X86ISelDAGToDAG.cpp revision 8d13f8f1043d8b47940ecab7bac838ff1e8166f8
1//===- X86ISelDAGToDAG.cpp - A DAG pattern matching inst selector for X86 -===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines a DAG pattern matching instruction selector for X86,
11// converting from a legalized dag to a X86 dag.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "x86-isel"
16#include "X86.h"
17#include "X86InstrBuilder.h"
18#include "X86ISelLowering.h"
19#include "X86MachineFunctionInfo.h"
20#include "X86RegisterInfo.h"
21#include "X86Subtarget.h"
22#include "X86TargetMachine.h"
23#include "llvm/GlobalValue.h"
24#include "llvm/Instructions.h"
25#include "llvm/Intrinsics.h"
26#include "llvm/Support/CFG.h"
27#include "llvm/Type.h"
28#include "llvm/CodeGen/MachineConstantPool.h"
29#include "llvm/CodeGen/MachineFunction.h"
30#include "llvm/CodeGen/MachineFrameInfo.h"
31#include "llvm/CodeGen/MachineInstrBuilder.h"
32#include "llvm/CodeGen/MachineRegisterInfo.h"
33#include "llvm/CodeGen/SelectionDAGISel.h"
34#include "llvm/Target/TargetMachine.h"
35#include "llvm/Target/TargetOptions.h"
36#include "llvm/Support/Compiler.h"
37#include "llvm/Support/Debug.h"
38#include "llvm/Support/MathExtras.h"
39#include "llvm/Support/Streams.h"
40#include "llvm/ADT/SmallPtrSet.h"
41#include "llvm/ADT/Statistic.h"
42using namespace llvm;
43
44STATISTIC(NumLoadMoved, "Number of loads moved below TokenFactor");
45
46//===----------------------------------------------------------------------===//
47//                      Pattern Matcher Implementation
48//===----------------------------------------------------------------------===//
49
50namespace {
51  /// X86ISelAddressMode - This corresponds to X86AddressMode, but uses
52  /// SDValue's instead of register numbers for the leaves of the matched
53  /// tree.
54  struct X86ISelAddressMode {
55    enum {
56      RegBase,
57      FrameIndexBase
58    } BaseType;
59
60    struct {            // This is really a union, discriminated by BaseType!
61      SDValue Reg;
62      int FrameIndex;
63    } Base;
64
65    bool isRIPRel;     // RIP as base?
66    unsigned Scale;
67    SDValue IndexReg;
68    int32_t Disp;
69    GlobalValue *GV;
70    Constant *CP;
71    const char *ES;
72    int JT;
73    unsigned Align;    // CP alignment.
74
75    X86ISelAddressMode()
76      : BaseType(RegBase), isRIPRel(false), Scale(1), IndexReg(), Disp(0),
77        GV(0), CP(0), ES(0), JT(-1), Align(0) {
78    }
79
80    bool hasSymbolicDisplacement() const {
81      return GV != 0 || CP != 0 || ES != 0 || JT != -1;
82    }
83
84    void dump() {
85      cerr << "X86ISelAddressMode " << this << "\n";
86      cerr << "Base.Reg ";
87              if (Base.Reg.getNode() != 0) Base.Reg.getNode()->dump();
88              else cerr << "nul";
89      cerr << " Base.FrameIndex " << Base.FrameIndex << "\n";
90      cerr << "isRIPRel " << isRIPRel << " Scale" << Scale << "\n";
91      cerr << "IndexReg ";
92              if (IndexReg.getNode() != 0) IndexReg.getNode()->dump();
93              else cerr << "nul";
94      cerr << " Disp " << Disp << "\n";
95      cerr << "GV "; if (GV) GV->dump();
96                     else cerr << "nul";
97      cerr << " CP "; if (CP) CP->dump();
98                     else cerr << "nul";
99      cerr << "\n";
100      cerr << "ES "; if (ES) cerr << ES; else cerr << "nul";
101      cerr  << " JT" << JT << " Align" << Align << "\n";
102    }
103  };
104}
105
106namespace {
107  //===--------------------------------------------------------------------===//
108  /// ISel - X86 specific code to select X86 machine instructions for
109  /// SelectionDAG operations.
110  ///
111  class VISIBILITY_HIDDEN X86DAGToDAGISel : public SelectionDAGISel {
112    /// TM - Keep a reference to X86TargetMachine.
113    ///
114    X86TargetMachine &TM;
115
116    /// X86Lowering - This object fully describes how to lower LLVM code to an
117    /// X86-specific SelectionDAG.
118    X86TargetLowering &X86Lowering;
119
120    /// Subtarget - Keep a pointer to the X86Subtarget around so that we can
121    /// make the right decision when generating code for different targets.
122    const X86Subtarget *Subtarget;
123
124    /// CurBB - Current BB being isel'd.
125    ///
126    MachineBasicBlock *CurBB;
127
128    /// OptForSize - If true, selector should try to optimize for code size
129    /// instead of performance.
130    bool OptForSize;
131
132  public:
133    X86DAGToDAGISel(X86TargetMachine &tm, bool fast)
134      : SelectionDAGISel(tm, fast),
135        TM(tm), X86Lowering(*TM.getTargetLowering()),
136        Subtarget(&TM.getSubtarget<X86Subtarget>()),
137        OptForSize(false) {}
138
139    virtual const char *getPassName() const {
140      return "X86 DAG->DAG Instruction Selection";
141    }
142
143    /// InstructionSelect - This callback is invoked by
144    /// SelectionDAGISel when it has created a SelectionDAG for us to codegen.
145    virtual void InstructionSelect();
146
147    virtual void EmitFunctionEntryCode(Function &Fn, MachineFunction &MF);
148
149    virtual
150      bool IsLegalAndProfitableToFold(SDNode *N, SDNode *U, SDNode *Root) const;
151
152// Include the pieces autogenerated from the target description.
153#include "X86GenDAGISel.inc"
154
155  private:
156    SDNode *Select(SDValue N);
157    SDNode *SelectAtomic64(SDNode *Node, unsigned Opc);
158
159    bool MatchAddress(SDValue N, X86ISelAddressMode &AM,
160                      bool isRoot = true, unsigned Depth = 0);
161    bool MatchAddressBase(SDValue N, X86ISelAddressMode &AM,
162                          bool isRoot, unsigned Depth);
163    bool SelectAddr(SDValue Op, SDValue N, SDValue &Base,
164                    SDValue &Scale, SDValue &Index, SDValue &Disp);
165    bool SelectLEAAddr(SDValue Op, SDValue N, SDValue &Base,
166                       SDValue &Scale, SDValue &Index, SDValue &Disp);
167    bool SelectScalarSSELoad(SDValue Op, SDValue Pred,
168                             SDValue N, SDValue &Base, SDValue &Scale,
169                             SDValue &Index, SDValue &Disp,
170                             SDValue &InChain, SDValue &OutChain);
171    bool TryFoldLoad(SDValue P, SDValue N,
172                     SDValue &Base, SDValue &Scale,
173                     SDValue &Index, SDValue &Disp);
174    void PreprocessForRMW();
175    void PreprocessForFPConvert();
176
177    /// SelectInlineAsmMemoryOperand - Implement addressing mode selection for
178    /// inline asm expressions.
179    virtual bool SelectInlineAsmMemoryOperand(const SDValue &Op,
180                                              char ConstraintCode,
181                                              std::vector<SDValue> &OutOps);
182
183    void EmitSpecialCodeForMain(MachineBasicBlock *BB, MachineFrameInfo *MFI);
184
185    inline void getAddressOperands(X86ISelAddressMode &AM, SDValue &Base,
186                                   SDValue &Scale, SDValue &Index,
187                                   SDValue &Disp) {
188      Base  = (AM.BaseType == X86ISelAddressMode::FrameIndexBase) ?
189        CurDAG->getTargetFrameIndex(AM.Base.FrameIndex, TLI.getPointerTy()) :
190        AM.Base.Reg;
191      Scale = getI8Imm(AM.Scale);
192      Index = AM.IndexReg;
193      // These are 32-bit even in 64-bit mode since RIP relative offset
194      // is 32-bit.
195      if (AM.GV)
196        Disp = CurDAG->getTargetGlobalAddress(AM.GV, MVT::i32, AM.Disp);
197      else if (AM.CP)
198        Disp = CurDAG->getTargetConstantPool(AM.CP, MVT::i32,
199                                             AM.Align, AM.Disp);
200      else if (AM.ES)
201        Disp = CurDAG->getTargetExternalSymbol(AM.ES, MVT::i32);
202      else if (AM.JT != -1)
203        Disp = CurDAG->getTargetJumpTable(AM.JT, MVT::i32);
204      else
205        Disp = CurDAG->getTargetConstant(AM.Disp, MVT::i32);
206    }
207
208    /// getI8Imm - Return a target constant with the specified value, of type
209    /// i8.
210    inline SDValue getI8Imm(unsigned Imm) {
211      return CurDAG->getTargetConstant(Imm, MVT::i8);
212    }
213
214    /// getI16Imm - Return a target constant with the specified value, of type
215    /// i16.
