X86ISelDAGToDAG.cpp revision ac0b6ae358944ae8b2b5a11dc08f52c3ed89f2da
1//===- X86ISelDAGToDAG.cpp - A DAG pattern matching inst selector for X86 -===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the Evan Cheng and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines a DAG pattern matching instruction selector for X86,
11// converting from a legalized dag to a X86 dag.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "x86-isel"
16#include "X86.h"
17#include "X86InstrBuilder.h"
18#include "X86ISelLowering.h"
19#include "X86RegisterInfo.h"
20#include "X86Subtarget.h"
21#include "X86TargetMachine.h"
22#include "llvm/GlobalValue.h"
23#include "llvm/Instructions.h"
24#include "llvm/Intrinsics.h"
25#include "llvm/Support/CFG.h"
26#include "llvm/CodeGen/MachineConstantPool.h"
27#include "llvm/CodeGen/MachineFunction.h"
28#include "llvm/CodeGen/MachineFrameInfo.h"
29#include "llvm/CodeGen/MachineInstrBuilder.h"
30#include "llvm/CodeGen/SSARegMap.h"
31#include "llvm/CodeGen/SelectionDAGISel.h"
32#include "llvm/Target/TargetMachine.h"
33#include "llvm/Support/Compiler.h"
34#include "llvm/Support/Debug.h"
35#include "llvm/Support/MathExtras.h"
36#include "llvm/ADT/Statistic.h"
37#include <iostream>
38#include <queue>
39#include <set>
40using namespace llvm;
41
42//===----------------------------------------------------------------------===//
43//                      Pattern Matcher Implementation
44//===----------------------------------------------------------------------===//
45
46namespace {
47  /// X86ISelAddressMode - This corresponds to X86AddressMode, but uses
48  /// SDOperand's instead of register numbers for the leaves of the matched
49  /// tree.
50  struct X86ISelAddressMode {
51    enum {
52      RegBase,
53      FrameIndexBase
54    } BaseType;
55
56    struct {            // This is really a union, discriminated by BaseType!
57      SDOperand Reg;
58      int FrameIndex;
59    } Base;
60
61    bool isRIPRel;     // RIP relative?
62    unsigned Scale;
63    SDOperand IndexReg;
64    unsigned Disp;
65    GlobalValue *GV;
66    Constant *CP;
67    const char *ES;
68    int JT;
69    unsigned Align;    // CP alignment.
70
71    X86ISelAddressMode()
72      : BaseType(RegBase), isRIPRel(false), Scale(1), IndexReg(), Disp(0),
73        GV(0), CP(0), ES(0), JT(-1), Align(0) {
74    }
75  };
76}
77
78namespace {
79  Statistic
80  NumFPKill("x86-codegen", "Number of FP_REG_KILL instructions added");
81
82  Statistic
83  NumLoadMoved("x86-codegen", "Number of loads moved below TokenFactor");
84
85  //===--------------------------------------------------------------------===//
86  /// ISel - X86 specific code to select X86 machine instructions for
87  /// SelectionDAG operations.
88  ///
89  class VISIBILITY_HIDDEN X86DAGToDAGISel : public SelectionDAGISel {
90    /// ContainsFPCode - Every instruction we select that uses or defines a FP
91    /// register should set this to true.
92    bool ContainsFPCode;
93
94    /// FastISel - Enable fast(er) instruction selection.
95    ///
96    bool FastISel;
97
98    /// TM - Keep a reference to X86TargetMachine.
99    ///
100    X86TargetMachine &TM;
101
102    /// X86Lowering - This object fully describes how to lower LLVM code to an
103    /// X86-specific SelectionDAG.
104    X86TargetLowering X86Lowering;
105
106    /// Subtarget - Keep a pointer to the X86Subtarget around so that we can
107    /// make the right decision when generating code for different targets.
108    const X86Subtarget *Subtarget;
109
110    /// GlobalBaseReg - keeps track of the virtual register mapped onto global
111    /// base register.
112    unsigned GlobalBaseReg;
113
114  public:
115    X86DAGToDAGISel(X86TargetMachine &tm, bool fast)
116      : SelectionDAGISel(X86Lowering),
117        ContainsFPCode(false), FastISel(fast), TM(tm),
118        X86Lowering(*TM.getTargetLowering()),
119        Subtarget(&TM.getSubtarget<X86Subtarget>()) {}
120
121    virtual bool runOnFunction(Function &Fn) {
122      // Make sure we re-emit a set of the global base reg if necessary
123      GlobalBaseReg = 0;
124      return SelectionDAGISel::runOnFunction(Fn);
125    }
126
127    virtual const char *getPassName() const {
128      return "X86 DAG->DAG Instruction Selection";
129    }
130
131    /// InstructionSelectBasicBlock - This callback is invoked by
132    /// SelectionDAGISel when it has created a SelectionDAG for us to codegen.
133    virtual void InstructionSelectBasicBlock(SelectionDAG &DAG);
134
135    virtual void EmitFunctionEntryCode(Function &Fn, MachineFunction &MF);
136
137    virtual bool CanBeFoldedBy(SDNode *N, SDNode *U, SDNode *Root);
138
139// Include the pieces autogenerated from the target description.
140#include "X86GenDAGISel.inc"
141
142  private:
143    SDNode *Select(SDOperand N);
144
145    bool MatchAddress(SDOperand N, X86ISelAddressMode &AM, bool isRoot = true);
146    bool SelectAddr(SDOperand Op, SDOperand N, SDOperand &Base,
147                    SDOperand &Scale, SDOperand &Index, SDOperand &Disp);
148    bool SelectLEAAddr(SDOperand Op, SDOperand N, SDOperand &Base,
149                       SDOperand &Scale, SDOperand &Index, SDOperand &Disp);
150    bool SelectScalarSSELoad(SDOperand Op, SDOperand Pred,
151                             SDOperand N, SDOperand &Base, SDOperand &Scale,
152                             SDOperand &Index, SDOperand &Disp,
153                             SDOperand &InChain, SDOperand &OutChain);
154    bool TryFoldLoad(SDOperand P, SDOperand N,
155                     SDOperand &Base, SDOperand &Scale,
156                     SDOperand &Index, SDOperand &Disp);
157    void InstructionSelectPreprocess(SelectionDAG &DAG);
158
159    /// SelectInlineAsmMemoryOperand - Implement addressing mode selection for
160    /// inline asm expressions.
161    virtual bool SelectInlineAsmMemoryOperand(const SDOperand &Op,
162                                              char ConstraintCode,
163                                              std::vector<SDOperand> &OutOps,
164                                              SelectionDAG &DAG);
165
166    void EmitSpecialCodeForMain(MachineBasicBlock *BB, MachineFrameInfo *MFI);
167
168    inline void getAddressOperands(X86ISelAddressMode &AM, SDOperand &Base,
169                                   SDOperand &Scale, SDOperand &Index,
170                                   SDOperand &Disp) {
171      Base  = (AM.BaseType == X86ISelAddressMode::FrameIndexBase) ?
172        CurDAG->getTargetFrameIndex(AM.Base.FrameIndex, TLI.getPointerTy()) :
173        AM.Base.Reg;
174      Scale = getI8Imm(AM.Scale);
175      Index = AM.IndexReg;
176      // These are 32-bit even in 64-bit mode since RIP relative offset
177      // is 32-bit.
