IndexReg = N;
396      AM.Scale = 1;
397      return false;
398    }
399
400    // Otherwise, we cannot select it.
401    return true;
402  }
403
404  // Default, generate it as a register.
405  AM.BaseType = X86ISelAddressMode::RegBase;
406  AM.Base.Reg = N;
407  return false;
408}
409
410/// SelectAddr - returns true if it is able pattern match an addressing mode.
411/// It returns the operands which make up the maximal addressing mode it can
412/// match by reference.
413bool X86DAGToDAGISel::SelectAddr(SDOperand N, SDOperand &Base, SDOperand &Scale,
414                                 SDOperand &Index, SDOperand &Disp) {
415  X86ISelAddressMode AM;
416  if (MatchAddress(N, AM))
417    return false;
418
419  if (AM.BaseType == X86ISelAddressMode::RegBase) {
420    if (!AM.Base.Reg.Val)
421      AM.Base.Reg = CurDAG->getRegister(0, MVT::i32);
422  }
423
424  if (!AM.IndexReg.Val)
425    AM.IndexReg = CurDAG->getRegister(0, MVT::i32);
426
427  getAddressOperands(AM, Base, Scale, Index, Disp);
428
429  return true;
430}
431
432/// SelectLEAAddr - it calls SelectAddr and determines if the maximal addressing
433/// mode it matches can be cost effectively emitted as an LEA instruction.
434/// For X86, it always is unless it's just a (Reg + const).
435bool X86DAGToDAGISel::SelectLEAAddr(SDOperand N, SDOperand &Base,
436                                    SDOperand &Scale,
437                                    SDOperand &Index, SDOperand &Disp) {
438  X86ISelAddressMode AM;
439  if (MatchAddress(N, AM))
440    return false;
441
442  unsigned Complexity = 0;
443  if (AM.BaseType == X86ISelAddressMode::RegBase)
444    if (AM.Base.Reg.Val)
445      Complexity = 1;
446    else
447      AM.Base.Reg = CurDAG->getRegister(0, MVT::i32);
448  else if (AM.BaseType == X86ISelAddressMode::FrameIndexBase)
449    Complexity = 4;
450
451  if (AM.IndexReg.Val)
452    Complexity++;
453  else
454    AM.IndexReg = CurDAG->getRegister(0, MVT::i32);
455
456  if (AM.Scale > 1)
457    Complexity += 2;
458
459  // FIXME: We are artificially lowering the criteria to turn ADD %reg, $GA
460  // to a LEA. This is determined with some expermentation but is by no means
461  // optimal (especially for code size consideration). LEA is nice because of
462  // its three-address nature. Tweak the cost function again when we can run
463  // convertToThreeAddress() at register allocation time.
464  if (AM.GV || AM.CP)
465    Complexity += 2;
466
467  if (AM.Disp && (AM.Base.Reg.Val || AM.IndexReg.Val))
468    Complexity++;
469
470  if (Complexity > 2) {
471    getAddressOperands(AM, Base, Scale, Index, Disp);
472    return true;
473  }
474
475  return false;
476}
477
478bool X86DAGToDAGISel::TryFoldLoad(SDOperand P, SDOperand N,
479                                  SDOperand &Base, SDOperand &Scale,
480                                  SDOperand &Index, SDOperand &Disp) {
481  if (N.getOpcode() == ISD::LOAD &&
482      N.hasOneUse() &&
483      !CodeGenMap.count(N.getValue(0)) &&
484      (P.getNumOperands() == 1 || !isNonImmUse(P.Val, N.Val)))
485    return SelectAddr(N.getOperand(1), Base, Scale, Index, Disp);
486  return false;
487}
488
489static bool isRegister0(SDOperand Op) {
490  if (RegisterSDNode *R = dyn_cast<RegisterSDNode>(Op))
491    return (R->getReg() == 0);
492  return false;
493}
494
495/// getGlobalBaseReg - Output the instructions required to put the
496/// base address to use for accessing globals into a register.
