X86ISelDAGToDAG.cpp revision b20a8fc8a6bf57dbde0e9238cf535abb4326dc80
1//===- X86ISelDAGToDAG.cpp - A DAG pattern matching inst selector for X86 -===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines a DAG pattern matching instruction selector for X86,
11// converting from a legalized dag to a X86 dag.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "x86-isel"
16#include "X86.h"
17#include "X86InstrBuilder.h"
18#include "X86MachineFunctionInfo.h"
19#include "X86RegisterInfo.h"
20#include "X86Subtarget.h"
21#include "X86TargetMachine.h"
22#include "llvm/Instructions.h"
23#include "llvm/Intrinsics.h"
24#include "llvm/Support/CFG.h"
25#include "llvm/Type.h"
26#include "llvm/CodeGen/MachineConstantPool.h"
27#include "llvm/CodeGen/MachineFunction.h"
28#include "llvm/CodeGen/MachineFrameInfo.h"
29#include "llvm/CodeGen/MachineInstrBuilder.h"
30#include "llvm/CodeGen/MachineRegisterInfo.h"
31#include "llvm/CodeGen/SelectionDAGISel.h"
32#include "llvm/Target/TargetMachine.h"
33#include "llvm/Target/TargetOptions.h"
34#include "llvm/Support/Debug.h"
35#include "llvm/Support/ErrorHandling.h"
36#include "llvm/Support/MathExtras.h"
37#include "llvm/Support/raw_ostream.h"
38#include "llvm/ADT/SmallPtrSet.h"
39#include "llvm/ADT/Statistic.h"
40using namespace llvm;
41
42STATISTIC(NumLoadMoved, "Number of loads moved below TokenFactor");
43
44//===----------------------------------------------------------------------===//
45//                      Pattern Matcher Implementation
46//===----------------------------------------------------------------------===//
47
48namespace {
49  /// X86ISelAddressMode - This corresponds to X86AddressMode, but uses
50  /// SDValue's instead of register numbers for the leaves of the matched
51  /// tree.
52  struct X86ISelAddressMode {
53    enum {
54      RegBase,
55      FrameIndexBase
56    } BaseType;
57
58    // This is really a union, discriminated by BaseType!
59    SDValue Base_Reg;
60    int Base_FrameIndex;
61
62    unsigned Scale;
63    SDValue IndexReg;
64    int32_t Disp;
65    SDValue Segment;
66    const GlobalValue *GV;
67    const Constant *CP;
68    const BlockAddress *BlockAddr;
69    const char *ES;
70    int JT;
71    unsigned Align;    // CP alignment.
72    unsigned char SymbolFlags;  // X86II::MO_*
73
74    X86ISelAddressMode()
75      : BaseType(RegBase), Base_FrameIndex(0), Scale(1), IndexReg(), Disp(0),
76        Segment(), GV(0), CP(0), BlockAddr(0), ES(0), JT(-1), Align(0),
77        SymbolFlags(X86II::MO_NO_FLAG) {
78    }
79
80    bool hasSymbolicDisplacement() const {
81      return GV != 0 || CP != 0 || ES != 0 || JT != -1 || BlockAddr != 0;
82    }
83
84    bool hasBaseOrIndexReg() const {
85      return IndexReg.getNode() != 0 || Base_Reg.getNode() != 0;
86    }
87
88    /// isRIPRelative - Return true if this addressing mode is already RIP
89    /// relative.
90    bool isRIPRelative() const {
91      if (BaseType != RegBase) return false;
92      if (RegisterSDNode *RegNode =
93            dyn_cast_or_null<RegisterSDNode>(Base_Reg.getNode()))
94        return RegNode->getReg() == X86::RIP;
95      return false;
96    }
97
98    void setBaseReg(SDValue Reg) {
99      BaseType = RegBase;
100      Base_Reg = Reg;
101    }
102
103    void dump() {
104      dbgs() << "X86ISelAddressMode " << this << '\n';
105      dbgs() << "Base_Reg ";
106      if (Base_Reg.getNode() != 0)
107        Base_Reg.getNode()->dump();
108      else
109        dbgs() << "nul";
110      dbgs() << " Base.FrameIndex " << Base_FrameIndex << '\n'
111             << " Scale" << Scale << '\n'
112             << "IndexReg ";
113      if (IndexReg.getNode() != 0)
114        IndexReg.getNode()->dump();
115      else
116        dbgs() << "nul";
117      dbgs() << " Disp " << Disp << '\n'
118             << "GV ";
119      if (GV)
120        GV->dump();
121      else
122        dbgs() << "nul";
123      dbgs() << " CP ";
124      if (CP)
125        CP->dump();
126      else
127        dbgs() << "nul";
128      dbgs() << '\n'
129             << "ES ";
130      if (ES)
131        dbgs() << ES;
132      else
133        dbgs() << "nul";
134      dbgs() << " JT" << JT << " Align" << Align << '\n';
135    }
136  };
137}
138
139namespace {
140  //===--------------------------------------------------------------------===//
141  /// ISel - X86 specific code to select X86 machine instructions for
142  /// SelectionDAG operations.
143  ///
144  class X86DAGToDAGISel : public SelectionDAGISel {
145    /// X86Lowering - This object fully describes how to lower LLVM code to an
146    /// X86-specific SelectionDAG.
147    const X86TargetLowering &X86Lowering;
148
149    /// Subtarget - Keep a pointer to the X86Subtarget around so that we can
150    /// make the right decision when generating code for different targets.
151    const X86Subtarget *Subtarget;
152
153    /// OptForSize - If true, selector should try to optimize for code size
154    /// instead of performance.
155    bool OptForSize;
156
157  public:
158    explicit X86DAGToDAGISel(X86TargetMachine &tm, CodeGenOpt::Level OptLevel)
159      : SelectionDAGISel(tm, OptLevel),
160        X86Lowering(*tm.getTargetLowering()),
161        Subtarget(&tm.getSubtarget<X86Subtarget>()),
162        OptForSize(false) {}
163
164    virtual const char *getPassName() const {
165      return "X86 DAG->DAG Instruction Selection";
166    }
167
168    virtual void EmitFunctionEntryCode();
169
170    virtual bool IsProfitableToFold(SDValue N, SDNode *U, SDNode *Root) const;
171
172    virtual void PreprocessISelDAG();
173
174    inline bool immSext8(SDNode *N) const {
175      return isInt<8>(cast<ConstantSDNode>(N)->getSExtValue());
176    }
177
178    // i64immSExt32 predicate - True if the 64-bit immediate fits in a 32-bit
179    // sign extended field.
180    inline bool i64immSExt32(SDNode *N) const {
181      uint64_t v = cast<ConstantSDNode>(N)->getZExtValue();
182      return (int64_t)v == (int32_t)v;
183    }
184
185// Include the pieces autogenerated from the target description.
186#include "X86GenDAGISel.inc"
187
188  private:
189    SDNode *Select(SDNode *N);
190    SDNode *SelectAtomic64(SDNode *Node, unsigned Opc);
191    SDNode *SelectAtomicLoadAdd(SDNode *Node, EVT NVT);
192
193    bool MatchLoadInAddress(LoadSDNode *N, X86ISelAddressMode &AM);
194    bool MatchWrapper(SDValue N, X86ISelAddressMode &AM);
195    bool MatchAddress(SDValue N, X86ISelAddressMode &AM);
196    bool MatchAddressRecursively(SDValue N, X86ISelAddressMode &AM,
197                                 unsigned Depth);
198    bool MatchAddressBase(SDValue N, X86ISelAddressMode &AM);
199    bool SelectAddr(SDNode *Parent, SDValue N, SDValue &Base,
200                    SDValue &Scale, SDValue &Index, SDValue &Disp,
201                    SDValue &Segment);
202    bool SelectLEAAddr(SDValue N, SDValue &Base,
203                       SDValue &Scale, SDValue &Index, SDValue &Disp,
204                       SDValue &Segment);
205    bool SelectTLSADDRAddr(SDValue N, SDValue &Base,
206                           SDValue &Scale, SDValue &Index, SDValue &Disp,
207                           SDValue &Segment);
208    bool SelectScalarSSELoad(SDNode *Root, SDValue N,
209                             SDValue &Base, SDValue &Scale,
210                             SDValue &Index, SDValue &Disp,
211                             SDValue &Segment,
212                             SDValue &NodeWithChain);
213
214    bool TryFoldLoad(SDNode *P, SDValue N,
215                     SDValue &Base, SDValue &Scale,
216                     SDValue &Index, SDValue &Disp,
217                     SDValue &Segment);
218
219    /// SelectInlineAsmMemoryOperand - Implement addressing mode selection for
220    /// inline asm expressions.
221    virtual bool SelectInlineAsmMemoryOperand(const SDValue &Op,
222                                              char ConstraintCode,
223                                              std::vector<SDValue> &OutOps);
224
225    void EmitSpecialCodeForMain(MachineBasicBlock *BB, MachineFrameInfo *MFI);
226
227    inline void getAddressOperands(X86ISelAddressMode &AM, SDValue &Base,
228                                   SDValue &Scale, SDValue &Index,
229                                   SDValue &Disp, SDValue &Segment) {
230      Base  = (AM.BaseType == X86ISelAddressMode::FrameIndexBase) ?
231        CurDAG->getTargetFrameIndex(AM.Base_FrameIndex, TLI.getPointerTy()) :
232        AM.Base_Reg;
233      Scale = getI8Imm(AM.Scale);
234      Index = AM.IndexReg;
235      // These are 32-bit even in 64-bit mode since RIP relative offset
236      // is 32-bit.
237      if (AM.GV)
238        Disp = CurDAG->getTargetGlobalAddress(AM.GV, DebugLoc(),
239                                              MVT::i32, AM.Disp,
240                                              AM.SymbolFlags);
241      else if (AM.CP)
242        Disp = CurDAG->getTargetConstantPool(AM.CP, MVT::i32,
243                                             AM.Align, AM.Disp, AM.SymbolFlags);
244      else if (AM.ES)
245        Disp = CurDAG->getTargetExternalSymbol(AM.ES, MVT::i32, AM.SymbolFlags);
246      else if (AM.JT != -1)
247        Disp = CurDAG->getTargetJumpTable(AM.JT, MVT::i32, AM.SymbolFlags);
248      else if (AM.BlockAddr)
249        Disp = CurDAG->getBlockAddress(AM.BlockAddr, MVT::i32,
250                                       true, AM.SymbolFlags);
251      else
252        Disp = CurDAG->getTargetConstant(AM.Disp, MVT::i32);
253
254      if (AM.Segment.getNode())
255        Segment = AM.Segment;
256      else
257        Segment = CurDAG->getRegister(0, MVT::i32);
258    }
259
260    /// getI8Imm - Return a target constant with the specified value, of type
261    /// i8.
262    inline SDValue getI8Imm(unsigned Imm) {
263      return CurDAG->getTargetConstant(Imm, MVT::i8);
264    }
265
266    /// getI32Imm - Return a target constant with the specified value, of type
267    /// i32.
268    inline SDValue getI32Imm(unsigned Imm) {
269      return CurDAG->getTargetConstant(Imm, MVT::i32);
270    }
271
272    /// getGlobalBaseReg - Return an SDNode that returns the value of
273    /// the global base register. Output instructions required to
274    /// initialize the global base register, if necessary.
275    ///
276    SDNode *getGlobalBaseReg();
277
278    /// getTargetMachine - Return a reference to the TargetMachine, casted
279    /// to the target-specific type.
280    const X86TargetMachine &getTargetMachine() {
281      return static_cast<const X86TargetMachine &>(TM);
282    }
283
284    /// getInstrInfo - Return a reference to the TargetInstrInfo, casted
285    /// to the target-specific type.
286    const X86InstrInfo *getInstrInfo() {
287      return getTargetMachine().getInstrInfo();
288    }
289  };
290}
291
292
293bool
294X86DAGToDAGISel::IsProfitableToFold(SDValue N, SDNode *U, SDNode *Root) const {
295  if (OptLevel == CodeGenOpt::None) return false;
296
297  if (!N.hasOneUse())
298    return false;
299
300  if (N.getOpcode() != ISD::LOAD)
301    return true;
302
303  // If N is a load, do additional profitability checks.
