X86ISelDAGToDAG.cpp revision 96aaa545298b6b95d5a83cc5b62af14ca8968ed4
1//===- X86ISelDAGToDAG.cpp - A DAG pattern matching inst selector for X86 -===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the Evan Cheng and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines a DAG pattern matching instruction selector for X86,
11// converting from a legalized dag to a X86 dag.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "x86-isel"
16#include "X86.h"
17#include "X86InstrBuilder.h"
18#include "X86ISelLowering.h"
19#include "X86RegisterInfo.h"
20#include "X86Subtarget.h"
21#include "X86TargetMachine.h"
22#include "llvm/GlobalValue.h"
23#include "llvm/Instructions.h"
24#include "llvm/Intrinsics.h"
25#include "llvm/Support/CFG.h"
26#include "llvm/Type.h"
27#include "llvm/CodeGen/MachineConstantPool.h"
28#include "llvm/CodeGen/MachineFunction.h"
29#include "llvm/CodeGen/MachineFrameInfo.h"
30#include "llvm/CodeGen/MachineInstrBuilder.h"
31#include "llvm/CodeGen/SSARegMap.h"
32#include "llvm/CodeGen/SelectionDAGISel.h"
33#include "llvm/Target/TargetMachine.h"
34#include "llvm/Support/Compiler.h"
35#include "llvm/Support/Debug.h"
36#include "llvm/Support/MathExtras.h"
37#include "llvm/ADT/Statistic.h"
38#include <queue>
39#include <set>
40using namespace llvm;
41
42STATISTIC(NumFPKill   , "Number of FP_REG_KILL instructions added");
43STATISTIC(NumLoadMoved, "Number of loads moved below TokenFactor");
44
45
46//===----------------------------------------------------------------------===//
47//                      Pattern Matcher Implementation
48//===----------------------------------------------------------------------===//
49
50namespace {
51  /// X86ISelAddressMode - This corresponds to X86AddressMode, but uses
52  /// SDOperand's instead of register numbers for the leaves of the matched
53  /// tree.
54  struct X86ISelAddressMode {
55    enum {
56      RegBase,
57      FrameIndexBase
58    } BaseType;
59
60    struct {            // This is really a union, discriminated by BaseType!
61      SDOperand Reg;
62      int FrameIndex;
63    } Base;
64
65    bool isRIPRel;     // RIP relative?
66    unsigned Scale;
67    SDOperand IndexReg;
68    unsigned Disp;
69    GlobalValue *GV;
70    Constant *CP;
71    const char *ES;
72    int JT;
73    unsigned Align;    // CP alignment.
74
75    X86ISelAddressMode()
76      : BaseType(RegBase), isRIPRel(false), Scale(1), IndexReg(), Disp(0),
77        GV(0), CP(0), ES(0), JT(-1), Align(0) {
78    }
79  };
80}
81
82namespace {
83  //===--------------------------------------------------------------------===//
84  /// ISel - X86 specific code to select X86 machine instructions for
85  /// SelectionDAG operations.
86  ///
87  class VISIBILITY_HIDDEN X86DAGToDAGISel : public SelectionDAGISel {
88    /// ContainsFPCode - Every instruction we select that uses or defines a FP
89    /// register should set this to true.
90    bool ContainsFPCode;
91
92    /// FastISel - Enable fast(er) instruction selection.
93    ///
94    bool FastISel;
95
96    /// TM - Keep a reference to X86TargetMachine.
97    ///
98    X86TargetMachine &TM;
99
100    /// X86Lowering - This object fully describes how to lower LLVM code to an
101    /// X86-specific SelectionDAG.
102    X86TargetLowering X86Lowering;
103
104    /// Subtarget - Keep a pointer to the X86Subtarget around so that we can
105    /// make the right decision when generating code for different targets.
106    const X86Subtarget *Subtarget;
107
108    /// GlobalBaseReg - keeps track of the virtual register mapped onto global
109    /// base register.
110    unsigned GlobalBaseReg;
111
112  public:
113    X86DAGToDAGISel(X86TargetMachine &tm, bool fast)
114      : SelectionDAGISel(X86Lowering),
115        ContainsFPCode(false), FastISel(fast), TM(tm),
116        X86Lowering(*TM.getTargetLowering()),
117        Subtarget(&TM.getSubtarget<X86Subtarget>()) {}
118
119    virtual bool runOnFunction(Function &Fn) {
120      // Make sure we re-emit a set of the global base reg if necessary
121      GlobalBaseReg = 0;
122      return SelectionDAGISel::runOnFunction(Fn);
123    }
124
125    virtual const char *getPassName() const {
126      return "X86 DAG->DAG Instruction Selection";
127    }
128
129    /// InstructionSelectBasicBlock - This callback is invoked by
130    /// SelectionDAGISel when it has created a SelectionDAG for us to codegen.
131    virtual void InstructionSelectBasicBlock(SelectionDAG &DAG);
132
133    virtual void EmitFunctionEntryCode(Function &Fn, MachineFunction &MF);
134
135    virtual bool CanBeFoldedBy(SDNode *N, SDNode *U, SDNode *Root) const;
136
137// Include the pieces autogenerated from the target description.
138#include "X86GenDAGISel.inc"
139
140  private:
141    SDNode *Select(SDOperand N);
142
143    bool MatchAddress(SDOperand N, X86ISelAddressMode &AM,
144                      bool isRoot = true, unsigned Depth = 0);
145    bool MatchAddressBase(SDOperand N, X86ISelAddressMode &AM,
146                          bool isRoot, unsigned Depth);
147    bool SelectAddr(SDOperand Op, SDOperand N, SDOperand &Base,
148                    SDOperand &Scale, SDOperand &Index, SDOperand &Disp);
149    bool SelectLEAAddr(SDOperand Op, SDOperand N, SDOperand &Base,
150                       SDOperand &Scale, SDOperand &Index, SDOperand &Disp);
151    bool SelectScalarSSELoad(SDOperand Op, SDOperand Pred,
152                             SDOperand N, SDOperand &Base, SDOperand &Scale,
153                             SDOperand &Index, SDOperand &Disp,
154                             SDOperand &InChain, SDOperand &OutChain);
155    bool TryFoldLoad(SDOperand P, SDOperand N,
156                     SDOperand &Base, SDOperand &Scale,
157                     SDOperand &Index, SDOperand &Disp);
158    void InstructionSelectPreprocess(SelectionDAG &DAG);
159
160    /// SelectInlineAsmMemoryOperand - Implement addressing mode selection for
161    /// inline asm expressions.
162    virtual bool SelectInlineAsmMemoryOperand(const SDOperand &Op,
163                                              char ConstraintCode,
164                                              std::vector<SDOperand> &OutOps,
165                                              SelectionDAG &DAG);
166
167    void EmitSpecialCodeForMain(MachineBasicBlock *BB, MachineFrameInfo *MFI);
168
169    inline void getAddressOperands(X86ISelAddressMode &AM, SDOperand &Base,
170                                   SDOperand &Scale, SDOperand &Index,
171                                   SDOperand &Disp) {
172      Base  = (AM.BaseType == X86ISelAddressMode::FrameIndexBase) ?
173        CurDAG->getTargetFrameIndex(AM.Base.FrameIndex, TLI.getPointerTy()) :
174        AM.Base.Reg;
175      Scale = getI8Imm(AM.Scale);
176      Index = AM.IndexReg;
177      // These are 32-bit even in 64-bit mode since RIP relative offset
178      // is 32-bit.
179      if (AM.GV)
180        Disp = CurDAG->getTargetGlobalAddress(AM.GV, MVT::i32, AM.Disp);
181      else if (AM.CP)
182        Disp = CurDAG->getTargetConstantPool(AM.CP, MVT::i32, AM.Align, AM.Disp);
183      else if (AM.ES)
184        Disp = CurDAG->getTargetExternalSymbol(AM.ES, MVT::i32);
185      else if (AM.JT != -1)
186        Disp = CurDAG->getTargetJumpTable(AM.JT, MVT::i32);
187      else
188        Disp = getI32Imm(AM.Disp);
189    }
190
191    /// getI8Imm - Return a target constant with the specified value, of type
192    /// i8.