497///
498SDOperand X86DAGToDAGISel::getGlobalBaseReg() {
499  if (!GlobalBaseReg) {
500    // Insert the set of GlobalBaseReg into the first MBB of the function
501    MachineBasicBlock &FirstMBB = BB->getParent()->front();
502    MachineBasicBlock::iterator MBBI = FirstMBB.begin();
503    SSARegMap *RegMap = BB->getParent()->getSSARegMap();
504    // FIXME: when we get to LP64, we will need to create the appropriate
505    // type of register here.
506    GlobalBaseReg = RegMap->createVirtualRegister(X86::R32RegisterClass);
507    BuildMI(FirstMBB, MBBI, X86::MovePCtoStack, 0);
508    BuildMI(FirstMBB, MBBI, X86::POP32r, 1, GlobalBaseReg);
509  }
510  return CurDAG->getRegister(GlobalBaseReg, MVT::i32);
511}
512
513void X86DAGToDAGISel::Select(SDOperand &Result, SDOperand N) {
514  SDNode *Node = N.Val;
515  MVT::ValueType NVT = Node->getValueType(0);
516  unsigned Opc, MOpc;
517  unsigned Opcode = Node->getOpcode();
518
519#ifndef NDEBUG
520  DEBUG(std::cerr << std::string(Indent, ' '));
521  DEBUG(std::cerr << "Selecting: ");
522  DEBUG(Node->dump(CurDAG));
523  DEBUG(std::cerr << "\n");
524  Indent += 2;
525#endif
526
527  if (Opcode >= ISD::BUILTIN_OP_END && Opcode < X86ISD::FIRST_NUMBER) {
528    Result = N;
529#ifndef NDEBUG
530    DEBUG(std::cerr << std::string(Indent-2, ' '));
531    DEBUG(std::cerr << "== ");
532    DEBUG(Node->dump(CurDAG));
533    DEBUG(std::cerr << "\n");
534    Indent -= 2;
535#endif
536    return;   // Already selected.
537  }
538
539  std::map<SDOperand, SDOperand>::iterator CGMI = CodeGenMap.find(N);
540  if (CGMI != CodeGenMap.end()) {
541    Result = CGMI->second;
542#ifndef NDEBUG
543    DEBUG(std::cerr << std::string(Indent-2, ' '));
544    DEBUG(std::cerr << "== ");
545    DEBUG(Result.Val->dump(CurDAG));
546    DEBUG(std::cerr << "\n");
547    Indent -= 2;
548#endif
549    return;
550  }
551
552  switch (Opcode) {
553    default: break;
554    case X86ISD::GlobalBaseReg:
555      Result = getGlobalBaseReg();
556      return;
557
558    case ISD::ADD: {
559      // Turn ADD X, c to MOV32ri X+c. This cannot be done with tblgen'd
560      // code and is matched first so to prevent it from being turned into
561      // LEA32r X+c.
562      SDOperand N0 = N.getOperand(0);
563      SDOperand N1 = N.getOperand(1);
564      if (N.Val->getValueType(0) == MVT::i32 &&
565          N0.getOpcode() == X86ISD::Wrapper &&
566          N1.getOpcode() == ISD::Constant) {
567        unsigned Offset = (unsigned)cast<ConstantSDNode>(N1)->getValue();
568        SDOperand C(0, 0);
569        // TODO: handle ExternalSymbolSDNode.
570        if (GlobalAddressSDNode *G =
571            dyn_cast<GlobalAddressSDNode>(N0.getOperand(0))) {
572          C = CurDAG->getTargetGlobalAddress(G->getGlobal(), MVT::i32,
573                                             G->getOffset() + Offset);
574        } else if (ConstantPoolSDNode *CP =
575                   dyn_cast<ConstantPoolSDNode>(N0.getOperand(0))) {
576          C = CurDAG->getTargetConstantPool(CP->get(), MVT::i32,
577                                            CP->getAlignment(),
578                                            CP->getOffset()+Offset);
579        }
580
581        if (C.Val) {
582          if (N.Val->hasOneUse()) {
583            Result = CurDAG->SelectNodeTo(N.Val, X86::MOV32ri, MVT::i32, C);
584          } else {
585            SDNode *ResNode = CurDAG->getTargetNode(X86::MOV32ri, MVT::i32, C);
586            Result = CodeGenMap[N] = SDOperand(ResNode, 0);
587          }
588          return;
589        }
590      }
591
592      // Other cases are handled by auto-generated code.