216    inline SDValue getI16Imm(unsigned Imm) {
217      return CurDAG->getTargetConstant(Imm, MVT::i16);
218    }
219
220    /// getI32Imm - Return a target constant with the specified value, of type
221    /// i32.
222    inline SDValue getI32Imm(unsigned Imm) {
223      return CurDAG->getTargetConstant(Imm, MVT::i32);
224    }
225
226    /// getGlobalBaseReg - Return an SDNode that returns the value of
227    /// the global base register. Output instructions required to
228    /// initialize the global base register, if necessary.
229    ///
230    SDNode *getGlobalBaseReg();
231
232    /// getTruncateTo8Bit - return an SDNode that implements a subreg based
233    /// truncate of the specified operand to i8. This can be done with tablegen,
234    /// except that this code uses MVT::Flag in a tricky way that happens to
235    /// improve scheduling in some cases.
236    SDNode *getTruncateTo8Bit(SDValue N0);
237
238#ifndef NDEBUG
239    unsigned Indent;
240#endif
241  };
242}
243
244/// findFlagUse - Return use of MVT::Flag value produced by the specified
245/// SDNode.
246///
247static SDNode *findFlagUse(SDNode *N) {
248  unsigned FlagResNo = N->getNumValues()-1;
249  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
250    SDUse &Use = I.getUse();
251    if (Use.getResNo() == FlagResNo)
252      return Use.getUser();
253  }
254  return NULL;
255}
256
257/// findNonImmUse - Return true if "Use" is a non-immediate use of "Def".
258/// This function recursively traverses up the operand chain, ignoring
259/// certain nodes.
260static bool findNonImmUse(SDNode *Use, SDNode* Def, SDNode *ImmedUse,
261                          SDNode *Root,
262                          SmallPtrSet<SDNode*, 16> &Visited) {
263  if (Use->getNodeId() < Def->getNodeId() ||
264      !Visited.insert(Use))
265    return false;
266
267  for (unsigned i = 0, e = Use->getNumOperands(); i != e; ++i) {
268    SDNode *N = Use->getOperand(i).getNode();
269    if (N == Def) {
270      if (Use == ImmedUse || Use == Root)
271        continue;  // We are not looking for immediate use.
272      assert(N != Root);
273      return true;
274    }
275
276    // Traverse up the operand chain.
277    if (findNonImmUse(N, Def, ImmedUse, Root, Visited))
278      return true;
279  }
280  return false;
281}
282
283/// isNonImmUse - Start searching from Root up the DAG to check is Def can
284/// be reached. Return true if that's the case. However, ignore direct uses
285/// by ImmedUse (which would be U in the example illustrated in
286/// IsLegalAndProfitableToFold) and by Root (which can happen in the store
287/// case).
288/// FIXME: to be really generic, we should allow direct use by any node
289/// that is being folded. But realisticly since we only fold loads which
290/// have one non-chain use, we only need to watch out for load/op/store
291/// and load/op/cmp case where the root (store / cmp) may reach the load via
292/// its chain operand.
293static inline bool isNonImmUse(SDNode *Root, SDNode *Def, SDNode *ImmedUse) {
294  SmallPtrSet<SDNode*, 16> Visited;
295  return findNonImmUse(Root, Def, ImmedUse, Root, Visited);
296}
297
298
299bool X86DAGToDAGISel::IsLegalAndProfitableToFold(SDNode *N, SDNode *U,
300                                                 SDNode *Root) const {
301  if (Fast) return false;
302
303  if (U == Root)
304    switch (U->getOpcode()) {
305    default: break;
306    case ISD::ADD:
307    case ISD::ADDC:
308    case ISD::ADDE:
309    case ISD::AND:
310    case ISD::OR:
311    case ISD::XOR: {
312      // If the other operand is a 8-bit immediate we should fold the immediate
313      // instead. This reduces code size.
314      // e.g.
315      // movl 4(%esp), %eax
316      // addl $4, %eax
317      // vs.
318      // movl $4, %eax
319      // addl 4(%esp), %eax
320      // The former is 2 bytes shorter. In case where the increment is 1, then
321      // the saving can be 4 bytes (by using incl %eax).
322      ConstantSDNode *Imm = dyn_cast<ConstantSDNode>(U->getOperand(1));
323      if (Imm) {
324        if (U->getValueType(0) == MVT::i64) {
325          if ((int32_t)Imm->getZExtValue() == (int64_t)Imm->getZExtValue())
326            return false;
327        } else {
328          if ((int8_t)Imm->getZExtValue() == (int64_t)Imm->getZExtValue())
329            return false;
330        }
331      }
332    }
333    }
334
335  // If Root use can somehow reach N through a path that that doesn't contain
336  // U then folding N would create a cycle. e.g. In the following
337  // diagram, Root can reach N through X. If N is folded into into Root, then
338  // X is both a predecessor and a successor of U.
339  //
340  //          [N*]           //
341  //         ^   ^           //
342  //        /     \          //
343  //      [U*]    [X]?       //
344  //        ^     ^          //
345  //         \   /           //
346  //          \ /            //
347  //         [Root*]         //
348  //
349  // * indicates nodes to be folded together.
350  //
351  // If Root produces a flag, then it gets (even more) interesting. Since it
352  // will be "glued" together with its flag use in the scheduler, we need to
353  // check if it might reach N.
354  //
355  //          [N*]           //
356  //         ^   ^           //
357  //        /     \          //
358  //      [U*]    [X]?       //
359  //        ^       ^        //
360  //         \       \       //
361  //          \      |       //
362  //         [Root*] |       //
363  //          ^      |       //
364  //          f      |       //
365  //          |      /       //
366  //         [Y]    /        //
367  //           ^   /         //
368  //           f  /          //
369  //           | /           //
370  //          [FU]           //
371  //
372  // If FU (flag use) indirectly reaches N (the load), and Root folds N
373  // (call it Fold), then X is a predecessor of FU and a successor of
374  // Fold. But since Fold and FU are flagged together, this will create
375  // a cycle in the scheduling graph.
376
377  MVT VT = Root->getValueType(Root->getNumValues()-1);
378  while (VT == MVT::Flag) {
379    SDNode *FU = findFlagUse(Root);
380    if (FU == NULL)
381      break;
382    Root = FU;
383    VT = Root->getValueType(Root->getNumValues()-1);
384  }
385
386  return !isNonImmUse(Root, N, U);
387}
388
389/// MoveBelowTokenFactor - Replace TokenFactor operand with load's chain operand
390/// and move load below the TokenFactor. Replace store's chain operand with
391/// load's chain result.
392static void MoveBelowTokenFactor(SelectionDAG *CurDAG, SDValue Load,
393                                 SDValue Store, SDValue TF) {
394  SmallVector<SDValue, 4> Ops;
395  for (unsigned i = 0, e = TF.getNode()->getNumOperands(); i != e; ++i)
396    if (Load.getNode() == TF.getOperand(i).getNode())
397      Ops.push_back(Load.getOperand(0));
398    else
399      Ops.push_back(TF.getOperand(i));
400  CurDAG->UpdateNodeOperands(TF, &Ops[0], Ops.size());
401  CurDAG->UpdateNodeOperands(Load, TF, Load.getOperand(1), Load.getOperand(2));
402  CurDAG->UpdateNodeOperands(Store, Load.getValue(1), Store.getOperand(1),
403                             Store.getOperand(2), Store.getOperand(3));
404}
405
406/// isRMWLoad - Return true if N is a load that's part of RMW sub-DAG.
407///
408static bool isRMWLoad(SDValue N, SDValue Chain, SDValue Address,
409                      SDValue &Load) {
410  if (N.getOpcode() == ISD::BIT_CONVERT)
411    N = N.getOperand(0);
412
413  LoadSDNode *LD = dyn_cast<LoadSDNode>(N);
414  if (!LD || LD->isVolatile())
415    return false;
416  if (LD->getAddressingMode() != ISD::UNINDEXED)
417    return false;
418
419  ISD::LoadExtType ExtType = LD->getExtensionType();
420  if (ExtType != ISD::NON_EXTLOAD && ExtType != ISD::EXTLOAD)
421    return false;
422
423  if (N.hasOneUse() &&
424      N.getOperand(1) == Address &&
425      N.getNode()->isOperandOf(Chain.getNode())) {
426    Load = N;
427    return true;
428  }
429  return false;
430}
431
432/// MoveBelowCallSeqStart - Replace CALLSEQ_START operand with load's chain
433/// operand and move load below the call's chain operand.