304  if (U == Root) {
305    switch (U->getOpcode()) {
306    default: break;
307    case X86ISD::ADD:
308    case X86ISD::SUB:
309    case X86ISD::AND:
310    case X86ISD::XOR:
311    case X86ISD::OR:
312    case ISD::ADD:
313    case ISD::ADDC:
314    case ISD::ADDE:
315    case ISD::AND:
316    case ISD::OR:
317    case ISD::XOR: {
318      SDValue Op1 = U->getOperand(1);
319
320      // If the other operand is a 8-bit immediate we should fold the immediate
321      // instead. This reduces code size.
322      // e.g.
323      // movl 4(%esp), %eax
324      // addl $4, %eax
325      // vs.
326      // movl $4, %eax
327      // addl 4(%esp), %eax
328      // The former is 2 bytes shorter. In case where the increment is 1, then
329      // the saving can be 4 bytes (by using incl %eax).
330      if (ConstantSDNode *Imm = dyn_cast<ConstantSDNode>(Op1))
331        if (Imm->getAPIntValue().isSignedIntN(8))
332          return false;
333
334      // If the other operand is a TLS address, we should fold it instead.
335      // This produces
336      // movl    %gs:0, %eax
337      // leal    i@NTPOFF(%eax), %eax
338      // instead of
339      // movl    $i@NTPOFF, %eax
340      // addl    %gs:0, %eax
341      // if the block also has an access to a second TLS address this will save
342      // a load.
343      // FIXME: This is probably also true for non TLS addresses.
344      if (Op1.getOpcode() == X86ISD::Wrapper) {
345        SDValue Val = Op1.getOperand(0);
346        if (Val.getOpcode() == ISD::TargetGlobalTLSAddress)
347          return false;
348      }
349    }
350    }
351  }
352
353  return true;
354}
355
356/// MoveBelowCallOrigChain - Replace the original chain operand of the call with
357/// load's chain operand and move load below the call's chain operand.
358static void MoveBelowOrigChain(SelectionDAG *CurDAG, SDValue Load,
359                                  SDValue Call, SDValue OrigChain) {
360  SmallVector<SDValue, 8> Ops;
361  SDValue Chain = OrigChain.getOperand(0);
362  if (Chain.getNode() == Load.getNode())
363    Ops.push_back(Load.getOperand(0));
364  else {
365    assert(Chain.getOpcode() == ISD::TokenFactor &&
366           "Unexpected chain operand");
367    for (unsigned i = 0, e = Chain.getNumOperands(); i != e; ++i)
368      if (Chain.getOperand(i).getNode() == Load.getNode())
369        Ops.push_back(Load.getOperand(0));
370      else
371        Ops.push_back(Chain.getOperand(i));
372    SDValue NewChain =
373      CurDAG->getNode(ISD::TokenFactor, Load.getDebugLoc(),
374                      MVT::Other, &Ops[0], Ops.size());
375    Ops.clear();
376    Ops.push_back(NewChain);
377  }
378  for (unsigned i = 1, e = OrigChain.getNumOperands(); i != e; ++i)
379    Ops.push_back(OrigChain.getOperand(i));
380  CurDAG->UpdateNodeOperands(OrigChain.getNode(), &Ops[0], Ops.size());
381  CurDAG->UpdateNodeOperands(Load.getNode(), Call.getOperand(0),
382                             Load.getOperand(1), Load.getOperand(2));
383  Ops.clear();
384  Ops.push_back(SDValue(Load.getNode(), 1));
385  for (unsigned i = 1, e = Call.getNode()->getNumOperands(); i != e; ++i)
386    Ops.push_back(Call.getOperand(i));
387  CurDAG->UpdateNodeOperands(Call.getNode(), &Ops[0], Ops.size());
388}
389
390/// isCalleeLoad - Return true if call address is a load and it can be
391/// moved below CALLSEQ_START and the chains leading up to the call.
392/// Return the CALLSEQ_START by reference as a second output.
393/// In the case of a tail call, there isn't a callseq node between the call
394/// chain and the load.
395static bool isCalleeLoad(SDValue Callee, SDValue &Chain, bool HasCallSeq) {
396  if (Callee.getNode() == Chain.getNode() || !Callee.hasOneUse())
397    return false;
398  LoadSDNode *LD = dyn_cast<LoadSDNode>(Callee.getNode());
399  if (!LD ||
400      LD->isVolatile() ||
401      LD->getAddressingMode() != ISD::UNINDEXED ||
402      LD->getExtensionType() != ISD::NON_EXTLOAD)
403    return false;
404
405  // Now let's find the callseq_start.
406  while (HasCallSeq && Chain.getOpcode() != ISD::CALLSEQ_START) {
407    if (!Chain.hasOneUse())
408      return false;
409    Chain = Chain.getOperand(0);
410  }
411
412  if (!Chain.getNumOperands())
413    return false;
414  if (Chain.getOperand(0).getNode() == Callee.getNode())
415    return true;
416  if (Chain.getOperand(0).getOpcode() == ISD::TokenFactor &&
417      Callee.getValue(1).isOperandOf(Chain.getOperand(0).getNode()) &&
418      Callee.getValue(1).hasOneUse())
419    return true;
420  return false;
421}
422
423void X86DAGToDAGISel::PreprocessISelDAG() {
424  // OptForSize is used in pattern predicates that isel is matching.
425  OptForSize = MF->getFunction()->hasFnAttr(Attribute::OptimizeForSize);
426
427  for (SelectionDAG::allnodes_iterator I = CurDAG->allnodes_begin(),
428       E = CurDAG->allnodes_end(); I != E; ) {
429    SDNode *N = I++;  // Preincrement iterator to avoid invalidation issues.
430
431    if (OptLevel != CodeGenOpt::None &&
432        (N->getOpcode() == X86ISD::CALL ||
433         N->getOpcode() == X86ISD::TC_RETURN)) {
434      /// Also try moving call address load from outside callseq_start to just
435      /// before the call to allow it to be folded.
436      ///
437      ///     [Load chain]
438      ///         ^
439      ///         |
440      ///       [Load]
441      ///       ^    ^
442      ///       |    |
443      ///      /      \--
444      ///     /          |
445      ///[CALLSEQ_START] |
446      ///     ^          |
447      ///     |          |
448      /// [LOAD/C2Reg]   |
449      ///     |          |
450      ///      \        /
451      ///       \      /
452      ///       [CALL]
453      bool HasCallSeq = N->getOpcode() == X86ISD::CALL;
454      SDValue Chain = N->getOperand(0);
455      SDValue Load  = N->getOperand(1);
456      if (!isCalleeLoad(Load, Chain, HasCallSeq))
457        continue;
458      MoveBelowOrigChain(CurDAG, Load, SDValue(N, 0), Chain);
459      ++NumLoadMoved;
460      continue;
461    }
462
463    // Lower fpround and fpextend nodes that target the FP stack to be store and
464    // load to the stack.  This is a gross hack.  We would like to simply mark
465    // these as being illegal, but when we do that, legalize produces these when
466    // it expands calls, then expands these in the same legalize pass.  We would
467    // like dag combine to be able to hack on these between the call expansion
468    // and the node legalization.  As such this pass basically does "really
469    // late" legalization of these inline with the X86 isel pass.
470    // FIXME: This should only happen when not compiled with -O0.
471    if (N->getOpcode() != ISD::FP_ROUND && N->getOpcode() != ISD::FP_EXTEND)
472      continue;
473
474    // If the source and destination are SSE registers, then this is a legal
475    // conversion that should not be lowered.
476    EVT SrcVT = N->getOperand(0).getValueType();
477    EVT DstVT = N->getValueType(0);
478    bool SrcIsSSE = X86Lowering.isScalarFPTypeInSSEReg(SrcVT);
479    bool DstIsSSE = X86Lowering.isScalarFPTypeInSSEReg(DstVT);
480    if (SrcIsSSE && DstIsSSE)
481      continue;
482
483    if (!SrcIsSSE && !DstIsSSE) {
484      // If this is an FPStack extension, it is a noop.
485      if (N->getOpcode() == ISD::FP_EXTEND)
486        continue;
487      // If this is a value-preserving FPStack truncation, it is a noop.
488      if (N->getConstantOperandVal(1))
489        continue;
490    }
491
492    // Here we could have an FP stack truncation or an FPStack <-> SSE convert.
493    // FPStack has extload and truncstore.  SSE can fold direct loads into other
494    // operations.  Based on this, decide what we want to do.
495    EVT MemVT;
496    if (N->getOpcode() == ISD::FP_ROUND)
497      MemVT = DstVT;  // FP_ROUND must use DstVT, we can't do a 'trunc load'.
498    else
499      MemVT = SrcIsSSE ? SrcVT : DstVT;
500
501    SDValue MemTmp = CurDAG->CreateStackTemporary(MemVT);
502    DebugLoc dl = N->getDebugLoc();
503
504    // FIXME: optimize the case where the src/dest is a load or store?
505    SDValue Store = CurDAG->getTruncStore(CurDAG->getEntryNode(), dl,
506                                          N->getOperand(0),
507                                          MemTmp, MachinePointerInfo(), MemVT,
508                                          false, false, 0);
509    SDValue Result = CurDAG->getExtLoad(ISD::EXTLOAD, dl, DstVT, Store, MemTmp,
510                                        MachinePointerInfo(),
511                                        MemVT, false, false, 0);
512
513    // We're about to replace all uses of the FP_ROUND/FP_EXTEND with the
514    // extload we created.  This will cause general havok on the dag because
515    // anything below the conversion could be folded into other existing nodes.
516    // To avoid invalidating 'I', back it up to the convert node.
517    --I;
518    CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Result);
519
520    // Now that we did that, the node is dead.  Increment the iterator to the
521    // next node to process, then delete N.
522    ++I;
523    CurDAG->DeleteNode(N);
524  }
525}
526
527
528/// EmitSpecialCodeForMain - Emit any code that needs to be executed only in
529/// the main function.
530void X86DAGToDAGISel::EmitSpecialCodeForMain(MachineBasicBlock *BB,
531                                             MachineFrameInfo *MFI) {
532  const TargetInstrInfo *TII = TM.getInstrInfo();
533  if (Subtarget->isTargetCygMing()) {
534    unsigned CallOp =
535      Subtarget->is64Bit() ? X86::WINCALL64pcrel32 : X86::CALLpcrel32;
536    BuildMI(BB, DebugLoc(),
537            TII->get(CallOp)).addExternalSymbol("__main");
538  }
539}
540
541void X86DAGToDAGISel::EmitFunctionEntryCode() {
542  // If this is main, emit special code for main.
543  if (const Function *Fn = MF->getFunction())
544    if (Fn->hasExternalLinkage() && Fn->getName() == "main")
545      EmitSpecialCodeForMain(MF->begin(), MF->getFrameInfo());
546}
547
548
549bool X86DAGToDAGISel::MatchLoadInAddress(LoadSDNode *N, X86ISelAddressMode &AM){
550  SDValue Address = N->getOperand(1);
551
552  // load gs:0 -> GS segment register.
553  // load fs:0 -> FS segment register.
554  //
555  // This optimization is valid because the GNU TLS model defines that
556  // gs:0 (or fs:0 on X86-64) contains its own address.
557  // For more information see http://people.redhat.com/drepper/tls.pdf
558  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Address))
559    if (C->getSExtValue() == 0 && AM.Segment.getNode() == 0 &&
560        Subtarget->isTargetELF())
561      switch (N->getPointerInfo().getAddrSpace()) {
562      case 256:
563        AM.Segment = CurDAG->getRegister(X86::GS, MVT::i16);
564        return false;
565      case 257:
566        AM.Segment = CurDAG->getRegister(X86::FS, MVT::i16);
567        return false;
568      }
569
570  return true;
571}
572
573/// MatchWrapper - Try to match X86ISD::Wrapper and X86ISD::WrapperRIP nodes
574/// into an addressing mode.  These wrap things that will resolve down into a
575/// symbol reference.  If no match is possible, this returns true, otherwise it
576/// returns false.