178      if (AM.GV)
179        Disp = CurDAG->getTargetGlobalAddress(AM.GV, MVT::i32, AM.Disp);
180      else if (AM.CP)
181        Disp = CurDAG->getTargetConstantPool(AM.CP, MVT::i32, AM.Align, AM.Disp);
182      else if (AM.ES)
183        Disp = CurDAG->getTargetExternalSymbol(AM.ES, MVT::i32);
184      else if (AM.JT != -1)
185        Disp = CurDAG->getTargetJumpTable(AM.JT, MVT::i32);
186      else
187        Disp = getI32Imm(AM.Disp);
188    }
189
190    /// getI8Imm - Return a target constant with the specified value, of type
191    /// i8.
192    inline SDOperand getI8Imm(unsigned Imm) {
193      return CurDAG->getTargetConstant(Imm, MVT::i8);
194    }
195
196    /// getI16Imm - Return a target constant with the specified value, of type
197    /// i16.
198    inline SDOperand getI16Imm(unsigned Imm) {
199      return CurDAG->getTargetConstant(Imm, MVT::i16);
200    }
201
202    /// getI32Imm - Return a target constant with the specified value, of type
203    /// i32.
204    inline SDOperand getI32Imm(unsigned Imm) {
205      return CurDAG->getTargetConstant(Imm, MVT::i32);
206    }
207
208    /// getGlobalBaseReg - insert code into the entry mbb to materialize the PIC
209    /// base register.  Return the virtual register that holds this value.
210    SDNode *getGlobalBaseReg();
211
212#ifndef NDEBUG
213    unsigned Indent;
214#endif
215  };
216}
217
218static SDNode *findFlagUse(SDNode *N) {
219  unsigned FlagResNo = N->getNumValues()-1;
220  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
221    SDNode *User = *I;
222    for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
223      SDOperand Op = User->getOperand(i);
224      if (Op.Val == N && Op.ResNo == FlagResNo)
225        return User;
226    }
227  }
228  return NULL;
229}
230
231static void findNonImmUse(SDNode *Use, SDNode* Def, SDNode *ImmedUse,
232                          SDNode *Root, SDNode *Skip, bool &found,
233                          std::set<SDNode *> &Visited) {
234  if (found ||
235      Use->getNodeId() > Def->getNodeId() ||
236      !Visited.insert(Use).second)
237    return;
238
239  for (unsigned i = 0, e = Use->getNumOperands(); !found && i != e; ++i) {
240    SDNode *N = Use->getOperand(i).Val;
241    if (N == Skip)
242      continue;
243    if (N == Def) {
244      if (Use == ImmedUse)
245        continue; // Immediate use is ok.
246      if (Use == Root) {
247        assert(Use->getOpcode() == ISD::STORE ||
248               Use->getOpcode() == X86ISD::CMP);
249        continue;
250      }
251      found = true;
252      break;
253    }
254    findNonImmUse(N, Def, ImmedUse, Root, Skip, found, Visited);
255  }
256}
257
258/// isNonImmUse - Start searching from Root up the DAG to check is Def can
259/// be reached. Return true if that's the case. However, ignore direct uses
260/// by ImmedUse (which would be U in the example illustrated in
261/// CanBeFoldedBy) and by Root (which can happen in the store case).
262/// FIXME: to be really generic, we should allow direct use by any node
263/// that is being folded. But realisticly since we only fold loads which
264/// have one non-chain use, we only need to watch out for load/op/store
265/// and load/op/cmp case where the root (store / cmp) may reach the load via
266/// its chain operand.
267static inline bool isNonImmUse(SDNode *Root, SDNode *Def, SDNode *ImmedUse,
268                               SDNode *Skip = NULL) {
269  std::set<SDNode *> Visited;
270  bool found = false;
271  findNonImmUse(Root, Def, ImmedUse, Root, Skip, found, Visited);
272  return found;
273}
274
275
276bool X86DAGToDAGISel::CanBeFoldedBy(SDNode *N, SDNode *U, SDNode *Root) {
277  if (FastISel) return false;
278
279  // If U use can somehow reach N through another path then U can't fold N or
280  // it will create a cycle. e.g. In the following diagram, U can reach N
281  // through X. If N is folded into into U, then X is both a predecessor and
282  // a successor of U.
283  //
284  //         [ N ]
285  //         ^  ^
286  //         |  |
287  //        /   \---
288  //      /        [X]
289  //      |         ^
290  //     [U]--------|
291
292  if (isNonImmUse(Root, N, U))
293    return false;
294
295  // If U produces a flag, then it gets (even more) interesting. Since it
296  // would have been "glued" together with its flag use, we need to check if
297  // it might reach N:
298  //
299  //       [ N ]
300  //        ^ ^
301  //        | |
302  //       [U] \--
303  //        ^   [TF]
304  //        |    ^
305  //        |    |
306  //         \  /
307  //          [FU]
308  //
309  // If FU (flag use) indirectly reach N (the load), and U fold N (call it
310  // NU), then TF is a predecessor of FU and a successor of NU. But since
311  // NU and FU are flagged together, this effectively creates a cycle.
312  bool HasFlagUse = false;
313  MVT::ValueType VT = Root->getValueType(Root->getNumValues()-1);
314  while ((VT == MVT::Flag && !Root->use_empty())) {
315    SDNode *FU = findFlagUse(Root);
316    if (FU == NULL)
317      break;
318    else {
319      Root = FU;
320      HasFlagUse = true;
321    }
322    VT = Root->getValueType(Root->getNumValues()-1);
323  }
324
325  if (HasFlagUse)
326    return !isNonImmUse(Root, N, Root, U);
327  return true;
328}
329
330/// MoveBelowTokenFactor - Replace TokenFactor operand with load's chain operand
331/// and move load below the TokenFactor. Replace store's chain operand with
332/// load's chain result.