593      break;
594    }
595
596    case ISD::MULHU:
597    case ISD::MULHS: {
598      if (Opcode == ISD::MULHU)
599        switch (NVT) {
600        default: assert(0 && "Unsupported VT!");
601        case MVT::i8:  Opc = X86::MUL8r;  MOpc = X86::MUL8m;  break;
602        case MVT::i16: Opc = X86::MUL16r; MOpc = X86::MUL16m; break;
603        case MVT::i32: Opc = X86::MUL32r; MOpc = X86::MUL32m; break;
604        }
605      else
606        switch (NVT) {
607        default: assert(0 && "Unsupported VT!");
608        case MVT::i8:  Opc = X86::IMUL8r;  MOpc = X86::IMUL8m;  break;
609        case MVT::i16: Opc = X86::IMUL16r; MOpc = X86::IMUL16m; break;
610        case MVT::i32: Opc = X86::IMUL32r; MOpc = X86::IMUL32m; break;
611        }
612
613      unsigned LoReg, HiReg;
614      switch (NVT) {
615      default: assert(0 && "Unsupported VT!");
616      case MVT::i8:  LoReg = X86::AL;  HiReg = X86::AH;  break;
617      case MVT::i16: LoReg = X86::AX;  HiReg = X86::DX;  break;
618      case MVT::i32: LoReg = X86::EAX; HiReg = X86::EDX; break;
619      }
620
621      SDOperand N0 = Node->getOperand(0);
622      SDOperand N1 = Node->getOperand(1);
623
624      bool foldedLoad = false;
625      SDOperand Tmp0, Tmp1, Tmp2, Tmp3;
626      foldedLoad = TryFoldLoad(N, N1, Tmp0, Tmp1, Tmp2, Tmp3);
627      // MULHU and MULHS are commmutative
628      if (!foldedLoad) {
629        foldedLoad = TryFoldLoad(N, N0, Tmp0, Tmp1, Tmp2, Tmp3);
630        if (foldedLoad) {
631          N0 = Node->getOperand(1);
632          N1 = Node->getOperand(0);
633        }
634      }
635
636      SDOperand Chain;
637      if (foldedLoad)
638        Select(Chain, N1.getOperand(0));
639      else
640        Chain = CurDAG->getEntryNode();
641
642      SDOperand InFlag(0, 0);
643      Select(N0, N0);
644      Chain  = CurDAG->getCopyToReg(Chain, CurDAG->getRegister(LoReg, NVT),
645                                    N0, InFlag);
646      InFlag = Chain.getValue(1);
647
648      if (foldedLoad) {
649        Select(Tmp0, Tmp0);
650        Select(Tmp1, Tmp1);
651        Select(Tmp2, Tmp2);
652        Select(Tmp3, Tmp3);
653        SDNode *CNode =
654          CurDAG->getTargetNode(MOpc, MVT::Other, MVT::Flag, Tmp0, Tmp1,
655                                Tmp2, Tmp3, Chain, InFlag);
656        Chain  = SDOperand(CNode, 0);
657        InFlag = SDOperand(CNode, 1);
658      } else {
659        Select(N1, N1);
660        InFlag =
661          SDOperand(CurDAG->getTargetNode(Opc, MVT::Flag, N1, InFlag), 0);
662      }
663
664      Result = CurDAG->getCopyFromReg(Chain, HiReg, NVT, InFlag);
665      CodeGenMap[N.getValue(0)] = Result;
666      if (foldedLoad) {
667        CodeGenMap[N1.getValue(1)] = Result.getValue(1);