193    inline SDOperand getI8Imm(unsigned Imm) {
194      return CurDAG->getTargetConstant(Imm, MVT::i8);
195    }
196
197    /// getI16Imm - Return a target constant with the specified value, of type
198    /// i16.
199    inline SDOperand getI16Imm(unsigned Imm) {
200      return CurDAG->getTargetConstant(Imm, MVT::i16);
201    }
202
203    /// getI32Imm - Return a target constant with the specified value, of type
204    /// i32.
205    inline SDOperand getI32Imm(unsigned Imm) {
206      return CurDAG->getTargetConstant(Imm, MVT::i32);
207    }
208
209    /// getGlobalBaseReg - insert code into the entry mbb to materialize the PIC
210    /// base register.  Return the virtual register that holds this value.
211    SDNode *getGlobalBaseReg();
212
213    /// getTruncate - return an SDNode that implements a subreg based truncate
214    /// of the specified operand to the the specified value type.
215    SDNode *getTruncate(SDOperand N0, MVT::ValueType VT);
216
217#ifndef NDEBUG
218    unsigned Indent;
219#endif
220  };
221}
222
223static SDNode *findFlagUse(SDNode *N) {
224  unsigned FlagResNo = N->getNumValues()-1;
225  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
226    SDNode *User = *I;
227    for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
228      SDOperand Op = User->getOperand(i);
229      if (Op.Val == N && Op.ResNo == FlagResNo)
230        return User;
231    }
232  }
233  return NULL;
234}
235
236static void findNonImmUse(SDNode *Use, SDNode* Def, SDNode *ImmedUse,
237                          SDNode *Root, SDNode *Skip, bool &found,
238                          std::set<SDNode *> &Visited) {
239  if (found ||
240      Use->getNodeId() > Def->getNodeId() ||
241      !Visited.insert(Use).second)
242    return;
243
244  for (unsigned i = 0, e = Use->getNumOperands(); !found && i != e; ++i) {
245    SDNode *N = Use->getOperand(i).Val;
246    if (N == Skip)
247      continue;
248    if (N == Def) {
249      if (Use == ImmedUse)
250        continue; // Immediate use is ok.
251      if (Use == Root) {
252        assert(Use->getOpcode() == ISD::STORE ||
253               Use->getOpcode() == X86ISD::CMP);
254        continue;
255      }
256      found = true;
257      break;
258    }
259    findNonImmUse(N, Def, ImmedUse, Root, Skip, found, Visited);
260  }
261}
262
263/// isNonImmUse - Start searching from Root up the DAG to check is Def can
264/// be reached. Return true if that's the case. However, ignore direct uses
265/// by ImmedUse (which would be U in the example illustrated in
266/// CanBeFoldedBy) and by Root (which can happen in the store case).
267/// FIXME: to be really generic, we should allow direct use by any node
268/// that is being folded. But realisticly since we only fold loads which
269/// have one non-chain use, we only need to watch out for load/op/store
270/// and load/op/cmp case where the root (store / cmp) may reach the load via
271/// its chain operand.
272static inline bool isNonImmUse(SDNode *Root, SDNode *Def, SDNode *ImmedUse,
273                               SDNode *Skip = NULL) {
274  std::set<SDNode *> Visited;
275  bool found = false;
276  findNonImmUse(Root, Def, ImmedUse, Root, Skip, found, Visited);
277  return found;
278}
279
280
281bool X86DAGToDAGISel::CanBeFoldedBy(SDNode *N, SDNode *U, SDNode *Root) const {
282  if (FastISel) return false;
283
284  // If U use can somehow reach N through another path then U can't fold N or
285  // it will create a cycle. e.g. In the following diagram, U can reach N
286  // through X. If N is folded into into U, then X is both a predecessor and
287  // a successor of U.
288  //
289  //         [ N ]
290  //         ^  ^
291  //         |  |
292  //        /   \---
293  //      /        [X]
294  //      |         ^
295  //     [U]--------|
296
297  if (isNonImmUse(Root, N, U))
298    return false;
299
300  // If U produces a flag, then it gets (even more) interesting. Since it
301  // would have been "glued" together with its flag use, we need to check if
302  // it might reach N:
303  //
304  //       [ N ]
305  //        ^ ^
306  //        | |
307  //       [U] \--
308  //        ^   [TF]
309  //        |    ^
310  //        |    |
311  //         \  /
312  //          [FU]
313  //
314  // If FU (flag use) indirectly reach N (the load), and U fold N (call it
315  // NU), then TF is a predecessor of FU and a successor of NU. But since
316  // NU and FU are flagged together, this effectively creates a cycle.
317  bool HasFlagUse = false;
318  MVT::ValueType VT = Root->getValueType(Root->getNumValues()-1);
319  while ((VT == MVT::Flag && !Root->use_empty())) {
320    SDNode *FU = findFlagUse(Root);
321    if (FU == NULL)
322      break;
323    else {
324      Root = FU;
325      HasFlagUse = true;
326    }
327    VT = Root->getValueType(Root->getNumValues()-1);
328  }
329
330  if (HasFlagUse)
331    return !isNonImmUse(Root, N, Root, U);
332  return true;
333}
334
335/// MoveBelowTokenFactor - Replace TokenFactor operand with load's chain operand
336/// and move load below the TokenFactor. Replace store's chain operand with
337/// load's chain result.
338static void MoveBelowTokenFactor(SelectionDAG &DAG, SDOperand Load,
339                                 SDOperand Store, SDOperand TF) {
340  std::vector<SDOperand> Ops;
341  for (unsigned i = 0, e = TF.Val->getNumOperands(); i != e; ++i)
342    if (Load.Val == TF.Val->getOperand(i).Val)
343      Ops.push_back(Load.Val->getOperand(0));
344    else
345      Ops.push_back(TF.Val->getOperand(i));
346  DAG.UpdateNodeOperands(TF, &Ops[0], Ops.size());
347  DAG.UpdateNodeOperands(Load, TF, Load.getOperand(1), Load.getOperand(2));
348  DAG.UpdateNodeOperands(Store, Load.getValue(1), Store.getOperand(1),
349                         Store.getOperand(2), Store.getOperand(3));
350}
351
352/// InstructionSelectPreprocess - Preprocess the DAG to allow the instruction
353/// selector to pick more load-modify-store instructions. This is a common
354/// case:
355///
356///     [Load chain]
357///         ^
358///         |
359///       [Load]
360///       ^    ^
361///       |    |
362///      /      \-
363///     /         |
364/// [TokenFactor] [Op]
365///     ^          ^
366///     |          |
367///      \        /
368///       \      /
369///       [Store]
370///
371/// The fact the store's chain operand != load's chain will prevent the
372/// (store (op (load))) instruction from being selected. We can transform it to:
373///
374///     [Load chain]
375///         ^
376///         |
377///    [TokenFactor]
378///         ^
379///         |
380///       [Load]
381///       ^    ^
382///       |    |
383///       |     \-
384///       |       |
385///       |     [Op]
386///       |       ^
387///       |       |
388///       \      /
389///        \    /
390///       [Store]
391void X86DAGToDAGISel::InstructionSelectPreprocess(SelectionDAG &DAG) {
392  for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
393         E = DAG.allnodes_end(); I != E; ++I) {
394    if (!ISD::isNON_TRUNCStore(I))
395      continue;
396    SDOperand Chain = I->getOperand(0);
397    if (Chain.Val->getOpcode() != ISD::TokenFactor)
398      continue;
399
400    SDOperand N1 = I->getOperand(1);
401    SDOperand N2 = I->getOperand(2);
402    if (MVT::isFloatingPoint(N1.getValueType()) ||
403        MVT::isVector(N1.getValueType()) ||
404        !N1.hasOneUse())
405      continue;
406
407    bool RModW = false;
408    SDOperand Load;
409    unsigned Opcode = N1.Val->getOpcode();
410    switch (Opcode) {
411      case ISD::ADD:
412      case ISD::MUL:
413      case ISD::AND:
414      case ISD::OR:
415      case ISD::XOR:
416      case ISD::ADDC:
417      case ISD::ADDE: {
418        SDOperand N10 = N1.getOperand(0);
419        SDOperand N11 = N1.getOperand(1);
420        if (ISD::isNON_EXTLoad(N10.Val))
421          RModW = true;
422        else if (ISD::isNON_EXTLoad(N11.Val)) {
423          RModW = true;
424          std::swap(N10, N11);
425        }
426        RModW = RModW && N10.Val->isOperand(Chain.Val) && N10.hasOneUse() &&
427          (N10.getOperand(1) == N2) &&
428          (N10.Val->getValueType(0) == N1.getValueType());
429        if (RModW)
430          Load = N10;
431        break;
432      }
433      case ISD::SUB:
434      case ISD::SHL:
435      case ISD::SRA:
436      case ISD::SRL:
437      case ISD::ROTL:
438      case ISD::ROTR:
439      case ISD::SUBC:
440      case ISD::SUBE:
441      case X86ISD::SHLD:
442      case X86ISD::SHRD: {
443        SDOperand N10 = N1.getOperand(0);
444        if (ISD::isNON_EXTLoad(N10.Val))
445          RModW = N10.Val->isOperand(Chain.Val) && N10.hasOneUse() &&
446            (N10.getOperand(1) == N2) &&
447            (N10.Val->getValueType(0) == N1.getValueType());
448        if (RModW)
449          Load = N10;
450        break;
451      }
452    }
453
454    if (RModW) {
455      MoveBelowTokenFactor(DAG, Load, SDOperand(I, 0), Chain);
456      ++NumLoadMoved;
457    }
458  }
459}
460
461/// InstructionSelectBasicBlock - This callback is invoked by SelectionDAGISel
462/// when it has created a SelectionDAG for us to codegen.