434static void MoveBelowCallSeqStart(SelectionDAG *CurDAG, SDValue Load,
435                                  SDValue Call, SDValue CallSeqStart) {
436  SmallVector<SDValue, 8> Ops;
437  SDValue Chain = CallSeqStart.getOperand(0);
438  if (Chain.getNode() == Load.getNode())
439    Ops.push_back(Load.getOperand(0));
440  else {
441    assert(Chain.getOpcode() == ISD::TokenFactor &&
442           "Unexpected CallSeqStart chain operand");
443    for (unsigned i = 0, e = Chain.getNumOperands(); i != e; ++i)
444      if (Chain.getOperand(i).getNode() == Load.getNode())
445        Ops.push_back(Load.getOperand(0));
446      else
447        Ops.push_back(Chain.getOperand(i));
448    SDValue NewChain =
449      CurDAG->getNode(ISD::TokenFactor, Load.getDebugLoc(),
450                      MVT::Other, &Ops[0], Ops.size());
451    Ops.clear();
452    Ops.push_back(NewChain);
453  }
454  for (unsigned i = 1, e = CallSeqStart.getNumOperands(); i != e; ++i)
455    Ops.push_back(CallSeqStart.getOperand(i));
456  CurDAG->UpdateNodeOperands(CallSeqStart, &Ops[0], Ops.size());
457  CurDAG->UpdateNodeOperands(Load, Call.getOperand(0),
458                             Load.getOperand(1), Load.getOperand(2));
459  Ops.clear();
460  Ops.push_back(SDValue(Load.getNode(), 1));
461  for (unsigned i = 1, e = Call.getNode()->getNumOperands(); i != e; ++i)
462    Ops.push_back(Call.getOperand(i));
463  CurDAG->UpdateNodeOperands(Call, &Ops[0], Ops.size());
464}
465
466/// isCalleeLoad - Return true if call address is a load and it can be
467/// moved below CALLSEQ_START and the chains leading up to the call.
468/// Return the CALLSEQ_START by reference as a second output.
469static bool isCalleeLoad(SDValue Callee, SDValue &Chain) {
470  if (Callee.getNode() == Chain.getNode() || !Callee.hasOneUse())
471    return false;
472  LoadSDNode *LD = dyn_cast<LoadSDNode>(Callee.getNode());
473  if (!LD ||
474      LD->isVolatile() ||
475      LD->getAddressingMode() != ISD::UNINDEXED ||
476      LD->getExtensionType() != ISD::NON_EXTLOAD)
477    return false;
478
479  // Now let's find the callseq_start.
480  while (Chain.getOpcode() != ISD::CALLSEQ_START) {
481    if (!Chain.hasOneUse())
482      return false;
483    Chain = Chain.getOperand(0);
484  }
485
486  if (Chain.getOperand(0).getNode() == Callee.getNode())
487    return true;
488  if (Chain.getOperand(0).getOpcode() == ISD::TokenFactor &&
489      Callee.getValue(1).isOperandOf(Chain.getOperand(0).getNode()))
490    return true;
491  return false;
492}
493
494
495/// PreprocessForRMW - Preprocess the DAG to make instruction selection better.
496/// This is only run if not in -fast mode (aka -O0).
497/// This allows the instruction selector to pick more read-modify-write
498/// instructions. This is a common case:
499///
500///     [Load chain]
501///         ^
502///         |
503///       [Load]
504///       ^    ^
505///       |    |
506///      /      \-
507///     /         |
508/// [TokenFactor] [Op]
509///     ^          ^
510///     |          |
511///      \        /
512///       \      /
513///       [Store]
514///
515/// The fact the store's chain operand != load's chain will prevent the
516/// (store (op (load))) instruction from being selected. We can transform it to:
517///
518///     [Load chain]
519///         ^
520///         |
521///    [TokenFactor]
522///         ^
523///         |
524///       [Load]
525///       ^    ^
526///       |    |
527///       |     \-
528///       |       |
529///       |     [Op]
530///       |       ^
531///       |       |
532///       \      /
533///        \    /
534///       [Store]
535void X86DAGToDAGISel::PreprocessForRMW() {
536  for (SelectionDAG::allnodes_iterator I = CurDAG->allnodes_begin(),
537         E = CurDAG->allnodes_end(); I != E; ++I) {
538    if (I->getOpcode() == X86ISD::CALL) {
539      /// Also try moving call address load from outside callseq_start to just
540      /// before the call to allow it to be folded.
541      ///
542      ///     [Load chain]
543      ///         ^
544      ///         |
545      ///       [Load]
546      ///       ^    ^
547      ///       |    |
548      ///      /      \--
549      ///     /          |
550      ///[CALLSEQ_START] |
551      ///     ^          |
552      ///     |          |
553      /// [LOAD/C2Reg]   |
554      ///     |          |
555      ///      \        /
556      ///       \      /
557      ///       [CALL]
558      SDValue Chain = I->getOperand(0);
559      SDValue Load  = I->getOperand(1);
560      if (!isCalleeLoad(Load, Chain))
561        continue;
562      MoveBelowCallSeqStart(CurDAG, Load, SDValue(I, 0), Chain);
563      ++NumLoadMoved;
564      continue;
565    }
566
567    if (!ISD::isNON_TRUNCStore(I))
568      continue;
569    SDValue Chain = I->getOperand(0);
570
571    if (Chain.getNode()->getOpcode() != ISD::TokenFactor)
572      continue;
573
574    SDValue N1 = I->getOperand(1);
575    SDValue N2 = I->getOperand(2);
576    if ((N1.getValueType().isFloatingPoint() &&
577         !N1.getValueType().isVector()) ||
578        !N1.hasOneUse())
579      continue;
580
581    bool RModW = false;
582    SDValue Load;
583    unsigned Opcode = N1.getNode()->getOpcode();
584    switch (Opcode) {
585    case ISD::ADD:
586    case ISD::MUL:
587    case ISD::AND:
588    case ISD::OR:
589    case ISD::XOR:
590    case ISD::ADDC:
591    case ISD::ADDE:
592    case ISD::VECTOR_SHUFFLE: {
593      SDValue N10 = N1.getOperand(0);
594      SDValue N11 = N1.getOperand(1);
595      RModW = isRMWLoad(N10, Chain, N2, Load);
596      if (!RModW)
597        RModW = isRMWLoad(N11, Chain, N2, Load);
598      break;
599    }
600    case ISD::SUB:
601    case ISD::SHL:
602    case ISD::SRA:
603    case ISD::SRL:
604    case ISD::ROTL:
605    case ISD::ROTR:
606    case ISD::SUBC:
607    case ISD::SUBE:
608    case X86ISD::SHLD:
609    case X86ISD::SHRD: {
610      SDValue N10 = N1.getOperand(0);
611      RModW = isRMWLoad(N10, Chain, N2, Load);
612      break;
613    }
614    }
615
616    if (RModW) {
617      MoveBelowTokenFactor(CurDAG, Load, SDValue(I, 0), Chain);
618      ++NumLoadMoved;
619    }
620  }
621}
622
623
624/// PreprocessForFPConvert - Walk over the dag lowering fpround and fpextend
625/// nodes that target the FP stack to be store and load to the stack.  This is a
626/// gross hack.  We would like to simply mark these as being illegal, but when
627/// we do that, legalize produces these when it expands calls, then expands
628/// these in the same legalize pass.  We would like dag combine to be able to
629/// hack on these between the call expansion and the node legalization.  As such
630/// this pass basically does "really late" legalization of these inline with the
631/// X86 isel pass.
632void X86DAGToDAGISel::PreprocessForFPConvert() {
633  for (SelectionDAG::allnodes_iterator I = CurDAG->allnodes_begin(),
634       E = CurDAG->allnodes_end(); I != E; ) {
635    SDNode *N = I++;  // Preincrement iterator to avoid invalidation issues.
636    if (N->getOpcode() != ISD::FP_ROUND && N->getOpcode() != ISD::FP_EXTEND)
637      continue;
638
639    // If the source and destination are SSE registers, then this is a legal
640    // conversion that should not be lowered.
641    MVT SrcVT = N->getOperand(0).getValueType();
642    MVT DstVT = N->getValueType(0);
643    bool SrcIsSSE = X86Lowering.isScalarFPTypeInSSEReg(SrcVT);
644    bool DstIsSSE = X86Lowering.isScalarFPTypeInSSEReg(DstVT);
645    if (SrcIsSSE && DstIsSSE)
646      continue;
647
648    if (!SrcIsSSE && !DstIsSSE) {
649      // If this is an FPStack extension, it is a noop.
650      if (N->getOpcode() == ISD::FP_EXTEND)
651        continue;
652      // If this is a value-preserving FPStack truncation, it is a noop.
653      if (N->getConstantOperandVal(1))
654        continue;
655    }
656
657    // Here we could have an FP stack truncation or an FPStack <-> SSE convert.
658    // FPStack has extload and truncstore.  SSE can fold direct loads into other
659    // operations.  Based on this, decide what we want to do.
660    MVT MemVT;
661    if (N->getOpcode() == ISD::FP_ROUND)
662      MemVT = DstVT;  // FP_ROUND must use DstVT, we can't do a 'trunc load'.
663    else
664      MemVT = SrcIsSSE ? SrcVT : DstVT;
665
666    SDValue MemTmp = CurDAG->CreateStackTemporary(MemVT);
667    DebugLoc dl = N->getDebugLoc();
668
669    // FIXME: optimize the case where the src/dest is a load or store?