333static void MoveBelowTokenFactor(SelectionDAG &DAG, SDOperand Load,
334                                 SDOperand Store, SDOperand TF) {
335  std::vector<SDOperand> Ops;
336  for (unsigned i = 0, e = TF.Val->getNumOperands(); i != e; ++i)
337    if (Load.Val == TF.Val->getOperand(i).Val)
338      Ops.push_back(Load.Val->getOperand(0));
339    else
340      Ops.push_back(TF.Val->getOperand(i));
341  DAG.UpdateNodeOperands(TF, &Ops[0], Ops.size());
342  DAG.UpdateNodeOperands(Load, TF, Load.getOperand(1), Load.getOperand(2));
343  DAG.UpdateNodeOperands(Store, Load.getValue(1), Store.getOperand(1),
344                         Store.getOperand(2), Store.getOperand(3));
345}
346
347/// InstructionSelectPreprocess - Preprocess the DAG to allow the instruction
348/// selector to pick more load-modify-store instructions. This is a common
349/// case:
350///
351///     [Load chain]
352///         ^
353///         |
354///       [Load]
355///       ^    ^
356///       |    |
357///      /      \-
358///     /         |
359/// [TokenFactor] [Op]
360///     ^          ^
361///     |          |
362///      \        /
363///       \      /
364///       [Store]
365///
366/// The fact the store's chain operand != load's chain will prevent the
367/// (store (op (load))) instruction from being selected. We can transform it to:
368///
369///     [Load chain]
370///         ^
371///         |
372///    [TokenFactor]
373///         ^
374///         |
375///       [Load]
376///       ^    ^
377///       |    |
378///       |     \-
379///       |       |
380///       |     [Op]
381///       |       ^
382///       |       |
383///       \      /
384///        \    /
385///       [Store]
386void X86DAGToDAGISel::InstructionSelectPreprocess(SelectionDAG &DAG) {
387  for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
388         E = DAG.allnodes_end(); I != E; ++I) {
389    if (!ISD::isNON_TRUNCStore(I))
390      continue;
391    SDOperand Chain = I->getOperand(0);
392    if (Chain.Val->getOpcode() != ISD::TokenFactor)
393      continue;
394
395    SDOperand N1 = I->getOperand(1);
396    SDOperand N2 = I->getOperand(2);
397    if (MVT::isFloatingPoint(N1.getValueType()) ||
398        MVT::isVector(N1.getValueType()) ||
399        !N1.hasOneUse())
400      continue;
401
402    bool RModW = false;
403    SDOperand Load;
404    unsigned Opcode = N1.Val->getOpcode();
405    switch (Opcode) {
406      case ISD::ADD:
407      case ISD::MUL:
408      case ISD::AND:
409      case ISD::OR:
410      case ISD::XOR:
411      case ISD::ADDC:
412      case ISD::ADDE: {
413        SDOperand N10 = N1.getOperand(0);
414        SDOperand N11 = N1.getOperand(1);
415        if (ISD::isNON_EXTLoad(N10.Val))
416          RModW = true;
417        else if (ISD::isNON_EXTLoad(N11.Val)) {
418          RModW = true;
419          std::swap(N10, N11);
420        }
421        RModW = RModW && N10.Val->isOperand(Chain.Val) && N10.hasOneUse() &&
422          (N10.getOperand(1) == N2) &&
423          (N10.Val->getValueType(0) == N1.getValueType());
424        if (RModW)
425          Load = N10;
426        break;
427      }
428      case ISD::SUB:
429      case ISD::SHL:
430      case ISD::SRA:
431      case ISD::SRL:
432      case ISD::ROTL:
433      case ISD::ROTR:
434      case ISD::SUBC:
435      case ISD::SUBE:
436      case X86ISD::SHLD:
437      case X86ISD::SHRD: {
438        SDOperand N10 = N1.getOperand(0);
439        if (ISD::isNON_EXTLoad(N10.Val))
440          RModW = N10.Val->isOperand(Chain.Val) && N10.hasOneUse() &&
441            (N10.getOperand(1) == N2) &&
442            (N10.Val->getValueType(0) == N1.getValueType());
443        if (RModW)
444          Load = N10;
445        break;
446      }
447    }
448
449    if (RModW) {
450      MoveBelowTokenFactor(DAG, Load, SDOperand(I, 0), Chain);
451      ++NumLoadMoved;
452    }
453  }
454}
455
456/// InstructionSelectBasicBlock - This callback is invoked by SelectionDAGISel
457/// when it has created a SelectionDAG for us to codegen.
458void X86DAGToDAGISel::InstructionSelectBasicBlock(SelectionDAG &DAG) {
459  DEBUG(BB->dump());
460  MachineFunction::iterator FirstMBB = BB;
461
462  if (!FastISel)
463    InstructionSelectPreprocess(DAG);
464
465  // Codegen the basic block.
466#ifndef NDEBUG
467  DOUT << "===== Instruction selection begins:\n";
468  Indent = 0;
469#endif
470  DAG.setRoot(SelectRoot(DAG.getRoot()));
471#ifndef NDEBUG
472  DOUT << "===== Instruction selection ends:\n";
473#endif
474
475  DAG.RemoveDeadNodes();
476
477  // Emit machine code to BB.
478  ScheduleAndEmitDAG(DAG);
479
480  // If we are emitting FP stack code, scan the basic block to determine if this
481  // block defines any FP values.  If so, put an FP_REG_KILL instruction before
482  // the terminator of the block.
483  if (!Subtarget->hasSSE2()) {
484    // Note that FP stack instructions *are* used in SSE code when returning
485    // values, but these are not live out of the basic block, so we don't need
486    // an FP_REG_KILL in this case either.
487    bool ContainsFPCode = false;
488
489    // Scan all of the machine instructions in these MBBs, checking for FP
490    // stores.
491    MachineFunction::iterator MBBI = FirstMBB;
492    do {
493      for (MachineBasicBlock::iterator I = MBBI->begin(), E = MBBI->end();
494           !ContainsFPCode && I != E; ++I) {
495        for (unsigned op = 0, e = I->getNumOperands(); op != e; ++op) {
496          if (I->getOperand(op).isRegister() && I->getOperand(op).isDef() &&
497              MRegisterInfo::isVirtualRegister(I->getOperand(op).getReg()) &&
498              RegMap->getRegClass(I->getOperand(0).getReg()) ==
499                X86::RFPRegisterClass) {
500            ContainsFPCode = true;
501            break;
502          }
503        }
504      }
505    } while (!ContainsFPCode && &*(MBBI++) != BB);
506
507    // Check PHI nodes in successor blocks.  These PHI's will be lowered to have
508    // a copy of the input value in this block.
509    if (!ContainsFPCode) {
510      // Final check, check LLVM BB's that are successors to the LLVM BB
511      // corresponding to BB for FP PHI nodes.
512      const BasicBlock *LLVMBB = BB->getBasicBlock();
513      const PHINode *PN;
514      for (succ_const_iterator SI = succ_begin(LLVMBB), E = succ_end(LLVMBB);
515           !ContainsFPCode && SI != E; ++SI) {
516        for (BasicBlock::const_iterator II = SI->begin();
517             (PN = dyn_cast<PHINode>(II)); ++II) {
518          if (PN->getType()->isFloatingPoint()) {
519            ContainsFPCode = true;
520            break;
521          }
522        }
523      }
524    }
525
526    // Finally, if we found any FP code, emit the FP_REG_KILL instruction.
527    if (ContainsFPCode) {
528      BuildMI(*BB, BB->getFirstTerminator(),
529              TM.getInstrInfo()->get(X86::FP_REG_KILL));
530      ++NumFPKill;
531    }
532  }
533}
534
535/// EmitSpecialCodeForMain - Emit any code that needs to be executed only in
536/// the main function.
537void X86DAGToDAGISel::EmitSpecialCodeForMain(MachineBasicBlock *BB,
538                                             MachineFrameInfo *MFI) {
539  const TargetInstrInfo *TII = TM.getInstrInfo();
540  if (Subtarget->isTargetCygwin())
541    BuildMI(BB, TII->get(X86::CALLpcrel32)).addExternalSymbol("__main");
542
543  // Switch the FPU to 64-bit precision mode for better compatibility and speed.