463void X86DAGToDAGISel::InstructionSelectBasicBlock(SelectionDAG &DAG) {
464  DEBUG(BB->dump());
465  MachineFunction::iterator FirstMBB = BB;
466
467  if (!FastISel)
468    InstructionSelectPreprocess(DAG);
469
470  // Codegen the basic block.
471#ifndef NDEBUG
472  DOUT << "===== Instruction selection begins:\n";
473  Indent = 0;
474#endif
475  DAG.setRoot(SelectRoot(DAG.getRoot()));
476#ifndef NDEBUG
477  DOUT << "===== Instruction selection ends:\n";
478#endif
479
480  DAG.RemoveDeadNodes();
481
482  // Emit machine code to BB.
483  ScheduleAndEmitDAG(DAG);
484
485  // If we are emitting FP stack code, scan the basic block to determine if this
486  // block defines any FP values.  If so, put an FP_REG_KILL instruction before
487  // the terminator of the block.
488
489  // Note that FP stack instructions are used in all modes for long double,
490  // so we always need to do this check.
491  // Also note that it's possible for an FP stack register to be live across
492  // an instruction that produces multiple basic blocks (SSE CMOV) so we
493  // must check all the generated basic blocks.
494
495  // Scan all of the machine instructions in these MBBs, checking for FP
496  // stores.  (RFP32 and RFP64 will not exist in SSE mode, but RFP80 might.)
497  MachineFunction::iterator MBBI = FirstMBB;
498  do {
499    bool ContainsFPCode = false;
500    for (MachineBasicBlock::iterator I = MBBI->begin(), E = MBBI->end();
501         !ContainsFPCode && I != E; ++I) {
502      if (I->getNumOperands() != 0 && I->getOperand(0).isRegister()) {
503        const TargetRegisterClass *clas;
504        for (unsigned op = 0, e = I->getNumOperands(); op != e; ++op) {
505          if (I->getOperand(op).isRegister() && I->getOperand(op).isDef() &&
506              MRegisterInfo::isVirtualRegister(I->getOperand(op).getReg()) &&
507              ((clas = RegMap->getRegClass(I->getOperand(0).getReg())) ==
508                 X86::RFP32RegisterClass ||
509               clas == X86::RFP64RegisterClass ||
510               clas == X86::RFP80RegisterClass)) {
511            ContainsFPCode = true;
512            break;
513          }
514        }
515      }
516    }
517    // Check PHI nodes in successor blocks.  These PHI's will be lowered to have
518    // a copy of the input value in this block.  In SSE mode, we only care about
519    // 80-bit values.
520    if (!ContainsFPCode) {
521      // Final check, check LLVM BB's that are successors to the LLVM BB
522      // corresponding to BB for FP PHI nodes.
523      const BasicBlock *LLVMBB = BB->getBasicBlock();
524      const PHINode *PN;
525      for (succ_const_iterator SI = succ_begin(LLVMBB), E = succ_end(LLVMBB);
526           !ContainsFPCode && SI != E; ++SI) {
527        for (BasicBlock::const_iterator II = SI->begin();
528             (PN = dyn_cast<PHINode>(II)); ++II) {
529          if (PN->getType()==Type::X86_FP80Ty ||
530              (!Subtarget->hasSSE1() && PN->getType()->isFloatingPoint()) ||
531              (!Subtarget->hasSSE2() && PN->getType()==Type::DoubleTy)) {
532            ContainsFPCode = true;
533            break;
534          }
535        }
536      }
537    }
538    // Finally, if we found any FP code, emit the FP_REG_KILL instruction.
539    if (ContainsFPCode) {
540      BuildMI(*MBBI, MBBI->getFirstTerminator(),
541              TM.getInstrInfo()->get(X86::FP_REG_KILL));
542      ++NumFPKill;
543    }
544  } while (&*(MBBI++) != BB);
545}
546
547/// EmitSpecialCodeForMain - Emit any code that needs to be executed only in
548/// the main function.
549void X86DAGToDAGISel::EmitSpecialCodeForMain(MachineBasicBlock *BB,
550                                             MachineFrameInfo *MFI) {
551  const TargetInstrInfo *TII = TM.getInstrInfo();
552  if (Subtarget->isTargetCygMing())
553    BuildMI(BB, TII->get(X86::CALLpcrel32)).addExternalSymbol("__main");
554}
555
556void X86DAGToDAGISel::EmitFunctionEntryCode(Function &Fn, MachineFunction &MF) {
557  // If this is main, emit special code for main.
558  MachineBasicBlock *BB = MF.begin();
559  if (Fn.hasExternalLinkage() && Fn.getName() == "main")
560    EmitSpecialCodeForMain(BB, MF.getFrameInfo());
561}
562
563/// MatchAddress - Add the specified node to the specified addressing mode,
564/// returning true if it cannot be done.  This just pattern matches for the
565/// addressing mode
566bool X86DAGToDAGISel::MatchAddress(SDOperand N, X86ISelAddressMode &AM,
567                                   bool isRoot, unsigned Depth) {
568  // Limit recursion.
569  if (Depth > 5)
570    return MatchAddressBase(N, AM, isRoot, Depth);
571
572  // RIP relative addressing: %rip + 32-bit displacement!
573  if (AM.isRIPRel) {
574    if (!AM.ES && AM.JT != -1 && N.getOpcode() == ISD::Constant) {
575      int64_t Val = cast<ConstantSDNode>(N)->getSignExtended();
576      if (isInt32(AM.Disp + Val)) {
577        AM.Disp += Val;
578        return false;
579      }
580    }
581    return true;
582  }
583
584  int id = N.Val->getNodeId();
585  bool Available = isSelected(id);
586
587  switch (N.getOpcode()) {
588  default: break;
589  case ISD::Constant: {
590    int64_t Val = cast<ConstantSDNode>(N)->getSignExtended();
591    if (isInt32(AM.Disp + Val)) {
592      AM.Disp += Val;
593      return false;
594    }
595    break;
596  }
597
598  case X86ISD::Wrapper: {
599    bool is64Bit = Subtarget->is64Bit();
600    // Under X86-64 non-small code model, GV (and friends) are 64-bits.
601    if (is64Bit && TM.getCodeModel() != CodeModel::Small)
602      break;
603    if (AM.GV != 0 || AM.CP != 0 || AM.ES != 0 || AM.JT != -1)
604      break;
605    // If value is available in a register both base and index components have
606    // been picked, we can't fit the result available in the register in the
607    // addressing mode. Duplicate GlobalAddress or ConstantPool as displacement.