577bool X86DAGToDAGISel::MatchWrapper(SDValue N, X86ISelAddressMode &AM) {
578  // If the addressing mode already has a symbol as the displacement, we can
579  // never match another symbol.
580  if (AM.hasSymbolicDisplacement())
581    return true;
582
583  SDValue N0 = N.getOperand(0);
584  CodeModel::Model M = TM.getCodeModel();
585
586  // Handle X86-64 rip-relative addresses.  We check this before checking direct
587  // folding because RIP is preferable to non-RIP accesses.
588  if (Subtarget->is64Bit() &&
589      // Under X86-64 non-small code model, GV (and friends) are 64-bits, so
590      // they cannot be folded into immediate fields.
591      // FIXME: This can be improved for kernel and other models?
592      (M == CodeModel::Small || M == CodeModel::Kernel) &&
593      // Base and index reg must be 0 in order to use %rip as base and lowering
594      // must allow RIP.
595      !AM.hasBaseOrIndexReg() && N.getOpcode() == X86ISD::WrapperRIP) {
596    if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(N0)) {
597      int64_t Offset = AM.Disp + G->getOffset();
598      if (!X86::isOffsetSuitableForCodeModel(Offset, M)) return true;
599      AM.GV = G->getGlobal();
600      AM.Disp = Offset;
601      AM.SymbolFlags = G->getTargetFlags();
602    } else if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(N0)) {
603      int64_t Offset = AM.Disp + CP->getOffset();
604      if (!X86::isOffsetSuitableForCodeModel(Offset, M)) return true;
605      AM.CP = CP->getConstVal();
606      AM.Align = CP->getAlignment();
607      AM.Disp = Offset;
608      AM.SymbolFlags = CP->getTargetFlags();
609    } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(N0)) {
610      AM.ES = S->getSymbol();
611      AM.SymbolFlags = S->getTargetFlags();
612    } else if (JumpTableSDNode *J = dyn_cast<JumpTableSDNode>(N0)) {
613      AM.JT = J->getIndex();
614      AM.SymbolFlags = J->getTargetFlags();
615    } else {
616      AM.BlockAddr = cast<BlockAddressSDNode>(N0)->getBlockAddress();
617      AM.SymbolFlags = cast<BlockAddressSDNode>(N0)->getTargetFlags();
618    }
619
620    if (N.getOpcode() == X86ISD::WrapperRIP)
621      AM.setBaseReg(CurDAG->getRegister(X86::RIP, MVT::i64));
622    return false;
623  }
624
625  // Handle the case when globals fit in our immediate field: This is true for
626  // X86-32 always and X86-64 when in -static -mcmodel=small mode.  In 64-bit
627  // mode, this results in a non-RIP-relative computation.
628  if (!Subtarget->is64Bit() ||
629      ((M == CodeModel::Small || M == CodeModel::Kernel) &&
630       TM.getRelocationModel() == Reloc::Static)) {
631    if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(N0)) {
632      AM.GV = G->getGlobal();
633      AM.Disp += G->getOffset();
634      AM.SymbolFlags = G->getTargetFlags();
635    } else if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(N0)) {
636      AM.CP = CP->getConstVal();
637      AM.Align = CP->getAlignment();
638      AM.Disp += CP->getOffset();
639      AM.SymbolFlags = CP->getTargetFlags();
640    } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(N0)) {
641      AM.ES = S->getSymbol();
642      AM.SymbolFlags = S->getTargetFlags();
643    } else if (JumpTableSDNode *J = dyn_cast<JumpTableSDNode>(N0)) {
644      AM.JT = J->getIndex();
645      AM.SymbolFlags = J->getTargetFlags();
646    } else {
647      AM.BlockAddr = cast<BlockAddressSDNode>(N0)->getBlockAddress();
648      AM.SymbolFlags = cast<BlockAddressSDNode>(N0)->getTargetFlags();
649    }
650    return false;
651  }
652
653  return true;
654}
655
656/// MatchAddress - Add the specified node to the specified addressing mode,
657/// returning true if it cannot be done.  This just pattern matches for the
658/// addressing mode.
659bool X86DAGToDAGISel::MatchAddress(SDValue N, X86ISelAddressMode &AM) {
660  if (MatchAddressRecursively(N, AM, 0))
661    return true;
662
663  // Post-processing: Convert lea(,%reg,2) to lea(%reg,%reg), which has
664  // a smaller encoding and avoids a scaled-index.
665  if (AM.Scale == 2 &&
666      AM.BaseType == X86ISelAddressMode::RegBase &&
667      AM.Base_Reg.getNode() == 0) {
668    AM.Base_Reg = AM.IndexReg;
669    AM.Scale = 1;
670  }
671
672  // Post-processing: Convert foo to foo(%rip), even in non-PIC mode,
673  // because it has a smaller encoding.
674  // TODO: Which other code models can use this?
675  if (TM.getCodeModel() == CodeModel::Small &&
676      Subtarget->is64Bit() &&
677      AM.Scale == 1 &&
678      AM.BaseType == X86ISelAddressMode::RegBase &&
679      AM.Base_Reg.getNode() == 0 &&
680      AM.IndexReg.getNode() == 0 &&
681      AM.SymbolFlags == X86II::MO_NO_FLAG &&
682      AM.hasSymbolicDisplacement())
683    AM.Base_Reg = CurDAG->getRegister(X86::RIP, MVT::i64);
684
685  return false;
686}
687
688bool X86DAGToDAGISel::MatchAddressRecursively(SDValue N, X86ISelAddressMode &AM,
689                                              unsigned Depth) {
690  bool is64Bit = Subtarget->is64Bit();
691  DebugLoc dl = N.getDebugLoc();
692  DEBUG({
693      dbgs() << "MatchAddress: ";
694      AM.dump();
695    });
696  // Limit recursion.
697  if (Depth > 5)
698    return MatchAddressBase(N, AM);
699
700  CodeModel::Model M = TM.getCodeModel();
701
702  // If this is already a %rip relative address, we can only merge immediates
703  // into it.  Instead of handling this in every case, we handle it here.
704  // RIP relative addressing: %rip + 32-bit displacement!
705  if (AM.isRIPRelative()) {
706    // FIXME: JumpTable and ExternalSymbol address currently don't like
707    // displacements.  It isn't very important, but this should be fixed for
708    // consistency.
709    if (!AM.ES && AM.JT != -1) return true;
710
711    if (ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(N)) {
712      int64_t Val = AM.Disp + Cst->getSExtValue();
713      if (X86::isOffsetSuitableForCodeModel(Val, M,
714                                            AM.hasSymbolicDisplacement())) {
715        AM.Disp = Val;
716        return false;
717      }
718    }
719    return true;
720  }
721
722  switch (N.getOpcode()) {
723  default: break;
724  case ISD::Constant: {
725    uint64_t Val = cast<ConstantSDNode>(N)->getSExtValue();
726    if (!is64Bit ||
727        X86::isOffsetSuitableForCodeModel(AM.Disp + Val, M,
728                                          AM.hasSymbolicDisplacement())) {
729      AM.Disp += Val;
730      return false;
731    }
732    break;
733  }
734
735  case X86ISD::Wrapper:
736  case X86ISD::WrapperRIP:
737    if (!MatchWrapper(N, AM))
738      return false;
739    break;
740
741  case ISD::LOAD:
742    if (!MatchLoadInAddress(cast<LoadSDNode>(N), AM))
743      return false;
744    break;
745
746  case ISD::FrameIndex:
747    if (AM.BaseType == X86ISelAddressMode::RegBase
748        && AM.Base_Reg.getNode() == 0) {
749      AM.BaseType = X86ISelAddressMode::FrameIndexBase;
750      AM.Base_FrameIndex = cast<FrameIndexSDNode>(N)->getIndex();
751      return false;
752    }
753    break;
754
755  case ISD::SHL:
756    if (AM.IndexReg.getNode() != 0 || AM.Scale != 1)
757      break;
758
759    if (ConstantSDNode
760          *CN = dyn_cast<ConstantSDNode>(N.getNode()->getOperand(1))) {
761      unsigned Val = CN->getZExtValue();
762      // Note that we handle x<<1 as (,x,2) rather than (x,x) here so
763      // that the base operand remains free for further matching. If
764      // the base doesn't end up getting used, a post-processing step
765      // in MatchAddress turns (,x,2) into (x,x), which is cheaper.
766      if (Val == 1 || Val == 2 || Val == 3) {
767        AM.Scale = 1 << Val;
768        SDValue ShVal = N.getNode()->getOperand(0);
769
770        // Okay, we know that we have a scale by now.  However, if the scaled
771        // value is an add of something and a constant, we can fold the
772        // constant into the disp field here.
773        if (CurDAG->isBaseWithConstantOffset(ShVal)) {
774          AM.IndexReg = ShVal.getNode()->getOperand(0);
775          ConstantSDNode *AddVal =
776            cast<ConstantSDNode>(ShVal.getNode()->getOperand(1));
777          uint64_t Disp = AM.Disp + (AddVal->getSExtValue() << Val);
778          if (!is64Bit ||
779              X86::isOffsetSuitableForCodeModel(Disp, M,
780                                                AM.hasSymbolicDisplacement()))
781            AM.Disp = Disp;
782          else
783            AM.IndexReg = ShVal;
784        } else {
785          AM.IndexReg = ShVal;
786        }
787        return false;
788      }
789    break;
790    }
791
792  case ISD::SMUL_LOHI:
793  case ISD::UMUL_LOHI:
794    // A mul_lohi where we need the low part can be folded as a plain multiply.
795    if (N.getResNo() != 0) break;
796    // FALL THROUGH
797  case ISD::MUL:
798  case X86ISD::MUL_IMM:
799    // X*[3,5,9] -> X+X*[2,4,8]
800    if (AM.BaseType == X86ISelAddressMode::RegBase &&
801        AM.Base_Reg.getNode() == 0 &&
802        AM.IndexReg.getNode() == 0) {
803      if (ConstantSDNode
804            *CN = dyn_cast<ConstantSDNode>(N.getNode()->getOperand(1)))
805        if (CN->getZExtValue() == 3 || CN->getZExtValue() == 5 ||
806            CN->getZExtValue() == 9) {
807          AM.Scale = unsigned(CN->getZExtValue())-1;
808
809          SDValue MulVal = N.getNode()->getOperand(0);
810          SDValue Reg;
811
812          // Okay, we know that we have a scale by now.  However, if the scaled
813          // value is an add of something and a constant, we can fold the
814          // constant into the disp field here.
815          if (MulVal.getNode()->getOpcode() == ISD::ADD && MulVal.hasOneUse() &&
816              isa<ConstantSDNode>(MulVal.getNode()->getOperand(1))) {
817            Reg = MulVal.getNode()->getOperand(0);
818            ConstantSDNode *AddVal =
819              cast<ConstantSDNode>(MulVal.getNode()->getOperand(1));
820            uint64_t Disp = AM.Disp + AddVal->getSExtValue() *
821                                      CN->getZExtValue();
822            if (!is64Bit ||
823                X86::isOffsetSuitableForCodeModel(Disp, M,
824                                                  AM.hasSymbolicDisplacement()))
825              AM.Disp = Disp;
826            else
827              Reg = N.getNode()->getOperand(0);
828          } else {
829            Reg = N.getNode()->getOperand(0);
830          }
831
832          AM.IndexReg = AM.Base_Reg = Reg;
833          return false;
834        }
835    }
836    break;
837
838  case ISD::SUB: {
839    // Given A-B, if A can be completely folded into the address and
840    // the index field with the index field unused, use -B as the index.
841    // This is a win if a has multiple parts that can be folded into
842    // the address. Also, this saves a mov if the base register has
843    // other uses, since it avoids a two-address sub instruction, however
844    // it costs an additional mov if the index register has other uses.
845
846    // Add an artificial use to this node so that we can keep track of
847    // it if it gets CSE'd with a different node.
