X86ISelDAGToDAG.cpp revision 6520e20e4fb31f2e65e25c38b372b19d33a83df4
1//===- X86ISelDAGToDAG.cpp - A DAG pattern matching inst selector for X86 -===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines a DAG pattern matching instruction selector for X86,
11// converting from a legalized dag to a X86 dag.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "x86-isel"
16#include "X86.h"
17#include "X86InstrBuilder.h"
18#include "X86ISelLowering.h"
19#include "X86MachineFunctionInfo.h"
20#include "X86RegisterInfo.h"
21#include "X86Subtarget.h"
22#include "X86TargetMachine.h"
23#include "llvm/GlobalValue.h"
24#include "llvm/Instructions.h"
25#include "llvm/Intrinsics.h"
26#include "llvm/Support/CFG.h"
27#include "llvm/Type.h"
28#include "llvm/CodeGen/MachineConstantPool.h"
29#include "llvm/CodeGen/MachineFunction.h"
30#include "llvm/CodeGen/MachineFrameInfo.h"
31#include "llvm/CodeGen/MachineInstrBuilder.h"
32#include "llvm/CodeGen/MachineRegisterInfo.h"
33#include "llvm/CodeGen/SelectionDAGISel.h"
34#include "llvm/Target/TargetMachine.h"
35#include "llvm/Target/TargetOptions.h"
36#include "llvm/Support/Compiler.h"
37#include "llvm/Support/Debug.h"
38#include "llvm/Support/MathExtras.h"
39#include "llvm/Support/Streams.h"
40#include "llvm/ADT/SmallPtrSet.h"
41#include "llvm/ADT/Statistic.h"
42using namespace llvm;
43
44STATISTIC(NumFPKill   , "Number of FP_REG_KILL instructions added");
45STATISTIC(NumLoadMoved, "Number of loads moved below TokenFactor");
46
47//===----------------------------------------------------------------------===//
48//                      Pattern Matcher Implementation
49//===----------------------------------------------------------------------===//
50
51namespace {
52  /// X86ISelAddressMode - This corresponds to X86AddressMode, but uses
53  /// SDValue's instead of register numbers for the leaves of the matched
54  /// tree.
55  struct X86ISelAddressMode {
56    enum {
57      RegBase,
58      FrameIndexBase
59    } BaseType;
60
61    struct {            // This is really a union, discriminated by BaseType!
62      SDValue Reg;
63      int FrameIndex;
64    } Base;
65
66    bool isRIPRel;     // RIP as base?
67    unsigned Scale;
68    SDValue IndexReg;
69    unsigned Disp;
70    GlobalValue *GV;
71    Constant *CP;
72    const char *ES;
73    int JT;
74    unsigned Align;    // CP alignment.
75
76    X86ISelAddressMode()
77      : BaseType(RegBase), isRIPRel(false), Scale(1), IndexReg(), Disp(0),
78        GV(0), CP(0), ES(0), JT(-1), Align(0) {
79    }
80    void dump() {
81      cerr << "X86ISelAddressMode " << this << "\n";
82      cerr << "Base.Reg ";
83              if (Base.Reg.getNode() != 0) Base.Reg.getNode()->dump();
84              else cerr << "nul";
85      cerr << " Base.FrameIndex " << Base.FrameIndex << "\n";
86      cerr << "isRIPRel " << isRIPRel << " Scale" << Scale << "\n";
87      cerr << "IndexReg ";
88              if (IndexReg.getNode() != 0) IndexReg.getNode()->dump();
89              else cerr << "nul";
90      cerr << " Disp " << Disp << "\n";
91      cerr << "GV "; if (GV) GV->dump();
92                     else cerr << "nul";
93      cerr << " CP "; if (CP) CP->dump();
94                     else cerr << "nul";
95      cerr << "\n";
96      cerr << "ES "; if (ES) cerr << ES; else cerr << "nul";
97      cerr  << " JT" << JT << " Align" << Align << "\n";
98    }
99  };
100}
101
102namespace {
103  //===--------------------------------------------------------------------===//
104  /// ISel - X86 specific code to select X86 machine instructions for
105  /// SelectionDAG operations.
106  ///
107  class VISIBILITY_HIDDEN X86DAGToDAGISel : public SelectionDAGISel {
108    /// TM - Keep a reference to X86TargetMachine.
109    ///
110    X86TargetMachine &TM;
111
112    /// X86Lowering - This object fully describes how to lower LLVM code to an
113    /// X86-specific SelectionDAG.
114    X86TargetLowering &X86Lowering;
115
116    /// Subtarget - Keep a pointer to the X86Subtarget around so that we can
117    /// make the right decision when generating code for different targets.
118    const X86Subtarget *Subtarget;
119
120    /// CurBB - Current BB being isel'd.
121    ///
122    MachineBasicBlock *CurBB;
123
124    /// OptForSize - If true, selector should try to optimize for code size
125    /// instead of performance.
126    bool OptForSize;
127
128  public:
129    X86DAGToDAGISel(X86TargetMachine &tm, bool fast)
130      : SelectionDAGISel(*tm.getTargetLowering(), fast),
131        TM(tm), X86Lowering(*TM.getTargetLowering()),
132        Subtarget(&TM.getSubtarget<X86Subtarget>()),
133        OptForSize(false) {}
134
135    virtual const char *getPassName() const {
136      return "X86 DAG->DAG Instruction Selection";
137    }
138
139    /// InstructionSelect - This callback is invoked by
140    /// SelectionDAGISel when it has created a SelectionDAG for us to codegen.
141    virtual void InstructionSelect();
142
143    /// InstructionSelectPostProcessing - Post processing of selected and
144    /// scheduled basic blocks.
145    virtual void InstructionSelectPostProcessing();
146
147    virtual void EmitFunctionEntryCode(Function &Fn, MachineFunction &MF);
148
149    virtual bool CanBeFoldedBy(SDNode *N, SDNode *U, SDNode *Root) const;
150
151// Include the pieces autogenerated from the target description.
152#include "X86GenDAGISel.inc"
153
154  private:
155    SDNode *Select(SDValue N);
156    SDNode *SelectAtomic64(SDNode *Node, unsigned Opc);
157
158    bool MatchAddress(SDValue N, X86ISelAddressMode &AM,
159                      bool isRoot = true, unsigned Depth = 0);
160    bool MatchAddressBase(SDValue N, X86ISelAddressMode &AM,
161                          bool isRoot, unsigned Depth);
162    bool SelectAddr(SDValue Op, SDValue N, SDValue &Base,
163                    SDValue &Scale, SDValue &Index, SDValue &Disp);
164    bool SelectLEAAddr(SDValue Op, SDValue N, SDValue &Base,
165                       SDValue &Scale, SDValue &Index, SDValue &Disp);
166    bool SelectScalarSSELoad(SDValue Op, SDValue Pred,
167                             SDValue N, SDValue &Base, SDValue &Scale,
168                             SDValue &Index, SDValue &Disp,
169                             SDValue &InChain, SDValue &OutChain);
170    bool TryFoldLoad(SDValue P, SDValue N,
171                     SDValue &Base, SDValue &Scale,
172                     SDValue &Index, SDValue &Disp);
173    void PreprocessForRMW();
174    void PreprocessForFPConvert();
175
176    /// SelectInlineAsmMemoryOperand - Implement addressing mode selection for
177    /// inline asm expressions.
178    virtual bool SelectInlineAsmMemoryOperand(const SDValue &Op,
179                                              char ConstraintCode,
180                                              std::vector<SDValue> &OutOps);
181
182    void EmitSpecialCodeForMain(MachineBasicBlock *BB, MachineFrameInfo *MFI);
183
184    inline void getAddressOperands(X86ISelAddressMode &AM, SDValue &Base,
185                                   SDValue &Scale, SDValue &Index,
186                                   SDValue &Disp) {
187      Base  = (AM.BaseType == X86ISelAddressMode::FrameIndexBase) ?
188        CurDAG->getTargetFrameIndex(AM.Base.FrameIndex, TLI.getPointerTy()) :
189        AM.Base.Reg;
190      Scale = getI8Imm(AM.Scale);
191      Index = AM.IndexReg;
192      // These are 32-bit even in 64-bit mode since RIP relative offset
193      // is 32-bit.
194      if (AM.GV)
195        Disp = CurDAG->getTargetGlobalAddress(AM.GV, MVT::i32, AM.Disp);
196      else if (AM.CP)
197        Disp = CurDAG->getTargetConstantPool(AM.CP, MVT::i32,
198                                             AM.Align, AM.Disp);
199      else if (AM.ES)
200        Disp = CurDAG->getTargetExternalSymbol(AM.ES, MVT::i32);
201      else if (AM.JT != -1)
202        Disp = CurDAG->getTargetJumpTable(AM.JT, MVT::i32);
203      else
204        Disp = getI32Imm(AM.Disp);
205    }
206
207    /// getI8Imm - Return a target constant with the specified value, of type
208    /// i8.
209    inline SDValue getI8Imm(unsigned Imm) {
210      return CurDAG->getTargetConstant(Imm, MVT::i8);
211    }
212
213    /// getI16Imm - Return a target constant with the specified value, of type
214    /// i16.