668        AddHandleReplacement(N1.Val, 1, Result.Val, 1);
669      }
670
671#ifndef NDEBUG
672      DEBUG(std::cerr << std::string(Indent-2, ' '));
673      DEBUG(std::cerr << "== ");
674      DEBUG(Result.Val->dump(CurDAG));
675      DEBUG(std::cerr << "\n");
676      Indent -= 2;
677#endif
678      return;
679    }
680
681    case ISD::SDIV:
682    case ISD::UDIV:
683    case ISD::SREM:
684    case ISD::UREM: {
685      bool isSigned = Opcode == ISD::SDIV || Opcode == ISD::SREM;
686      bool isDiv    = Opcode == ISD::SDIV || Opcode == ISD::UDIV;
687      if (!isSigned)
688        switch (NVT) {
689        default: assert(0 && "Unsupported VT!");
690        case MVT::i8:  Opc = X86::DIV8r;  MOpc = X86::DIV8m;  break;
691        case MVT::i16: Opc = X86::DIV16r; MOpc = X86::DIV16m; break;
692        case MVT::i32: Opc = X86::DIV32r; MOpc = X86::DIV32m; break;
693        }
694      else
695        switch (NVT) {
696        default: assert(0 && "Unsupported VT!");
697        case MVT::i8:  Opc = X86::IDIV8r;  MOpc = X86::IDIV8m;  break;
698        case MVT::i16: Opc = X86::IDIV16r; MOpc = X86::IDIV16m; break;
699        case MVT::i32: Opc = X86::IDIV32r; MOpc = X86::IDIV32m; break;
700        }
701
702      unsigned LoReg, HiReg;
703      unsigned ClrOpcode, SExtOpcode;
704      switch (NVT) {
705      default: assert(0 && "Unsupported VT!");
706      case MVT::i8:
707        LoReg = X86::AL;  HiReg = X86::AH;
708        ClrOpcode  = X86::MOV8ri;
709        SExtOpcode = X86::CBW;
710        break;
711      case MVT::i16:
712        LoReg = X86::AX;  HiReg = X86::DX;
713        ClrOpcode  = X86::MOV16ri;
714        SExtOpcode = X86::CWD;
715        break;
716      case MVT::i32:
717        LoReg = X86::EAX; HiReg = X86::EDX;
718        ClrOpcode  = X86::MOV32ri;
719        SExtOpcode = X86::CDQ;
720        break;
721      }
722
723      SDOperand N0 = Node->getOperand(0);
724      SDOperand N1 = Node->getOperand(1);
725
726      bool foldedLoad = false;
727      SDOperand Tmp0, Tmp1, Tmp2, Tmp3;
728      foldedLoad = TryFoldLoad(N, N1, Tmp0, Tmp1, Tmp2, Tmp3);
729      SDOperand Chain;
730      if (foldedLoad)
731        Select(Chain, N1.getOperand(0));
732      else
733        Chain = CurDAG->getEntryNode();
734
735      SDOperand InFlag(0, 0);
736      Select(N0, N0);
737      Chain  = CurDAG->getCopyToReg(Chain, CurDAG->getRegister(LoReg, NVT),
738                                    N0, InFlag);
739      InFlag = Chain.getValue(1);
740
741      if (isSigned) {
742        // Sign extend the low part into the high part.
743        InFlag =
744          SDOperand(CurDAG->getTargetNode(SExtOpcode, MVT::Flag, InFlag), 0);
745      } else {
746        // Zero out the high part, effectively zero extending the input.