848    HandleSDNode Handle(N);
849
850    // Test if the LHS of the sub can be folded.
851    X86ISelAddressMode Backup = AM;
852    if (MatchAddressRecursively(N.getNode()->getOperand(0), AM, Depth+1)) {
853      AM = Backup;
854      break;
855    }
856    // Test if the index field is free for use.
857    if (AM.IndexReg.getNode() || AM.isRIPRelative()) {
858      AM = Backup;
859      break;
860    }
861
862    int Cost = 0;
863    SDValue RHS = Handle.getValue().getNode()->getOperand(1);
864    // If the RHS involves a register with multiple uses, this
865    // transformation incurs an extra mov, due to the neg instruction
866    // clobbering its operand.
867    if (!RHS.getNode()->hasOneUse() ||
868        RHS.getNode()->getOpcode() == ISD::CopyFromReg ||
869        RHS.getNode()->getOpcode() == ISD::TRUNCATE ||
870        RHS.getNode()->getOpcode() == ISD::ANY_EXTEND ||
871        (RHS.getNode()->getOpcode() == ISD::ZERO_EXTEND &&
872         RHS.getNode()->getOperand(0).getValueType() == MVT::i32))
873      ++Cost;
874    // If the base is a register with multiple uses, this
875    // transformation may save a mov.
876    if ((AM.BaseType == X86ISelAddressMode::RegBase &&
877         AM.Base_Reg.getNode() &&
878         !AM.Base_Reg.getNode()->hasOneUse()) ||
879        AM.BaseType == X86ISelAddressMode::FrameIndexBase)
880      --Cost;
881    // If the folded LHS was interesting, this transformation saves
882    // address arithmetic.
883    if ((AM.hasSymbolicDisplacement() && !Backup.hasSymbolicDisplacement()) +
884        ((AM.Disp != 0) && (Backup.Disp == 0)) +
885        (AM.Segment.getNode() && !Backup.Segment.getNode()) >= 2)
886      --Cost;
887    // If it doesn't look like it may be an overall win, don't do it.
888    if (Cost >= 0) {
889      AM = Backup;
890      break;
891    }
892
893    // Ok, the transformation is legal and appears profitable. Go for it.
894    SDValue Zero = CurDAG->getConstant(0, N.getValueType());
895    SDValue Neg = CurDAG->getNode(ISD::SUB, dl, N.getValueType(), Zero, RHS);
896    AM.IndexReg = Neg;
897    AM.Scale = 1;
898
899    // Insert the new nodes into the topological ordering.
900    if (Zero.getNode()->getNodeId() == -1 ||
901        Zero.getNode()->getNodeId() > N.getNode()->getNodeId()) {
902      CurDAG->RepositionNode(N.getNode(), Zero.getNode());
903      Zero.getNode()->setNodeId(N.getNode()->getNodeId());
904    }
905    if (Neg.getNode()->getNodeId() == -1 ||
906        Neg.getNode()->getNodeId() > N.getNode()->getNodeId()) {
907      CurDAG->RepositionNode(N.getNode(), Neg.getNode());
908      Neg.getNode()->setNodeId(N.getNode()->getNodeId());
909    }
910    return false;
911  }
912
913  case ISD::ADD: {
914    // Add an artificial use to this node so that we can keep track of
915    // it if it gets CSE'd with a different node.
916    HandleSDNode Handle(N);
917
918    X86ISelAddressMode Backup = AM;
919    if (!MatchAddressRecursively(N.getOperand(0), AM, Depth+1) &&
920        !MatchAddressRecursively(Handle.getValue().getOperand(1), AM, Depth+1))
921      return false;
922    AM = Backup;
923
924    // Try again after commuting the operands.
925    if (!MatchAddressRecursively(Handle.getValue().getOperand(1), AM, Depth+1)&&
926        !MatchAddressRecursively(Handle.getValue().getOperand(0), AM, Depth+1))
927      return false;
928    AM = Backup;
929
930    // If we couldn't fold both operands into the address at the same time,
931    // see if we can just put each operand into a register and fold at least
932    // the add.
933    if (AM.BaseType == X86ISelAddressMode::RegBase &&
934        !AM.Base_Reg.getNode() &&
935        !AM.IndexReg.getNode()) {
936      N = Handle.getValue();
937      AM.Base_Reg = N.getOperand(0);
938      AM.IndexReg = N.getOperand(1);
939      AM.Scale = 1;
940      return false;
941    }
942    N = Handle.getValue();
943    break;
944  }
945
946  case ISD::OR:
947    // Handle "X | C" as "X + C" iff X is known to have C bits clear.
948    if (CurDAG->isBaseWithConstantOffset(N)) {
949      X86ISelAddressMode Backup = AM;
950      ConstantSDNode *CN = cast<ConstantSDNode>(N.getOperand(1));
951      uint64_t Offset = CN->getSExtValue();
952
953      // Start with the LHS as an addr mode.
954      if (!MatchAddressRecursively(N.getOperand(0), AM, Depth+1) &&
955          // Address could not have picked a GV address for the displacement.
956          AM.GV == NULL &&
957          // On x86-64, the resultant disp must fit in 32-bits.
958          (!is64Bit ||
959           X86::isOffsetSuitableForCodeModel(AM.Disp + Offset, M,
960                                             AM.hasSymbolicDisplacement()))) {
961        AM.Disp += Offset;
962        return false;
963      }
964      AM = Backup;
965    }
966    break;
967
968  case ISD::AND: {
969    // Perform some heroic transforms on an and of a constant-count shift
970    // with a constant to enable use of the scaled offset field.
971
972    SDValue Shift = N.getOperand(0);
973    if (Shift.getNumOperands() != 2) break;
974
975    // Scale must not be used already.
976    if (AM.IndexReg.getNode() != 0 || AM.Scale != 1) break;
977
978    SDValue X = Shift.getOperand(0);
979    ConstantSDNode *C2 = dyn_cast<ConstantSDNode>(N.getOperand(1));
980    ConstantSDNode *C1 = dyn_cast<ConstantSDNode>(Shift.getOperand(1));
981    if (!C1 || !C2) break;
982
983    // Handle "(X >> (8-C1)) & C2" as "(X >> 8) & 0xff)" if safe. This
984    // allows us to convert the shift and and into an h-register extract and
985    // a scaled index.
986    if (Shift.getOpcode() == ISD::SRL && Shift.hasOneUse()) {
987      unsigned ScaleLog = 8 - C1->getZExtValue();
988      if (ScaleLog > 0 && ScaleLog < 4 &&
989          C2->getZExtValue() == (UINT64_C(0xff) << ScaleLog)) {
990        SDValue Eight = CurDAG->getConstant(8, MVT::i8);
991        SDValue Mask = CurDAG->getConstant(0xff, N.getValueType());
992        SDValue Srl = CurDAG->getNode(ISD::SRL, dl, N.getValueType(),
993                                      X, Eight);
994        SDValue And = CurDAG->getNode(ISD::AND, dl, N.getValueType(),
995                                      Srl, Mask);
996        SDValue ShlCount = CurDAG->getConstant(ScaleLog, MVT::i8);
997        SDValue Shl = CurDAG->getNode(ISD::SHL, dl, N.getValueType(),
998                                      And, ShlCount);
999
1000        // Insert the new nodes into the topological ordering.
1001        if (Eight.getNode()->getNodeId() == -1 ||
1002            Eight.getNode()->getNodeId() > X.getNode()->getNodeId()) {
1003          CurDAG->RepositionNode(X.getNode(), Eight.getNode());
1004          Eight.getNode()->setNodeId(X.getNode()->getNodeId());
1005        }
1006        if (Mask.getNode()->getNodeId() == -1 ||
1007            Mask.getNode()->getNodeId() > X.getNode()->getNodeId()) {
1008          CurDAG->RepositionNode(X.getNode(), Mask.getNode());
1009          Mask.getNode()->setNodeId(X.getNode()->getNodeId());
1010        }
1011        if (Srl.getNode()->getNodeId() == -1 ||
1012            Srl.getNode()->getNodeId() > Shift.getNode()->getNodeId()) {
1013          CurDAG->RepositionNode(Shift.getNode(), Srl.getNode());
1014          Srl.getNode()->setNodeId(Shift.getNode()->getNodeId());
1015        }
1016        if (And.getNode()->getNodeId() == -1 ||
1017            And.getNode()->getNodeId() > N.getNode()->getNodeId()) {
1018          CurDAG->RepositionNode(N.getNode(), And.getNode());
1019          And.getNode()->setNodeId(N.getNode()->getNodeId());
1020        }
1021        if (ShlCount.getNode()->getNodeId() == -1 ||
1022            ShlCount.getNode()->getNodeId() > X.getNode()->getNodeId()) {
1023          CurDAG->RepositionNode(X.getNode(), ShlCount.getNode());
1024          ShlCount.getNode()->setNodeId(N.getNode()->getNodeId());
1025        }
1026        if (Shl.getNode()->getNodeId() == -1 ||
1027            Shl.getNode()->getNodeId() > N.getNode()->getNodeId()) {
1028          CurDAG->RepositionNode(N.getNode(), Shl.getNode());
1029          Shl.getNode()->setNodeId(N.getNode()->getNodeId());
1030        }
1031        CurDAG->ReplaceAllUsesWith(N, Shl);
1032        AM.IndexReg = And;
1033        AM.Scale = (1 << ScaleLog);
1034        return false;
1035      }
1036    }
1037
1038    // Handle "(X << C1) & C2" as "(X & (C2>>C1)) << C1" if safe and if this
1039    // allows us to fold the shift into this addressing mode.
1040    if (Shift.getOpcode() != ISD::SHL) break;
1041
1042    // Not likely to be profitable if either the AND or SHIFT node has more
1043    // than one use (unless all uses are for address computation). Besides,
1044    // isel mechanism requires their node ids to be reused.
1045    if (!N.hasOneUse() || !Shift.hasOneUse())
1046      break;
1047
1048    // Verify that the shift amount is something we can fold.
1049    unsigned ShiftCst = C1->getZExtValue();
1050    if (ShiftCst != 1 && ShiftCst != 2 && ShiftCst != 3)
1051      break;
1052
1053    // Get the new AND mask, this folds to a constant.
1054    SDValue NewANDMask = CurDAG->getNode(ISD::SRL, dl, N.getValueType(),
1055                                         SDValue(C2, 0), SDValue(C1, 0));
1056    SDValue NewAND = CurDAG->getNode(ISD::AND, dl, N.getValueType(), X,
1057                                     NewANDMask);
1058    SDValue NewSHIFT = CurDAG->getNode(ISD::SHL, dl, N.getValueType(),
1059                                       NewAND, SDValue(C1, 0));
1060
1061    // Insert the new nodes into the topological ordering.
1062    if (C1->getNodeId() > X.getNode()->getNodeId()) {
1063      CurDAG->RepositionNode(X.getNode(), C1);
1064      C1->setNodeId(X.getNode()->getNodeId());
1065    }
1066    if (NewANDMask.getNode()->getNodeId() == -1 ||
1067        NewANDMask.getNode()->getNodeId() > X.getNode()->getNodeId()) {
1068      CurDAG->RepositionNode(X.getNode(), NewANDMask.getNode());
1069      NewANDMask.getNode()->setNodeId(X.getNode()->getNodeId());
1070    }
1071    if (NewAND.getNode()->getNodeId() == -1 ||
1072        NewAND.getNode()->getNodeId() > Shift.getNode()->getNodeId()) {
1073      CurDAG->RepositionNode(Shift.getNode(), NewAND.getNode());
1074      NewAND.getNode()->setNodeId(Shift.getNode()->getNodeId());
1075    }
1076    if (NewSHIFT.getNode()->getNodeId() == -1 ||
1077        NewSHIFT.getNode()->getNodeId() > N.getNode()->getNodeId()) {
1078      CurDAG->RepositionNode(N.getNode(), NewSHIFT.getNode());
1079      NewSHIFT.getNode()->setNodeId(N.getNode()->getNodeId());
1080    }
1081
1082    CurDAG->ReplaceAllUsesWith(N, NewSHIFT);
1083
1084    AM.Scale = 1 << ShiftCst;
1085    AM.IndexReg = NewAND;
1086    return false;
1087  }
1088  }
1089
1090  return MatchAddressBase(N, AM);
1091}
1092
1093/// MatchAddressBase - Helper for MatchAddress. Add the specified node to the
1094/// specified addressing mode without any further recursion.