215    inline SDValue getI16Imm(unsigned Imm) {
216      return CurDAG->getTargetConstant(Imm, MVT::i16);
217    }
218
219    /// getI32Imm - Return a target constant with the specified value, of type
220    /// i32.
221    inline SDValue getI32Imm(unsigned Imm) {
222      return CurDAG->getTargetConstant(Imm, MVT::i32);
223    }
224
225    /// getGlobalBaseReg - Return an SDNode that returns the value of
226    /// the global base register. Output instructions required to
227    /// initialize the global base register, if necessary.
228    ///
229    SDNode *getGlobalBaseReg();
230
231    /// getTruncateTo8Bit - return an SDNode that implements a subreg based
232    /// truncate of the specified operand to i8. This can be done with tablegen,
233    /// except that this code uses MVT::Flag in a tricky way that happens to
234    /// improve scheduling in some cases.
235    SDNode *getTruncateTo8Bit(SDValue N0);
236
237#ifndef NDEBUG
238    unsigned Indent;
239#endif
240  };
241}
242
243/// findFlagUse - Return use of MVT::Flag value produced by the specified
244/// SDNode.
245///
246static SDNode *findFlagUse(SDNode *N) {
247  unsigned FlagResNo = N->getNumValues()-1;
248  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
249    SDNode *User = *I;
250    for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
251      SDValue Op = User->getOperand(i);
252      if (Op.getNode() == N && Op.getResNo() == FlagResNo)
253        return User;
254    }
255  }
256  return NULL;
257}
258
259/// findNonImmUse - Return true by reference in "found" if "Use" is an
260/// non-immediate use of "Def". This function recursively traversing
261/// up the operand chain ignoring certain nodes.
262static void findNonImmUse(SDNode *Use, SDNode* Def, SDNode *ImmedUse,
263                          SDNode *Root, bool &found,
264                          SmallPtrSet<SDNode*, 16> &Visited) {
265  if (found ||
266      Use->getNodeId() < Def->getNodeId() ||
267      !Visited.insert(Use))
268    return;
269
270  for (unsigned i = 0, e = Use->getNumOperands(); !found && i != e; ++i) {
271    SDNode *N = Use->getOperand(i).getNode();
272    if (N == Def) {
273      if (Use == ImmedUse || Use == Root)
274        continue;  // We are not looking for immediate use.
275      assert(N != Root);
276      found = true;
277      break;
278    }
279
280    // Traverse up the operand chain.
281    findNonImmUse(N, Def, ImmedUse, Root, found, Visited);
282  }
283}
284
285/// isNonImmUse - Start searching from Root up the DAG to check is Def can
286/// be reached. Return true if that's the case. However, ignore direct uses
287/// by ImmedUse (which would be U in the example illustrated in
288/// CanBeFoldedBy) and by Root (which can happen in the store case).
289/// FIXME: to be really generic, we should allow direct use by any node
290/// that is being folded. But realisticly since we only fold loads which
291/// have one non-chain use, we only need to watch out for load/op/store
292/// and load/op/cmp case where the root (store / cmp) may reach the load via
293/// its chain operand.
294static inline bool isNonImmUse(SDNode *Root, SDNode *Def, SDNode *ImmedUse) {
295  SmallPtrSet<SDNode*, 16> Visited;
296  bool found = false;
297  findNonImmUse(Root, Def, ImmedUse, Root, found, Visited);
298  return found;
299}
300
301
302bool X86DAGToDAGISel::CanBeFoldedBy(SDNode *N, SDNode *U, SDNode *Root) const {
303  if (Fast) return false;
304
305  // If Root use can somehow reach N through a path that that doesn't contain
306  // U then folding N would create a cycle. e.g. In the following
307  // diagram, Root can reach N through X. If N is folded into into Root, then
308  // X is both a predecessor and a successor of U.
309  //
310  //          [N*]           //
311  //         ^   ^           //
312  //        /     \          //
313  //      [U*]    [X]?       //
314  //        ^     ^          //
315  //         \   /           //
316  //          \ /            //
317  //         [Root*]         //
318  //
319  // * indicates nodes to be folded together.
320  //
321  // If Root produces a flag, then it gets (even more) interesting. Since it
322  // will be "glued" together with its flag use in the scheduler, we need to
323  // check if it might reach N.
324  //
325  //          [N*]           //
326  //         ^   ^           //
327  //        /     \          //
328  //      [U*]    [X]?       //
329  //        ^       ^        //
330  //         \       \       //
331  //          \      |       //
332  //         [Root*] |       //
333  //          ^      |       //
334  //          f      |       //
335  //          |      /       //
336  //         [Y]    /        //
337  //           ^   /         //
338  //           f  /          //
339  //           | /           //
340  //          [FU]           //
341  //
342  // If FU (flag use) indirectly reaches N (the load), and Root folds N
343  // (call it Fold), then X is a predecessor of FU and a successor of
344  // Fold. But since Fold and FU are flagged together, this will create
345  // a cycle in the scheduling graph.
346
347  MVT VT = Root->getValueType(Root->getNumValues()-1);
348  while (VT == MVT::Flag) {
349    SDNode *FU = findFlagUse(Root);
350    if (FU == NULL)
351      break;
352    Root = FU;
353    VT = Root->getValueType(Root->getNumValues()-1);
354  }
355
356  return !isNonImmUse(Root, N, U);
357}
358
359/// MoveBelowTokenFactor - Replace TokenFactor operand with load's chain operand
360/// and move load below the TokenFactor. Replace store's chain operand with
361/// load's chain result.
362static void MoveBelowTokenFactor(SelectionDAG *CurDAG, SDValue Load,
363                                 SDValue Store, SDValue TF) {
364  SmallVector<SDValue, 4> Ops;
365  for (unsigned i = 0, e = TF.getNode()->getNumOperands(); i != e; ++i)
366    if (Load.getNode() == TF.getOperand(i).getNode())
367      Ops.push_back(Load.getOperand(0));
368    else
369      Ops.push_back(TF.getOperand(i));
370  CurDAG->UpdateNodeOperands(TF, &Ops[0], Ops.size());
371  CurDAG->UpdateNodeOperands(Load, TF, Load.getOperand(1), Load.getOperand(2));
372  CurDAG->UpdateNodeOperands(Store, Load.getValue(1), Store.getOperand(1),
373                             Store.getOperand(2), Store.getOperand(3));
374}
375
376/// isRMWLoad - Return true if N is a load that's part of RMW sub-DAG.
377///
378static bool isRMWLoad(SDValue N, SDValue Chain, SDValue Address,
379                      SDValue &Load) {
380  if (N.getOpcode() == ISD::BIT_CONVERT)
381    N = N.getOperand(0);
382
383  LoadSDNode *LD = dyn_cast<LoadSDNode>(N);
384  if (!LD || LD->isVolatile())
385    return false;
386  if (LD->getAddressingMode() != ISD::UNINDEXED)
387    return false;
388
389  ISD::LoadExtType ExtType = LD->getExtensionType();
390  if (ExtType != ISD::NON_EXTLOAD && ExtType != ISD::EXTLOAD)
391    return false;
392
393  if (N.hasOneUse() &&
394      N.getOperand(1) == Address &&
395      N.getNode()->isOperandOf(Chain.getNode())) {
396    Load = N;
397    return true;
398  }
399  return false;
400}
401
402/// MoveBelowCallSeqStart - Replace CALLSEQ_START operand with load's chain
403/// operand and move load below the call's chain operand.
404static void MoveBelowCallSeqStart(SelectionDAG *CurDAG, SDValue Load,
405                           SDValue Call, SDValue Chain) {
406  SmallVector<SDValue, 8> Ops;
407  for (unsigned i = 0, e = Chain.getNode()->getNumOperands(); i != e; ++i)
408    if (Load.getNode() == Chain.getOperand(i).getNode())
409      Ops.push_back(Load.getOperand(0));
410    else
411      Ops.push_back(Chain.getOperand(i));
412  CurDAG->UpdateNodeOperands(Chain, &Ops[0], Ops.size());
413  CurDAG->UpdateNodeOperands(Load, Call.getOperand(0),
414                             Load.getOperand(1), Load.getOperand(2));
415  Ops.clear();
416  Ops.push_back(SDValue(Load.getNode(), 1));
417  for (unsigned i = 1, e = Call.getNode()->getNumOperands(); i != e; ++i)
418    Ops.push_back(Call.getOperand(i));
419  CurDAG->UpdateNodeOperands(Call, &Ops[0], Ops.size());
420}
421
422/// isCalleeLoad - Return true if call address is a load and it can be
423/// moved below CALLSEQ_START and the chains leading up to the call.
424/// Return the CALLSEQ_START by reference as a second output.
425static bool isCalleeLoad(SDValue Callee, SDValue &Chain) {
426  if (Callee.getNode() == Chain.getNode() || !Callee.hasOneUse())
427    return false;
428  LoadSDNode *LD = dyn_cast<LoadSDNode>(Callee.getNode());
429  if (!LD ||
430      LD->isVolatile() ||
431      LD->getAddressingMode() != ISD::UNINDEXED ||
432      LD->getExtensionType() != ISD::NON_EXTLOAD)
433    return false;
434
435  // Now let's find the callseq_start.