608    if (!Available || (AM.Base.Reg.Val && AM.IndexReg.Val)) {
609      bool isStatic = TM.getRelocationModel() == Reloc::Static;
610      SDOperand N0 = N.getOperand(0);
611      // Mac OS X X86-64 lower 4G address is not available.
612      bool isAbs32 = !is64Bit ||
613        (isStatic && Subtarget->hasLow4GUserSpaceAddress());
614      if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(N0)) {
615        GlobalValue *GV = G->getGlobal();
616        if (isAbs32 || isRoot) {
617          AM.GV = GV;
618          AM.Disp += G->getOffset();
619          AM.isRIPRel = !isAbs32;
620          return false;
621        }
622      } else if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(N0)) {
623        if (isAbs32 || isRoot) {
624          AM.CP = CP->getConstVal();
625          AM.Align = CP->getAlignment();
626          AM.Disp += CP->getOffset();
627          AM.isRIPRel = !isAbs32;
628          return false;
629        }
630      } else if (ExternalSymbolSDNode *S =dyn_cast<ExternalSymbolSDNode>(N0)) {
631        if (isAbs32 || isRoot) {
632          AM.ES = S->getSymbol();
633          AM.isRIPRel = !isAbs32;
634          return false;
635        }
636      } else if (JumpTableSDNode *J = dyn_cast<JumpTableSDNode>(N0)) {
637        if (isAbs32 || isRoot) {
638          AM.JT = J->getIndex();
639          AM.isRIPRel = !isAbs32;
640          return false;
641        }
642      }
643    }
644    break;
645  }
646
647  case ISD::FrameIndex:
648    if (AM.BaseType == X86ISelAddressMode::RegBase && AM.Base.Reg.Val == 0) {
649      AM.BaseType = X86ISelAddressMode::FrameIndexBase;
650      AM.Base.FrameIndex = cast<FrameIndexSDNode>(N)->getIndex();
651      return false;
652    }
653    break;
654
655  case ISD::SHL:
656    if (!Available && AM.IndexReg.Val == 0 && AM.Scale == 1)
657      if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N.Val->getOperand(1))) {
658        unsigned Val = CN->getValue();
659        if (Val == 1 || Val == 2 || Val == 3) {
660          AM.Scale = 1 << Val;
661          SDOperand ShVal = N.Val->getOperand(0);
662
663          // Okay, we know that we have a scale by now.  However, if the scaled
664          // value is an add of something and a constant, we can fold the
665          // constant into the disp field here.
666          if (ShVal.Val->getOpcode() == ISD::ADD && ShVal.hasOneUse() &&
667              isa<ConstantSDNode>(ShVal.Val->getOperand(1))) {
668            AM.IndexReg = ShVal.Val->getOperand(0);
669            ConstantSDNode *AddVal =
670              cast<ConstantSDNode>(ShVal.Val->getOperand(1));
671            uint64_t Disp = AM.Disp + (AddVal->getValue() << Val);
672            if (isInt32(Disp))
673              AM.Disp = Disp;
674            else
675              AM.IndexReg = ShVal;
676          } else {
677            AM.IndexReg = ShVal;
678          }
679          return false;
680        }
681      }
682    break;
683
684  case ISD::MUL:
685    // X*[3,5,9] -> X+X*[2,4,8]
686    if (!Available &&
687        AM.BaseType == X86ISelAddressMode::RegBase &&
688        AM.Base.Reg.Val == 0 &&
689        AM.IndexReg.Val == 0) {
690      if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N.Val->getOperand(1)))
691        if (CN->getValue() == 3 || CN->getValue() == 5 || CN->getValue() == 9) {
692          AM.Scale = unsigned(CN->getValue())-1;
693
694          SDOperand MulVal = N.Val->getOperand(0);
695          SDOperand Reg;
696
697          // Okay, we know that we have a scale by now.  However, if the scaled
698          // value is an add of something and a constant, we can fold the
699          // constant into the disp field here.
700          if (MulVal.Val->getOpcode() == ISD::ADD && MulVal.hasOneUse() &&
701              isa<ConstantSDNode>(MulVal.Val->getOperand(1))) {
702            Reg = MulVal.Val->getOperand(0);
703            ConstantSDNode *AddVal =
704              cast<ConstantSDNode>(MulVal.Val->getOperand(1));
705            uint64_t Disp = AM.Disp + AddVal->getValue() * CN->getValue();
706            if (isInt32(Disp))
707              AM.Disp = Disp;
708            else
709              Reg = N.Val->getOperand(0);
710          } else {
711            Reg = N.Val->getOperand(0);
712          }
713
714          AM.IndexReg = AM.Base.Reg = Reg;
715          return false;
716        }
717    }
718    break;
719
720  case ISD::ADD:
721    if (!Available) {
722      X86ISelAddressMode Backup = AM;
723      if (!MatchAddress(N.Val->getOperand(0), AM, false, Depth+1) &&
724          !MatchAddress(N.Val->getOperand(1), AM, false, Depth+1))
725        return false;
726      AM = Backup;
727      if (!MatchAddress(N.Val->getOperand(1), AM, false, Depth+1) &&
728          !MatchAddress(N.Val->getOperand(0), AM, false, Depth+1))
729        return false;
730      AM = Backup;
731    }
732    break;
733
734  case ISD::OR:
735    // Handle "X | C" as "X + C" iff X is known to have C bits clear.
736    if (!Available) {
737      if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
738        X86ISelAddressMode Backup = AM;
739        // Start with the LHS as an addr mode.
740        if (!MatchAddress(N.getOperand(0), AM, false) &&
741            // Address could not have picked a GV address for the displacement.
742            AM.GV == NULL &&
743            // On x86-64, the resultant disp must fit in 32-bits.
744            isInt32(AM.Disp + CN->getSignExtended()) &&
745            // Check to see if the LHS & C is zero.
746            CurDAG->MaskedValueIsZero(N.getOperand(0), CN->getValue())) {
747          AM.Disp += CN->getValue();
748          return false;
749        }
750        AM = Backup;
751      }
752    }
753    break;
754  }
755
756  return MatchAddressBase(N, AM, isRoot, Depth);
757}
758
759/// MatchAddressBase - Helper for MatchAddress. Add the specified node to the
760/// specified addressing mode without any further recursion.
761bool X86DAGToDAGISel::MatchAddressBase(SDOperand N, X86ISelAddressMode &AM,
762                                       bool isRoot, unsigned Depth) {
763  // Is the base register already occupied?
764  if (AM.BaseType != X86ISelAddressMode::RegBase || AM.Base.Reg.Val) {
765    // If so, check to see if the scale index register is set.
766    if (AM.IndexReg.Val == 0) {
767      AM.IndexReg = N;
768      AM.Scale = 1;
769      return false;
770    }
771
772    // Otherwise, we cannot select it.
773    return true;
774  }
775
776  // Default, generate it as a register.
777  AM.BaseType = X86ISelAddressMode::RegBase;
778  AM.Base.Reg = N;
779  return false;
780}
781
782/// SelectAddr - returns true if it is able pattern match an addressing mode.
783/// It returns the operands which make up the maximal addressing mode it can
784/// match by reference.
785bool X86DAGToDAGISel::SelectAddr(SDOperand Op, SDOperand N, SDOperand &Base,
786                                 SDOperand &Scale, SDOperand &Index,
787                                 SDOperand &Disp) {
788  X86ISelAddressMode AM;
789  if (MatchAddress(N, AM))
790    return false;
791
792  MVT::ValueType VT = N.getValueType();
793  if (AM.BaseType == X86ISelAddressMode::RegBase) {
794    if (!AM.Base.Reg.Val)
795      AM.Base.Reg = CurDAG->getRegister(0, VT);
796  }
797
798  if (!AM.IndexReg.Val)
799    AM.IndexReg = CurDAG->getRegister(0, VT);
800
801  getAddressOperands(AM, Base, Scale, Index, Disp);
802  return true;
803}
804
805/// isZeroNode - Returns true if Elt is a constant zero or a floating point
806/// constant +0.0.