1095bool X86DAGToDAGISel::MatchAddressBase(SDValue N, X86ISelAddressMode &AM) {
1096  // Is the base register already occupied?
1097  if (AM.BaseType != X86ISelAddressMode::RegBase || AM.Base_Reg.getNode()) {
1098    // If so, check to see if the scale index register is set.
1099    if (AM.IndexReg.getNode() == 0) {
1100      AM.IndexReg = N;
1101      AM.Scale = 1;
1102      return false;
1103    }
1104
1105    // Otherwise, we cannot select it.
1106    return true;
1107  }
1108
1109  // Default, generate it as a register.
1110  AM.BaseType = X86ISelAddressMode::RegBase;
1111  AM.Base_Reg = N;
1112  return false;
1113}
1114
1115/// SelectAddr - returns true if it is able pattern match an addressing mode.
1116/// It returns the operands which make up the maximal addressing mode it can
1117/// match by reference.
1118///
1119/// Parent is the parent node of the addr operand that is being matched.  It
1120/// is always a load, store, atomic node, or null.  It is only null when
1121/// checking memory operands for inline asm nodes.
1122bool X86DAGToDAGISel::SelectAddr(SDNode *Parent, SDValue N, SDValue &Base,
1123                                 SDValue &Scale, SDValue &Index,
1124                                 SDValue &Disp, SDValue &Segment) {
1125  X86ISelAddressMode AM;
1126
1127  if (Parent &&
1128      // This list of opcodes are all the nodes that have an "addr:$ptr" operand
1129      // that are not a MemSDNode, and thus don't have proper addrspace info.
1130      Parent->getOpcode() != ISD::INTRINSIC_W_CHAIN && // unaligned loads, fixme
1131      Parent->getOpcode() != ISD::INTRINSIC_VOID && // nontemporal stores
1132      Parent->getOpcode() != X86ISD::TLSCALL) { // Fixme
1133    unsigned AddrSpace =
1134      cast<MemSDNode>(Parent)->getPointerInfo().getAddrSpace();
1135    // AddrSpace 256 -> GS, 257 -> FS.
1136    if (AddrSpace == 256)
1137      AM.Segment = CurDAG->getRegister(X86::GS, MVT::i16);
1138    if (AddrSpace == 257)
1139      AM.Segment = CurDAG->getRegister(X86::FS, MVT::i16);
1140  }
1141
1142  if (MatchAddress(N, AM))
1143    return false;
1144
1145  EVT VT = N.getValueType();
1146  if (AM.BaseType == X86ISelAddressMode::RegBase) {
1147    if (!AM.Base_Reg.getNode())
1148      AM.Base_Reg = CurDAG->getRegister(0, VT);
1149  }
1150
1151  if (!AM.IndexReg.getNode())
1152    AM.IndexReg = CurDAG->getRegister(0, VT);
1153
1154  getAddressOperands(AM, Base, Scale, Index, Disp, Segment);
1155  return true;
1156}
1157
1158/// SelectScalarSSELoad - Match a scalar SSE load.  In particular, we want to
1159/// match a load whose top elements are either undef or zeros.  The load flavor
1160/// is derived from the type of N, which is either v4f32 or v2f64.
1161///
1162/// We also return:
1163///   PatternChainNode: this is the matched node that has a chain input and
1164///   output.
1165bool X86DAGToDAGISel::SelectScalarSSELoad(SDNode *Root,
1166                                          SDValue N, SDValue &Base,
1167                                          SDValue &Scale, SDValue &Index,
1168                                          SDValue &Disp, SDValue &Segment,
1169                                          SDValue &PatternNodeWithChain) {
1170  if (N.getOpcode() == ISD::SCALAR_TO_VECTOR) {
1171    PatternNodeWithChain = N.getOperand(0);
1172    if (ISD::isNON_EXTLoad(PatternNodeWithChain.getNode()) &&
1173        PatternNodeWithChain.hasOneUse() &&
1174        IsProfitableToFold(N.getOperand(0), N.getNode(), Root) &&
1175        IsLegalToFold(N.getOperand(0), N.getNode(), Root, OptLevel)) {
1176      LoadSDNode *LD = cast<LoadSDNode>(PatternNodeWithChain);
1177      if (!SelectAddr(LD, LD->getBasePtr(), Base, Scale, Index, Disp, Segment))
1178        return false;
1179      return true;
1180    }
1181  }
1182
1183  // Also handle the case where we explicitly require zeros in the top
1184  // elements.  This is a vector shuffle from the zero vector.
1185  if (N.getOpcode() == X86ISD::VZEXT_MOVL && N.getNode()->hasOneUse() &&
1186      // Check to see if the top elements are all zeros (or bitcast of zeros).
1187      N.getOperand(0).getOpcode() == ISD::SCALAR_TO_VECTOR &&
1188      N.getOperand(0).getNode()->hasOneUse() &&
1189      ISD::isNON_EXTLoad(N.getOperand(0).getOperand(0).getNode()) &&
1190      N.getOperand(0).getOperand(0).hasOneUse() &&
1191      IsProfitableToFold(N.getOperand(0), N.getNode(), Root) &&
1192      IsLegalToFold(N.getOperand(0), N.getNode(), Root, OptLevel)) {
1193    // Okay, this is a zero extending load.  Fold it.
1194    LoadSDNode *LD = cast<LoadSDNode>(N.getOperand(0).getOperand(0));
1195    if (!SelectAddr(LD, LD->getBasePtr(), Base, Scale, Index, Disp, Segment))
1196      return false;
1197    PatternNodeWithChain = SDValue(LD, 0);
1198    return true;
1199  }
1200  return false;
1201}
1202
1203
1204/// SelectLEAAddr - it calls SelectAddr and determines if the maximal addressing
1205/// mode it matches can be cost effectively emitted as an LEA instruction.
1206bool X86DAGToDAGISel::SelectLEAAddr(SDValue N,
1207                                    SDValue &Base, SDValue &Scale,
1208                                    SDValue &Index, SDValue &Disp,
1209                                    SDValue &Segment) {
1210  X86ISelAddressMode AM;
1211
1212  // Set AM.Segment to prevent MatchAddress from using one. LEA doesn't support
1213  // segments.
1214  SDValue Copy = AM.Segment;
1215  SDValue T = CurDAG->getRegister(0, MVT::i32);
1216  AM.Segment = T;
1217  if (MatchAddress(N, AM))
1218    return false;
1219  assert (T == AM.Segment);
1220  AM.Segment = Copy;
1221
1222  EVT VT = N.getValueType();
1223  unsigned Complexity = 0;
1224  if (AM.BaseType == X86ISelAddressMode::RegBase)
1225    if (AM.Base_Reg.getNode())
1226      Complexity = 1;
1227    else
1228      AM.Base_Reg = CurDAG->getRegister(0, VT);
1229  else if (AM.BaseType == X86ISelAddressMode::FrameIndexBase)
1230    Complexity = 4;
1231
1232  if (AM.IndexReg.getNode())
1233    Complexity++;
1234  else
1235    AM.IndexReg = CurDAG->getRegister(0, VT);
1236
1237  // Don't match just leal(,%reg,2). It's cheaper to do addl %reg, %reg, or with
1238  // a simple shift.
1239  if (AM.Scale > 1)
1240    Complexity++;
1241
1242  // FIXME: We are artificially lowering the criteria to turn ADD %reg, $GA
1243  // to a LEA. This is determined with some expermentation but is by no means
1244  // optimal (especially for code size consideration). LEA is nice because of
1245  // its three-address nature. Tweak the cost function again when we can run
1246  // convertToThreeAddress() at register allocation time.
1247  if (AM.hasSymbolicDisplacement()) {
1248    // For X86-64, we should always use lea to materialize RIP relative
1249    // addresses.
1250    if (Subtarget->is64Bit())
1251      Complexity = 4;
1252    else
1253      Complexity += 2;
1254  }
1255
1256  if (AM.Disp && (AM.Base_Reg.getNode() || AM.IndexReg.getNode()))
1257    Complexity++;
1258
1259  // If it isn't worth using an LEA, reject it.
1260  if (Complexity <= 2)
1261    return false;
1262
1263  getAddressOperands(AM, Base, Scale, Index, Disp, Segment);
1264  return true;
1265}
1266
1267/// SelectTLSADDRAddr - This is only run on TargetGlobalTLSAddress nodes.
1268bool X86DAGToDAGISel::SelectTLSADDRAddr(SDValue N, SDValue &Base,
1269                                        SDValue &Scale, SDValue &Index,
1270                                        SDValue &Disp, SDValue &Segment) {
1271  assert(N.getOpcode() == ISD::TargetGlobalTLSAddress);
1272  const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
1273
1274  X86ISelAddressMode AM;
1275  AM.GV = GA->getGlobal();
1276  AM.Disp += GA->getOffset();
1277  AM.Base_Reg = CurDAG->getRegister(0, N.getValueType());
1278  AM.SymbolFlags = GA->getTargetFlags();
1279
1280  if (N.getValueType() == MVT::i32) {
1281    AM.Scale = 1;
1282    AM.IndexReg = CurDAG->getRegister(X86::EBX, MVT::i32);
1283  } else {
1284    AM.IndexReg = CurDAG->getRegister(0, MVT::i64);
1285  }
1286
1287  getAddressOperands(AM, Base, Scale, Index, Disp, Segment);
1288  return true;
1289}
1290
1291
1292bool X86DAGToDAGISel::TryFoldLoad(SDNode *P, SDValue N,
1293                                  SDValue &Base, SDValue &Scale,
1294                                  SDValue &Index, SDValue &Disp,
1295                                  SDValue &Segment) {
1296  if (!ISD::isNON_EXTLoad(N.getNode()) ||
1297      !IsProfitableToFold(N, P, P) ||
1298      !IsLegalToFold(N, P, P, OptLevel))
1299    return false;
1300
1301  return SelectAddr(N.getNode(),
1302                    N.getOperand(1), Base, Scale, Index, Disp, Segment);
1303}
1304
1305/// getGlobalBaseReg - Return an SDNode that returns the value of
1306/// the global base register. Output instructions required to
1307/// initialize the global base register, if necessary.
1308///
1309SDNode *X86DAGToDAGISel::getGlobalBaseReg() {
1310  unsigned GlobalBaseReg = getInstrInfo()->getGlobalBaseReg(MF);
1311  return CurDAG->getRegister(GlobalBaseReg, TLI.getPointerTy()).getNode();
1312}
1313
1314SDNode *X86DAGToDAGISel::SelectAtomic64(SDNode *Node, unsigned Opc) {
1315  SDValue Chain = Node->getOperand(0);
1316  SDValue In1 = Node->getOperand(1);
1317  SDValue In2L = Node->getOperand(2);
1318  SDValue In2H = Node->getOperand(3);
1319  SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
1320  if (!SelectAddr(Node, In1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4))
1321    return NULL;
1322  MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
1323  MemOp[0] = cast<MemSDNode>(Node)->getMemOperand();
1324  const SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, In2L, In2H, Chain};
1325  SDNode *ResNode = CurDAG->getMachineNode(Opc, Node->getDebugLoc(),
1326                                           MVT::i32, MVT::i32, MVT::Other, Ops,
1327                                           array_lengthof(Ops));
1328  cast<MachineSDNode>(ResNode)->setMemRefs(MemOp, MemOp + 1);
1329  return ResNode;
1330}
1331
1332SDNode *X86DAGToDAGISel::SelectAtomicLoadAdd(SDNode *Node, EVT NVT) {
1333  if (Node->hasAnyUseOfValue(0))
1334    return 0;
1335
1336  // Optimize common patterns for __sync_add_and_fetch and
1337  // __sync_sub_and_fetch where the result is not used. This allows us
1338  // to use "lock" version of add, sub, inc, dec instructions.