544  int CWFrameIdx = MFI->CreateStackObject(2, 2);
545  addFrameReference(BuildMI(BB, TII->get(X86::FNSTCW16m)), CWFrameIdx);
546
547  // Set the high part to be 64-bit precision.
548  addFrameReference(BuildMI(BB, TII->get(X86::MOV8mi)),
549                    CWFrameIdx, 1).addImm(2);
550
551  // Reload the modified control word now.
552  addFrameReference(BuildMI(BB, TII->get(X86::FLDCW16m)), CWFrameIdx);
553}
554
555void X86DAGToDAGISel::EmitFunctionEntryCode(Function &Fn, MachineFunction &MF) {
556  // If this is main, emit special code for main.
557  MachineBasicBlock *BB = MF.begin();
558  if (Fn.hasExternalLinkage() && Fn.getName() == "main")
559    EmitSpecialCodeForMain(BB, MF.getFrameInfo());
560}
561
562/// MatchAddress - Add the specified node to the specified addressing mode,
563/// returning true if it cannot be done.  This just pattern matches for the
564/// addressing mode
565bool X86DAGToDAGISel::MatchAddress(SDOperand N, X86ISelAddressMode &AM,
566                                   bool isRoot) {
567  // RIP relative addressing: %rip + 32-bit displacement!
568  if (AM.isRIPRel) {
569    if (!AM.ES && AM.JT != -1 && N.getOpcode() == ISD::Constant) {
570      int64_t Val = cast<ConstantSDNode>(N)->getSignExtended();
571      if (isInt32(AM.Disp + Val)) {
572        AM.Disp += Val;
573        return false;
574      }
575    }
576    return true;
577  }
578
579  int id = N.Val->getNodeId();
580  bool Available = isSelected(id);
581
582  switch (N.getOpcode()) {
583  default: break;
584  case ISD::Constant: {
585    int64_t Val = cast<ConstantSDNode>(N)->getSignExtended();
586    if (isInt32(AM.Disp + Val)) {
587      AM.Disp += Val;
588      return false;
589    }
590    break;
591  }
592
593  case X86ISD::Wrapper: {
594    bool is64Bit = Subtarget->is64Bit();
595    // Under X86-64 non-small code model, GV (and friends) are 64-bits.
596    if (is64Bit && TM.getCodeModel() != CodeModel::Small)
597      break;
598    if (AM.GV != 0 || AM.CP != 0 || AM.ES != 0 || AM.JT != -1)
599      break;
600    // If value is available in a register both base and index components have
601    // been picked, we can't fit the result available in the register in the
602    // addressing mode. Duplicate GlobalAddress or ConstantPool as displacement.
603    if (!Available || (AM.Base.Reg.Val && AM.IndexReg.Val)) {
604      bool isStatic = TM.getRelocationModel() == Reloc::Static;
605      SDOperand N0 = N.getOperand(0);
606      if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(N0)) {
607        GlobalValue *GV = G->getGlobal();
608        bool isAbs32 = !is64Bit ||
609          (isStatic && !(GV->isExternal() || GV->hasWeakLinkage() ||
610                         GV->hasLinkOnceLinkage()));
611        if (isAbs32 || isRoot) {
612          AM.GV = G->getGlobal();
613          AM.Disp += G->getOffset();
614          AM.isRIPRel = !isAbs32;
615          return false;
616        }
617      } else if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(N0)) {
618        if (!is64Bit || isStatic || isRoot) {
619          AM.CP = CP->getConstVal();
620          AM.Align = CP->getAlignment();
621          AM.Disp += CP->getOffset();
622          AM.isRIPRel = !isStatic;
623          return false;
624        }
625      } else if (ExternalSymbolSDNode *S =dyn_cast<ExternalSymbolSDNode>(N0)) {
626        if (isStatic || isRoot) {
627          AM.ES = S->getSymbol();
628          AM.isRIPRel = !isStatic;
629          return false;
630        }
631      } else if (JumpTableSDNode *J = dyn_cast<JumpTableSDNode>(N0)) {
632        if (isStatic || isRoot) {
633          AM.JT = J->getIndex();
634          AM.isRIPRel = !isStatic;
635          return false;
636        }
637      }
638    }
639    break;
640  }
641
642  case ISD::FrameIndex:
643    if (AM.BaseType == X86ISelAddressMode::RegBase && AM.Base.Reg.Val == 0) {
644      AM.BaseType = X86ISelAddressMode::FrameIndexBase;
645      AM.Base.FrameIndex = cast<FrameIndexSDNode>(N)->getIndex();
646      return false;
647    }
648    break;
649
650  case ISD::SHL:
651    if (!Available && AM.IndexReg.Val == 0 && AM.Scale == 1)
652      if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N.Val->getOperand(1))) {
653        unsigned Val = CN->getValue();
654        if (Val == 1 || Val == 2 || Val == 3) {
655          AM.Scale = 1 << Val;
656          SDOperand ShVal = N.Val->getOperand(0);
657
658          // Okay, we know that we have a scale by now.  However, if the scaled
659          // value is an add of something and a constant, we can fold the
660          // constant into the disp field here.
661          if (ShVal.Val->getOpcode() == ISD::ADD && ShVal.hasOneUse() &&
662              isa<ConstantSDNode>(ShVal.Val->getOperand(1))) {
663            AM.IndexReg = ShVal.Val->getOperand(0);
664            ConstantSDNode *AddVal =
665              cast<ConstantSDNode>(ShVal.Val->getOperand(1));
666            uint64_t Disp = AM.Disp + (AddVal->getValue() << Val);
667            if (isInt32(Disp))
668              AM.Disp = Disp;
669            else
670              AM.IndexReg = ShVal;
671          } else {
672            AM.IndexReg = ShVal;
673          }
674          return false;
675        }
676      }
677    break;
678
679  case ISD::MUL:
680    // X*[3,5,9] -> X+X*[2,4,8]
681    if (!Available &&
682        AM.BaseType == X86ISelAddressMode::RegBase &&
683        AM.Base.Reg.Val == 0 &&
684        AM.IndexReg.Val == 0)
685      if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N.Val->getOperand(1)))
686        if (CN->getValue() == 3 || CN->getValue() == 5 || CN->getValue() == 9) {
687          AM.Scale = unsigned(CN->getValue())-1;
688
689          SDOperand MulVal = N.Val->getOperand(0);
690          SDOperand Reg;
691
692          // Okay, we know that we have a scale by now.  However, if the scaled
693          // value is an add of something and a constant, we can fold the
694          // constant into the disp field here.