436  while (Chain.getOpcode() != ISD::CALLSEQ_START) {
437    if (!Chain.hasOneUse())
438      return false;
439    Chain = Chain.getOperand(0);
440  }
441  return Chain.getOperand(0).getNode() == Callee.getNode();
442}
443
444
445/// PreprocessForRMW - Preprocess the DAG to make instruction selection better.
446/// This is only run if not in -fast mode (aka -O0).
447/// This allows the instruction selector to pick more read-modify-write
448/// instructions. This is a common case:
449///
450///     [Load chain]
451///         ^
452///         |
453///       [Load]
454///       ^    ^
455///       |    |
456///      /      \-
457///     /         |
458/// [TokenFactor] [Op]
459///     ^          ^
460///     |          |
461///      \        /
462///       \      /
463///       [Store]
464///
465/// The fact the store's chain operand != load's chain will prevent the
466/// (store (op (load))) instruction from being selected. We can transform it to:
467///
468///     [Load chain]
469///         ^
470///         |
471///    [TokenFactor]
472///         ^
473///         |
474///       [Load]
475///       ^    ^
476///       |    |
477///       |     \-
478///       |       |
479///       |     [Op]
480///       |       ^
481///       |       |
482///       \      /
483///        \    /
484///       [Store]
485void X86DAGToDAGISel::PreprocessForRMW() {
486  for (SelectionDAG::allnodes_iterator I = CurDAG->allnodes_begin(),
487         E = CurDAG->allnodes_end(); I != E; ++I) {
488    if (I->getOpcode() == X86ISD::CALL) {
489      /// Also try moving call address load from outside callseq_start to just
490      /// before the call to allow it to be folded.
491      ///
492      ///     [Load chain]
493      ///         ^
494      ///         |
495      ///       [Load]
496      ///       ^    ^
497      ///       |    |
498      ///      /      \--
499      ///     /          |
500      ///[CALLSEQ_START] |
501      ///     ^          |
502      ///     |          |
503      /// [LOAD/C2Reg]   |
504      ///     |          |
505      ///      \        /
506      ///       \      /
507      ///       [CALL]
508      SDValue Chain = I->getOperand(0);
509      SDValue Load  = I->getOperand(1);
510      if (!isCalleeLoad(Load, Chain))
511        continue;
512      MoveBelowCallSeqStart(CurDAG, Load, SDValue(I, 0), Chain);
513      ++NumLoadMoved;
514      continue;
515    }
516
517    if (!ISD::isNON_TRUNCStore(I))
518      continue;
519    SDValue Chain = I->getOperand(0);
520
521    if (Chain.getNode()->getOpcode() != ISD::TokenFactor)
522      continue;
523
524    SDValue N1 = I->getOperand(1);
525    SDValue N2 = I->getOperand(2);
526    if ((N1.getValueType().isFloatingPoint() &&
527         !N1.getValueType().isVector()) ||
528        !N1.hasOneUse())
529      continue;
530
531    bool RModW = false;
532    SDValue Load;
533    unsigned Opcode = N1.getNode()->getOpcode();
534    switch (Opcode) {
535    case ISD::ADD:
536    case ISD::MUL:
537    case ISD::AND:
538    case ISD::OR:
539    case ISD::XOR:
540    case ISD::ADDC:
541    case ISD::ADDE:
542    case ISD::VECTOR_SHUFFLE: {
543      SDValue N10 = N1.getOperand(0);
544      SDValue N11 = N1.getOperand(1);
545      RModW = isRMWLoad(N10, Chain, N2, Load);
546      if (!RModW)
547        RModW = isRMWLoad(N11, Chain, N2, Load);
548      break;
549    }
550    case ISD::SUB:
551    case ISD::SHL:
552    case ISD::SRA:
553    case ISD::SRL:
554    case ISD::ROTL:
555    case ISD::ROTR:
556    case ISD::SUBC:
557    case ISD::SUBE:
558    case X86ISD::SHLD:
559    case X86ISD::SHRD: {
560      SDValue N10 = N1.getOperand(0);
561      RModW = isRMWLoad(N10, Chain, N2, Load);
562      break;
563    }
564    }
565
566    if (RModW) {
567      MoveBelowTokenFactor(CurDAG, Load, SDValue(I, 0), Chain);
568      ++NumLoadMoved;
569    }
570  }
571}
572
573
574/// PreprocessForFPConvert - Walk over the dag lowering fpround and fpextend
575/// nodes that target the FP stack to be store and load to the stack.  This is a
576/// gross hack.  We would like to simply mark these as being illegal, but when
577/// we do that, legalize produces these when it expands calls, then expands
578/// these in the same legalize pass.  We would like dag combine to be able to
579/// hack on these between the call expansion and the node legalization.  As such
580/// this pass basically does "really late" legalization of these inline with the
581/// X86 isel pass.
582void X86DAGToDAGISel::PreprocessForFPConvert() {
583  for (SelectionDAG::allnodes_iterator I = CurDAG->allnodes_begin(),
584       E = CurDAG->allnodes_end(); I != E; ) {
585    SDNode *N = I++;  // Preincrement iterator to avoid invalidation issues.
586    if (N->getOpcode() != ISD::FP_ROUND && N->getOpcode() != ISD::FP_EXTEND)
587      continue;
588
589    // If the source and destination are SSE registers, then this is a legal
590    // conversion that should not be lowered.
591    MVT SrcVT = N->getOperand(0).getValueType();
592    MVT DstVT = N->getValueType(0);
593    bool SrcIsSSE = X86Lowering.isScalarFPTypeInSSEReg(SrcVT);
594    bool DstIsSSE = X86Lowering.isScalarFPTypeInSSEReg(DstVT);
595    if (SrcIsSSE && DstIsSSE)
596      continue;
597
598    if (!SrcIsSSE && !DstIsSSE) {
599      // If this is an FPStack extension, it is a noop.
600      if (N->getOpcode() == ISD::FP_EXTEND)
601        continue;
602      // If this is a value-preserving FPStack truncation, it is a noop.
603      if (N->getConstantOperandVal(1))
604        continue;
605    }
606
607    // Here we could have an FP stack truncation or an FPStack <-> SSE convert.
608    // FPStack has extload and truncstore.  SSE can fold direct loads into other
609    // operations.  Based on this, decide what we want to do.
610    MVT MemVT;
611    if (N->getOpcode() == ISD::FP_ROUND)
612      MemVT = DstVT;  // FP_ROUND must use DstVT, we can't do a 'trunc load'.
613    else
614      MemVT = SrcIsSSE ? SrcVT : DstVT;
615
616    SDValue MemTmp = CurDAG->CreateStackTemporary(MemVT);
617
618    // FIXME: optimize the case where the src/dest is a load or store?
619    SDValue Store = CurDAG->getTruncStore(CurDAG->getEntryNode(),
620                                          N->getOperand(0),
621                                          MemTmp, NULL, 0, MemVT);
622    SDValue Result = CurDAG->getExtLoad(ISD::EXTLOAD, DstVT, Store, MemTmp,
623                                        NULL, 0, MemVT);
624
625    // We're about to replace all uses of the FP_ROUND/FP_EXTEND with the
626    // extload we created.  This will cause general havok on the dag because
627    // anything below the conversion could be folded into other existing nodes.
628    // To avoid invalidating 'I', back it up to the convert node.
629    --I;
630    CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Result);
631
632    // Now that we did that, the node is dead.  Increment the iterator to the
633    // next node to process, then delete N.
634    ++I;
635    CurDAG->DeleteNode(N);
636  }
637}
638
639/// InstructionSelectBasicBlock - This callback is invoked by SelectionDAGISel
640/// when it has created a SelectionDAG for us to codegen.
641void X86DAGToDAGISel::InstructionSelect() {
642  CurBB = BB;  // BB can change as result of isel.
643  const Function *F = CurDAG->getMachineFunction().getFunction();
644  OptForSize = F->hasFnAttr(Attribute::OptimizeForSize);
645
646  DEBUG(BB->dump());
647  if (!Fast)
648    PreprocessForRMW();
649
650  // FIXME: This should only happen when not -fast.
651  PreprocessForFPConvert();
652
653  // Codegen the basic block.
654#ifndef NDEBUG
655  DOUT << "===== Instruction selection begins:\n";
656  Indent = 0;
657#endif
658  SelectRoot();
659#ifndef NDEBUG
660  DOUT << "===== Instruction selection ends:\n";
661#endif
662
663  CurDAG->RemoveDeadNodes();
664}
665
666void X86DAGToDAGISel::InstructionSelectPostProcessing() {
667  // If we are emitting FP stack code, scan the basic block to determine if this
668  // block defines any FP values.  If so, put an FP_REG_KILL instruction before
669  // the terminator of the block.
670
671  // Note that FP stack instructions are used in all modes for long double,
672  // so we always need to do this check.
673  // Also note that it's possible for an FP stack register to be live across
674  // an instruction that produces multiple basic blocks (SSE CMOV) so we
675  // must check all the generated basic blocks.
676
677  // Scan all of the machine instructions in these MBBs, checking for FP
678  // stores.  (RFP32 and RFP64 will not exist in SSE mode, but RFP80 might.)