670    SDValue Store = CurDAG->getTruncStore(CurDAG->getEntryNode(), dl,
671                                          N->getOperand(0),
672                                          MemTmp, NULL, 0, MemVT);
673    SDValue Result = CurDAG->getExtLoad(ISD::EXTLOAD, dl, DstVT, Store, MemTmp,
674                                        NULL, 0, MemVT);
675
676    // We're about to replace all uses of the FP_ROUND/FP_EXTEND with the
677    // extload we created.  This will cause general havok on the dag because
678    // anything below the conversion could be folded into other existing nodes.
679    // To avoid invalidating 'I', back it up to the convert node.
680    --I;
681    CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Result);
682
683    // Now that we did that, the node is dead.  Increment the iterator to the
684    // next node to process, then delete N.
685    ++I;
686    CurDAG->DeleteNode(N);
687  }
688}
689
690/// InstructionSelectBasicBlock - This callback is invoked by SelectionDAGISel
691/// when it has created a SelectionDAG for us to codegen.
692void X86DAGToDAGISel::InstructionSelect() {
693  CurBB = BB;  // BB can change as result of isel.
694  const Function *F = CurDAG->getMachineFunction().getFunction();
695  OptForSize = F->hasFnAttr(Attribute::OptimizeForSize);
696
697  DEBUG(BB->dump());
698  if (!Fast)
699    PreprocessForRMW();
700
701  // FIXME: This should only happen when not -fast.
702  PreprocessForFPConvert();
703
704  // Codegen the basic block.
705#ifndef NDEBUG
706  DOUT << "===== Instruction selection begins:\n";
707  Indent = 0;
708#endif
709  SelectRoot(*CurDAG);
710#ifndef NDEBUG
711  DOUT << "===== Instruction selection ends:\n";
712#endif
713
714  CurDAG->RemoveDeadNodes();
715}
716
717/// EmitSpecialCodeForMain - Emit any code that needs to be executed only in
718/// the main function.
719void X86DAGToDAGISel::EmitSpecialCodeForMain(MachineBasicBlock *BB,
720                                             MachineFrameInfo *MFI) {
721  const TargetInstrInfo *TII = TM.getInstrInfo();
722  if (Subtarget->isTargetCygMing())
723    BuildMI(BB, DebugLoc::getUnknownLoc(),
724            TII->get(X86::CALLpcrel32)).addExternalSymbol("__main");
725}
726
727void X86DAGToDAGISel::EmitFunctionEntryCode(Function &Fn, MachineFunction &MF) {
728  // If this is main, emit special code for main.
729  MachineBasicBlock *BB = MF.begin();
730  if (Fn.hasExternalLinkage() && Fn.getName() == "main")
731    EmitSpecialCodeForMain(BB, MF.getFrameInfo());
732}
733
734/// MatchAddress - Add the specified node to the specified addressing mode,
735/// returning true if it cannot be done.  This just pattern matches for the
736/// addressing mode.
737bool X86DAGToDAGISel::MatchAddress(SDValue N, X86ISelAddressMode &AM,
738                                   bool isRoot, unsigned Depth) {
739  bool is64Bit = Subtarget->is64Bit();
740  DebugLoc dl = N.getDebugLoc();
741  DOUT << "MatchAddress: "; DEBUG(AM.dump());
742  // Limit recursion.
743  if (Depth > 5)
744    return MatchAddressBase(N, AM, isRoot, Depth);
745
746  // RIP relative addressing: %rip + 32-bit displacement!
747  if (AM.isRIPRel) {
748    if (!AM.ES && AM.JT != -1 && N.getOpcode() == ISD::Constant) {
749      uint64_t Val = cast<ConstantSDNode>(N)->getSExtValue();
750      if (!is64Bit || isInt32(AM.Disp + Val)) {
751        AM.Disp += Val;
752        return false;
753      }
754    }
755    return true;
756  }
757
758  switch (N.getOpcode()) {
759  default: break;
760  case ISD::Constant: {
761    uint64_t Val = cast<ConstantSDNode>(N)->getSExtValue();
762    if (!is64Bit || isInt32(AM.Disp + Val)) {
763      AM.Disp += Val;
764      return false;
765    }
766    break;
767  }
768
769  case X86ISD::Wrapper: {
770    DOUT << "Wrapper: 64bit " << is64Bit;
771    DOUT << " AM "; DEBUG(AM.dump()); DOUT << "\n";
772    // Under X86-64 non-small code model, GV (and friends) are 64-bits.
773    // Also, base and index reg must be 0 in order to use rip as base.
774    if (is64Bit && (TM.getCodeModel() != CodeModel::Small ||
775                    AM.Base.Reg.getNode() || AM.IndexReg.getNode()))
776      break;
777    if (AM.hasSymbolicDisplacement())
778      break;
779    // If value is available in a register both base and index components have
780    // been picked, we can't fit the result available in the register in the
781    // addressing mode. Duplicate GlobalAddress or ConstantPool as displacement.
782    {
783      SDValue N0 = N.getOperand(0);
784      if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(N0)) {
785        uint64_t Offset = G->getOffset();
786        if (!is64Bit || isInt32(AM.Disp + Offset)) {
787          GlobalValue *GV = G->getGlobal();
788          AM.GV = GV;
789          AM.Disp += Offset;
790          AM.isRIPRel = TM.symbolicAddressesAreRIPRel();
791          return false;
792        }
793      } else if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(N0)) {
794        uint64_t Offset = CP->getOffset();
795        if (!is64Bit || isInt32(AM.Disp + Offset)) {
796          AM.CP = CP->getConstVal();
797          AM.Align = CP->getAlignment();
798          AM.Disp += Offset;
799          AM.isRIPRel = TM.symbolicAddressesAreRIPRel();
800          return false;
801        }
802      } else if (ExternalSymbolSDNode *S =dyn_cast<ExternalSymbolSDNode>(N0)) {
803        AM.ES = S->getSymbol();
804        AM.isRIPRel = TM.symbolicAddressesAreRIPRel();
805        return false;
806      } else if (JumpTableSDNode *J = dyn_cast<JumpTableSDNode>(N0)) {
807        AM.JT = J->getIndex();
808        AM.isRIPRel = TM.symbolicAddressesAreRIPRel();
809        return false;
810      }
811    }
812    break;
813  }
814
815  case ISD::FrameIndex:
816    if (AM.BaseType == X86ISelAddressMode::RegBase
817        && AM.Base.Reg.getNode() == 0) {
818      AM.BaseType = X86ISelAddressMode::FrameIndexBase;
819      AM.Base.FrameIndex = cast<FrameIndexSDNode>(N)->getIndex();
820      return false;
821    }
822    break;
823
824  case ISD::SHL:
825    if (AM.IndexReg.getNode() != 0 || AM.Scale != 1 || AM.isRIPRel)
826      break;
827
828    if (ConstantSDNode
829          *CN = dyn_cast<ConstantSDNode>(N.getNode()->getOperand(1))) {
830      unsigned Val = CN->getZExtValue();
831      if (Val == 1 || Val == 2 || Val == 3) {
832        AM.Scale = 1 << Val;
833        SDValue ShVal = N.getNode()->getOperand(0);
834
835        // Okay, we know that we have a scale by now.  However, if the scaled
836        // value is an add of something and a constant, we can fold the
837        // constant into the disp field here.
838        if (ShVal.getNode()->getOpcode() == ISD::ADD && ShVal.hasOneUse() &&
839            isa<ConstantSDNode>(ShVal.getNode()->getOperand(1))) {
840          AM.IndexReg = ShVal.getNode()->getOperand(0);
841          ConstantSDNode *AddVal =
842            cast<ConstantSDNode>(ShVal.getNode()->getOperand(1));
843          uint64_t Disp = AM.Disp + (AddVal->getSExtValue() << Val);
844          if (!is64Bit || isInt32(Disp))
845            AM.Disp = Disp;
846          else
847            AM.IndexReg = ShVal;
848        } else {
849          AM.IndexReg = ShVal;
850        }
851        return false;
852      }
853    break;
854    }
855
856  case ISD::SMUL_LOHI:
857  case ISD::UMUL_LOHI:
858    // A mul_lohi where we need the low part can be folded as a plain multiply.
859    if (N.getResNo() != 0) break;
860    // FALL THROUGH
861  case ISD::MUL:
862    // X*[3,5,9] -> X+X*[2,4,8]
863    if (AM.BaseType == X86ISelAddressMode::RegBase &&
864        AM.Base.Reg.getNode() == 0 &&
865        AM.IndexReg.getNode() == 0 &&
866        !AM.isRIPRel) {
867      if (ConstantSDNode
868            *CN = dyn_cast<ConstantSDNode>(N.getNode()->getOperand(1)))
869        if (CN->getZExtValue() == 3 || CN->getZExtValue() == 5 ||
870            CN->getZExtValue() == 9) {
871          AM.Scale = unsigned(CN->getZExtValue())-1;
872
873          SDValue MulVal = N.getNode()->getOperand(0);
874          SDValue Reg;
875
876          // Okay, we know that we have a scale by now.  However, if the scaled
877          // value is an add of something and a constant, we can fold the
878          // constant into the disp field here.