807static inline bool isZeroNode(SDOperand Elt) {
808  return ((isa<ConstantSDNode>(Elt) &&
809  cast<ConstantSDNode>(Elt)->getValue() == 0) ||
810  (isa<ConstantFPSDNode>(Elt) &&
811  cast<ConstantFPSDNode>(Elt)->getValueAPF().isPosZero()));
812}
813
814
815/// SelectScalarSSELoad - Match a scalar SSE load.  In particular, we want to
816/// match a load whose top elements are either undef or zeros.  The load flavor
817/// is derived from the type of N, which is either v4f32 or v2f64.
818bool X86DAGToDAGISel::SelectScalarSSELoad(SDOperand Op, SDOperand Pred,
819                                          SDOperand N, SDOperand &Base,
820                                          SDOperand &Scale, SDOperand &Index,
821                                          SDOperand &Disp, SDOperand &InChain,
822                                          SDOperand &OutChain) {
823  if (N.getOpcode() == ISD::SCALAR_TO_VECTOR) {
824    InChain = N.getOperand(0).getValue(1);
825    if (ISD::isNON_EXTLoad(InChain.Val) &&
826        InChain.getValue(0).hasOneUse() &&
827        N.hasOneUse() &&
828        CanBeFoldedBy(N.Val, Pred.Val, Op.Val)) {
829      LoadSDNode *LD = cast<LoadSDNode>(InChain);
830      if (!SelectAddr(Op, LD->getBasePtr(), Base, Scale, Index, Disp))
831        return false;
832      OutChain = LD->getChain();
833      return true;
834    }
835  }
836
837  // Also handle the case where we explicitly require zeros in the top
838  // elements.  This is a vector shuffle from the zero vector.
839  if (N.getOpcode() == ISD::VECTOR_SHUFFLE && N.Val->hasOneUse() &&
840      N.getOperand(0).getOpcode() == ISD::BUILD_VECTOR &&
841      N.getOperand(1).getOpcode() == ISD::SCALAR_TO_VECTOR &&
842      N.getOperand(1).Val->hasOneUse() &&
843      ISD::isNON_EXTLoad(N.getOperand(1).getOperand(0).Val) &&
844      N.getOperand(1).getOperand(0).hasOneUse()) {
845    // Check to see if the BUILD_VECTOR is building a zero vector.
846    SDOperand BV = N.getOperand(0);
847    for (unsigned i = 0, e = BV.getNumOperands(); i != e; ++i)
848      if (!isZeroNode(BV.getOperand(i)) &&
849          BV.getOperand(i).getOpcode() != ISD::UNDEF)
850        return false;  // Not a zero/undef vector.
851    // Check to see if the shuffle mask is 4/L/L/L or 2/L, where L is something
852    // from the LHS.
853    unsigned VecWidth = BV.getNumOperands();
854    SDOperand ShufMask = N.getOperand(2);
855    assert(ShufMask.getOpcode() == ISD::BUILD_VECTOR && "Invalid shuf mask!");
856    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(ShufMask.getOperand(0))) {
857      if (C->getValue() == VecWidth) {
858        for (unsigned i = 1; i != VecWidth; ++i) {
859          if (ShufMask.getOperand(i).getOpcode() == ISD::UNDEF) {
860            // ok.
861          } else {
862            ConstantSDNode *C = cast<ConstantSDNode>(ShufMask.getOperand(i));
863            if (C->getValue() >= VecWidth) return false;
864          }
865        }
866      }
867
868      // Okay, this is a zero extending load.  Fold it.
869      LoadSDNode *LD = cast<LoadSDNode>(N.getOperand(1).getOperand(0));
870      if (!SelectAddr(Op, LD->getBasePtr(), Base, Scale, Index, Disp))
871        return false;
872      OutChain = LD->getChain();
873      InChain = SDOperand(LD, 1);
874      return true;
875    }
876  }
877  return false;
878}
879
880
881/// SelectLEAAddr - it calls SelectAddr and determines if the maximal addressing
882/// mode it matches can be cost effectively emitted as an LEA instruction.
883bool X86DAGToDAGISel::SelectLEAAddr(SDOperand Op, SDOperand N,
884                                    SDOperand &Base, SDOperand &Scale,
885                                    SDOperand &Index, SDOperand &Disp) {
886  X86ISelAddressMode AM;
887  if (MatchAddress(N, AM))
888    return false;
889
890  MVT::ValueType VT = N.getValueType();
891  unsigned Complexity = 0;
892  if (AM.BaseType == X86ISelAddressMode::RegBase)
893    if (AM.Base.Reg.Val)
894      Complexity = 1;
895    else
896      AM.Base.Reg = CurDAG->getRegister(0, VT);
897  else if (AM.BaseType == X86ISelAddressMode::FrameIndexBase)
898    Complexity = 4;
899
900  if (AM.IndexReg.Val)
901    Complexity++;
902  else
903    AM.IndexReg = CurDAG->getRegister(0, VT);
904
905  // Don't match just leal(,%reg,2). It's cheaper to do addl %reg, %reg, or with
906  // a simple shift.
907  if (AM.Scale > 1)
908    Complexity++;
909
910  // FIXME: We are artificially lowering the criteria to turn ADD %reg, $GA
911  // to a LEA. This is determined with some expermentation but is by no means
912  // optimal (especially for code size consideration). LEA is nice because of
913  // its three-address nature. Tweak the cost function again when we can run
914  // convertToThreeAddress() at register allocation time.
915  if (AM.GV || AM.CP || AM.ES || AM.JT != -1) {
916    // For X86-64, we should always use lea to materialize RIP relative
917    // addresses.
918    if (Subtarget->is64Bit())
919      Complexity = 4;
920    else
921      Complexity += 2;
922  }
923
924  if (AM.Disp && (AM.Base.Reg.Val || AM.IndexReg.Val))
925    Complexity++;
926
927  if (Complexity > 2) {
928    getAddressOperands(AM, Base, Scale, Index, Disp);
929    return true;
930  }
931  return false;
932}
933
934bool X86DAGToDAGISel::TryFoldLoad(SDOperand P, SDOperand N,
935                                  SDOperand &Base, SDOperand &Scale,
936                                  SDOperand &Index, SDOperand &Disp) {
937  if (ISD::isNON_EXTLoad(N.Val) &&
938      N.hasOneUse() &&
939      CanBeFoldedBy(N.Val, P.Val, P.Val))
940    return SelectAddr(P, N.getOperand(1), Base, Scale, Index, Disp);
941  return false;
942}
943
944/// getGlobalBaseReg - Output the instructions required to put the
945/// base address to use for accessing globals into a register.
946///
947SDNode *X86DAGToDAGISel::getGlobalBaseReg() {
948  assert(!Subtarget->is64Bit() && "X86-64 PIC uses RIP relative addressing");
949  if (!GlobalBaseReg) {
950    // Insert the set of GlobalBaseReg into the first MBB of the function
951    MachineBasicBlock &FirstMBB = BB->getParent()->front();
952    MachineBasicBlock::iterator MBBI = FirstMBB.begin();
953    SSARegMap *RegMap = BB->getParent()->getSSARegMap();
954    unsigned PC = RegMap->createVirtualRegister(X86::GR32RegisterClass);
955
956    const TargetInstrInfo *TII = TM.getInstrInfo();
957    BuildMI(FirstMBB, MBBI, TII->get(X86::MovePCtoStack));
958    BuildMI(FirstMBB, MBBI, TII->get(X86::POP32r), PC);
959
960    // If we're using vanilla 'GOT' PIC style, we should use relative addressing
961    // not to pc, but to _GLOBAL_ADDRESS_TABLE_ external
962    if (TM.getRelocationModel() == Reloc::PIC_ &&
963        Subtarget->isPICStyleGOT()) {
964      GlobalBaseReg = RegMap->createVirtualRegister(X86::GR32RegisterClass);
965      BuildMI(FirstMBB, MBBI, TII->get(X86::ADD32ri), GlobalBaseReg).
966        addReg(PC).