1339  // FIXME: Do not use special instructions but instead add the "lock"
1340  // prefix to the target node somehow. The extra information will then be
1341  // transferred to machine instruction and it denotes the prefix.
1342  SDValue Chain = Node->getOperand(0);
1343  SDValue Ptr = Node->getOperand(1);
1344  SDValue Val = Node->getOperand(2);
1345  SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
1346  if (!SelectAddr(Node, Ptr, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4))
1347    return 0;
1348
1349  bool isInc = false, isDec = false, isSub = false, isCN = false;
1350  ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Val);
1351  if (CN) {
1352    isCN = true;
1353    int64_t CNVal = CN->getSExtValue();
1354    if (CNVal == 1)
1355      isInc = true;
1356    else if (CNVal == -1)
1357      isDec = true;
1358    else if (CNVal >= 0)
1359      Val = CurDAG->getTargetConstant(CNVal, NVT);
1360    else {
1361      isSub = true;
1362      Val = CurDAG->getTargetConstant(-CNVal, NVT);
1363    }
1364  } else if (Val.hasOneUse() &&
1365             Val.getOpcode() == ISD::SUB &&
1366             X86::isZeroNode(Val.getOperand(0))) {
1367    isSub = true;
1368    Val = Val.getOperand(1);
1369  }
1370
1371  unsigned Opc = 0;
1372  switch (NVT.getSimpleVT().SimpleTy) {
1373  default: return 0;
1374  case MVT::i8:
1375    if (isInc)
1376      Opc = X86::LOCK_INC8m;
1377    else if (isDec)
1378      Opc = X86::LOCK_DEC8m;
1379    else if (isSub) {
1380      if (isCN)
1381        Opc = X86::LOCK_SUB8mi;
1382      else
1383        Opc = X86::LOCK_SUB8mr;
1384    } else {
1385      if (isCN)
1386        Opc = X86::LOCK_ADD8mi;
1387      else
1388        Opc = X86::LOCK_ADD8mr;
1389    }
1390    break;
1391  case MVT::i16:
1392    if (isInc)
1393      Opc = X86::LOCK_INC16m;
1394    else if (isDec)
1395      Opc = X86::LOCK_DEC16m;
1396    else if (isSub) {
1397      if (isCN) {
1398        if (immSext8(Val.getNode()))
1399          Opc = X86::LOCK_SUB16mi8;
1400        else
1401          Opc = X86::LOCK_SUB16mi;
1402      } else
1403        Opc = X86::LOCK_SUB16mr;
1404    } else {
1405      if (isCN) {
1406        if (immSext8(Val.getNode()))
1407          Opc = X86::LOCK_ADD16mi8;
1408        else
1409          Opc = X86::LOCK_ADD16mi;
1410      } else
1411        Opc = X86::LOCK_ADD16mr;
1412    }
1413    break;
1414  case MVT::i32:
1415    if (isInc)
1416      Opc = X86::LOCK_INC32m;
1417    else if (isDec)
1418      Opc = X86::LOCK_DEC32m;
1419    else if (isSub) {
1420      if (isCN) {
1421        if (immSext8(Val.getNode()))
1422          Opc = X86::LOCK_SUB32mi8;
1423        else
1424          Opc = X86::LOCK_SUB32mi;
1425      } else
1426        Opc = X86::LOCK_SUB32mr;
1427    } else {
1428      if (isCN) {
1429        if (immSext8(Val.getNode()))
1430          Opc = X86::LOCK_ADD32mi8;
1431        else
1432          Opc = X86::LOCK_ADD32mi;
1433      } else
1434        Opc = X86::LOCK_ADD32mr;
1435    }
1436    break;
1437  case MVT::i64:
1438    if (isInc)
1439      Opc = X86::LOCK_INC64m;
1440    else if (isDec)
1441      Opc = X86::LOCK_DEC64m;
1442    else if (isSub) {
1443      Opc = X86::LOCK_SUB64mr;
1444      if (isCN) {
1445        if (immSext8(Val.getNode()))
1446          Opc = X86::LOCK_SUB64mi8;
1447        else if (i64immSExt32(Val.getNode()))
1448          Opc = X86::LOCK_SUB64mi32;
1449      }
1450    } else {
1451      Opc = X86::LOCK_ADD64mr;
1452      if (isCN) {
1453        if (immSext8(Val.getNode()))
1454          Opc = X86::LOCK_ADD64mi8;
1455        else if (i64immSExt32(Val.getNode()))
1456          Opc = X86::LOCK_ADD64mi32;
1457      }
1458    }
1459    break;
1460  }
1461
1462  DebugLoc dl = Node->getDebugLoc();
1463  SDValue Undef = SDValue(CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF,
1464                                                 dl, NVT), 0);
1465  MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
1466  MemOp[0] = cast<MemSDNode>(Node)->getMemOperand();
1467  if (isInc || isDec) {
1468    SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Chain };
1469    SDValue Ret = SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Other, Ops, 6), 0);
1470    cast<MachineSDNode>(Ret)->setMemRefs(MemOp, MemOp + 1);
1471    SDValue RetVals[] = { Undef, Ret };
1472    return CurDAG->getMergeValues(RetVals, 2, dl).getNode();
1473  } else {
1474    SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Val, Chain };
1475    SDValue Ret = SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Other, Ops, 7), 0);
1476    cast<MachineSDNode>(Ret)->setMemRefs(MemOp, MemOp + 1);
1477    SDValue RetVals[] = { Undef, Ret };
1478    return CurDAG->getMergeValues(RetVals, 2, dl).getNode();
1479  }
1480}
1481
1482/// HasNoSignedComparisonUses - Test whether the given X86ISD::CMP node has
1483/// any uses which require the SF or OF bits to be accurate.
1484static bool HasNoSignedComparisonUses(SDNode *N) {
1485  // Examine each user of the node.
1486  for (SDNode::use_iterator UI = N->use_begin(),
1487         UE = N->use_end(); UI != UE; ++UI) {
1488    // Only examine CopyToReg uses.
1489    if (UI->getOpcode() != ISD::CopyToReg)
1490      return false;
1491    // Only examine CopyToReg uses that copy to EFLAGS.
1492    if (cast<RegisterSDNode>(UI->getOperand(1))->getReg() !=
1493          X86::EFLAGS)
1494      return false;
1495    // Examine each user of the CopyToReg use.
1496    for (SDNode::use_iterator FlagUI = UI->use_begin(),
1497           FlagUE = UI->use_end(); FlagUI != FlagUE; ++FlagUI) {
1498      // Only examine the Flag result.
1499      if (FlagUI.getUse().getResNo() != 1) continue;
1500      // Anything unusual: assume conservatively.
1501      if (!FlagUI->isMachineOpcode()) return false;
1502      // Examine the opcode of the user.
1503      switch (FlagUI->getMachineOpcode()) {
1504      // These comparisons don't treat the most significant bit specially.
1505      case X86::SETAr: case X86::SETAEr: case X86::SETBr: case X86::SETBEr:
1506      case X86::SETEr: case X86::SETNEr: case X86::SETPr: case X86::SETNPr:
1507      case X86::SETAm: case X86::SETAEm: case X86::SETBm: case X86::SETBEm:
1508      case X86::SETEm: case X86::SETNEm: case X86::SETPm: case X86::SETNPm:
1509      case X86::JA_4: case X86::JAE_4: case X86::JB_4: case X86::JBE_4:
1510      case X86::JE_4: case X86::JNE_4: case X86::JP_4: case X86::JNP_4:
1511      case X86::CMOVA16rr: case X86::CMOVA16rm:
1512      case X86::CMOVA32rr: case X86::CMOVA32rm:
1513      case X86::CMOVA64rr: case X86::CMOVA64rm:
1514      case X86::CMOVAE16rr: case X86::CMOVAE16rm:
1515      case X86::CMOVAE32rr: case X86::CMOVAE32rm:
1516      case X86::CMOVAE64rr: case X86::CMOVAE64rm:
1517      case X86::CMOVB16rr: case X86::CMOVB16rm:
1518      case X86::CMOVB32rr: case X86::CMOVB32rm:
1519      case X86::CMOVB64rr: case X86::CMOVB64rm:
1520      case X86::CMOVBE16rr: case X86::CMOVBE16rm:
1521      case X86::CMOVBE32rr: case X86::CMOVBE32rm:
1522      case X86::CMOVBE64rr: case X86::CMOVBE64rm:
1523      case X86::CMOVE16rr: case X86::CMOVE16rm:
1524      case X86::CMOVE32rr: case X86::CMOVE32rm:
1525      case X86::CMOVE64rr: case X86::CMOVE64rm:
1526      case X86::CMOVNE16rr: case X86::CMOVNE16rm:
1527      case X86::CMOVNE32rr: case X86::CMOVNE32rm:
1528      case X86::CMOVNE64rr: case X86::CMOVNE64rm:
1529      case X86::CMOVNP16rr: case X86::CMOVNP16rm:
1530      case X86::CMOVNP32rr: case X86::CMOVNP32rm:
1531      case X86::CMOVNP64rr: case X86::CMOVNP64rm:
1532      case X86::CMOVP16rr: case X86::CMOVP16rm:
1533      case X86::CMOVP32rr: case X86::CMOVP32rm:
1534      case X86::CMOVP64rr: case X86::CMOVP64rm:
1535        continue;
1536      // Anything else: assume conservatively.
1537      default: return false;
1538      }
1539    }
1540  }
1541  return true;
1542}
1543
1544SDNode *X86DAGToDAGISel::Select(SDNode *Node) {
1545  EVT NVT = Node->getValueType(0);
1546  unsigned Opc, MOpc;
1547  unsigned Opcode = Node->getOpcode();
1548  DebugLoc dl = Node->getDebugLoc();
1549
1550  DEBUG(dbgs() << "Selecting: "; Node->dump(CurDAG); dbgs() << '\n');
1551
1552  if (Node->isMachineOpcode()) {
1553    DEBUG(dbgs() << "== ";  Node->dump(CurDAG); dbgs() << '\n');
1554    return NULL;   // Already selected.
1555  }
1556
1557  switch (Opcode) {
1558  default: break;
1559  case X86ISD::GlobalBaseReg:
1560    return getGlobalBaseReg();
1561
1562  case X86ISD::ATOMOR64_DAG:
1563    return SelectAtomic64(Node, X86::ATOMOR6432);
1564  case X86ISD::ATOMXOR64_DAG:
1565    return SelectAtomic64(Node, X86::ATOMXOR6432);
1566  case X86ISD::ATOMADD64_DAG:
1567    return SelectAtomic64(Node, X86::ATOMADD6432);
1568  case X86ISD::ATOMSUB64_DAG:
1569    return SelectAtomic64(Node, X86::ATOMSUB6432);
1570  case X86ISD::ATOMNAND64_DAG:
1571    return SelectAtomic64(Node, X86::ATOMNAND6432);
1572  case X86ISD::ATOMAND64_DAG:
1573    return SelectAtomic64(Node, X86::ATOMAND6432);
1574  case X86ISD::ATOMSWAP64_DAG:
1575    return SelectAtomic64(Node, X86::ATOMSWAP6432);
1576
1577  case ISD::ATOMIC_LOAD_ADD: {
1578    SDNode *RetVal = SelectAtomicLoadAdd(Node, NVT);
1579    if (RetVal)
1580      return RetVal;
1581    break;
1582  }
1583  case ISD::AND:
1584  case ISD::OR:
1585  case ISD::XOR: {
1586    // For operations of the form (x << C1) op C2, check if we can use a smaller
1587    // encoding for C2 by transforming it into (x op (C2>>C1)) << C1.
1588    SDValue N0 = Node->getOperand(0);
1589    SDValue N1 = Node->getOperand(1);
1590
1591    if (N0->getOpcode() != ISD::SHL || !N0->hasOneUse())
1592      break;
1593
1594    // i8 is unshrinkable, i16 should be promoted to i32.