879          if (MulVal.getNode()->getOpcode() == ISD::ADD && MulVal.hasOneUse() &&
880              isa<ConstantSDNode>(MulVal.getNode()->getOperand(1))) {
881            Reg = MulVal.getNode()->getOperand(0);
882            ConstantSDNode *AddVal =
883              cast<ConstantSDNode>(MulVal.getNode()->getOperand(1));
884            uint64_t Disp = AM.Disp + AddVal->getSExtValue() *
885                                      CN->getZExtValue();
886            if (!is64Bit || isInt32(Disp))
887              AM.Disp = Disp;
888            else
889              Reg = N.getNode()->getOperand(0);
890          } else {
891            Reg = N.getNode()->getOperand(0);
892          }
893
894          AM.IndexReg = AM.Base.Reg = Reg;
895          return false;
896        }
897    }
898    break;
899
900  case ISD::ADD: {
901    X86ISelAddressMode Backup = AM;
902    if (!MatchAddress(N.getNode()->getOperand(0), AM, false, Depth+1) &&
903        !MatchAddress(N.getNode()->getOperand(1), AM, false, Depth+1))
904      return false;
905    AM = Backup;
906    if (!MatchAddress(N.getNode()->getOperand(1), AM, false, Depth+1) &&
907        !MatchAddress(N.getNode()->getOperand(0), AM, false, Depth+1))
908      return false;
909    AM = Backup;
910    break;
911  }
912
913  case ISD::OR:
914    // Handle "X | C" as "X + C" iff X is known to have C bits clear.
915    if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
916      X86ISelAddressMode Backup = AM;
917      uint64_t Offset = CN->getSExtValue();
918      // Start with the LHS as an addr mode.
919      if (!MatchAddress(N.getOperand(0), AM, false) &&
920          // Address could not have picked a GV address for the displacement.
921          AM.GV == NULL &&
922          // On x86-64, the resultant disp must fit in 32-bits.
923          (!is64Bit || isInt32(AM.Disp + Offset)) &&
924          // Check to see if the LHS & C is zero.
925          CurDAG->MaskedValueIsZero(N.getOperand(0), CN->getAPIntValue())) {
926        AM.Disp += Offset;
927        return false;
928      }
929      AM = Backup;
930    }
931    break;
932
933  case ISD::AND: {
934    // Handle "(x << C1) & C2" as "(X & (C2>>C1)) << C1" if safe and if this
935    // allows us to fold the shift into this addressing mode.
936    SDValue Shift = N.getOperand(0);
937    if (Shift.getOpcode() != ISD::SHL) break;
938
939    // Scale must not be used already.
940    if (AM.IndexReg.getNode() != 0 || AM.Scale != 1) break;
941
942    // Not when RIP is used as the base.
943    if (AM.isRIPRel) break;
944
945    ConstantSDNode *C2 = dyn_cast<ConstantSDNode>(N.getOperand(1));
946    ConstantSDNode *C1 = dyn_cast<ConstantSDNode>(Shift.getOperand(1));
947    if (!C1 || !C2) break;
948
949    // Not likely to be profitable if either the AND or SHIFT node has more
950    // than one use (unless all uses are for address computation). Besides,
951    // isel mechanism requires their node ids to be reused.
952    if (!N.hasOneUse() || !Shift.hasOneUse())
953      break;
954
955    // Verify that the shift amount is something we can fold.
956    unsigned ShiftCst = C1->getZExtValue();
957    if (ShiftCst != 1 && ShiftCst != 2 && ShiftCst != 3)
958      break;
959
960    // Get the new AND mask, this folds to a constant.
961    SDValue X = Shift.getOperand(0);
962    SDValue NewANDMask = CurDAG->getNode(ISD::SRL, dl, N.getValueType(),
963                                         SDValue(C2, 0), SDValue(C1, 0));
964    SDValue NewAND = CurDAG->getNode(ISD::AND, dl, N.getValueType(), X,
965                                     NewANDMask);
966    SDValue NewSHIFT = CurDAG->getNode(ISD::SHL, dl, N.getValueType(),
967                                       NewAND, SDValue(C1, 0));
968
969    // Insert the new nodes into the topological ordering.
970    if (C1->getNodeId() > X.getNode()->getNodeId()) {
971      CurDAG->RepositionNode(X.getNode(), C1);
972      C1->setNodeId(X.getNode()->getNodeId());
973    }
974    if (NewANDMask.getNode()->getNodeId() == -1 ||
975        NewANDMask.getNode()->getNodeId() > X.getNode()->getNodeId()) {
976      CurDAG->RepositionNode(X.getNode(), NewANDMask.getNode());
977      NewANDMask.getNode()->setNodeId(X.getNode()->getNodeId());
978    }
979    if (NewAND.getNode()->getNodeId() == -1 ||
980        NewAND.getNode()->getNodeId() > Shift.getNode()->getNodeId()) {
981      CurDAG->RepositionNode(Shift.getNode(), NewAND.getNode());
982      NewAND.getNode()->setNodeId(Shift.getNode()->getNodeId());
983    }
984    if (NewSHIFT.getNode()->getNodeId() == -1 ||
985        NewSHIFT.getNode()->getNodeId() > N.getNode()->getNodeId()) {
986      CurDAG->RepositionNode(N.getNode(), NewSHIFT.getNode());
987      NewSHIFT.getNode()->setNodeId(N.getNode()->getNodeId());
988    }
989
990    CurDAG->ReplaceAllUsesWith(N, NewSHIFT);
991
992    AM.Scale = 1 << ShiftCst;
993    AM.IndexReg = NewAND;
994    return false;
995  }
996  }
997
998  return MatchAddressBase(N, AM, isRoot, Depth);
999}
1000
1001/// MatchAddressBase - Helper for MatchAddress. Add the specified node to the
1002/// specified addressing mode without any further recursion.
1003bool X86DAGToDAGISel::MatchAddressBase(SDValue N, X86ISelAddressMode &AM,
1004                                       bool isRoot, unsigned Depth) {
1005  // Is the base register already occupied?
1006  if (AM.BaseType != X86ISelAddressMode::RegBase || AM.Base.Reg.getNode()) {
1007    // If so, check to see if the scale index register is set.
1008    if (AM.IndexReg.getNode() == 0 && !AM.isRIPRel) {
1009      AM.IndexReg = N;
1010      AM.Scale = 1;
1011      return false;
1012    }
1013
1014    // Otherwise, we cannot select it.
1015    return true;
1016  }
1017
1018  // Default, generate it as a register.
1019  AM.BaseType = X86ISelAddressMode::RegBase;
1020  AM.Base.Reg = N;
1021  return false;
1022}
1023
1024/// SelectAddr - returns true if it is able pattern match an addressing mode.
1025/// It returns the operands which make up the maximal addressing mode it can
1026/// match by reference.
1027bool X86DAGToDAGISel::SelectAddr(SDValue Op, SDValue N, SDValue &Base,
1028                                 SDValue &Scale, SDValue &Index,
1029                                 SDValue &Disp) {
1030  X86ISelAddressMode AM;
1031  if (MatchAddress(N, AM))
1032    return false;
1033
1034  MVT VT = N.getValueType();
1035  if (AM.BaseType == X86ISelAddressMode::RegBase) {
1036    if (!AM.Base.Reg.getNode())
1037      AM.Base.Reg = CurDAG->getRegister(0, VT);
1038  }
1039
1040  if (!AM.IndexReg.getNode())
1041    AM.IndexReg = CurDAG->getRegister(0, VT);
1042
1043  getAddressOperands(AM, Base, Scale, Index, Disp);
1044  return true;
1045}
1046
1047/// SelectScalarSSELoad - Match a scalar SSE load.  In particular, we want to
1048/// match a load whose top elements are either undef or zeros.  The load flavor
1049/// is derived from the type of N, which is either v4f32 or v2f64.
1050bool X86DAGToDAGISel::SelectScalarSSELoad(SDValue Op, SDValue Pred,
1051                                          SDValue N, SDValue &Base,
1052                                          SDValue &Scale, SDValue &Index,
1053                                          SDValue &Disp, SDValue &InChain,
1054                                          SDValue &OutChain) {
1055  if (N.getOpcode() == ISD::SCALAR_TO_VECTOR) {
1056    InChain = N.getOperand(0).getValue(1);
1057    if (ISD::isNON_EXTLoad(InChain.getNode()) &&
1058        InChain.getValue(0).hasOneUse() &&
1059        N.hasOneUse() &&
1060        IsLegalAndProfitableToFold(N.getNode(), Pred.getNode(), Op.getNode())) {
1061      LoadSDNode *LD = cast<LoadSDNode>(InChain);
1062      if (!SelectAddr(Op, LD->getBasePtr(), Base, Scale, Index, Disp))
1063        return false;
1064      OutChain = LD->getChain();
1065      return true;
1066    }
1067  }
1068
1069  // Also handle the case where we explicitly require zeros in the top
1070  // elements.  This is a vector shuffle from the zero vector.