679  MachineFunction::iterator MBBI = CurBB;
680  MachineFunction::iterator EndMBB = BB; ++EndMBB;
681  for (; MBBI != EndMBB; ++MBBI) {
682    MachineBasicBlock *MBB = MBBI;
683
684    // If this block returns, ignore it.  We don't want to insert an FP_REG_KILL
685    // before the return.
686    if (!MBB->empty()) {
687      MachineBasicBlock::iterator EndI = MBB->end();
688      --EndI;
689      if (EndI->getDesc().isReturn())
690        continue;
691    }
692
693    bool ContainsFPCode = false;
694    for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end();
695         !ContainsFPCode && I != E; ++I) {
696      if (I->getNumOperands() != 0 && I->getOperand(0).isReg()) {
697        const TargetRegisterClass *clas;
698        for (unsigned op = 0, e = I->getNumOperands(); op != e; ++op) {
699          if (I->getOperand(op).isReg() && I->getOperand(op).isDef() &&
700            TargetRegisterInfo::isVirtualRegister(I->getOperand(op).getReg()) &&
701              ((clas = RegInfo->getRegClass(I->getOperand(0).getReg())) ==
702                 X86::RFP32RegisterClass ||
703               clas == X86::RFP64RegisterClass ||
704               clas == X86::RFP80RegisterClass)) {
705            ContainsFPCode = true;
706            break;
707          }
708        }
709      }
710    }
711    // Check PHI nodes in successor blocks.  These PHI's will be lowered to have
712    // a copy of the input value in this block.  In SSE mode, we only care about
713    // 80-bit values.
714    if (!ContainsFPCode) {
715      // Final check, check LLVM BB's that are successors to the LLVM BB
716      // corresponding to BB for FP PHI nodes.
717      const BasicBlock *LLVMBB = BB->getBasicBlock();
718      const PHINode *PN;
719      for (succ_const_iterator SI = succ_begin(LLVMBB), E = succ_end(LLVMBB);
720           !ContainsFPCode && SI != E; ++SI) {
721        for (BasicBlock::const_iterator II = SI->begin();
722             (PN = dyn_cast<PHINode>(II)); ++II) {
723          if (PN->getType()==Type::X86_FP80Ty ||
724              (!Subtarget->hasSSE1() && PN->getType()->isFloatingPoint()) ||
725              (!Subtarget->hasSSE2() && PN->getType()==Type::DoubleTy)) {
726            ContainsFPCode = true;
727            break;
728          }
729        }
730      }
731    }
732    // Finally, if we found any FP code, emit the FP_REG_KILL instruction.
733    if (ContainsFPCode) {
734      BuildMI(*MBB, MBBI->getFirstTerminator(),
735              TM.getInstrInfo()->get(X86::FP_REG_KILL));
736      ++NumFPKill;
737    }
738  }
739}
740
741/// EmitSpecialCodeForMain - Emit any code that needs to be executed only in
742/// the main function.
743void X86DAGToDAGISel::EmitSpecialCodeForMain(MachineBasicBlock *BB,
744                                             MachineFrameInfo *MFI) {
745  const TargetInstrInfo *TII = TM.getInstrInfo();
746  if (Subtarget->isTargetCygMing())
747    BuildMI(BB, TII->get(X86::CALLpcrel32)).addExternalSymbol("__main");
748}
749
750void X86DAGToDAGISel::EmitFunctionEntryCode(Function &Fn, MachineFunction &MF) {
751  // If this is main, emit special code for main.
752  MachineBasicBlock *BB = MF.begin();
753  if (Fn.hasExternalLinkage() && Fn.getName() == "main")
754    EmitSpecialCodeForMain(BB, MF.getFrameInfo());
755}
756
757/// MatchAddress - Add the specified node to the specified addressing mode,
758/// returning true if it cannot be done.  This just pattern matches for the
759/// addressing mode.
760bool X86DAGToDAGISel::MatchAddress(SDValue N, X86ISelAddressMode &AM,
761                                   bool isRoot, unsigned Depth) {
762  bool is64Bit = Subtarget->is64Bit();
763  DOUT << "MatchAddress: "; DEBUG(AM.dump());
764  // Limit recursion.
765  if (Depth > 5)
766    return MatchAddressBase(N, AM, isRoot, Depth);
767
768  // RIP relative addressing: %rip + 32-bit displacement!
769  if (AM.isRIPRel) {
770    if (!AM.ES && AM.JT != -1 && N.getOpcode() == ISD::Constant) {
771      int64_t Val = cast<ConstantSDNode>(N)->getSExtValue();
772      if (!is64Bit || isInt32(AM.Disp + Val)) {
773        AM.Disp += Val;
774        return false;
775      }
776    }
777    return true;
778  }
779
780  int id = N.getNode()->getNodeId();
781  bool AlreadySelected = isSelected(id); // Already selected, not yet replaced.
782
783  switch (N.getOpcode()) {
784  default: break;
785  case ISD::Constant: {
786    int64_t Val = cast<ConstantSDNode>(N)->getSExtValue();
787    if (!is64Bit || isInt32(AM.Disp + Val)) {
788      AM.Disp += Val;
789      return false;
790    }
791    break;
792  }
793
794  case X86ISD::Wrapper: {
795    DOUT << "Wrapper: 64bit " << is64Bit;
796    DOUT << " AM "; DEBUG(AM.dump()); DOUT << "\n";
797    DOUT << "AlreadySelected " << AlreadySelected << "\n";
798    // Under X86-64 non-small code model, GV (and friends) are 64-bits.
799    // Also, base and index reg must be 0 in order to use rip as base.
800    if (is64Bit && (TM.getCodeModel() != CodeModel::Small ||
801                    AM.Base.Reg.getNode() || AM.IndexReg.getNode()))
802      break;
803    if (AM.GV != 0 || AM.CP != 0 || AM.ES != 0 || AM.JT != -1)
804      break;
805    // If value is available in a register both base and index components have
806    // been picked, we can't fit the result available in the register in the
807    // addressing mode. Duplicate GlobalAddress or ConstantPool as displacement.
808    if (!AlreadySelected || (AM.Base.Reg.getNode() && AM.IndexReg.getNode())) {
809      SDValue N0 = N.getOperand(0);
810      if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(N0)) {
811        if (!is64Bit || isInt32(AM.Disp + G->getOffset())) {
812          GlobalValue *GV = G->getGlobal();
813          AM.GV = GV;
814          AM.Disp += G->getOffset();
815          AM.isRIPRel = TM.symbolicAddressesAreRIPRel();
816          return false;
817        }
818      } else if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(N0)) {
819        if (!is64Bit || isInt32(AM.Disp + CP->getOffset())) {
820          AM.CP = CP->getConstVal();
821          AM.Align = CP->getAlignment();
822          AM.Disp += CP->getOffset();
823          AM.isRIPRel = TM.symbolicAddressesAreRIPRel();
824          return false;
825        }
826      } else if (ExternalSymbolSDNode *S =dyn_cast<ExternalSymbolSDNode>(N0)) {
827        AM.ES = S->getSymbol();
828        AM.isRIPRel = TM.symbolicAddressesAreRIPRel();
829        return false;
830      } else if (JumpTableSDNode *J = dyn_cast<JumpTableSDNode>(N0)) {
831        AM.JT = J->getIndex();
832        AM.isRIPRel = TM.symbolicAddressesAreRIPRel();
833        return false;
834      }
835    }
836    break;
837  }
838
839  case ISD::FrameIndex:
840    if (AM.BaseType == X86ISelAddressMode::RegBase
841        && AM.Base.Reg.getNode() == 0) {
842      AM.BaseType = X86ISelAddressMode::FrameIndexBase;
843      AM.Base.FrameIndex = cast<FrameIndexSDNode>(N)->getIndex();
844      return false;
845    }
846    break;
847
848  case ISD::SHL:
849    if (AlreadySelected || AM.IndexReg.getNode() != 0
850        || AM.Scale != 1 || AM.isRIPRel)
851      break;
852
853    if (ConstantSDNode
854          *CN = dyn_cast<ConstantSDNode>(N.getNode()->getOperand(1))) {
855      unsigned Val = CN->getZExtValue();
856      if (Val == 1 || Val == 2 || Val == 3) {
857        AM.Scale = 1 << Val;
858        SDValue ShVal = N.getNode()->getOperand(0);
859
860        // Okay, we know that we have a scale by now.  However, if the scaled
861        // value is an add of something and a constant, we can fold the
862        // constant into the disp field here.
863        if (ShVal.getNode()->getOpcode() == ISD::ADD && ShVal.hasOneUse() &&
864            isa<ConstantSDNode>(ShVal.getNode()->getOperand(1))) {
865          AM.IndexReg = ShVal.getNode()->getOperand(0);
866          ConstantSDNode *AddVal =
867            cast<ConstantSDNode>(ShVal.getNode()->getOperand(1));
868          uint64_t Disp = AM.Disp + (AddVal->getZExtValue() << Val);
869          if (!is64Bit || isInt32(Disp))
870            AM.Disp = Disp;
871          else
872            AM.IndexReg = ShVal;
873        } else {
874          AM.IndexReg = ShVal;
875        }
876        return false;
877      }
878    break;
879    }
880
881  case ISD::SMUL_LOHI:
882  case ISD::UMUL_LOHI:
883    // A mul_lohi where we need the low part can be folded as a plain multiply.