695          if (MulVal.Val->getOpcode() == ISD::ADD && MulVal.hasOneUse() &&
696              isa<ConstantSDNode>(MulVal.Val->getOperand(1))) {
697            Reg = MulVal.Val->getOperand(0);
698            ConstantSDNode *AddVal =
699              cast<ConstantSDNode>(MulVal.Val->getOperand(1));
700            uint64_t Disp = AM.Disp + AddVal->getValue() * CN->getValue();
701            if (isInt32(Disp))
702              AM.Disp = Disp;
703            else
704              Reg = N.Val->getOperand(0);
705          } else {
706            Reg = N.Val->getOperand(0);
707          }
708
709          AM.IndexReg = AM.Base.Reg = Reg;
710          return false;
711        }
712    break;
713
714  case ISD::ADD: {
715    if (!Available) {
716      X86ISelAddressMode Backup = AM;
717      if (!MatchAddress(N.Val->getOperand(0), AM, false) &&
718          !MatchAddress(N.Val->getOperand(1), AM, false))
719        return false;
720      AM = Backup;
721      if (!MatchAddress(N.Val->getOperand(1), AM, false) &&
722          !MatchAddress(N.Val->getOperand(0), AM, false))
723        return false;
724      AM = Backup;
725    }
726    break;
727  }
728
729  case ISD::OR: {
730    if (!Available) {
731      X86ISelAddressMode Backup = AM;
732      // Look for (x << c1) | c2 where (c2 < c1)
733      ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N.Val->getOperand(0));
734      if (CN && !MatchAddress(N.Val->getOperand(1), AM, false)) {
735        if (AM.GV == NULL && AM.Disp == 0 && CN->getValue() < AM.Scale) {
736          AM.Disp = CN->getValue();
737          return false;
738        }
739      }
740      AM = Backup;
741      CN = dyn_cast<ConstantSDNode>(N.Val->getOperand(1));
742      if (CN && !MatchAddress(N.Val->getOperand(0), AM, false)) {
743        if (AM.GV == NULL && AM.Disp == 0 && CN->getValue() < AM.Scale) {
744          AM.Disp = CN->getValue();
745          return false;
746        }
747      }
748      AM = Backup;
749    }
750    break;
751  }
752  }
753
754  // Is the base register already occupied?
755  if (AM.BaseType != X86ISelAddressMode::RegBase || AM.Base.Reg.Val) {
756    // If so, check to see if the scale index register is set.
757    if (AM.IndexReg.Val == 0) {
758      AM.IndexReg = N;
759      AM.Scale = 1;
760      return false;
761    }
762
763    // Otherwise, we cannot select it.
764    return true;
765  }
766
767  // Default, generate it as a register.
768  AM.BaseType = X86ISelAddressMode::RegBase;
769  AM.Base.Reg = N;
770  return false;
771}
772
773/// SelectAddr - returns true if it is able pattern match an addressing mode.
774/// It returns the operands which make up the maximal addressing mode it can
775/// match by reference.
776bool X86DAGToDAGISel::SelectAddr(SDOperand Op, SDOperand N, SDOperand &Base,
777                                 SDOperand &Scale, SDOperand &Index,
778                                 SDOperand &Disp) {
779  X86ISelAddressMode AM;
780  if (MatchAddress(N, AM))
781    return false;
782
783  MVT::ValueType VT = N.getValueType();
784  if (AM.BaseType == X86ISelAddressMode::RegBase) {
785    if (!AM.Base.Reg.Val)
786      AM.Base.Reg = CurDAG->getRegister(0, VT);
787  }
788
789  if (!AM.IndexReg.Val)
790    AM.IndexReg = CurDAG->getRegister(0, VT);
791
792  getAddressOperands(AM, Base, Scale, Index, Disp);
793  return true;
794}
795
796/// isZeroNode - Returns true if Elt is a constant zero or a floating point
797/// constant +0.0.
798static inline bool isZeroNode(SDOperand Elt) {
799  return ((isa<ConstantSDNode>(Elt) &&
800  cast<ConstantSDNode>(Elt)->getValue() == 0) ||
801  (isa<ConstantFPSDNode>(Elt) &&
802  cast<ConstantFPSDNode>(Elt)->isExactlyValue(0.0)));
803}
804
805
806/// SelectScalarSSELoad - Match a scalar SSE load.  In particular, we want to
807/// match a load whose top elements are either undef or zeros.  The load flavor
808/// is derived from the type of N, which is either v4f32 or v2f64.
809bool X86DAGToDAGISel::SelectScalarSSELoad(SDOperand Op, SDOperand Pred,
810                                          SDOperand N, SDOperand &Base,
811                                          SDOperand &Scale, SDOperand &Index,
812                                          SDOperand &Disp, SDOperand &InChain,
813                                          SDOperand &OutChain) {
814  if (N.getOpcode() == ISD::SCALAR_TO_VECTOR) {
815    InChain = N.getOperand(0).getValue(1);
816    if (ISD::isNON_EXTLoad(InChain.Val) &&
817        InChain.getValue(0).hasOneUse() &&
818        N.hasOneUse() &&
819        CanBeFoldedBy(N.Val, Pred.Val, Op.Val)) {
820      LoadSDNode *LD = cast<LoadSDNode>(InChain);
821      if (!SelectAddr(Op, LD->getBasePtr(), Base, Scale, Index, Disp))
822        return false;
823      OutChain = LD->getChain();
824      return true;
825    }
826  }
827
828  // Also handle the case where we explicitly require zeros in the top
829  // elements.  This is a vector shuffle from the zero vector.
830  if (N.getOpcode() == ISD::VECTOR_SHUFFLE && N.Val->hasOneUse() &&
831      N.getOperand(0).getOpcode() == ISD::BUILD_VECTOR &&
832      N.getOperand(1).getOpcode() == ISD::SCALAR_TO_VECTOR &&
833      N.getOperand(1).Val->hasOneUse() &&
834      ISD::isNON_EXTLoad(N.getOperand(1).getOperand(0).Val) &&
835      N.getOperand(1).getOperand(0).hasOneUse()) {
836    // Check to see if the BUILD_VECTOR is building a zero vector.
837    SDOperand BV = N.getOperand(0);
838    for (unsigned i = 0, e = BV.getNumOperands(); i != e; ++i)
839      if (!isZeroNode(BV.getOperand(i)) &&
840          BV.getOperand(i).getOpcode() != ISD::UNDEF)
841        return false;  // Not a zero/undef vector.
842    // Check to see if the shuffle mask is 4/L/L/L or 2/L, where L is something
843    // from the LHS.
844    unsigned VecWidth = BV.getNumOperands();
845    SDOperand ShufMask = N.getOperand(2);
846    assert(ShufMask.getOpcode() == ISD::BUILD_VECTOR && "Invalid shuf mask!");
847    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(ShufMask.getOperand(0))) {
848      if (C->getValue() == VecWidth) {
849        for (unsigned i = 1; i != VecWidth; ++i) {
850          if (ShufMask.getOperand(i).getOpcode() == ISD::UNDEF) {
851            // ok.
852          } else {
853            ConstantSDNode *C = cast<ConstantSDNode>(ShufMask.getOperand(i));
854            if (C->getValue() >= VecWidth) return false;
855          }
856        }
857      }
858
859      // Okay, this is a zero extending load.  Fold it.
860      LoadSDNode *LD = cast<LoadSDNode>(N.getOperand(1).getOperand(0));
861      if (!SelectAddr(Op, LD->getBasePtr(), Base, Scale, Index, Disp))
862        return false;
863      OutChain = LD->getChain();
864      InChain = SDOperand(LD, 1);
865      return true;
866    }
867  }
868  return false;
869}
870
871
872/// SelectLEAAddr - it calls SelectAddr and determines if the maximal addressing
873/// mode it matches can be cost effectively emitted as an LEA instruction.