1595    if (NVT != MVT::i32 && NVT != MVT::i64)
1596      break;
1597
1598    ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(N1);
1599    ConstantSDNode *ShlCst = dyn_cast<ConstantSDNode>(N0->getOperand(1));
1600    if (!Cst || !ShlCst)
1601      break;
1602
1603    int64_t Val = Cst->getSExtValue();
1604    uint64_t ShlVal = ShlCst->getZExtValue();
1605
1606    // Make sure that we don't change the operation by removing bits.
1607    // This only matters for OR and XOR, AND is unaffected.
1608    if (Opcode != ISD::AND && ((Val >> ShlVal) << ShlVal) != Val)
1609      break;
1610
1611    unsigned ShlOp, Op;
1612    EVT CstVT = NVT;
1613
1614    // Check the minimum bitwidth for the new constant.
1615    // TODO: AND32ri is the same as AND64ri32 with zext imm.
1616    // TODO: MOV32ri+OR64r is cheaper than MOV64ri64+OR64rr
1617    // TODO: Using 16 and 8 bit operations is also possible for or32 & xor32.
1618    if (!isInt<8>(Val) && isInt<8>(Val >> ShlVal))
1619      CstVT = MVT::i8;
1620    else if (!isInt<32>(Val) && isInt<32>(Val >> ShlVal))
1621      CstVT = MVT::i32;
1622
1623    // Bail if there is no smaller encoding.
1624    if (NVT == CstVT)
1625      break;
1626
1627    switch (NVT.getSimpleVT().SimpleTy) {
1628    default: llvm_unreachable("Unsupported VT!");
1629    case MVT::i32:
1630      assert(CstVT == MVT::i8);
1631      ShlOp = X86::SHL32ri;
1632
1633      switch (Opcode) {
1634      case ISD::AND: Op = X86::AND32ri8; break;
1635      case ISD::OR:  Op =  X86::OR32ri8; break;
1636      case ISD::XOR: Op = X86::XOR32ri8; break;
1637      }
1638      break;
1639    case MVT::i64:
1640      assert(CstVT == MVT::i8 || CstVT == MVT::i32);
1641      ShlOp = X86::SHL64ri;
1642
1643      switch (Opcode) {
1644      case ISD::AND: Op = CstVT==MVT::i8? X86::AND64ri8 : X86::AND64ri32; break;
1645      case ISD::OR:  Op = CstVT==MVT::i8?  X86::OR64ri8 :  X86::OR64ri32; break;
1646      case ISD::XOR: Op = CstVT==MVT::i8? X86::XOR64ri8 : X86::XOR64ri32; break;
1647      }
1648      break;
1649    }
1650
1651    // Emit the smaller op and the shift.
1652    SDValue NewCst = CurDAG->getTargetConstant(Val >> ShlVal, CstVT);
1653    SDNode *New = CurDAG->getMachineNode(Op, dl, NVT, N0->getOperand(0),NewCst);
1654    return CurDAG->SelectNodeTo(Node, ShlOp, NVT, SDValue(New, 0),
1655                                getI8Imm(ShlVal));
1656    break;
1657  }
1658  case X86ISD::UMUL: {
1659    SDValue N0 = Node->getOperand(0);
1660    SDValue N1 = Node->getOperand(1);
1661
1662    unsigned LoReg;
1663    switch (NVT.getSimpleVT().SimpleTy) {
1664    default: llvm_unreachable("Unsupported VT!");
1665    case MVT::i8:  LoReg = X86::AL;  Opc = X86::MUL8r; break;
1666    case MVT::i16: LoReg = X86::AX;  Opc = X86::MUL16r; break;
1667    case MVT::i32: LoReg = X86::EAX; Opc = X86::MUL32r; break;
1668    case MVT::i64: LoReg = X86::RAX; Opc = X86::MUL64r; break;
1669    }
1670
1671    SDValue InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, LoReg,
1672                                          N0, SDValue()).getValue(1);
1673
1674    SDVTList VTs = CurDAG->getVTList(NVT, NVT, MVT::i32);
1675    SDValue Ops[] = {N1, InFlag};
1676    SDNode *CNode = CurDAG->getMachineNode(Opc, dl, VTs, Ops, 2);
1677
1678    ReplaceUses(SDValue(Node, 0), SDValue(CNode, 0));
1679    ReplaceUses(SDValue(Node, 1), SDValue(CNode, 1));
1680    ReplaceUses(SDValue(Node, 2), SDValue(CNode, 2));
1681    return NULL;
1682  }
1683
1684  case ISD::SMUL_LOHI:
1685  case ISD::UMUL_LOHI: {
1686    SDValue N0 = Node->getOperand(0);
1687    SDValue N1 = Node->getOperand(1);
1688
1689    bool isSigned = Opcode == ISD::SMUL_LOHI;
1690    if (!isSigned) {
1691      switch (NVT.getSimpleVT().SimpleTy) {
1692      default: llvm_unreachable("Unsupported VT!");
1693      case MVT::i8:  Opc = X86::MUL8r;  MOpc = X86::MUL8m;  break;
1694      case MVT::i16: Opc = X86::MUL16r; MOpc = X86::MUL16m; break;
1695      case MVT::i32: Opc = X86::MUL32r; MOpc = X86::MUL32m; break;
1696      case MVT::i64: Opc = X86::MUL64r; MOpc = X86::MUL64m; break;
1697      }
1698    } else {
1699      switch (NVT.getSimpleVT().SimpleTy) {
1700      default: llvm_unreachable("Unsupported VT!");
1701      case MVT::i8:  Opc = X86::IMUL8r;  MOpc = X86::IMUL8m;  break;
1702      case MVT::i16: Opc = X86::IMUL16r; MOpc = X86::IMUL16m; break;
1703      case MVT::i32: Opc = X86::IMUL32r; MOpc = X86::IMUL32m; break;
1704      case MVT::i64: Opc = X86::IMUL64r; MOpc = X86::IMUL64m; break;
1705      }
1706    }
1707
1708    unsigned LoReg, HiReg;
1709    switch (NVT.getSimpleVT().SimpleTy) {
1710    default: llvm_unreachable("Unsupported VT!");
1711    case MVT::i8:  LoReg = X86::AL;  HiReg = X86::AH;  break;
1712    case MVT::i16: LoReg = X86::AX;  HiReg = X86::DX;  break;
1713    case MVT::i32: LoReg = X86::EAX; HiReg = X86::EDX; break;
1714    case MVT::i64: LoReg = X86::RAX; HiReg = X86::RDX; break;
1715    }
1716
1717    SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
1718    bool foldedLoad = TryFoldLoad(Node, N1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4);
1719    // Multiply is commmutative.
1720    if (!foldedLoad) {
1721      foldedLoad = TryFoldLoad(Node, N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4);
1722      if (foldedLoad)
1723        std::swap(N0, N1);
1724    }
1725
1726    SDValue InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, LoReg,
1727                                            N0, SDValue()).getValue(1);
1728
1729    if (foldedLoad) {
1730      SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N1.getOperand(0),
1731                        InFlag };
1732      SDNode *CNode =
1733        CurDAG->getMachineNode(MOpc, dl, MVT::Other, MVT::Glue, Ops,
1734                               array_lengthof(Ops));
1735      InFlag = SDValue(CNode, 1);
1736
1737      // Update the chain.
1738      ReplaceUses(N1.getValue(1), SDValue(CNode, 0));
1739    } else {
1740      SDNode *CNode = CurDAG->getMachineNode(Opc, dl, MVT::Glue, N1, InFlag);
1741      InFlag = SDValue(CNode, 0);
1742    }
1743
1744    // Prevent use of AH in a REX instruction by referencing AX instead.
1745    if (HiReg == X86::AH && Subtarget->is64Bit() &&
1746        !SDValue(Node, 1).use_empty()) {
1747      SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
1748                                              X86::AX, MVT::i16, InFlag);
1749      InFlag = Result.getValue(2);
1750      // Get the low part if needed. Don't use getCopyFromReg for aliasing
1751      // registers.
1752      if (!SDValue(Node, 0).use_empty())
1753        ReplaceUses(SDValue(Node, 1),
1754          CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl, MVT::i8, Result));
1755
1756      // Shift AX down 8 bits.
1757      Result = SDValue(CurDAG->getMachineNode(X86::SHR16ri, dl, MVT::i16,
1758                                              Result,
1759                                     CurDAG->getTargetConstant(8, MVT::i8)), 0);
1760      // Then truncate it down to i8.
1761      ReplaceUses(SDValue(Node, 1),
1762        CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl, MVT::i8, Result));
1763    }
1764    // Copy the low half of the result, if it is needed.
1765    if (!SDValue(Node, 0).use_empty()) {
1766      SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
1767                                                LoReg, NVT, InFlag);
1768      InFlag = Result.getValue(2);
1769      ReplaceUses(SDValue(Node, 0), Result);
1770      DEBUG(dbgs() << "=> "; Result.getNode()->dump(CurDAG); dbgs() << '\n');
1771    }
1772    // Copy the high half of the result, if it is needed.
1773    if (!SDValue(Node, 1).use_empty()) {
1774      SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
1775                                              HiReg, NVT, InFlag);
1776      InFlag = Result.getValue(2);
1777      ReplaceUses(SDValue(Node, 1), Result);
1778      DEBUG(dbgs() << "=> "; Result.getNode()->dump(CurDAG); dbgs() << '\n');
1779    }
1780
1781    return NULL;
1782  }
1783
1784  case ISD::SDIVREM:
1785  case ISD::UDIVREM: {
1786    SDValue N0 = Node->getOperand(0);
1787    SDValue N1 = Node->getOperand(1);
1788
1789    bool isSigned = Opcode == ISD::SDIVREM;
1790    if (!isSigned) {
1791      switch (NVT.getSimpleVT().SimpleTy) {
1792      default: llvm_unreachable("Unsupported VT!");
1793      case MVT::i8:  Opc = X86::DIV8r;  MOpc = X86::DIV8m;  break;
1794      case MVT::i16: Opc = X86::DIV16r; MOpc = X86::DIV16m; break;
1795      case MVT::i32: Opc = X86::DIV32r; MOpc = X86::DIV32m; break;
1796      case MVT::i64: Opc = X86::DIV64r; MOpc = X86::DIV64m; break;
1797      }
1798    } else {
1799      switch (NVT.getSimpleVT().SimpleTy) {
1800      default: llvm_unreachable("Unsupported VT!");
1801      case MVT::i8:  Opc = X86::IDIV8r;  MOpc = X86::IDIV8m;  break;
1802      case MVT::i16: Opc = X86::IDIV16r; MOpc = X86::IDIV16m; break;
1803      case MVT::i32: Opc = X86::IDIV32r; MOpc = X86::IDIV32m; break;
1804      case MVT::i64: Opc = X86::IDIV64r; MOpc = X86::IDIV64m; break;
1805      }
1806    }
1807
1808    unsigned LoReg, HiReg, ClrReg;
1809    unsigned ClrOpcode, SExtOpcode;
1810    switch (NVT.getSimpleVT().SimpleTy) {
1811    default: llvm_unreachable("Unsupported VT!");
1812    case MVT::i8:
1813      LoReg = X86::AL;  ClrReg = HiReg = X86::AH;
1814      ClrOpcode  = 0;
1815      SExtOpcode = X86::CBW;
1816      break;
1817    case MVT::i16:
1818      LoReg = X86::AX;  HiReg = X86::DX;
1819      ClrOpcode  = X86::MOV16r0; ClrReg = X86::DX;
1820      SExtOpcode = X86::CWD;
1821      break;
1822    case MVT::i32:
1823      LoReg = X86::EAX; ClrReg = HiReg = X86::EDX;
1824      ClrOpcode  = X86::MOV32r0;
1825      SExtOpcode = X86::CDQ;
1826      break;
1827    case MVT::i64:
1828      LoReg = X86::RAX; ClrReg = HiReg = X86::RDX;
1829      ClrOpcode  = X86::MOV64r0;
1830      SExtOpcode = X86::CQO;
1831      break;
1832    }
1833
1834    SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
1835    bool foldedLoad = TryFoldLoad(Node, N1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4);
1836    bool signBitIsZero = CurDAG->SignBitIsZero(N0);
1837
1838    SDValue InFlag;
1839    if (NVT == MVT::i8 && (!isSigned || signBitIsZero)) {
1840      // Special case for div8, just use a move with zero extension to AX to
1841      // clear the upper 8 bits (AH).