884    if (N.getResNo() != 0) break;
885    // FALL THROUGH
886  case ISD::MUL:
887    // X*[3,5,9] -> X+X*[2,4,8]
888    if (!AlreadySelected &&
889        AM.BaseType == X86ISelAddressMode::RegBase &&
890        AM.Base.Reg.getNode() == 0 &&
891        AM.IndexReg.getNode() == 0 &&
892        !AM.isRIPRel) {
893      if (ConstantSDNode
894            *CN = dyn_cast<ConstantSDNode>(N.getNode()->getOperand(1)))
895        if (CN->getZExtValue() == 3 || CN->getZExtValue() == 5 ||
896            CN->getZExtValue() == 9) {
897          AM.Scale = unsigned(CN->getZExtValue())-1;
898
899          SDValue MulVal = N.getNode()->getOperand(0);
900          SDValue Reg;
901
902          // Okay, we know that we have a scale by now.  However, if the scaled
903          // value is an add of something and a constant, we can fold the
904          // constant into the disp field here.
905          if (MulVal.getNode()->getOpcode() == ISD::ADD && MulVal.hasOneUse() &&
906              isa<ConstantSDNode>(MulVal.getNode()->getOperand(1))) {
907            Reg = MulVal.getNode()->getOperand(0);
908            ConstantSDNode *AddVal =
909              cast<ConstantSDNode>(MulVal.getNode()->getOperand(1));
910            uint64_t Disp = AM.Disp + AddVal->getZExtValue() *
911                                      CN->getZExtValue();
912            if (!is64Bit || isInt32(Disp))
913              AM.Disp = Disp;
914            else
915              Reg = N.getNode()->getOperand(0);
916          } else {
917            Reg = N.getNode()->getOperand(0);
918          }
919
920          AM.IndexReg = AM.Base.Reg = Reg;
921          return false;
922        }
923    }
924    break;
925
926  case ISD::ADD:
927    if (!AlreadySelected) {
928      X86ISelAddressMode Backup = AM;
929      if (!MatchAddress(N.getNode()->getOperand(0), AM, false, Depth+1) &&
930          !MatchAddress(N.getNode()->getOperand(1), AM, false, Depth+1))
931        return false;
932      AM = Backup;
933      if (!MatchAddress(N.getNode()->getOperand(1), AM, false, Depth+1) &&
934          !MatchAddress(N.getNode()->getOperand(0), AM, false, Depth+1))
935        return false;
936      AM = Backup;
937    }
938    break;
939
940  case ISD::OR:
941    // Handle "X | C" as "X + C" iff X is known to have C bits clear.
942    if (AlreadySelected) break;
943
944    if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
945      X86ISelAddressMode Backup = AM;
946      // Start with the LHS as an addr mode.
947      if (!MatchAddress(N.getOperand(0), AM, false) &&
948          // Address could not have picked a GV address for the displacement.
949          AM.GV == NULL &&
950          // On x86-64, the resultant disp must fit in 32-bits.
951          (!is64Bit || isInt32(AM.Disp + CN->getSExtValue())) &&
952          // Check to see if the LHS & C is zero.
953          CurDAG->MaskedValueIsZero(N.getOperand(0), CN->getAPIntValue())) {
954        AM.Disp += CN->getZExtValue();
955        return false;
956      }
957      AM = Backup;
958    }
959    break;
960
961  case ISD::AND: {
962    // Handle "(x << C1) & C2" as "(X & (C2>>C1)) << C1" if safe and if this
963    // allows us to fold the shift into this addressing mode.
964    if (AlreadySelected) break;
965    SDValue Shift = N.getOperand(0);
966    if (Shift.getOpcode() != ISD::SHL) break;
967
968    // Scale must not be used already.
969    if (AM.IndexReg.getNode() != 0 || AM.Scale != 1) break;
970
971    // Not when RIP is used as the base.
972    if (AM.isRIPRel) break;
973
974    ConstantSDNode *C2 = dyn_cast<ConstantSDNode>(N.getOperand(1));
975    ConstantSDNode *C1 = dyn_cast<ConstantSDNode>(Shift.getOperand(1));
976    if (!C1 || !C2) break;
977
978    // Not likely to be profitable if either the AND or SHIFT node has more
979    // than one use (unless all uses are for address computation). Besides,
980    // isel mechanism requires their node ids to be reused.
981    if (!N.hasOneUse() || !Shift.hasOneUse())
982      break;
983
984    // Verify that the shift amount is something we can fold.
985    unsigned ShiftCst = C1->getZExtValue();
986    if (ShiftCst != 1 && ShiftCst != 2 && ShiftCst != 3)
987      break;
988
989    // Get the new AND mask, this folds to a constant.
990    SDValue NewANDMask = CurDAG->getNode(ISD::SRL, N.getValueType(),
991                                         SDValue(C2, 0), SDValue(C1, 0));
992    SDValue NewAND = CurDAG->getNode(ISD::AND, N.getValueType(),
993                                     Shift.getOperand(0), NewANDMask);
994    SDValue NewSHIFT = CurDAG->getNode(ISD::SHL, N.getValueType(),
995                                       NewAND, SDValue(C1, 0));
996    NewANDMask.getNode()->setNodeId(Shift.getNode()->getNodeId());
997    NewAND.getNode()->setNodeId(N.getNode()->getNodeId());
998    CurDAG->ReplaceAllUsesWith(N, NewSHIFT);
999
1000    AM.Scale = 1 << ShiftCst;
1001    AM.IndexReg = NewAND;
1002    return false;
1003  }
1004  }
1005
1006  return MatchAddressBase(N, AM, isRoot, Depth);
1007}
1008
1009/// MatchAddressBase - Helper for MatchAddress. Add the specified node to the
1010/// specified addressing mode without any further recursion.
1011bool X86DAGToDAGISel::MatchAddressBase(SDValue N, X86ISelAddressMode &AM,
1012                                       bool isRoot, unsigned Depth) {
1013  // Is the base register already occupied?
1014  if (AM.BaseType != X86ISelAddressMode::RegBase || AM.Base.Reg.getNode()) {
1015    // If so, check to see if the scale index register is set.
1016    if (AM.IndexReg.getNode() == 0 && !AM.isRIPRel) {
1017      AM.IndexReg = N;
1018      AM.Scale = 1;
1019      return false;
1020    }
1021
1022    // Otherwise, we cannot select it.
1023    return true;
1024  }
1025
1026  // Default, generate it as a register.
1027  AM.BaseType = X86ISelAddressMode::RegBase;
1028  AM.Base.Reg = N;
1029  return false;
1030}
1031
1032/// SelectAddr - returns true if it is able pattern match an addressing mode.
1033/// It returns the operands which make up the maximal addressing mode it can
1034/// match by reference.
1035bool X86DAGToDAGISel::SelectAddr(SDValue Op, SDValue N, SDValue &Base,
1036                                 SDValue &Scale, SDValue &Index,
1037                                 SDValue &Disp) {
1038  X86ISelAddressMode AM;
1039  if (MatchAddress(N, AM))
1040    return false;
1041
1042  MVT VT = N.getValueType();
1043  if (AM.BaseType == X86ISelAddressMode::RegBase) {
1044    if (!AM.Base.Reg.getNode())
1045      AM.Base.Reg = CurDAG->getRegister(0, VT);
1046  }
1047
1048  if (!AM.IndexReg.getNode())
1049    AM.IndexReg = CurDAG->getRegister(0, VT);
1050
1051  getAddressOperands(AM, Base, Scale, Index, Disp);
1052  return true;
1053}
1054
1055/// SelectScalarSSELoad - Match a scalar SSE load.  In particular, we want to
1056/// match a load whose top elements are either undef or zeros.  The load flavor
1057/// is derived from the type of N, which is either v4f32 or v2f64.
1058bool X86DAGToDAGISel::SelectScalarSSELoad(SDValue Op, SDValue Pred,
1059                                          SDValue N, SDValue &Base,
1060                                          SDValue &Scale, SDValue &Index,
1061                                          SDValue &Disp, SDValue &InChain,
1062                                          SDValue &OutChain) {
1063  if (N.getOpcode() == ISD::SCALAR_TO_VECTOR) {
1064    InChain = N.getOperand(0).getValue(1);
1065    if (ISD::isNON_EXTLoad(InChain.getNode()) &&
1066        InChain.getValue(0).hasOneUse() &&
1067        N.hasOneUse() &&
1068        CanBeFoldedBy(N.getNode(), Pred.getNode(), Op.getNode())) {
1069      LoadSDNode *LD = cast<LoadSDNode>(InChain);
1070      if (!SelectAddr(Op, LD->getBasePtr(), Base, Scale, Index, Disp))
1071        return false;
1072      OutChain = LD->getChain();
1073      return true;
1074    }
1075  }
1076
1077  // Also handle the case where we explicitly require zeros in the top
1078  // elements.  This is a vector shuffle from the zero vector.
1079  if (N.getOpcode() == X86ISD::VZEXT_MOVL && N.getNode()->hasOneUse() &&
1080      // Check to see if the top elements are all zeros (or bitcast of zeros).