967        addExternalSymbol("_GLOBAL_OFFSET_TABLE_");
968    } else {
969      GlobalBaseReg = PC;
970    }
971
972  }
973  return CurDAG->getRegister(GlobalBaseReg, TLI.getPointerTy()).Val;
974}
975
976static SDNode *FindCallStartFromCall(SDNode *Node) {
977  if (Node->getOpcode() == ISD::CALLSEQ_START) return Node;
978    assert(Node->getOperand(0).getValueType() == MVT::Other &&
979         "Node doesn't have a token chain argument!");
980  return FindCallStartFromCall(Node->getOperand(0).Val);
981}
982
983SDNode *X86DAGToDAGISel::getTruncate(SDOperand N0, MVT::ValueType VT) {
984    SDOperand SRIdx;
985    switch (VT) {
986    case MVT::i8:
987      SRIdx = CurDAG->getTargetConstant(1, MVT::i32); // SubRegSet 1
988      // Ensure that the source register has an 8-bit subreg on 32-bit targets
989      if (!Subtarget->is64Bit()) {
990        unsigned Opc;
991        MVT::ValueType VT;
992        switch (N0.getValueType()) {
993        default: assert(0 && "Unknown truncate!");
994        case MVT::i16:
995          Opc = X86::MOV16to16_;
996          VT = MVT::i16;
997          break;
998        case MVT::i32:
999          Opc = X86::MOV32to32_;
1000          VT = MVT::i32;
1001          break;
1002        }
1003        N0 = SDOperand(CurDAG->getTargetNode(Opc, VT, MVT::Flag, N0), 0);
1004        return CurDAG->getTargetNode(X86::EXTRACT_SUBREG,
1005                                     VT, N0, SRIdx, N0.getValue(1));
1006      }
1007      break;
1008    case MVT::i16:
1009      SRIdx = CurDAG->getTargetConstant(2, MVT::i32); // SubRegSet 2
1010      break;
1011    case MVT::i32:
1012      SRIdx = CurDAG->getTargetConstant(3, MVT::i32); // SubRegSet 3
1013      break;
1014    default: assert(0 && "Unknown truncate!"); break;
1015    }
1016    return CurDAG->getTargetNode(X86::EXTRACT_SUBREG, VT, N0, SRIdx);
1017}
1018
1019
1020SDNode *X86DAGToDAGISel::Select(SDOperand N) {
1021  SDNode *Node = N.Val;
1022  MVT::ValueType NVT = Node->getValueType(0);
1023  unsigned Opc, MOpc;
1024  unsigned Opcode = Node->getOpcode();
1025
1026#ifndef NDEBUG
1027  DOUT << std::string(Indent, ' ') << "Selecting: ";
1028  DEBUG(Node->dump(CurDAG));
1029  DOUT << "\n";
1030  Indent += 2;
1031#endif
1032
1033  if (Opcode >= ISD::BUILTIN_OP_END && Opcode < X86ISD::FIRST_NUMBER) {
1034#ifndef NDEBUG
1035    DOUT << std::string(Indent-2, ' ') << "== ";
1036    DEBUG(Node->dump(CurDAG));
1037    DOUT << "\n";
1038    Indent -= 2;
1039#endif
1040    return NULL;   // Already selected.
1041  }
1042
1043  switch (Opcode) {
1044    default: break;
1045    case X86ISD::GlobalBaseReg:
1046      return getGlobalBaseReg();
1047
1048    case ISD::ADD: {
1049      // Turn ADD X, c to MOV32ri X+c. This cannot be done with tblgen'd
1050      // code and is matched first so to prevent it from being turned into
1051      // LEA32r X+c.
1052      // In 64-bit mode, use LEA to take advantage of RIP-relative addressing.
1053      MVT::ValueType PtrVT = TLI.getPointerTy();
1054      SDOperand N0 = N.getOperand(0);
1055      SDOperand N1 = N.getOperand(1);
1056      if (N.Val->getValueType(0) == PtrVT &&
1057          N0.getOpcode() == X86ISD::Wrapper &&
1058          N1.getOpcode() == ISD::Constant) {
1059        unsigned Offset = (unsigned)cast<ConstantSDNode>(N1)->getValue();
1060        SDOperand C(0, 0);
1061        // TODO: handle ExternalSymbolSDNode.
1062        if (GlobalAddressSDNode *G =
1063            dyn_cast<GlobalAddressSDNode>(N0.getOperand(0))) {
1064          C = CurDAG->getTargetGlobalAddress(G->getGlobal(), PtrVT,
1065                                             G->getOffset() + Offset);
1066        } else if (ConstantPoolSDNode *CP =
1067                   dyn_cast<ConstantPoolSDNode>(N0.getOperand(0))) {
1068          C = CurDAG->getTargetConstantPool(CP->getConstVal(), PtrVT,
1069                                            CP->getAlignment(),
1070                                            CP->getOffset()+Offset);
1071        }
1072
1073        if (C.Val) {
1074          if (Subtarget->is64Bit()) {
1075            SDOperand Ops[] = { CurDAG->getRegister(0, PtrVT), getI8Imm(1),
1076                                CurDAG->getRegister(0, PtrVT), C };
1077            return CurDAG->SelectNodeTo(N.Val, X86::LEA64r, MVT::i64, Ops, 4);
1078          } else
1079            return CurDAG->SelectNodeTo(N.Val, X86::MOV32ri, PtrVT, C);
1080        }
1081      }
1082
1083      // Other cases are handled by auto-generated code.
1084      break;
1085    }
1086
1087    case ISD::SMUL_LOHI:
1088    case ISD::UMUL_LOHI: {
1089      SDOperand N0 = Node->getOperand(0);
1090      SDOperand N1 = Node->getOperand(1);
1091
1092      // There are several forms of IMUL that just return the low part and
1093      // don't have fixed-register operands. If we don't need the high part,
1094      // use these instead. They can be selected with the generated ISel code.
1095      if (NVT != MVT::i8 &&
1096          N.getValue(1).use_empty()) {
1097        N = CurDAG->getNode(ISD::MUL, NVT, N0, N1);
1098        break;
1099      }
1100
1101      bool isSigned = Opcode == ISD::SMUL_LOHI;
1102      if (!isSigned)
1103        switch (NVT) {
1104        default: assert(0 && "Unsupported VT!");
1105        case MVT::i8:  Opc = X86::MUL8r;  MOpc = X86::MUL8m;  break;
1106        case MVT::i16: Opc = X86::MUL16r; MOpc = X86::MUL16m; break;
1107        case MVT::i32: Opc = X86::MUL32r; MOpc = X86::MUL32m; break;
1108        case MVT::i64: Opc = X86::MUL64r; MOpc = X86::MUL64m; break;
1109        }
1110      else
1111        switch (NVT) {
1112        default: assert(0 && "Unsupported VT!");
1113        case MVT::i8:  Opc = X86::IMUL8r;  MOpc = X86::IMUL8m;  break;
1114        case MVT::i16: Opc = X86::IMUL16r; MOpc = X86::IMUL16m; break;
1115        case MVT::i32: Opc = X86::IMUL32r; MOpc = X86::IMUL32m; break;
1116        case MVT::i64: Opc = X86::IMUL64r; MOpc = X86::IMUL64m; break;
1117        }
1118
1119      unsigned LoReg, HiReg;
1120      switch (NVT) {
1121      default: assert(0 && "Unsupported VT!");
1122      case MVT::i8:  LoReg = X86::AL;  HiReg = X86::AH;  break;
1123      case MVT::i16: LoReg = X86::AX;  HiReg = X86::DX;  break;
1124      case MVT::i32: LoReg = X86::EAX; HiReg = X86::EDX; break;
1125      case MVT::i64: LoReg = X86::RAX; HiReg = X86::RDX; break;
1126      }
1127
1128      SDOperand Tmp0, Tmp1, Tmp2, Tmp3;
1129      bool foldedLoad = TryFoldLoad(N, N1, Tmp0, Tmp1, Tmp2, Tmp3);
1130      // multiplty is commmutative
1131      if (!foldedLoad) {
1132        foldedLoad = TryFoldLoad(N, N0, Tmp0, Tmp1, Tmp2, Tmp3);
1133        if (foldedLoad)
1134          std::swap(N0, N1);
1135      }
1136
1137      AddToISelQueue(N0);
1138      SDOperand InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), LoReg,
1139                                              N0, SDOperand()).getValue(1);
1140
1141      if (foldedLoad) {
1142        AddToISelQueue(N1.getOperand(0));
1143        AddToISelQueue(Tmp0);
1144        AddToISelQueue(Tmp1);
1145        AddToISelQueue(Tmp2);
1146        AddToISelQueue(Tmp3);
1147        SDOperand Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, N1.getOperand(0), InFlag };
1148        SDNode *CNode =
1149          CurDAG->getTargetNode(MOpc, MVT::Other, MVT::Flag, Ops, 6);
1150        InFlag = SDOperand(CNode, 1);
1151        // Update the chain.