874bool X86DAGToDAGISel::SelectLEAAddr(SDOperand Op, SDOperand N,
875                                    SDOperand &Base, SDOperand &Scale,
876                                    SDOperand &Index, SDOperand &Disp) {
877  X86ISelAddressMode AM;
878  if (MatchAddress(N, AM))
879    return false;
880
881  MVT::ValueType VT = N.getValueType();
882  unsigned Complexity = 0;
883  if (AM.BaseType == X86ISelAddressMode::RegBase)
884    if (AM.Base.Reg.Val)
885      Complexity = 1;
886    else
887      AM.Base.Reg = CurDAG->getRegister(0, VT);
888  else if (AM.BaseType == X86ISelAddressMode::FrameIndexBase)
889    Complexity = 4;
890
891  if (AM.IndexReg.Val)
892    Complexity++;
893  else
894    AM.IndexReg = CurDAG->getRegister(0, VT);
895
896  if (AM.Scale > 2)
897    Complexity += 2;
898  // Don't match just leal(,%reg,2). It's cheaper to do addl %reg, %reg
899  else if (AM.Scale > 1)
900    Complexity++;
901
902  // FIXME: We are artificially lowering the criteria to turn ADD %reg, $GA
903  // to a LEA. This is determined with some expermentation but is by no means
904  // optimal (especially for code size consideration). LEA is nice because of
905  // its three-address nature. Tweak the cost function again when we can run
906  // convertToThreeAddress() at register allocation time.
907  if (AM.GV || AM.CP || AM.ES || AM.JT != -1) {
908    // For X86-64, we should always use lea to materialize RIP relative
909    // addresses.
910    if (Subtarget->is64Bit())
911      Complexity = 4;
912    else
913      Complexity += 2;
914  }
915
916  if (AM.Disp && (AM.Base.Reg.Val || AM.IndexReg.Val))
917    Complexity++;
918
919  if (Complexity > 2) {
920    getAddressOperands(AM, Base, Scale, Index, Disp);
921    return true;
922  }
923  return false;
924}
925
926bool X86DAGToDAGISel::TryFoldLoad(SDOperand P, SDOperand N,
927                                  SDOperand &Base, SDOperand &Scale,
928                                  SDOperand &Index, SDOperand &Disp) {
929  if (ISD::isNON_EXTLoad(N.Val) &&
930      N.hasOneUse() &&
931      CanBeFoldedBy(N.Val, P.Val, P.Val))
932    return SelectAddr(P, N.getOperand(1), Base, Scale, Index, Disp);
933  return false;
934}
935
936/// getGlobalBaseReg - Output the instructions required to put the
937/// base address to use for accessing globals into a register.
938///
939SDNode *X86DAGToDAGISel::getGlobalBaseReg() {
940  assert(!Subtarget->is64Bit() && "X86-64 PIC uses RIP relative addressing");
941  if (!GlobalBaseReg) {
942    // Insert the set of GlobalBaseReg into the first MBB of the function
943    MachineBasicBlock &FirstMBB = BB->getParent()->front();
944    MachineBasicBlock::iterator MBBI = FirstMBB.begin();
945    SSARegMap *RegMap = BB->getParent()->getSSARegMap();
946    GlobalBaseReg = RegMap->createVirtualRegister(X86::GR32RegisterClass);
947    const TargetInstrInfo *TII = TM.getInstrInfo();
948    BuildMI(FirstMBB, MBBI, TII->get(X86::MovePCtoStack));
949    BuildMI(FirstMBB, MBBI, TII->get(X86::POP32r), GlobalBaseReg);
950  }
951  return CurDAG->getRegister(GlobalBaseReg, TLI.getPointerTy()).Val;
952}
953
954static SDNode *FindCallStartFromCall(SDNode *Node) {
955  if (Node->getOpcode() == ISD::CALLSEQ_START) return Node;
956    assert(Node->getOperand(0).getValueType() == MVT::Other &&
957         "Node doesn't have a token chain argument!");
958  return FindCallStartFromCall(Node->getOperand(0).Val);
959}
960
961SDNode *X86DAGToDAGISel::Select(SDOperand N) {
962  SDNode *Node = N.Val;
963  MVT::ValueType NVT = Node->getValueType(0);
964  unsigned Opc, MOpc;
965  unsigned Opcode = Node->getOpcode();
966
967#ifndef NDEBUG
968  DOUT << std::string(Indent, ' ') << "Selecting: ";
969  DEBUG(Node->dump(CurDAG));
970  DOUT << "\n";
971  Indent += 2;
972#endif
973
974  if (Opcode >= ISD::BUILTIN_OP_END && Opcode < X86ISD::FIRST_NUMBER) {
975#ifndef NDEBUG
976    DOUT << std::string(Indent-2, ' ') << "== ";
977    DEBUG(Node->dump(CurDAG));
978    DOUT << "\n";
979    Indent -= 2;
980#endif
981    return NULL;   // Already selected.
982  }
983
984  switch (Opcode) {
985    default: break;
986    case X86ISD::GlobalBaseReg:
987      return getGlobalBaseReg();
988
989    case ISD::ADD: {
990      // Turn ADD X, c to MOV32ri X+c. This cannot be done with tblgen'd
991      // code and is matched first so to prevent it from being turned into
992      // LEA32r X+c.
993      // In 64-bit mode, use LEA to take advantage of RIP-relative addressing.
994      MVT::ValueType PtrVT = TLI.getPointerTy();
995      SDOperand N0 = N.getOperand(0);
996      SDOperand N1 = N.getOperand(1);
997      if (N.Val->getValueType(0) == PtrVT &&
998          N0.getOpcode() == X86ISD::Wrapper &&
999          N1.getOpcode() == ISD::Constant) {
1000        unsigned Offset = (unsigned)cast<ConstantSDNode>(N1)->getValue();
1001        SDOperand C(0, 0);
1002        // TODO: handle ExternalSymbolSDNode.
1003        if (GlobalAddressSDNode *G =
1004            dyn_cast<GlobalAddressSDNode>(N0.getOperand(0))) {
1005          C = CurDAG->getTargetGlobalAddress(G->getGlobal(), PtrVT,
1006                                             G->getOffset() + Offset);
1007        } else if (ConstantPoolSDNode *CP =
1008                   dyn_cast<ConstantPoolSDNode>(N0.getOperand(0))) {
1009          C = CurDAG->getTargetConstantPool(CP->getConstVal(), PtrVT,
1010                                            CP->getAlignment(),
1011                                            CP->getOffset()+Offset);
1012        }
1013
1014        if (C.Val) {
1015          if (Subtarget->is64Bit()) {
1016            SDOperand Ops[] = { CurDAG->getRegister(0, PtrVT), getI8Imm(1),
1017                                CurDAG->getRegister(0, PtrVT), C };
1018            return CurDAG->SelectNodeTo(N.Val, X86::LEA64r, MVT::i64, Ops, 4);
1019          } else
1020            return CurDAG->SelectNodeTo(N.Val, X86::MOV32ri, PtrVT, C);
1021        }
1022      }
1023
1024      // Other cases are handled by auto-generated code.