1081      N.getOperand(0).getOpcode() == ISD::SCALAR_TO_VECTOR &&
1082      N.getOperand(0).getNode()->hasOneUse() &&
1083      ISD::isNON_EXTLoad(N.getOperand(0).getOperand(0).getNode()) &&
1084      N.getOperand(0).getOperand(0).hasOneUse()) {
1085    // Okay, this is a zero extending load.  Fold it.
1086    LoadSDNode *LD = cast<LoadSDNode>(N.getOperand(0).getOperand(0));
1087    if (!SelectAddr(Op, LD->getBasePtr(), Base, Scale, Index, Disp))
1088      return false;
1089    OutChain = LD->getChain();
1090    InChain = SDValue(LD, 1);
1091    return true;
1092  }
1093  return false;
1094}
1095
1096
1097/// SelectLEAAddr - it calls SelectAddr and determines if the maximal addressing
1098/// mode it matches can be cost effectively emitted as an LEA instruction.
1099bool X86DAGToDAGISel::SelectLEAAddr(SDValue Op, SDValue N,
1100                                    SDValue &Base, SDValue &Scale,
1101                                    SDValue &Index, SDValue &Disp) {
1102  X86ISelAddressMode AM;
1103  if (MatchAddress(N, AM))
1104    return false;
1105
1106  MVT VT = N.getValueType();
1107  unsigned Complexity = 0;
1108  if (AM.BaseType == X86ISelAddressMode::RegBase)
1109    if (AM.Base.Reg.getNode())
1110      Complexity = 1;
1111    else
1112      AM.Base.Reg = CurDAG->getRegister(0, VT);
1113  else if (AM.BaseType == X86ISelAddressMode::FrameIndexBase)
1114    Complexity = 4;
1115
1116  if (AM.IndexReg.getNode())
1117    Complexity++;
1118  else
1119    AM.IndexReg = CurDAG->getRegister(0, VT);
1120
1121  // Don't match just leal(,%reg,2). It's cheaper to do addl %reg, %reg, or with
1122  // a simple shift.
1123  if (AM.Scale > 1)
1124    Complexity++;
1125
1126  // FIXME: We are artificially lowering the criteria to turn ADD %reg, $GA
1127  // to a LEA. This is determined with some expermentation but is by no means
1128  // optimal (especially for code size consideration). LEA is nice because of
1129  // its three-address nature. Tweak the cost function again when we can run
1130  // convertToThreeAddress() at register allocation time.
1131  if (AM.GV || AM.CP || AM.ES || AM.JT != -1) {
1132    // For X86-64, we should always use lea to materialize RIP relative
1133    // addresses.
1134    if (Subtarget->is64Bit())
1135      Complexity = 4;
1136    else
1137      Complexity += 2;
1138  }
1139
1140  if (AM.Disp && (AM.Base.Reg.getNode() || AM.IndexReg.getNode()))
1141    Complexity++;
1142
1143  if (Complexity > 2) {
1144    getAddressOperands(AM, Base, Scale, Index, Disp);
1145    return true;
1146  }
1147  return false;
1148}
1149
1150bool X86DAGToDAGISel::TryFoldLoad(SDValue P, SDValue N,
1151                                  SDValue &Base, SDValue &Scale,
1152                                  SDValue &Index, SDValue &Disp) {
1153  if (ISD::isNON_EXTLoad(N.getNode()) &&
1154      N.hasOneUse() &&
1155      CanBeFoldedBy(N.getNode(), P.getNode(), P.getNode()))
1156    return SelectAddr(P, N.getOperand(1), Base, Scale, Index, Disp);
1157  return false;
1158}
1159
1160/// getGlobalBaseReg - Return an SDNode that returns the value of
1161/// the global base register. Output instructions required to
1162/// initialize the global base register, if necessary.
1163///
1164SDNode *X86DAGToDAGISel::getGlobalBaseReg() {
1165  MachineFunction *MF = CurBB->getParent();
1166  unsigned GlobalBaseReg = TM.getInstrInfo()->getGlobalBaseReg(MF);
1167  return CurDAG->getRegister(GlobalBaseReg, TLI.getPointerTy()).getNode();
1168}
1169
1170static SDNode *FindCallStartFromCall(SDNode *Node) {
1171  if (Node->getOpcode() == ISD::CALLSEQ_START) return Node;
1172    assert(Node->getOperand(0).getValueType() == MVT::Other &&
1173         "Node doesn't have a token chain argument!");
1174  return FindCallStartFromCall(Node->getOperand(0).getNode());
1175}
1176
1177/// getTruncateTo8Bit - return an SDNode that implements a subreg based
1178/// truncate of the specified operand to i8. This can be done with tablegen,
1179/// except that this code uses MVT::Flag in a tricky way that happens to
1180/// improve scheduling in some cases.
1181SDNode *X86DAGToDAGISel::getTruncateTo8Bit(SDValue N0) {
1182  assert(!Subtarget->is64Bit() &&
1183         "getTruncateTo8Bit is only needed on x86-32!");
1184  SDValue SRIdx = CurDAG->getTargetConstant(1, MVT::i32); // SubRegSet 1
1185
1186  // Ensure that the source register has an 8-bit subreg on 32-bit targets
1187  unsigned Opc;
1188  MVT N0VT = N0.getValueType();
1189  switch (N0VT.getSimpleVT()) {
1190  default: assert(0 && "Unknown truncate!");
1191  case MVT::i16:
1192    Opc = X86::MOV16to16_;
1193    break;
1194  case MVT::i32:
1195    Opc = X86::MOV32to32_;
1196    break;
1197  }
1198
1199  // The use of MVT::Flag here is not strictly accurate, but it helps
1200  // scheduling in some cases.
1201  N0 = SDValue(CurDAG->getTargetNode(Opc, N0VT, MVT::Flag, N0), 0);
1202  return CurDAG->getTargetNode(X86::EXTRACT_SUBREG,
1203                               MVT::i8, N0, SRIdx, N0.getValue(1));
1204}
1205
1206SDNode *X86DAGToDAGISel::SelectAtomic64(SDNode *Node, unsigned Opc) {
1207  SDValue Chain = Node->getOperand(0);
1208  SDValue In1 = Node->getOperand(1);
1209  SDValue In2L = Node->getOperand(2);
1210  SDValue In2H = Node->getOperand(3);
1211  SDValue Tmp0, Tmp1, Tmp2, Tmp3;
1212  if (!SelectAddr(In1, In1, Tmp0, Tmp1, Tmp2, Tmp3))
1213    return NULL;
1214  SDValue LSI = Node->getOperand(4);    // MemOperand
1215  AddToISelQueue(Tmp0);
1216  AddToISelQueue(Tmp1);
1217  AddToISelQueue(Tmp2);
1218  AddToISelQueue(Tmp3);
1219  AddToISelQueue(In2L);
1220  AddToISelQueue(In2H);
1221  // For now, don't select the MemOperand object, we don't know how.
1222  AddToISelQueue(Chain);
1223  const SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, In2L, In2H, LSI, Chain };
1224  return CurDAG->getTargetNode(Opc, MVT::i32, MVT::i32, MVT::Other, Ops, 8);
1225}
1226
1227SDNode *X86DAGToDAGISel::Select(SDValue N) {
1228  SDNode *Node = N.getNode();
1229  MVT NVT = Node->getValueType(0);
1230  unsigned Opc, MOpc;
1231  unsigned Opcode = Node->getOpcode();
1232
1233#ifndef NDEBUG
1234  DOUT << std::string(Indent, ' ') << "Selecting: ";
1235  DEBUG(Node->dump(CurDAG));
1236  DOUT << "\n";
1237  Indent += 2;
1238#endif
1239
1240  if (Node->isMachineOpcode()) {
1241#ifndef NDEBUG
1242    DOUT << std::string(Indent-2, ' ') << "== ";
1243    DEBUG(Node->dump(CurDAG));
1244    DOUT << "\n";
1245    Indent -= 2;
1246#endif
1247    return NULL;   // Already selected.