1842      SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Move, Chain;
1843      if (TryFoldLoad(Node, N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4)) {
1844        SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N0.getOperand(0) };
1845        Move =
1846          SDValue(CurDAG->getMachineNode(X86::MOVZX16rm8, dl, MVT::i16,
1847                                         MVT::Other, Ops,
1848                                         array_lengthof(Ops)), 0);
1849        Chain = Move.getValue(1);
1850        ReplaceUses(N0.getValue(1), Chain);
1851      } else {
1852        Move =
1853          SDValue(CurDAG->getMachineNode(X86::MOVZX16rr8, dl, MVT::i16, N0),0);
1854        Chain = CurDAG->getEntryNode();
1855      }
1856      Chain  = CurDAG->getCopyToReg(Chain, dl, X86::AX, Move, SDValue());
1857      InFlag = Chain.getValue(1);
1858    } else {
1859      InFlag =
1860        CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl,
1861                             LoReg, N0, SDValue()).getValue(1);
1862      if (isSigned && !signBitIsZero) {
1863        // Sign extend the low part into the high part.
1864        InFlag =
1865          SDValue(CurDAG->getMachineNode(SExtOpcode, dl, MVT::Glue, InFlag),0);
1866      } else {
1867        // Zero out the high part, effectively zero extending the input.
1868        SDValue ClrNode =
1869          SDValue(CurDAG->getMachineNode(ClrOpcode, dl, NVT), 0);
1870        InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, ClrReg,
1871                                      ClrNode, InFlag).getValue(1);
1872      }
1873    }
1874
1875    if (foldedLoad) {
1876      SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N1.getOperand(0),
1877                        InFlag };
1878      SDNode *CNode =
1879        CurDAG->getMachineNode(MOpc, dl, MVT::Other, MVT::Glue, Ops,
1880                               array_lengthof(Ops));
1881      InFlag = SDValue(CNode, 1);
1882      // Update the chain.
1883      ReplaceUses(N1.getValue(1), SDValue(CNode, 0));
1884    } else {
1885      InFlag =
1886        SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Glue, N1, InFlag), 0);
1887    }
1888
1889    // Prevent use of AH in a REX instruction by referencing AX instead.
1890    // Shift it down 8 bits.
1891    if (HiReg == X86::AH && Subtarget->is64Bit() &&
1892        !SDValue(Node, 1).use_empty()) {
1893      SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
1894                                              X86::AX, MVT::i16, InFlag);
1895      InFlag = Result.getValue(2);
1896
1897      // If we also need AL (the quotient), get it by extracting a subreg from
1898      // Result. The fast register allocator does not like multiple CopyFromReg
1899      // nodes using aliasing registers.
1900      if (!SDValue(Node, 0).use_empty())
1901        ReplaceUses(SDValue(Node, 0),
1902          CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl, MVT::i8, Result));
1903
1904      // Shift AX right by 8 bits instead of using AH.
1905      Result = SDValue(CurDAG->getMachineNode(X86::SHR16ri, dl, MVT::i16,
1906                                         Result,
1907                                         CurDAG->getTargetConstant(8, MVT::i8)),
1908                       0);
1909      ReplaceUses(SDValue(Node, 1),
1910        CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl, MVT::i8, Result));
1911    }
1912    // Copy the division (low) result, if it is needed.
1913    if (!SDValue(Node, 0).use_empty()) {
1914      SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
1915                                                LoReg, NVT, InFlag);
1916      InFlag = Result.getValue(2);
1917      ReplaceUses(SDValue(Node, 0), Result);
1918      DEBUG(dbgs() << "=> "; Result.getNode()->dump(CurDAG); dbgs() << '\n');
1919    }
1920    // Copy the remainder (high) result, if it is needed.
1921    if (!SDValue(Node, 1).use_empty()) {
1922      SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
1923                                              HiReg, NVT, InFlag);
1924      InFlag = Result.getValue(2);
1925      ReplaceUses(SDValue(Node, 1), Result);
1926      DEBUG(dbgs() << "=> "; Result.getNode()->dump(CurDAG); dbgs() << '\n');
1927    }
1928    return NULL;
1929  }
1930
1931  case X86ISD::CMP: {
1932    SDValue N0 = Node->getOperand(0);
1933    SDValue N1 = Node->getOperand(1);
1934
1935    // Look for (X86cmp (and $op, $imm), 0) and see if we can convert it to
1936    // use a smaller encoding.
1937    if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse() &&
1938        HasNoSignedComparisonUses(Node))
1939      // Look past the truncate if CMP is the only use of it.
1940      N0 = N0.getOperand(0);
1941    if (N0.getNode()->getOpcode() == ISD::AND && N0.getNode()->hasOneUse() &&
1942        N0.getValueType() != MVT::i8 &&
1943        X86::isZeroNode(N1)) {
1944      ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getNode()->getOperand(1));
1945      if (!C) break;
1946
1947      // For example, convert "testl %eax, $8" to "testb %al, $8"
1948      if ((C->getZExtValue() & ~UINT64_C(0xff)) == 0 &&
1949          (!(C->getZExtValue() & 0x80) ||
1950           HasNoSignedComparisonUses(Node))) {
1951        SDValue Imm = CurDAG->getTargetConstant(C->getZExtValue(), MVT::i8);
1952        SDValue Reg = N0.getNode()->getOperand(0);
1953
1954        // On x86-32, only the ABCD registers have 8-bit subregisters.
1955        if (!Subtarget->is64Bit()) {
1956          TargetRegisterClass *TRC = 0;
1957          switch (N0.getValueType().getSimpleVT().SimpleTy) {
1958          case MVT::i32: TRC = &X86::GR32_ABCDRegClass; break;
1959          case MVT::i16: TRC = &X86::GR16_ABCDRegClass; break;
1960          default: llvm_unreachable("Unsupported TEST operand type!");
1961          }
1962          SDValue RC = CurDAG->getTargetConstant(TRC->getID(), MVT::i32);
1963          Reg = SDValue(CurDAG->getMachineNode(X86::COPY_TO_REGCLASS, dl,
1964                                               Reg.getValueType(), Reg, RC), 0);
1965        }
1966
1967        // Extract the l-register.
1968        SDValue Subreg = CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl,
1969                                                        MVT::i8, Reg);
1970
1971        // Emit a testb.
1972        return CurDAG->getMachineNode(X86::TEST8ri, dl, MVT::i32, Subreg, Imm);
1973      }
1974
1975      // For example, "testl %eax, $2048" to "testb %ah, $8".
1976      if ((C->getZExtValue() & ~UINT64_C(0xff00)) == 0 &&
1977          (!(C->getZExtValue() & 0x8000) ||
1978           HasNoSignedComparisonUses(Node))) {
1979        // Shift the immediate right by 8 bits.
1980        SDValue ShiftedImm = CurDAG->getTargetConstant(C->getZExtValue() >> 8,
1981                                                       MVT::i8);
1982        SDValue Reg = N0.getNode()->getOperand(0);
1983
1984        // Put the value in an ABCD register.
1985        TargetRegisterClass *TRC = 0;
1986        switch (N0.getValueType().getSimpleVT().SimpleTy) {
1987        case MVT::i64: TRC = &X86::GR64_ABCDRegClass; break;
1988        case MVT::i32: TRC = &X86::GR32_ABCDRegClass; break;
1989        case MVT::i16: TRC = &X86::GR16_ABCDRegClass; break;
1990        default: llvm_unreachable("Unsupported TEST operand type!");
1991        }
1992        SDValue RC = CurDAG->getTargetConstant(TRC->getID(), MVT::i32);
1993        Reg = SDValue(CurDAG->getMachineNode(X86::COPY_TO_REGCLASS, dl,
1994                                             Reg.getValueType(), Reg, RC), 0);
1995
1996        // Extract the h-register.
1997        SDValue Subreg = CurDAG->getTargetExtractSubreg(X86::sub_8bit_hi, dl,
1998                                                        MVT::i8, Reg);
1999
2000        // Emit a testb. No special NOREX tricks are needed since there's
2001        // only one GPR operand!
2002        return CurDAG->getMachineNode(X86::TEST8ri, dl, MVT::i32,
2003                                      Subreg, ShiftedImm);
2004      }
2005
2006      // For example, "testl %eax, $32776" to "testw %ax, $32776".
2007      if ((C->getZExtValue() & ~UINT64_C(0xffff)) == 0 &&
2008          N0.getValueType() != MVT::i16 &&
2009          (!(C->getZExtValue() & 0x8000) ||
2010           HasNoSignedComparisonUses(Node))) {
2011        SDValue Imm = CurDAG->getTargetConstant(C->getZExtValue(), MVT::i16);
2012        SDValue Reg = N0.getNode()->getOperand(0);
2013
2014        // Extract the 16-bit subregister.
2015        SDValue Subreg = CurDAG->getTargetExtractSubreg(X86::sub_16bit, dl,
2016                                                        MVT::i16, Reg);
2017
2018        // Emit a testw.
2019        return CurDAG->getMachineNode(X86::TEST16ri, dl, MVT::i32, Subreg, Imm);
2020      }
2021
2022      // For example, "testq %rax, $268468232" to "testl %eax, $268468232".
2023      if ((C->getZExtValue() & ~UINT64_C(0xffffffff)) == 0 &&
2024          N0.getValueType() == MVT::i64 &&
2025          (!(C->getZExtValue() & 0x80000000) ||
2026           HasNoSignedComparisonUses(Node))) {
2027        SDValue Imm = CurDAG->getTargetConstant(C->getZExtValue(), MVT::i32);
2028        SDValue Reg = N0.getNode()->getOperand(0);
2029
2030        // Extract the 32-bit subregister.
2031        SDValue Subreg = CurDAG->getTargetExtractSubreg(X86::sub_32bit, dl,
2032                                                        MVT::i32, Reg);
2033
2034        // Emit a testl.
2035        return CurDAG->getMachineNode(X86::TEST32ri, dl, MVT::i32, Subreg, Imm);
2036      }
2037    }
2038    break;
2039  }
2040  }
2041
2042  SDNode *ResNode = SelectCode(Node);
2043
2044  DEBUG(dbgs() << "=> ";
2045        if (ResNode == NULL || ResNode == Node)
2046          Node->dump(CurDAG);
2047        else
2048          ResNode->dump(CurDAG);
2049        dbgs() << '\n');
2050
2051  return ResNode;
2052}
2053
2054bool X86DAGToDAGISel::
2055SelectInlineAsmMemoryOperand(const SDValue &Op, char ConstraintCode,
2056                             std::vector<SDValue> &OutOps) {
2057  SDValue Op0, Op1, Op2, Op3, Op4;
2058  switch (ConstraintCode) {
2059  case 'o':   // offsetable        ??
2060  case 'v':   // not offsetable    ??
2061  default: return true;
2062  case 'm':   // memory
2063    if (!SelectAddr(0, Op, Op0, Op1, Op2, Op3, Op4))
2064      return true;
2065    break;
2066  }
2067
2068  OutOps.push_back(Op0);
2069  OutOps.push_back(Op1);
2070  OutOps.push_back(Op2);
2071  OutOps.push_back(Op3);
2072  OutOps.push_back(Op4);
2073  return false;
2074}
2075
2076/// createX86ISelDag - This pass converts a legalized DAG into a
2077/// X86-specific DAG, ready for instruction scheduling.
2078///
2079FunctionPass *llvm::createX86ISelDag(X86TargetMachine &TM,
2080                                     llvm::CodeGenOpt::Level OptLevel) {
2081  return new X86DAGToDAGISel(TM, OptLevel);
2082}
2083