1025      break;
1026    }
1027
1028    case ISD::MULHU:
1029    case ISD::MULHS: {
1030      if (Opcode == ISD::MULHU)
1031        switch (NVT) {
1032        default: assert(0 && "Unsupported VT!");
1033        case MVT::i8:  Opc = X86::MUL8r;  MOpc = X86::MUL8m;  break;
1034        case MVT::i16: Opc = X86::MUL16r; MOpc = X86::MUL16m; break;
1035        case MVT::i32: Opc = X86::MUL32r; MOpc = X86::MUL32m; break;
1036        case MVT::i64: Opc = X86::MUL64r; MOpc = X86::MUL64m; break;
1037        }
1038      else
1039        switch (NVT) {
1040        default: assert(0 && "Unsupported VT!");
1041        case MVT::i8:  Opc = X86::IMUL8r;  MOpc = X86::IMUL8m;  break;
1042        case MVT::i16: Opc = X86::IMUL16r; MOpc = X86::IMUL16m; break;
1043        case MVT::i32: Opc = X86::IMUL32r; MOpc = X86::IMUL32m; break;
1044        case MVT::i64: Opc = X86::IMUL64r; MOpc = X86::IMUL64m; break;
1045        }
1046
1047      unsigned LoReg, HiReg;
1048      switch (NVT) {
1049      default: assert(0 && "Unsupported VT!");
1050      case MVT::i8:  LoReg = X86::AL;  HiReg = X86::AH;  break;
1051      case MVT::i16: LoReg = X86::AX;  HiReg = X86::DX;  break;
1052      case MVT::i32: LoReg = X86::EAX; HiReg = X86::EDX; break;
1053      case MVT::i64: LoReg = X86::RAX; HiReg = X86::RDX; break;
1054      }
1055
1056      SDOperand N0 = Node->getOperand(0);
1057      SDOperand N1 = Node->getOperand(1);
1058
1059      bool foldedLoad = false;
1060      SDOperand Tmp0, Tmp1, Tmp2, Tmp3;
1061      foldedLoad = TryFoldLoad(N, N1, Tmp0, Tmp1, Tmp2, Tmp3);
1062      // MULHU and MULHS are commmutative
1063      if (!foldedLoad) {
1064        foldedLoad = TryFoldLoad(N, N0, Tmp0, Tmp1, Tmp2, Tmp3);
1065        if (foldedLoad) {
1066          N0 = Node->getOperand(1);
1067          N1 = Node->getOperand(0);
1068        }
1069      }
1070
1071      SDOperand Chain;
1072      if (foldedLoad) {
1073        Chain = N1.getOperand(0);
1074        AddToISelQueue(Chain);
1075      } else
1076        Chain = CurDAG->getEntryNode();
1077
1078      SDOperand InFlag(0, 0);
1079      AddToISelQueue(N0);
1080      Chain  = CurDAG->getCopyToReg(Chain, CurDAG->getRegister(LoReg, NVT),
1081                                    N0, InFlag);
1082      InFlag = Chain.getValue(1);
1083
1084      if (foldedLoad) {
1085        AddToISelQueue(Tmp0);
1086        AddToISelQueue(Tmp1);
1087        AddToISelQueue(Tmp2);
1088        AddToISelQueue(Tmp3);
1089        SDOperand Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Chain, InFlag };
1090        SDNode *CNode =
1091          CurDAG->getTargetNode(MOpc, MVT::Other, MVT::Flag, Ops, 6);
1092        Chain  = SDOperand(CNode, 0);
1093        InFlag = SDOperand(CNode, 1);
1094      } else {
1095        AddToISelQueue(N1);
1096        InFlag =
1097          SDOperand(CurDAG->getTargetNode(Opc, MVT::Flag, N1, InFlag), 0);
1098      }
1099
1100      SDOperand Result = CurDAG->getCopyFromReg(Chain, HiReg, NVT, InFlag);
1101      ReplaceUses(N.getValue(0), Result);
1102      if (foldedLoad)
1103        ReplaceUses(N1.getValue(1), Result.getValue(1));
1104
1105#ifndef NDEBUG
1106      DOUT << std::string(Indent-2, ' ') << "=> ";
1107      DEBUG(Result.Val->dump(CurDAG));
1108      DOUT << "\n";
1109      Indent -= 2;
1110#endif
1111      return NULL;
1112    }
1113
1114    case ISD::SDIV:
1115    case ISD::UDIV:
1116    case ISD::SREM:
1117    case ISD::UREM: {
1118      bool isSigned = Opcode == ISD::SDIV || Opcode == ISD::SREM;
1119      bool isDiv    = Opcode == ISD::SDIV || Opcode == ISD::UDIV;
1120      if (!isSigned)
1121        switch (NVT) {
1122        default: assert(0 && "Unsupported VT!");
1123        case MVT::i8:  Opc = X86::DIV8r;  MOpc = X86::DIV8m;  break;
1124        case MVT::i16: Opc = X86::DIV16r; MOpc = X86::DIV16m; break;
1125        case MVT::i32: Opc = X86::DIV32r; MOpc = X86::DIV32m; break;
1126        case MVT::i64: Opc = X86::DIV64r; MOpc = X86::DIV64m; break;
1127        }
1128      else
1129        switch (NVT) {
1130        default: assert(0 && "Unsupported VT!");
1131        case MVT::i8:  Opc = X86::IDIV8r;  MOpc = X86::IDIV8m;  break;
1132        case MVT::i16: Opc = X86::IDIV16r; MOpc = X86::IDIV16m; break;
1133        case MVT::i32: Opc = X86::IDIV32r; MOpc = X86::IDIV32m; break;
1134        case MVT::i64: Opc = X86::IDIV64r; MOpc = X86::IDIV64m; break;
1135        }
1136
1137      unsigned LoReg, HiReg;
1138      unsigned ClrOpcode, SExtOpcode;
1139      switch (NVT) {
1140      default: assert(0 && "Unsupported VT!");
1141      case MVT::i8:
1142        LoReg = X86::AL;  HiReg = X86::AH;
1143        ClrOpcode  = 0;
1144        SExtOpcode = X86::CBW;
1145        break;
1146      case MVT::i16:
1147        LoReg = X86::AX;  HiReg = X86::DX;
1148        ClrOpcode  = X86::MOV16r0;
1149        SExtOpcode = X86::CWD;
1150        break;
1151      case MVT::i32:
1152        LoReg = X86::EAX; HiReg = X86::EDX;
1153        ClrOpcode  = X86::MOV32r0;
1154        SExtOpcode = X86::CDQ;
1155        break;
1156      case MVT::i64:
1157        LoReg = X86::RAX; HiReg = X86::RDX;
1158        ClrOpcode  = X86::MOV64r0;
1159        SExtOpcode = X86::CQO;
1160        break;
1161      }
1162
1163      SDOperand N0 = Node->getOperand(0);
1164      SDOperand N1 = Node->getOperand(1);
1165      SDOperand InFlag(0, 0);
1166      if (NVT == MVT::i8 && !isSigned) {
1167        // Special case for div8, just use a move with zero extension to AX to
1168        // clear the upper 8 bits (AH).