1248  }
1249
1250  switch (Opcode) {
1251    default: break;
1252    case X86ISD::GlobalBaseReg:
1253      return getGlobalBaseReg();
1254
1255    case X86ISD::ATOMOR64_DAG:
1256      return SelectAtomic64(Node, X86::ATOMOR6432);
1257    case X86ISD::ATOMXOR64_DAG:
1258      return SelectAtomic64(Node, X86::ATOMXOR6432);
1259    case X86ISD::ATOMADD64_DAG:
1260      return SelectAtomic64(Node, X86::ATOMADD6432);
1261    case X86ISD::ATOMSUB64_DAG:
1262      return SelectAtomic64(Node, X86::ATOMSUB6432);
1263    case X86ISD::ATOMNAND64_DAG:
1264      return SelectAtomic64(Node, X86::ATOMNAND6432);
1265    case X86ISD::ATOMAND64_DAG:
1266      return SelectAtomic64(Node, X86::ATOMAND6432);
1267    case X86ISD::ATOMSWAP64_DAG:
1268      return SelectAtomic64(Node, X86::ATOMSWAP6432);
1269
1270    case ISD::SMUL_LOHI:
1271    case ISD::UMUL_LOHI: {
1272      SDValue N0 = Node->getOperand(0);
1273      SDValue N1 = Node->getOperand(1);
1274
1275      bool isSigned = Opcode == ISD::SMUL_LOHI;
1276      if (!isSigned)
1277        switch (NVT.getSimpleVT()) {
1278        default: assert(0 && "Unsupported VT!");
1279        case MVT::i8:  Opc = X86::MUL8r;  MOpc = X86::MUL8m;  break;
1280        case MVT::i16: Opc = X86::MUL16r; MOpc = X86::MUL16m; break;
1281        case MVT::i32: Opc = X86::MUL32r; MOpc = X86::MUL32m; break;
1282        case MVT::i64: Opc = X86::MUL64r; MOpc = X86::MUL64m; break;
1283        }
1284      else
1285        switch (NVT.getSimpleVT()) {
1286        default: assert(0 && "Unsupported VT!");
1287        case MVT::i8:  Opc = X86::IMUL8r;  MOpc = X86::IMUL8m;  break;
1288        case MVT::i16: Opc = X86::IMUL16r; MOpc = X86::IMUL16m; break;
1289        case MVT::i32: Opc = X86::IMUL32r; MOpc = X86::IMUL32m; break;
1290        case MVT::i64: Opc = X86::IMUL64r; MOpc = X86::IMUL64m; break;
1291        }
1292
1293      unsigned LoReg, HiReg;
1294      switch (NVT.getSimpleVT()) {
1295      default: assert(0 && "Unsupported VT!");
1296      case MVT::i8:  LoReg = X86::AL;  HiReg = X86::AH;  break;
1297      case MVT::i16: LoReg = X86::AX;  HiReg = X86::DX;  break;
1298      case MVT::i32: LoReg = X86::EAX; HiReg = X86::EDX; break;
1299      case MVT::i64: LoReg = X86::RAX; HiReg = X86::RDX; break;
1300      }
1301
1302      SDValue Tmp0, Tmp1, Tmp2, Tmp3;
1303      bool foldedLoad = TryFoldLoad(N, N1, Tmp0, Tmp1, Tmp2, Tmp3);
1304      // multiplty is commmutative
1305      if (!foldedLoad) {
1306        foldedLoad = TryFoldLoad(N, N0, Tmp0, Tmp1, Tmp2, Tmp3);
1307        if (foldedLoad)
1308          std::swap(N0, N1);
1309      }
1310
1311      AddToISelQueue(N0);
1312      SDValue InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), LoReg,
1313                                              N0, SDValue()).getValue(1);
1314
1315      if (foldedLoad) {
1316        AddToISelQueue(N1.getOperand(0));
1317        AddToISelQueue(Tmp0);
1318        AddToISelQueue(Tmp1);
1319        AddToISelQueue(Tmp2);
1320        AddToISelQueue(Tmp3);
1321        SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, N1.getOperand(0), InFlag };
1322        SDNode *CNode =
1323          CurDAG->getTargetNode(MOpc, MVT::Other, MVT::Flag, Ops, 6);
1324        InFlag = SDValue(CNode, 1);
1325        // Update the chain.
1326        ReplaceUses(N1.getValue(1), SDValue(CNode, 0));
1327      } else {
1328        AddToISelQueue(N1);
1329        InFlag =
1330          SDValue(CurDAG->getTargetNode(Opc, MVT::Flag, N1, InFlag), 0);
1331      }
1332
1333      // Copy the low half of the result, if it is needed.
1334      if (!N.getValue(0).use_empty()) {
1335        SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(),
1336                                                  LoReg, NVT, InFlag);
1337        InFlag = Result.getValue(2);
1338        ReplaceUses(N.getValue(0), Result);
1339#ifndef NDEBUG
1340        DOUT << std::string(Indent-2, ' ') << "=> ";
1341        DEBUG(Result.getNode()->dump(CurDAG));
1342        DOUT << "\n";
1343#endif
1344      }
1345      // Copy the high half of the result, if it is needed.
1346      if (!N.getValue(1).use_empty()) {
1347        SDValue Result;
1348        if (HiReg == X86::AH && Subtarget->is64Bit()) {
1349          // Prevent use of AH in a REX instruction by referencing AX instead.
1350          // Shift it down 8 bits.
1351          Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(),
1352                                          X86::AX, MVT::i16, InFlag);
1353          InFlag = Result.getValue(2);
1354          Result = SDValue(CurDAG->getTargetNode(X86::SHR16ri, MVT::i16, Result,
1355                                     CurDAG->getTargetConstant(8, MVT::i8)), 0);
1356          // Then truncate it down to i8.
1357          SDValue SRIdx = CurDAG->getTargetConstant(1, MVT::i32); // SubRegSet 1
1358          Result = SDValue(CurDAG->getTargetNode(X86::EXTRACT_SUBREG,
1359                                                   MVT::i8, Result, SRIdx), 0);
1360        } else {
1361          Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(),
1362                                          HiReg, NVT, InFlag);
1363          InFlag = Result.getValue(2);
1364        }
1365        ReplaceUses(N.getValue(1), Result);
1366#ifndef NDEBUG
1367        DOUT << std::string(Indent-2, ' ') << "=> ";
1368        DEBUG(Result.getNode()->dump(CurDAG));
1369        DOUT << "\n";
1370#endif
1371      }
1372
1373#ifndef NDEBUG
1374      Indent -= 2;
1375#endif
1376
1377      return NULL;
1378    }
1379
1380    case ISD::SDIVREM:
1381    case ISD::UDIVREM: {
1382      SDValue N0 = Node->getOperand(0);
1383      SDValue N1 = Node->getOperand(1);
1384
1385      bool isSigned = Opcode == ISD::SDIVREM;
1386      if (!isSigned)
1387        switch (NVT.getSimpleVT()) {
1388        default: assert(0 && "Unsupported VT!");
1389        case MVT::i8:  Opc = X86::DIV8r;  MOpc = X86::DIV8m;  break;
1390        case MVT::i16: Opc = X86::DIV16r; MOpc = X86::DIV16m; break;
1391        case MVT::i32: Opc = X86::DIV32r; MOpc = X86::DIV32m; break;
1392        case MVT::i64: Opc = X86::DIV64r; MOpc = X86::DIV64m; break;
1393        }
1394      else
1395        switch (NVT.getSimpleVT()) {
1396        default: assert(0 && "Unsupported VT!");
1397        case MVT::i8:  Opc = X86::IDIV8r;  MOpc = X86::IDIV8m;  break;
1398        case MVT::i16: Opc = X86::IDIV16r; MOpc = X86::IDIV16m; break;
1399        case MVT::i32: Opc = X86::IDIV32r; MOpc = X86::IDIV32m; break;
1400        case MVT::i64: Opc = X86::IDIV64r; MOpc = X86::IDIV64m; break;
1401        }
1402
1403      unsigned LoReg, HiReg;
1404      unsigned ClrOpcode, SExtOpcode;
1405      switch (NVT.getSimpleVT()) {
1406      default: assert(0 && "Unsupported VT!");
1407      case MVT::i8:
1408        LoReg = X86::AL;  HiReg = X86::AH;
1409        ClrOpcode  = 0;
1410        SExtOpcode = X86::CBW;
1411        break;
1412      case MVT::i16:
1413        LoReg = X86::AX;  HiReg = X86::DX;
1414        ClrOpcode  = X86::MOV16r0;
1415        SExtOpcode = X86::CWD;
1416        break;
1417      case MVT::i32:
1418        LoReg = X86::EAX; HiReg = X86::EDX;
1419        ClrOpcode  = X86::MOV32r0;
1420        SExtOpcode = X86::CDQ;
1421        break;
1422      case MVT::i64:
1423        LoReg = X86::RAX; HiReg = X86::RDX;
1424        ClrOpcode  = X86::MOV64r0;
1425        SExtOpcode = X86::CQO;
1426        break;
1427      }
1428
1429      SDValue Tmp0, Tmp1, Tmp2, Tmp3;
1430      bool foldedLoad = TryFoldLoad(N, N1, Tmp0, Tmp1, Tmp2, Tmp3);
1431
1432      SDValue InFlag;
1433      if (NVT == MVT::i8 && !isSigned) {
1434        // Special case for div8, just use a move with zero extension to AX to
1435        // clear the upper 8 bits (AH).
1436        SDValue Tmp0, Tmp1, Tmp2, Tmp3, Move, Chain;
1437        if (TryFoldLoad(N, N0, Tmp0, Tmp1, Tmp2, Tmp3)) {
1438          SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, N0.getOperand(0) };
1439          AddToISelQueue(N0.getOperand(0));
1440          AddToISelQueue(Tmp0);
1441          AddToISelQueue(Tmp1);
1442          AddToISelQueue(Tmp2);
1443          AddToISelQueue(Tmp3);
1444          Move =
1445            SDValue(CurDAG->getTargetNode(X86::MOVZX16rm8, MVT::i16, MVT::Other,
1446                                            Ops, 5), 0);
1447          Chain = Move.getValue(1);
1448          ReplaceUses(N0.getValue(1), Chain);
1449        } else {
1450          AddToISelQueue(N0);
1451          Move =
1452            SDValue(CurDAG->getTargetNode(X86::MOVZX16rr8, MVT::i16, N0), 0);
1453          Chain = CurDAG->getEntryNode();
1454        }
1455        Chain  = CurDAG->getCopyToReg(Chain, X86::AX, Move, SDValue());
1456        InFlag = Chain.getValue(1);
1457      } else {
1458        AddToISelQueue(N0);
1459        InFlag =
1460          CurDAG->getCopyToReg(CurDAG->getEntryNode(),
1461                               LoReg, N0, SDValue()).getValue(1);
1462        if (isSigned) {
1463          // Sign extend the low part into the high part.