1071  if (N.getOpcode() == X86ISD::VZEXT_MOVL && N.getNode()->hasOneUse() &&
1072      // Check to see if the top elements are all zeros (or bitcast of zeros).
1073      N.getOperand(0).getOpcode() == ISD::SCALAR_TO_VECTOR &&
1074      N.getOperand(0).getNode()->hasOneUse() &&
1075      ISD::isNON_EXTLoad(N.getOperand(0).getOperand(0).getNode()) &&
1076      N.getOperand(0).getOperand(0).hasOneUse()) {
1077    // Okay, this is a zero extending load.  Fold it.
1078    LoadSDNode *LD = cast<LoadSDNode>(N.getOperand(0).getOperand(0));
1079    if (!SelectAddr(Op, LD->getBasePtr(), Base, Scale, Index, Disp))
1080      return false;
1081    OutChain = LD->getChain();
1082    InChain = SDValue(LD, 1);
1083    return true;
1084  }
1085  return false;
1086}
1087
1088
1089/// SelectLEAAddr - it calls SelectAddr and determines if the maximal addressing
1090/// mode it matches can be cost effectively emitted as an LEA instruction.
1091bool X86DAGToDAGISel::SelectLEAAddr(SDValue Op, SDValue N,
1092                                    SDValue &Base, SDValue &Scale,
1093                                    SDValue &Index, SDValue &Disp) {
1094  X86ISelAddressMode AM;
1095  if (MatchAddress(N, AM))
1096    return false;
1097
1098  MVT VT = N.getValueType();
1099  unsigned Complexity = 0;
1100  if (AM.BaseType == X86ISelAddressMode::RegBase)
1101    if (AM.Base.Reg.getNode())
1102      Complexity = 1;
1103    else
1104      AM.Base.Reg = CurDAG->getRegister(0, VT);
1105  else if (AM.BaseType == X86ISelAddressMode::FrameIndexBase)
1106    Complexity = 4;
1107
1108  if (AM.IndexReg.getNode())
1109    Complexity++;
1110  else
1111    AM.IndexReg = CurDAG->getRegister(0, VT);
1112
1113  // Don't match just leal(,%reg,2). It's cheaper to do addl %reg, %reg, or with
1114  // a simple shift.
1115  if (AM.Scale > 1)
1116    Complexity++;
1117
1118  // FIXME: We are artificially lowering the criteria to turn ADD %reg, $GA
1119  // to a LEA. This is determined with some expermentation but is by no means
1120  // optimal (especially for code size consideration). LEA is nice because of
1121  // its three-address nature. Tweak the cost function again when we can run
1122  // convertToThreeAddress() at register allocation time.
1123  if (AM.hasSymbolicDisplacement()) {
1124    // For X86-64, we should always use lea to materialize RIP relative
1125    // addresses.
1126    if (Subtarget->is64Bit())
1127      Complexity = 4;
1128    else
1129      Complexity += 2;
1130  }
1131
1132  if (AM.Disp && (AM.Base.Reg.getNode() || AM.IndexReg.getNode()))
1133    Complexity++;
1134
1135  if (Complexity > 2) {
1136    getAddressOperands(AM, Base, Scale, Index, Disp);
1137    return true;
1138  }
1139  return false;
1140}
1141
1142bool X86DAGToDAGISel::TryFoldLoad(SDValue P, SDValue N,
1143                                  SDValue &Base, SDValue &Scale,
1144                                  SDValue &Index, SDValue &Disp) {
1145  if (ISD::isNON_EXTLoad(N.getNode()) &&
1146      N.hasOneUse() &&
1147      IsLegalAndProfitableToFold(N.getNode(), P.getNode(), P.getNode()))
1148    return SelectAddr(P, N.getOperand(1), Base, Scale, Index, Disp);
1149  return false;
1150}
1151
1152/// getGlobalBaseReg - Return an SDNode that returns the value of
1153/// the global base register. Output instructions required to
1154/// initialize the global base register, if necessary.
1155///
1156SDNode *X86DAGToDAGISel::getGlobalBaseReg() {
1157  MachineFunction *MF = CurBB->getParent();
1158  unsigned GlobalBaseReg = TM.getInstrInfo()->getGlobalBaseReg(MF);
1159  return CurDAG->getRegister(GlobalBaseReg, TLI.getPointerTy()).getNode();
1160}
1161
1162static SDNode *FindCallStartFromCall(SDNode *Node) {
1163  if (Node->getOpcode() == ISD::CALLSEQ_START) return Node;
1164    assert(Node->getOperand(0).getValueType() == MVT::Other &&
1165         "Node doesn't have a token chain argument!");
1166  return FindCallStartFromCall(Node->getOperand(0).getNode());
1167}
1168
1169/// getTruncateTo8Bit - return an SDNode that implements a subreg based
1170/// truncate of the specified operand to i8. This can be done with tablegen,
1171/// except that this code uses MVT::Flag in a tricky way that happens to
1172/// improve scheduling in some cases.
1173SDNode *X86DAGToDAGISel::getTruncateTo8Bit(SDValue N0) {
1174  assert(!Subtarget->is64Bit() &&
1175         "getTruncateTo8Bit is only needed on x86-32!");
1176  SDValue SRIdx = CurDAG->getTargetConstant(1, MVT::i32); // SubRegSet 1
1177  DebugLoc dl = N0.getDebugLoc();
1178
1179  // Ensure that the source register has an 8-bit subreg on 32-bit targets
1180  unsigned Opc;
1181  MVT N0VT = N0.getValueType();
1182  switch (N0VT.getSimpleVT()) {
1183  default: assert(0 && "Unknown truncate!");
1184  case MVT::i16:
1185    Opc = X86::MOV16to16_;
1186    break;
1187  case MVT::i32:
1188    Opc = X86::MOV32to32_;
1189    break;
1190  }
1191
1192  // The use of MVT::Flag here is not strictly accurate, but it helps
1193  // scheduling in some cases.
1194  N0 = SDValue(CurDAG->getTargetNode(Opc, dl, N0VT, MVT::Flag, N0), 0);
1195  return CurDAG->getTargetNode(X86::EXTRACT_SUBREG, dl,
1196                               MVT::i8, N0, SRIdx, N0.getValue(1));
1197}
1198
1199SDNode *X86DAGToDAGISel::SelectAtomic64(SDNode *Node, unsigned Opc) {
1200  SDValue Chain = Node->getOperand(0);
1201  SDValue In1 = Node->getOperand(1);
1202  SDValue In2L = Node->getOperand(2);
1203  SDValue In2H = Node->getOperand(3);
1204  SDValue Tmp0, Tmp1, Tmp2, Tmp3;
1205  if (!SelectAddr(In1, In1, Tmp0, Tmp1, Tmp2, Tmp3))
1206    return NULL;
1207  SDValue LSI = Node->getOperand(4);    // MemOperand
1208  const SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, In2L, In2H, LSI, Chain };
1209  return CurDAG->getTargetNode(Opc, Node->getDebugLoc(),
1210                               MVT::i32, MVT::i32, MVT::Other, Ops, 8);
1211}
1212
1213SDNode *X86DAGToDAGISel::Select(SDValue N) {
1214  SDNode *Node = N.getNode();
1215  MVT NVT = Node->getValueType(0);
1216  unsigned Opc, MOpc;
1217  unsigned Opcode = Node->getOpcode();
1218  DebugLoc dl = Node->getDebugLoc();
1219
1220#ifndef NDEBUG
1221  DOUT << std::string(Indent, ' ') << "Selecting: ";
1222  DEBUG(Node->dump(CurDAG));
1223  DOUT << "\n";
1224  Indent += 2;
1225#endif
1226
1227  if (Node->isMachineOpcode()) {
1228#ifndef NDEBUG
1229    DOUT << std::string(Indent-2, ' ') << "== ";
1230    DEBUG(Node->dump(CurDAG));
1231    DOUT << "\n";
1232    Indent -= 2;
1233#endif
1234    return NULL;   // Already selected.