1169        SDOperand Tmp0, Tmp1, Tmp2, Tmp3, Move, Chain;
1170        if (TryFoldLoad(N, N0, Tmp0, Tmp1, Tmp2, Tmp3)) {
1171          SDOperand Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, N0.getOperand(0) };
1172          AddToISelQueue(N0.getOperand(0));
1173          AddToISelQueue(Tmp0);
1174          AddToISelQueue(Tmp1);
1175          AddToISelQueue(Tmp2);
1176          AddToISelQueue(Tmp3);
1177          Move =
1178            SDOperand(CurDAG->getTargetNode(X86::MOVZX16rm8, MVT::i16, MVT::Other,
1179                                            Ops, 5), 0);
1180          Chain = Move.getValue(1);
1181          ReplaceUses(N0.getValue(1), Chain);
1182        } else {
1183          AddToISelQueue(N0);
1184          Move =
1185            SDOperand(CurDAG->getTargetNode(X86::MOVZX16rr8, MVT::i16, N0), 0);
1186          Chain = CurDAG->getEntryNode();
1187        }
1188        Chain  = CurDAG->getCopyToReg(Chain, X86::AX, Move, InFlag);
1189        InFlag = Chain.getValue(1);
1190      } else {
1191        AddToISelQueue(N0);
1192        InFlag =
1193          CurDAG->getCopyToReg(CurDAG->getEntryNode(), LoReg, N0,
1194                               InFlag).getValue(1);
1195        if (isSigned) {
1196          // Sign extend the low part into the high part.
1197          InFlag =
1198            SDOperand(CurDAG->getTargetNode(SExtOpcode, MVT::Flag, InFlag), 0);
1199        } else {
1200          // Zero out the high part, effectively zero extending the input.
1201          SDOperand ClrNode = SDOperand(CurDAG->getTargetNode(ClrOpcode, NVT), 0);
1202          InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), HiReg, ClrNode,
1203                                        InFlag).getValue(1);
1204        }
1205      }
1206
1207      SDOperand Tmp0, Tmp1, Tmp2, Tmp3, Chain;
1208      bool foldedLoad = TryFoldLoad(N, N1, Tmp0, Tmp1, Tmp2, Tmp3);
1209      if (foldedLoad) {
1210        AddToISelQueue(N1.getOperand(0));
1211        AddToISelQueue(Tmp0);
1212        AddToISelQueue(Tmp1);
1213        AddToISelQueue(Tmp2);
1214        AddToISelQueue(Tmp3);
1215        SDOperand Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, N1.getOperand(0), InFlag };
1216        SDNode *CNode =
1217          CurDAG->getTargetNode(MOpc, MVT::Other, MVT::Flag, Ops, 6);
1218        Chain  = SDOperand(CNode, 0);
1219        InFlag = SDOperand(CNode, 1);
1220      } else {
1221        AddToISelQueue(N1);
1222        Chain = CurDAG->getEntryNode();
1223        InFlag =
1224          SDOperand(CurDAG->getTargetNode(Opc, MVT::Flag, N1, InFlag), 0);
1225      }
1226
1227      SDOperand Result =
1228        CurDAG->getCopyFromReg(Chain, isDiv ? LoReg : HiReg, NVT, InFlag);
1229      ReplaceUses(N.getValue(0), Result);
1230      if (foldedLoad)
1231        ReplaceUses(N1.getValue(1), Result.getValue(1));
1232
1233#ifndef NDEBUG
1234      DOUT << std::string(Indent-2, ' ') << "=> ";
1235      DEBUG(Result.Val->dump(CurDAG));
1236      DOUT << "\n";
1237      Indent -= 2;
1238#endif
1239
1240      return NULL;
1241    }
1242
1243    case ISD::TRUNCATE: {
1244      if (!Subtarget->is64Bit() && NVT == MVT::i8) {
1245        unsigned Opc2;
1246        MVT::ValueType VT;
1247        switch (Node->getOperand(0).getValueType()) {
1248        default: assert(0 && "Unknown truncate!");
1249        case MVT::i16:
1250          Opc = X86::MOV16to16_;
1251          VT = MVT::i16;
1252          Opc2 = X86::TRUNC_16_to8;
1253          break;
1254        case MVT::i32:
1255          Opc = X86::MOV32to32_;
1256          VT = MVT::i32;
1257          Opc2 = X86::TRUNC_32_to8;
1258          break;
1259        }
1260
1261        AddToISelQueue(Node->getOperand(0));
1262        SDOperand Tmp =
1263          SDOperand(CurDAG->getTargetNode(Opc, VT, Node->getOperand(0)), 0);
1264        SDNode *ResNode = CurDAG->getTargetNode(Opc2, NVT, Tmp);
1265
1266#ifndef NDEBUG
1267        DOUT << std::string(Indent-2, ' ') << "=> ";
1268        DEBUG(ResNode->dump(CurDAG));
1269        DOUT << "\n";
1270        Indent -= 2;
1271#endif
1272        return ResNode;
1273      }
1274
1275      break;
1276    }
1277  }
1278
1279  SDNode *ResNode = SelectCode(N);
1280
1281#ifndef NDEBUG
1282  DOUT << std::string(Indent-2, ' ') << "=> ";
1283  if (ResNode == NULL || ResNode == N.Val)
1284    DEBUG(N.Val->dump(CurDAG));
1285  else
1286    DEBUG(ResNode->dump(CurDAG));
1287  DOUT << "\n";
1288  Indent -= 2;
1289#endif
1290
1291  return ResNode;
1292}
1293
1294bool X86DAGToDAGISel::
1295SelectInlineAsmMemoryOperand(const SDOperand &Op, char ConstraintCode,
1296                             std::vector<SDOperand> &OutOps, SelectionDAG &DAG){
1297  SDOperand Op0, Op1, Op2, Op3;
1298  switch (ConstraintCode) {
1299  case 'o':   // offsetable        ??
1300  case 'v':   // not offsetable    ??
1301  default: return true;
1302  case 'm':   // memory
1303    if (!SelectAddr(Op, Op, Op0, Op1, Op2, Op3))
1304      return true;
1305    break;
1306  }
1307
1308  OutOps.push_back(Op0);
1309  OutOps.push_back(Op1);
1310  OutOps.push_back(Op2);
1311  OutOps.push_back(Op3);
1312  AddToISelQueue(Op0);
1313  AddToISelQueue(Op1);
1314  AddToISelQueue(Op2);
1315  AddToISelQueue(Op3);
1316  return false;
1317}
1318
1319/// createX86ISelDag - This pass converts a legalized DAG into a
1320/// X86-specific DAG, ready for instruction scheduling.
1321///
1322FunctionPass *llvm::createX86ISelDag(X86TargetMachine &TM, bool Fast) {
1323  return new X86DAGToDAGISel(TM, Fast);
1324}
1325