1152        ReplaceUses(N1.getValue(1), SDOperand(CNode, 0));
1153      } else {
1154        AddToISelQueue(N1);
1155        InFlag =
1156          SDOperand(CurDAG->getTargetNode(Opc, MVT::Flag, N1, InFlag), 0);
1157      }
1158
1159      // Copy the low half of the result, if it is needed.
1160      if (!N.getValue(0).use_empty()) {
1161        SDOperand Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(),
1162                                                  LoReg, NVT, InFlag);
1163        InFlag = Result.getValue(2);
1164        ReplaceUses(N.getValue(0), Result);
1165#ifndef NDEBUG
1166        DOUT << std::string(Indent-2, ' ') << "=> ";
1167        DEBUG(Result.Val->dump(CurDAG));
1168        DOUT << "\n";
1169#endif
1170      }
1171      // Copy the high half of the result, if it is needed.
1172      if (!N.getValue(1).use_empty()) {
1173        SDOperand Result;
1174        if (HiReg == X86::AH && Subtarget->is64Bit()) {
1175          // Prevent use of AH in a REX instruction by referencing AX instead.
1176          // Shift it down 8 bits.
1177          Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(),
1178                                          X86::AX, MVT::i16, InFlag);
1179          InFlag = Result.getValue(2);
1180          Result = SDOperand(CurDAG->getTargetNode(X86::SHR16ri, MVT::i16, Result,
1181                                       CurDAG->getTargetConstant(8, MVT::i8)), 0);
1182          // Then truncate it down to i8.
1183          SDOperand SRIdx = CurDAG->getTargetConstant(1, MVT::i32); // SubRegSet 1
1184          Result = SDOperand(CurDAG->getTargetNode(X86::EXTRACT_SUBREG,
1185                                                   MVT::i8, Result, SRIdx), 0);
1186        } else {
1187          Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(),
1188                                          HiReg, NVT, InFlag);
1189          InFlag = Result.getValue(2);
1190        }
1191        ReplaceUses(N.getValue(1), Result);
1192#ifndef NDEBUG
1193        DOUT << std::string(Indent-2, ' ') << "=> ";
1194        DEBUG(Result.Val->dump(CurDAG));
1195        DOUT << "\n";
1196#endif
1197      }
1198
1199#ifndef NDEBUG
1200      Indent -= 2;
1201#endif
1202
1203      return NULL;
1204    }
1205
1206    case ISD::SDIVREM:
1207    case ISD::UDIVREM: {
1208      SDOperand N0 = Node->getOperand(0);
1209      SDOperand N1 = Node->getOperand(1);
1210
1211      bool isSigned = Opcode == ISD::SDIVREM;
1212      if (!isSigned)
1213        switch (NVT) {
1214        default: assert(0 && "Unsupported VT!");
1215        case MVT::i8:  Opc = X86::DIV8r;  MOpc = X86::DIV8m;  break;
1216        case MVT::i16: Opc = X86::DIV16r; MOpc = X86::DIV16m; break;
1217        case MVT::i32: Opc = X86::DIV32r; MOpc = X86::DIV32m; break;
1218        case MVT::i64: Opc = X86::DIV64r; MOpc = X86::DIV64m; break;
1219        }
1220      else
1221        switch (NVT) {
1222        default: assert(0 && "Unsupported VT!");
1223        case MVT::i8:  Opc = X86::IDIV8r;  MOpc = X86::IDIV8m;  break;
1224        case MVT::i16: Opc = X86::IDIV16r; MOpc = X86::IDIV16m; break;
1225        case MVT::i32: Opc = X86::IDIV32r; MOpc = X86::IDIV32m; break;
1226        case MVT::i64: Opc = X86::IDIV64r; MOpc = X86::IDIV64m; break;
1227        }
1228
1229      unsigned LoReg, HiReg;
1230      unsigned ClrOpcode, SExtOpcode;
1231      switch (NVT) {
1232      default: assert(0 && "Unsupported VT!");
1233      case MVT::i8:
1234        LoReg = X86::AL;  HiReg = X86::AH;
1235        ClrOpcode  = 0;
1236        SExtOpcode = X86::CBW;
1237        break;
1238      case MVT::i16:
1239        LoReg = X86::AX;  HiReg = X86::DX;
1240        ClrOpcode  = X86::MOV16r0;
1241        SExtOpcode = X86::CWD;
1242        break;
1243      case MVT::i32:
1244        LoReg = X86::EAX; HiReg = X86::EDX;
1245        ClrOpcode  = X86::MOV32r0;
1246        SExtOpcode = X86::CDQ;
1247        break;
1248      case MVT::i64:
1249        LoReg = X86::RAX; HiReg = X86::RDX;
1250        ClrOpcode  = X86::MOV64r0;
1251        SExtOpcode = X86::CQO;
1252        break;
1253      }
1254
1255      SDOperand Tmp0, Tmp1, Tmp2, Tmp3;
1256      bool foldedLoad = TryFoldLoad(N, N1, Tmp0, Tmp1, Tmp2, Tmp3);
1257
1258      SDOperand InFlag;
1259      if (NVT == MVT::i8 && !isSigned) {
1260        // Special case for div8, just use a move with zero extension to AX to
1261        // clear the upper 8 bits (AH).
1262        SDOperand Tmp0, Tmp1, Tmp2, Tmp3, Move, Chain;
1263        if (TryFoldLoad(N, N0, Tmp0, Tmp1, Tmp2, Tmp3)) {
1264          SDOperand Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, N0.getOperand(0) };
1265          AddToISelQueue(N0.getOperand(0));
1266          AddToISelQueue(Tmp0);
1267          AddToISelQueue(Tmp1);
1268          AddToISelQueue(Tmp2);
1269          AddToISelQueue(Tmp3);
1270          Move =
1271            SDOperand(CurDAG->getTargetNode(X86::MOVZX16rm8, MVT::i16, MVT::Other,
1272                                            Ops, 5), 0);
1273          Chain = Move.getValue(1);
1274          ReplaceUses(N0.getValue(1), Chain);
1275        } else {
1276          AddToISelQueue(N0);
1277          Move =
1278            SDOperand(CurDAG->getTargetNode(X86::MOVZX16rr8, MVT::i16, N0), 0);
1279          Chain = CurDAG->getEntryNode();
1280        }
1281        Chain  = CurDAG->getCopyToReg(Chain, X86::AX, Move, SDOperand());
1282        InFlag = Chain.getValue(1);
1283      } else {
1284        AddToISelQueue(N0);
1285        InFlag =
1286          CurDAG->getCopyToReg(CurDAG->getEntryNode(),
1287                               LoReg, N0, SDOperand()).getValue(1);
1288        if (isSigned) {
1289          // Sign extend the low part into the high part.
1290          InFlag =
1291            SDOperand(CurDAG->getTargetNode(SExtOpcode, MVT::Flag, InFlag), 0);
1292        } else {
1293          // Zero out the high part, effectively zero extending the input.
1294          SDOperand ClrNode = SDOperand(CurDAG->getTargetNode(ClrOpcode, NVT), 0);
1295          InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), HiReg,
1296                                        ClrNode, InFlag).getValue(1);
1297        }
1298      }
1299
1300      if (foldedLoad) {
1301        AddToISelQueue(N1.getOperand(0));
1302        AddToISelQueue(Tmp0);
1303        AddToISelQueue(Tmp1);
1304        AddToISelQueue(Tmp2);
1305        AddToISelQueue(Tmp3);
1306        SDOperand Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, N1.getOperand(0), InFlag };
1307        SDNode *CNode =
1308          CurDAG->getTargetNode(MOpc, MVT::Other, MVT::Flag, Ops, 6);
1309        InFlag = SDOperand(CNode, 1);
1310        // Update the chain.