1235  }
1236
1237  switch (Opcode) {
1238    default: break;
1239    case X86ISD::GlobalBaseReg:
1240      return getGlobalBaseReg();
1241
1242    case X86ISD::ATOMOR64_DAG:
1243      return SelectAtomic64(Node, X86::ATOMOR6432);
1244    case X86ISD::ATOMXOR64_DAG:
1245      return SelectAtomic64(Node, X86::ATOMXOR6432);
1246    case X86ISD::ATOMADD64_DAG:
1247      return SelectAtomic64(Node, X86::ATOMADD6432);
1248    case X86ISD::ATOMSUB64_DAG:
1249      return SelectAtomic64(Node, X86::ATOMSUB6432);
1250    case X86ISD::ATOMNAND64_DAG:
1251      return SelectAtomic64(Node, X86::ATOMNAND6432);
1252    case X86ISD::ATOMAND64_DAG:
1253      return SelectAtomic64(Node, X86::ATOMAND6432);
1254    case X86ISD::ATOMSWAP64_DAG:
1255      return SelectAtomic64(Node, X86::ATOMSWAP6432);
1256
1257    case ISD::SMUL_LOHI:
1258    case ISD::UMUL_LOHI: {
1259      SDValue N0 = Node->getOperand(0);
1260      SDValue N1 = Node->getOperand(1);
1261
1262      bool isSigned = Opcode == ISD::SMUL_LOHI;
1263      if (!isSigned)
1264        switch (NVT.getSimpleVT()) {
1265        default: assert(0 && "Unsupported VT!");
1266        case MVT::i8:  Opc = X86::MUL8r;  MOpc = X86::MUL8m;  break;
1267        case MVT::i16: Opc = X86::MUL16r; MOpc = X86::MUL16m; break;
1268        case MVT::i32: Opc = X86::MUL32r; MOpc = X86::MUL32m; break;
1269        case MVT::i64: Opc = X86::MUL64r; MOpc = X86::MUL64m; break;
1270        }
1271      else
1272        switch (NVT.getSimpleVT()) {
1273        default: assert(0 && "Unsupported VT!");
1274        case MVT::i8:  Opc = X86::IMUL8r;  MOpc = X86::IMUL8m;  break;
1275        case MVT::i16: Opc = X86::IMUL16r; MOpc = X86::IMUL16m; break;
1276        case MVT::i32: Opc = X86::IMUL32r; MOpc = X86::IMUL32m; break;
1277        case MVT::i64: Opc = X86::IMUL64r; MOpc = X86::IMUL64m; break;
1278        }
1279
1280      unsigned LoReg, HiReg;
1281      switch (NVT.getSimpleVT()) {
1282      default: assert(0 && "Unsupported VT!");
1283      case MVT::i8:  LoReg = X86::AL;  HiReg = X86::AH;  break;
1284      case MVT::i16: LoReg = X86::AX;  HiReg = X86::DX;  break;
1285      case MVT::i32: LoReg = X86::EAX; HiReg = X86::EDX; break;
1286      case MVT::i64: LoReg = X86::RAX; HiReg = X86::RDX; break;
1287      }
1288
1289      SDValue Tmp0, Tmp1, Tmp2, Tmp3;
1290      bool foldedLoad = TryFoldLoad(N, N1, Tmp0, Tmp1, Tmp2, Tmp3);
1291      // multiplty is commmutative
1292      if (!foldedLoad) {
1293        foldedLoad = TryFoldLoad(N, N0, Tmp0, Tmp1, Tmp2, Tmp3);
1294        if (foldedLoad)
1295          std::swap(N0, N1);
1296      }
1297
1298      SDValue InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, LoReg,
1299                                              N0, SDValue()).getValue(1);
1300
1301      if (foldedLoad) {
1302        SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, N1.getOperand(0), InFlag };
1303        SDNode *CNode =
1304          CurDAG->getTargetNode(MOpc, dl, MVT::Other, MVT::Flag, Ops, 6);
1305        InFlag = SDValue(CNode, 1);
1306        // Update the chain.
1307        ReplaceUses(N1.getValue(1), SDValue(CNode, 0));
1308      } else {
1309        InFlag =
1310          SDValue(CurDAG->getTargetNode(Opc, dl, MVT::Flag, N1, InFlag), 0);
1311      }
1312
1313      // Copy the low half of the result, if it is needed.
1314      if (!N.getValue(0).use_empty()) {
1315        SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
1316                                                  LoReg, NVT, InFlag);
1317        InFlag = Result.getValue(2);
1318        ReplaceUses(N.getValue(0), Result);
1319#ifndef NDEBUG
1320        DOUT << std::string(Indent-2, ' ') << "=> ";
1321        DEBUG(Result.getNode()->dump(CurDAG));
1322        DOUT << "\n";
1323#endif
1324      }
1325      // Copy the high half of the result, if it is needed.
1326      if (!N.getValue(1).use_empty()) {
1327        SDValue Result;
1328        if (HiReg == X86::AH && Subtarget->is64Bit()) {
1329          // Prevent use of AH in a REX instruction by referencing AX instead.
1330          // Shift it down 8 bits.
1331          Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
1332                                          X86::AX, MVT::i16, InFlag);
1333          InFlag = Result.getValue(2);
1334          Result = SDValue(CurDAG->getTargetNode(X86::SHR16ri, dl, MVT::i16,
1335                                                 Result,
1336                                     CurDAG->getTargetConstant(8, MVT::i8)), 0);
1337          // Then truncate it down to i8.
1338          SDValue SRIdx = CurDAG->getTargetConstant(1, MVT::i32); // SubRegSet 1
1339          Result = SDValue(CurDAG->getTargetNode(X86::EXTRACT_SUBREG, dl,
1340                                                   MVT::i8, Result, SRIdx), 0);
1341        } else {
1342          Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
1343                                          HiReg, NVT, InFlag);
1344          InFlag = Result.getValue(2);
1345        }
1346        ReplaceUses(N.getValue(1), Result);
1347#ifndef NDEBUG
1348        DOUT << std::string(Indent-2, ' ') << "=> ";
1349        DEBUG(Result.getNode()->dump(CurDAG));
1350        DOUT << "\n";
1351#endif
1352      }
1353
1354#ifndef NDEBUG
1355      Indent -= 2;
1356#endif
1357
1358      return NULL;
1359    }
1360
1361    case ISD::SDIVREM:
1362    case ISD::UDIVREM: {
1363      SDValue N0 = Node->getOperand(0);
1364      SDValue N1 = Node->getOperand(1);
1365
1366      bool isSigned = Opcode == ISD::SDIVREM;
1367      if (!isSigned)
1368        switch (NVT.getSimpleVT()) {
1369        default: assert(0 && "Unsupported VT!");
1370        case MVT::i8:  Opc = X86::DIV8r;  MOpc = X86::DIV8m;  break;
1371        case MVT::i16: Opc = X86::DIV16r; MOpc = X86::DIV16m; break;
1372        case MVT::i32: Opc = X86::DIV32r; MOpc = X86::DIV32m; break;
1373        case MVT::i64: Opc = X86::DIV64r; MOpc = X86::DIV64m; break;
1374        }
1375      else
1376        switch (NVT.getSimpleVT()) {
1377        default: assert(0 && "Unsupported VT!");
1378        case MVT::i8:  Opc = X86::IDIV8r;  MOpc = X86::IDIV8m;  break;
1379        case MVT::i16: Opc = X86::IDIV16r; MOpc = X86::IDIV16m; break;
1380        case MVT::i32: Opc = X86::IDIV32r; MOpc = X86::IDIV32m; break;
1381        case MVT::i64: Opc = X86::IDIV64r; MOpc = X86::IDIV64m; break;
1382        }
1383
1384      unsigned LoReg, HiReg;
1385      unsigned ClrOpcode, SExtOpcode;
1386      switch (NVT.getSimpleVT()) {
1387      default: assert(0 && "Unsupported VT!");
1388      case MVT::i8:
1389        LoReg = X86::AL;  HiReg = X86::AH;
1390        ClrOpcode  = 0;
1391        SExtOpcode = X86::CBW;
1392        break;
1393      case MVT::i16:
1394        LoReg = X86::AX;  HiReg = X86::DX;
1395        ClrOpcode  = X86::MOV16r0;
1396        SExtOpcode = X86::CWD;
1397        break;
1398      case MVT::i32:
1399        LoReg = X86::EAX; HiReg = X86::EDX;
1400        ClrOpcode  = X86::MOV32r0;
1401        SExtOpcode = X86::CDQ;
1402        break;
1403      case MVT::i64:
1404        LoReg = X86::RAX; HiReg = X86::RDX;
1405        ClrOpcode  = X86::MOV64r0;
1406        SExtOpcode = X86::CQO;
1407        break;
1408      }
1409
1410      SDValue Tmp0, Tmp1, Tmp2, Tmp3;
1411      bool foldedLoad = TryFoldLoad(N, N1, Tmp0, Tmp1, Tmp2, Tmp3);
1412      bool signBitIsZero = CurDAG->SignBitIsZero(N0);
1413
1414      SDValue InFlag;
1415      if (NVT == MVT::i8 && (!isSigned || signBitIsZero)) {
1416        // Special case for div8, just use a move with zero extension to AX to
1417        // clear the upper 8 bits (AH).
1418        SDValue Tmp0, Tmp1, Tmp2, Tmp3, Move, Chain;
1419        if (TryFoldLoad(N, N0, Tmp0, Tmp1, Tmp2, Tmp3)) {
1420          SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, N0.getOperand(0) };
1421          Move =
1422            SDValue(CurDAG->getTargetNode(X86::MOVZX16rm8, dl, MVT::i16,
1423                                           MVT::Other, Ops, 5), 0);
1424          Chain = Move.getValue(1);
1425          ReplaceUses(N0.getValue(1), Chain);
1426        } else {
1427          Move =
1428            SDValue(CurDAG->getTargetNode(X86::MOVZX16rr8, dl, MVT::i16, N0),0);
1429          Chain = CurDAG->getEntryNode();
1430        }
1431        Chain  = CurDAG->getCopyToReg(Chain, dl, X86::AX, Move, SDValue());
1432        InFlag = Chain.getValue(1);
1433      } else {
1434        InFlag =
1435          CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl,
1436                               LoReg, N0, SDValue()).getValue(1);
1437        if (isSigned && !signBitIsZero) {
1438          // Sign extend the low part into the high part.