1464          InFlag =
1465            SDValue(CurDAG->getTargetNode(SExtOpcode, MVT::Flag, InFlag), 0);
1466        } else {
1467          // Zero out the high part, effectively zero extending the input.
1468          SDValue ClrNode = SDValue(CurDAG->getTargetNode(ClrOpcode, NVT), 0);
1469          InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), HiReg,
1470                                        ClrNode, InFlag).getValue(1);
1471        }
1472      }
1473
1474      if (foldedLoad) {
1475        AddToISelQueue(N1.getOperand(0));
1476        AddToISelQueue(Tmp0);
1477        AddToISelQueue(Tmp1);
1478        AddToISelQueue(Tmp2);
1479        AddToISelQueue(Tmp3);
1480        SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, N1.getOperand(0), InFlag };
1481        SDNode *CNode =
1482          CurDAG->getTargetNode(MOpc, MVT::Other, MVT::Flag, Ops, 6);
1483        InFlag = SDValue(CNode, 1);
1484        // Update the chain.
1485        ReplaceUses(N1.getValue(1), SDValue(CNode, 0));
1486      } else {
1487        AddToISelQueue(N1);
1488        InFlag =
1489          SDValue(CurDAG->getTargetNode(Opc, MVT::Flag, N1, InFlag), 0);
1490      }
1491
1492      // Copy the division (low) result, if it is needed.
1493      if (!N.getValue(0).use_empty()) {
1494        SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(),
1495                                                  LoReg, NVT, InFlag);
1496        InFlag = Result.getValue(2);
1497        ReplaceUses(N.getValue(0), Result);
1498#ifndef NDEBUG
1499        DOUT << std::string(Indent-2, ' ') << "=> ";
1500        DEBUG(Result.getNode()->dump(CurDAG));
1501        DOUT << "\n";
1502#endif
1503      }
1504      // Copy the remainder (high) result, if it is needed.
1505      if (!N.getValue(1).use_empty()) {
1506        SDValue Result;
1507        if (HiReg == X86::AH && Subtarget->is64Bit()) {
1508          // Prevent use of AH in a REX instruction by referencing AX instead.
1509          // Shift it down 8 bits.
1510          Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(),
1511                                          X86::AX, MVT::i16, InFlag);
1512          InFlag = Result.getValue(2);
1513          Result = SDValue(CurDAG->getTargetNode(X86::SHR16ri, MVT::i16, Result,
1514                                     CurDAG->getTargetConstant(8, MVT::i8)), 0);
1515          // Then truncate it down to i8.
1516          SDValue SRIdx = CurDAG->getTargetConstant(1, MVT::i32); // SubRegSet 1
1517          Result = SDValue(CurDAG->getTargetNode(X86::EXTRACT_SUBREG,
1518                                                   MVT::i8, Result, SRIdx), 0);
1519        } else {
1520          Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(),
1521                                          HiReg, NVT, InFlag);
1522          InFlag = Result.getValue(2);
1523        }
1524        ReplaceUses(N.getValue(1), Result);
1525#ifndef NDEBUG
1526        DOUT << std::string(Indent-2, ' ') << "=> ";
1527        DEBUG(Result.getNode()->dump(CurDAG));
1528        DOUT << "\n";
1529#endif
1530      }
1531
1532#ifndef NDEBUG
1533      Indent -= 2;
1534#endif
1535
1536      return NULL;
1537    }
1538
1539    case ISD::SIGN_EXTEND_INREG: {
1540      MVT SVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
1541      if (SVT == MVT::i8 && !Subtarget->is64Bit()) {
1542        SDValue N0 = Node->getOperand(0);
1543        AddToISelQueue(N0);
1544
1545        SDValue TruncOp = SDValue(getTruncateTo8Bit(N0), 0);
1546        unsigned Opc = 0;
1547        switch (NVT.getSimpleVT()) {
1548        default: assert(0 && "Unknown sign_extend_inreg!");
1549        case MVT::i16:
1550          Opc = X86::MOVSX16rr8;
1551          break;
1552        case MVT::i32:
1553          Opc = X86::MOVSX32rr8;
1554          break;
1555        }
1556
1557        SDNode *ResNode = CurDAG->getTargetNode(Opc, NVT, TruncOp);
1558
1559#ifndef NDEBUG
1560        DOUT << std::string(Indent-2, ' ') << "=> ";
1561        DEBUG(TruncOp.getNode()->dump(CurDAG));
1562        DOUT << "\n";
1563        DOUT << std::string(Indent-2, ' ') << "=> ";
1564        DEBUG(ResNode->dump(CurDAG));
1565        DOUT << "\n";
1566        Indent -= 2;
1567#endif
1568        return ResNode;
1569      }
1570      break;
1571    }
1572
1573    case ISD::TRUNCATE: {
1574      if (NVT == MVT::i8 && !Subtarget->is64Bit()) {
1575        SDValue Input = Node->getOperand(0);
1576        AddToISelQueue(Node->getOperand(0));
1577        SDNode *ResNode = getTruncateTo8Bit(Input);
1578
1579#ifndef NDEBUG
1580        DOUT << std::string(Indent-2, ' ') << "=> ";
1581        DEBUG(ResNode->dump(CurDAG));
1582        DOUT << "\n";
1583        Indent -= 2;
1584#endif
1585        return ResNode;
1586      }
1587      break;
1588    }
1589
1590    case ISD::DECLARE: {
1591      // Handle DECLARE nodes here because the second operand may have been
1592      // wrapped in X86ISD::Wrapper.
1593      SDValue Chain = Node->getOperand(0);
1594      SDValue N1 = Node->getOperand(1);
1595      SDValue N2 = Node->getOperand(2);
1596      if (!isa<FrameIndexSDNode>(N1))
1597        break;
1598      int FI = cast<FrameIndexSDNode>(N1)->getIndex();
1599      if (N2.getOpcode() == ISD::ADD &&
1600          N2.getOperand(0).getOpcode() == X86ISD::GlobalBaseReg)
1601        N2 = N2.getOperand(1);
1602      if (N2.getOpcode() == X86ISD::Wrapper &&
1603          isa<GlobalAddressSDNode>(N2.getOperand(0))) {
1604        GlobalValue *GV =
1605          cast<GlobalAddressSDNode>(N2.getOperand(0))->getGlobal();
1606        SDValue Tmp1 = CurDAG->getTargetFrameIndex(FI, TLI.getPointerTy());
1607        SDValue Tmp2 = CurDAG->getTargetGlobalAddress(GV, TLI.getPointerTy());
1608        AddToISelQueue(Chain);
1609        SDValue Ops[] = { Tmp1, Tmp2, Chain };
1610        return CurDAG->getTargetNode(TargetInstrInfo::DECLARE,
1611                                     MVT::Other, Ops, 3);
1612      }
1613      break;
1614    }
1615  }
1616
1617  SDNode *ResNode = SelectCode(N);
1618
1619#ifndef NDEBUG
1620  DOUT << std::string(Indent-2, ' ') << "=> ";
1621  if (ResNode == NULL || ResNode == N.getNode())
1622    DEBUG(N.getNode()->dump(CurDAG));
1623  else
1624    DEBUG(ResNode->dump(CurDAG));
1625  DOUT << "\n";
1626  Indent -= 2;
1627#endif
1628
1629  return ResNode;
1630}
1631
1632bool X86DAGToDAGISel::
1633SelectInlineAsmMemoryOperand(const SDValue &Op, char ConstraintCode,
1634                             std::vector<SDValue> &OutOps) {
1635  SDValue Op0, Op1, Op2, Op3;
1636  switch (ConstraintCode) {
1637  case 'o':   // offsetable        ??
1638  case 'v':   // not offsetable    ??
1639  default: return true;
1640  case 'm':   // memory
1641    if (!SelectAddr(Op, Op, Op0, Op1, Op2, Op3))
1642      return true;
1643    break;
1644  }
1645
1646  OutOps.push_back(Op0);
1647  OutOps.push_back(Op1);
1648  OutOps.push_back(Op2);
1649  OutOps.push_back(Op3);
1650  AddToISelQueue(Op0);
1651  AddToISelQueue(Op1);
1652  AddToISelQueue(Op2);
1653  AddToISelQueue(Op3);
1654  return false;
1655}
1656
1657/// createX86ISelDag - This pass converts a legalized DAG into a
1658/// X86-specific DAG, ready for instruction scheduling.
1659///
1660FunctionPass *llvm::createX86ISelDag(X86TargetMachine &TM, bool Fast) {
1661  return new X86DAGToDAGISel(TM, Fast);
1662}
1663