1311        ReplaceUses(N1.getValue(1), SDOperand(CNode, 0));
1312      } else {
1313        AddToISelQueue(N1);
1314        InFlag =
1315          SDOperand(CurDAG->getTargetNode(Opc, MVT::Flag, N1, InFlag), 0);
1316      }
1317
1318      // Copy the division (low) result, if it is needed.
1319      if (!N.getValue(0).use_empty()) {
1320        SDOperand Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(),
1321                                                  LoReg, NVT, InFlag);
1322        InFlag = Result.getValue(2);
1323        ReplaceUses(N.getValue(0), Result);
1324#ifndef NDEBUG
1325        DOUT << std::string(Indent-2, ' ') << "=> ";
1326        DEBUG(Result.Val->dump(CurDAG));
1327        DOUT << "\n";
1328#endif
1329      }
1330      // Copy the remainder (high) result, if it is needed.
1331      if (!N.getValue(1).use_empty()) {
1332        SDOperand Result;
1333        if (HiReg == X86::AH && Subtarget->is64Bit()) {
1334          // Prevent use of AH in a REX instruction by referencing AX instead.
1335          // Shift it down 8 bits.
1336          Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(),
1337                                          X86::AX, MVT::i16, InFlag);
1338          InFlag = Result.getValue(2);
1339          Result = SDOperand(CurDAG->getTargetNode(X86::SHR16ri, MVT::i16, Result,
1340                                       CurDAG->getTargetConstant(8, MVT::i8)), 0);
1341          // Then truncate it down to i8.
1342          SDOperand SRIdx = CurDAG->getTargetConstant(1, MVT::i32); // SubRegSet 1
1343          Result = SDOperand(CurDAG->getTargetNode(X86::EXTRACT_SUBREG,
1344                                                   MVT::i8, Result, SRIdx), 0);
1345        } else {
1346          Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(),
1347                                          HiReg, NVT, InFlag);
1348          InFlag = Result.getValue(2);
1349        }
1350        ReplaceUses(N.getValue(1), Result);
1351#ifndef NDEBUG
1352        DOUT << std::string(Indent-2, ' ') << "=> ";
1353        DEBUG(Result.Val->dump(CurDAG));
1354        DOUT << "\n";
1355#endif
1356      }
1357
1358#ifndef NDEBUG
1359      Indent -= 2;
1360#endif
1361
1362      return NULL;
1363    }
1364
1365    case ISD::ANY_EXTEND: {
1366      SDOperand N0 = Node->getOperand(0);
1367      AddToISelQueue(N0);
1368      if (NVT == MVT::i64 || NVT == MVT::i32 || NVT == MVT::i16) {
1369        SDOperand SRIdx;
1370        switch(N0.getValueType()) {
1371        case MVT::i32:
1372          SRIdx = CurDAG->getTargetConstant(3, MVT::i32); // SubRegSet 3
1373          break;
1374        case MVT::i16:
1375          SRIdx = CurDAG->getTargetConstant(2, MVT::i32); // SubRegSet 2
1376          break;
1377        case MVT::i8:
1378          if (Subtarget->is64Bit())
1379            SRIdx = CurDAG->getTargetConstant(1, MVT::i32); // SubRegSet 1
1380          break;
1381        default: assert(0 && "Unknown any_extend!");
1382        }
1383        if (SRIdx.Val) {
1384          SDNode *ResNode = CurDAG->getTargetNode(X86::INSERT_SUBREG,
1385                                                  NVT, N0, SRIdx);
1386
1387#ifndef NDEBUG
1388          DOUT << std::string(Indent-2, ' ') << "=> ";
1389          DEBUG(ResNode->dump(CurDAG));
1390          DOUT << "\n";
1391          Indent -= 2;
1392#endif
1393          return ResNode;
1394        } // Otherwise let generated ISel handle it.
1395      }
1396      break;
1397    }
1398
1399    case ISD::SIGN_EXTEND_INREG: {
1400      SDOperand N0 = Node->getOperand(0);
1401      AddToISelQueue(N0);
1402
1403      MVT::ValueType SVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
1404      SDOperand TruncOp = SDOperand(getTruncate(N0, SVT), 0);
1405      unsigned Opc;
1406      switch (NVT) {
1407      case MVT::i16:
1408        if (SVT == MVT::i8) Opc = X86::MOVSX16rr8;
1409        else assert(0 && "Unknown sign_extend_inreg!");
1410        break;
1411      case MVT::i32:
1412        switch (SVT) {
1413        case MVT::i8:  Opc = X86::MOVSX32rr8;  break;
1414        case MVT::i16: Opc = X86::MOVSX32rr16; break;
1415        default: assert(0 && "Unknown sign_extend_inreg!");
1416        }
1417        break;
1418      case MVT::i64:
1419        switch (SVT) {
1420        case MVT::i8:  Opc = X86::MOVSX64rr8;  break;
1421        case MVT::i16: Opc = X86::MOVSX64rr16; break;
1422        case MVT::i32: Opc = X86::MOVSX64rr32; break;
1423        default: assert(0 && "Unknown sign_extend_inreg!");
1424        }
1425        break;
1426      default: assert(0 && "Unknown sign_extend_inreg!");
1427      }
1428
1429      SDNode *ResNode = CurDAG->getTargetNode(Opc, NVT, TruncOp);
1430
1431#ifndef NDEBUG
1432      DOUT << std::string(Indent-2, ' ') << "=> ";
1433      DEBUG(TruncOp.Val->dump(CurDAG));
1434      DOUT << "\n";
1435      DOUT << std::string(Indent-2, ' ') << "=> ";
1436      DEBUG(ResNode->dump(CurDAG));
1437      DOUT << "\n";
1438      Indent -= 2;
1439#endif
1440      return ResNode;
1441      break;
1442    }
1443
1444    case ISD::TRUNCATE: {
1445      SDOperand Input = Node->getOperand(0);
1446      AddToISelQueue(Node->getOperand(0));
1447      SDNode *ResNode = getTruncate(Input, NVT);
1448
1449#ifndef NDEBUG
1450        DOUT << std::string(Indent-2, ' ') << "=> ";
1451        DEBUG(ResNode->dump(CurDAG));
1452        DOUT << "\n";
1453        Indent -= 2;
1454#endif
1455      return ResNode;
1456      break;
1457    }
1458  }
1459
1460  SDNode *ResNode = SelectCode(N);
1461
1462#ifndef NDEBUG
1463  DOUT << std::string(Indent-2, ' ') << "=> ";
1464  if (ResNode == NULL || ResNode == N.Val)
1465    DEBUG(N.Val->dump(CurDAG));
1466  else
1467    DEBUG(ResNode->dump(CurDAG));
1468  DOUT << "\n";
1469  Indent -= 2;
1470#endif
1471
1472  return ResNode;
1473}
1474
1475bool X86DAGToDAGISel::
1476SelectInlineAsmMemoryOperand(const SDOperand &Op, char ConstraintCode,
1477                             std::vector<SDOperand> &OutOps, SelectionDAG &DAG){
1478  SDOperand Op0, Op1, Op2, Op3;
1479  switch (ConstraintCode) {
1480  case 'o':   // offsetable        ??
1481  case 'v':   // not offsetable    ??
1482  default: return true;
1483  case 'm':   // memory
1484    if (!SelectAddr(Op, Op, Op0, Op1, Op2, Op3))
1485      return true;
1486    break;
1487  }
1488
1489  OutOps.push_back(Op0);
1490  OutOps.push_back(Op1);
1491  OutOps.push_back(Op2);
1492  OutOps.push_back(Op3);
1493  AddToISelQueue(Op0);
1494  AddToISelQueue(Op1);
1495  AddToISelQueue(Op2);
1496  AddToISelQueue(Op3);
1497  return false;
1498}
1499
1500/// createX86ISelDag - This pass converts a legalized DAG into a
1501/// X86-specific DAG, ready for instruction scheduling.
1502///
1503FunctionPass *llvm::createX86ISelDag(X86TargetMachine &TM, bool Fast) {
1504  return new X86DAGToDAGISel(TM, Fast);
1505}
1506