1439          InFlag =
1440            SDValue(CurDAG->getTargetNode(SExtOpcode, dl, MVT::Flag, InFlag),0);
1441        } else {
1442          // Zero out the high part, effectively zero extending the input.
1443          SDValue ClrNode = SDValue(CurDAG->getTargetNode(ClrOpcode, dl, NVT),
1444                                    0);
1445          InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, HiReg,
1446                                        ClrNode, InFlag).getValue(1);
1447        }
1448      }
1449
1450      if (foldedLoad) {
1451        SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, N1.getOperand(0), InFlag };
1452        SDNode *CNode =
1453          CurDAG->getTargetNode(MOpc, dl, MVT::Other, MVT::Flag, Ops, 6);
1454        InFlag = SDValue(CNode, 1);
1455        // Update the chain.
1456        ReplaceUses(N1.getValue(1), SDValue(CNode, 0));
1457      } else {
1458        InFlag =
1459          SDValue(CurDAG->getTargetNode(Opc, dl, MVT::Flag, N1, InFlag), 0);
1460      }
1461
1462      // Copy the division (low) result, if it is needed.
1463      if (!N.getValue(0).use_empty()) {
1464        SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
1465                                                  LoReg, NVT, InFlag);
1466        InFlag = Result.getValue(2);
1467        ReplaceUses(N.getValue(0), Result);
1468#ifndef NDEBUG
1469        DOUT << std::string(Indent-2, ' ') << "=> ";
1470        DEBUG(Result.getNode()->dump(CurDAG));
1471        DOUT << "\n";
1472#endif
1473      }
1474      // Copy the remainder (high) result, if it is needed.
1475      if (!N.getValue(1).use_empty()) {
1476        SDValue Result;
1477        if (HiReg == X86::AH && Subtarget->is64Bit()) {
1478          // Prevent use of AH in a REX instruction by referencing AX instead.
1479          // Shift it down 8 bits.
1480          Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
1481                                          X86::AX, MVT::i16, InFlag);
1482          InFlag = Result.getValue(2);
1483          Result = SDValue(CurDAG->getTargetNode(X86::SHR16ri, dl, MVT::i16,
1484                                        Result,
1485                                        CurDAG->getTargetConstant(8, MVT::i8)),
1486                           0);
1487          // Then truncate it down to i8.
1488          SDValue SRIdx = CurDAG->getTargetConstant(1, MVT::i32); // SubRegSet 1
1489          Result = SDValue(CurDAG->getTargetNode(X86::EXTRACT_SUBREG, dl,
1490                                                   MVT::i8, Result, SRIdx), 0);
1491        } else {
1492          Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
1493                                          HiReg, NVT, InFlag);
1494          InFlag = Result.getValue(2);
1495        }
1496        ReplaceUses(N.getValue(1), Result);
1497#ifndef NDEBUG
1498        DOUT << std::string(Indent-2, ' ') << "=> ";
1499        DEBUG(Result.getNode()->dump(CurDAG));
1500        DOUT << "\n";
1501#endif
1502      }
1503
1504#ifndef NDEBUG
1505      Indent -= 2;
1506#endif
1507
1508      return NULL;
1509    }
1510
1511    case ISD::SIGN_EXTEND_INREG: {
1512      MVT SVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
1513      if (SVT == MVT::i8 && !Subtarget->is64Bit()) {
1514        SDValue N0 = Node->getOperand(0);
1515
1516        SDValue TruncOp = SDValue(getTruncateTo8Bit(N0), 0);
1517        unsigned Opc = 0;
1518        switch (NVT.getSimpleVT()) {
1519        default: assert(0 && "Unknown sign_extend_inreg!");
1520        case MVT::i16:
1521          Opc = X86::MOVSX16rr8;
1522          break;
1523        case MVT::i32:
1524          Opc = X86::MOVSX32rr8;
1525          break;
1526        }
1527
1528        SDNode *ResNode = CurDAG->getTargetNode(Opc, dl, NVT, TruncOp);
1529
1530#ifndef NDEBUG
1531        DOUT << std::string(Indent-2, ' ') << "=> ";
1532        DEBUG(TruncOp.getNode()->dump(CurDAG));
1533        DOUT << "\n";
1534        DOUT << std::string(Indent-2, ' ') << "=> ";
1535        DEBUG(ResNode->dump(CurDAG));
1536        DOUT << "\n";
1537        Indent -= 2;
1538#endif
1539        return ResNode;
1540      }
1541      break;
1542    }
1543
1544    case ISD::TRUNCATE: {
1545      if (NVT == MVT::i8 && !Subtarget->is64Bit()) {
1546        SDValue Input = Node->getOperand(0);
1547        SDNode *ResNode = getTruncateTo8Bit(Input);
1548
1549#ifndef NDEBUG
1550        DOUT << std::string(Indent-2, ' ') << "=> ";
1551        DEBUG(ResNode->dump(CurDAG));
1552        DOUT << "\n";
1553        Indent -= 2;
1554#endif
1555        return ResNode;
1556      }
1557      break;
1558    }
1559
1560    case ISD::DECLARE: {
1561      // Handle DECLARE nodes here because the second operand may have been
1562      // wrapped in X86ISD::Wrapper.
1563      SDValue Chain = Node->getOperand(0);
1564      SDValue N1 = Node->getOperand(1);
1565      SDValue N2 = Node->getOperand(2);
1566      FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N1);
1567
1568      // FIXME: We need to handle this for VLAs.
1569      if (!FINode) {
1570        ReplaceUses(N.getValue(0), Chain);
1571        return NULL;
1572      }
1573
1574      if (N2.getOpcode() == ISD::ADD &&
1575          N2.getOperand(0).getOpcode() == X86ISD::GlobalBaseReg)
1576        N2 = N2.getOperand(1);
1577
1578      // If N2 is not Wrapper(decriptor) then the llvm.declare is mangled
1579      // somehow, just ignore it.
1580      if (N2.getOpcode() != X86ISD::Wrapper) {
1581        ReplaceUses(N.getValue(0), Chain);
1582        return NULL;
1583      }
1584      GlobalAddressSDNode *GVNode =
1585        dyn_cast<GlobalAddressSDNode>(N2.getOperand(0));
1586      if (GVNode == 0) {
1587        ReplaceUses(N.getValue(0), Chain);
1588        return NULL;
1589      }
1590      SDValue Tmp1 = CurDAG->getTargetFrameIndex(FINode->getIndex(),
1591                                                 TLI.getPointerTy());
1592      SDValue Tmp2 = CurDAG->getTargetGlobalAddress(GVNode->getGlobal(),
1593                                                    TLI.getPointerTy());
1594      SDValue Ops[] = { Tmp1, Tmp2, Chain };
1595      return CurDAG->getTargetNode(TargetInstrInfo::DECLARE, dl,
1596                                   MVT::Other, Ops, 3);
1597    }
1598  }
1599
1600  SDNode *ResNode = SelectCode(N);
1601
1602#ifndef NDEBUG
1603  DOUT << std::string(Indent-2, ' ') << "=> ";
1604  if (ResNode == NULL || ResNode == N.getNode())
1605    DEBUG(N.getNode()->dump(CurDAG));
1606  else
1607    DEBUG(ResNode->dump(CurDAG));
1608  DOUT << "\n";
1609  Indent -= 2;
1610#endif
1611
1612  return ResNode;
1613}
1614
1615bool X86DAGToDAGISel::
1616SelectInlineAsmMemoryOperand(const SDValue &Op, char ConstraintCode,
1617                             std::vector<SDValue> &OutOps) {
1618  SDValue Op0, Op1, Op2, Op3;
1619  switch (ConstraintCode) {
1620  case 'o':   // offsetable        ??
1621  case 'v':   // not offsetable    ??
1622  default: return true;
1623  case 'm':   // memory
1624    if (!SelectAddr(Op, Op, Op0, Op1, Op2, Op3))
1625      return true;
1626    break;
1627  }
1628
1629  OutOps.push_back(Op0);
1630  OutOps.push_back(Op1);
1631  OutOps.push_back(Op2);
1632  OutOps.push_back(Op3);
1633  return false;
1634}
1635
1636/// createX86ISelDag - This pass converts a legalized DAG into a
1637/// X86-specific DAG, ready for instruction scheduling.
1638///
1639FunctionPass *llvm::createX86ISelDag(X86TargetMachine &TM, bool Fast) {
1640  return new X86DAGToDAGISel(TM, Fast);
1641}
1642