747        SDOperand ClrNode =
748          SDOperand(CurDAG->getTargetNode(ClrOpcode, NVT,
749                                         CurDAG->getTargetConstant(0, NVT)), 0);
750        Chain  = CurDAG->getCopyToReg(Chain, CurDAG->getRegister(HiReg, NVT),
751                                      ClrNode, InFlag);
752        InFlag = Chain.getValue(1);
753      }
754
755      if (foldedLoad) {
756        Select(Tmp0, Tmp0);
757        Select(Tmp1, Tmp1);
758        Select(Tmp2, Tmp2);
759        Select(Tmp3, Tmp3);
760        SDNode *CNode =
761          CurDAG->getTargetNode(MOpc, MVT::Other, MVT::Flag, Tmp0, Tmp1,
762                                Tmp2, Tmp3, Chain, InFlag);
763        Chain  = SDOperand(CNode, 0);
764        InFlag = SDOperand(CNode, 1);
765      } else {
766        Select(N1, N1);
767        InFlag =
768          SDOperand(CurDAG->getTargetNode(Opc, MVT::Flag, N1, InFlag), 0);
769      }
770
771      Result = CurDAG->getCopyFromReg(Chain, isDiv ? LoReg : HiReg,
772                                      NVT, InFlag);
773      CodeGenMap[N.getValue(0)] = Result;
774      if (foldedLoad) {
775        CodeGenMap[N1.getValue(1)] = Result.getValue(1);
776        AddHandleReplacement(N1.Val, 1, Result.Val, 1);
777      }
778
779#ifndef NDEBUG
780      DEBUG(std::cerr << std::string(Indent-2, ' '));
781      DEBUG(std::cerr << "== ");
782      DEBUG(Result.Val->dump(CurDAG));
783      DEBUG(std::cerr << "\n");
784      Indent -= 2;
785#endif
786      return;
787    }
788
789    case ISD::TRUNCATE: {
790      unsigned Reg;
791      MVT::ValueType VT;
792      switch (Node->getOperand(0).getValueType()) {
793        default: assert(0 && "Unknown truncate!");
794        case MVT::i16: Reg = X86::AX;  Opc = X86::MOV16rr; VT = MVT::i16; break;
795        case MVT::i32: Reg = X86::EAX; Opc = X86::MOV32rr; VT = MVT::i32; break;
796      }
797      SDOperand Tmp0, Tmp1;
798      Select(Tmp0, Node->getOperand(0));
799      Select(Tmp1, SDOperand(CurDAG->getTargetNode(Opc, VT, Tmp0), 0));
800      SDOperand InFlag = SDOperand(0,0);
801      Result = CurDAG->getCopyToReg(CurDAG->getEntryNode(), Reg, Tmp1, InFlag);
802      SDOperand Chain = Result.getValue(0);
803      InFlag = Result.getValue(1);
804
805      switch (NVT) {
806        default: assert(0 && "Unknown truncate!");
807        case MVT::i8:  Reg = X86::AL;  Opc = X86::MOV8rr;  VT = MVT::i8;  break;
808        case MVT::i16: Reg = X86::AX;  Opc = X86::MOV16rr; VT = MVT::i16; break;
809      }
810
811      Result = CurDAG->getCopyFromReg(Chain, Reg, VT, InFlag);
812      if (N.Val->hasOneUse())
813        Result = CurDAG->SelectNodeTo(N.Val, Opc, VT, Result);
814      else
815        Result = CodeGenMap[N] =
816          SDOperand(CurDAG->getTargetNode(Opc, VT, Result), 0);
817
818#ifndef NDEBUG
819      DEBUG(std::cerr << std::string(Indent-2, ' '));
820      DEBUG(std::cerr << "== ");
821      DEBUG(Result.Val->dump(CurDAG));
822      DEBUG(std::cerr << "\n");
823      Indent -= 2;
824#endif
825      return;
826    }
827  }
828
829  SelectCode(Result, N);
830#ifndef NDEBUG
831  DEBUG(std::cerr << std::string(Indent-2, ' '));
832  DEBUG(std::cerr << "=> ");
833  DEBUG(Result.Val->dump(CurDAG));
834  DEBUG(std::cerr << "\n");
835  Indent -= 2;
836#endif
837}
838
839/// createX86ISelDag - This pass converts a legalized DAG into a
840/// X86-specific DAG, ready for instruction scheduling.
841///
842FunctionPass *llvm::createX86ISelDag(TargetMachine &TM) {
843  return new X86DAGToDAGISel(TM);
844}
845