X86ISelDAGToDAG.cpp revision b38fe4b52de05a35c0693f4fd117f908a2abadb7
1//===- X86ISelDAGToDAG.cpp - A DAG pattern matching inst selector for X86 -===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines a DAG pattern matching instruction selector for X86,
11// converting from a legalized dag to a X86 dag.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "x86-isel"
16#include "X86.h"
17#include "X86InstrBuilder.h"
18#include "X86MachineFunctionInfo.h"
19#include "X86RegisterInfo.h"
20#include "X86Subtarget.h"
21#include "X86TargetMachine.h"
22#include "llvm/Instructions.h"
23#include "llvm/Intrinsics.h"
24#include "llvm/Support/CFG.h"
25#include "llvm/Type.h"
26#include "llvm/CodeGen/MachineConstantPool.h"
27#include "llvm/CodeGen/MachineFunction.h"
28#include "llvm/CodeGen/MachineFrameInfo.h"
29#include "llvm/CodeGen/MachineInstrBuilder.h"
30#include "llvm/CodeGen/MachineRegisterInfo.h"
31#include "llvm/CodeGen/SelectionDAGISel.h"
32#include "llvm/Target/TargetMachine.h"
33#include "llvm/Target/TargetOptions.h"
34#include "llvm/Support/Debug.h"
35#include "llvm/Support/ErrorHandling.h"
36#include "llvm/Support/MathExtras.h"
37#include "llvm/Support/raw_ostream.h"
38#include "llvm/ADT/SmallPtrSet.h"
39#include "llvm/ADT/Statistic.h"
40using namespace llvm;
41
42STATISTIC(NumLoadMoved, "Number of loads moved below TokenFactor");
43
44//===----------------------------------------------------------------------===//
45//                      Pattern Matcher Implementation
46//===----------------------------------------------------------------------===//
47
48namespace {
49  /// X86ISelAddressMode - This corresponds to X86AddressMode, but uses
50  /// SDValue's instead of register numbers for the leaves of the matched
51  /// tree.
52  struct X86ISelAddressMode {
53    enum {
54      RegBase,
55      FrameIndexBase
56    } BaseType;
57
58    // This is really a union, discriminated by BaseType!
59    SDValue Base_Reg;
60    int Base_FrameIndex;
61
62    unsigned Scale;
63    SDValue IndexReg;
64    int32_t Disp;
65    SDValue Segment;
66    const GlobalValue *GV;
67    const Constant *CP;
68    const BlockAddress *BlockAddr;
69    const char *ES;
70    int JT;
71    unsigned Align;    // CP alignment.
72    unsigned char SymbolFlags;  // X86II::MO_*
73
74    X86ISelAddressMode()
75      : BaseType(RegBase), Base_FrameIndex(0), Scale(1), IndexReg(), Disp(0),
76        Segment(), GV(0), CP(0), BlockAddr(0), ES(0), JT(-1), Align(0),
77        SymbolFlags(X86II::MO_NO_FLAG) {
78    }
79
80    bool hasSymbolicDisplacement() const {
81      return GV != 0 || CP != 0 || ES != 0 || JT != -1 || BlockAddr != 0;
82    }
83
84    bool hasBaseOrIndexReg() const {
85      return IndexReg.getNode() != 0 || Base_Reg.getNode() != 0;
86    }
87
88    /// isRIPRelative - Return true if this addressing mode is already RIP
89    /// relative.
90    bool isRIPRelative() const {
91      if (BaseType != RegBase) return false;
92      if (RegisterSDNode *RegNode =
93            dyn_cast_or_null<RegisterSDNode>(Base_Reg.getNode()))
94        return RegNode->getReg() == X86::RIP;
95      return false;
96    }
97
98    void setBaseReg(SDValue Reg) {
99      BaseType = RegBase;
100      Base_Reg = Reg;
101    }
102
103    void dump() {
104      dbgs() << "X86ISelAddressMode " << this << '\n';
105      dbgs() << "Base_Reg ";
106      if (Base_Reg.getNode() != 0)
107        Base_Reg.getNode()->dump();
108      else
109        dbgs() << "nul";
110      dbgs() << " Base.FrameIndex " << Base_FrameIndex << '\n'
111             << " Scale" << Scale << '\n'
112             << "IndexReg ";
113      if (IndexReg.getNode() != 0)
114        IndexReg.getNode()->dump();
115      else
116        dbgs() << "nul";
117      dbgs() << " Disp " << Disp << '\n'
118             << "GV ";
119      if (GV)
120        GV->dump();
121      else
122        dbgs() << "nul";
123      dbgs() << " CP ";
124      if (CP)
125        CP->dump();
126      else
127        dbgs() << "nul";
128      dbgs() << '\n'
129             << "ES ";
130      if (ES)
131        dbgs() << ES;
132      else
133        dbgs() << "nul";
134      dbgs() << " JT" << JT << " Align" << Align << '\n';
135    }
136  };
137}
138
139namespace {
140  //===--------------------------------------------------------------------===//
141  /// ISel - X86 specific code to select X86 machine instructions for
142  /// SelectionDAG operations.
143  ///
144  class X86DAGToDAGISel : public SelectionDAGISel {
145    /// X86Lowering - This object fully describes how to lower LLVM code to an
146    /// X86-specific SelectionDAG.
147    const X86TargetLowering &X86Lowering;
148
149    /// Subtarget - Keep a pointer to the X86Subtarget around so that we can
150    /// make the right decision when generating code for different targets.
151    const X86Subtarget *Subtarget;
152
153    /// OptForSize - If true, selector should try to optimize for code size
154    /// instead of performance.
155    bool OptForSize;
156
157  public:
158    explicit X86DAGToDAGISel(X86TargetMachine &tm, CodeGenOpt::Level OptLevel)
159      : SelectionDAGISel(tm, OptLevel),
160        X86Lowering(*tm.getTargetLowering()),
161        Subtarget(&tm.getSubtarget<X86Subtarget>()),
162        OptForSize(false) {}
163
164    virtual const char *getPassName() const {
165      return "X86 DAG->DAG Instruction Selection";
166    }
167
168    virtual void EmitFunctionEntryCode();
169
170    virtual bool IsProfitableToFold(SDValue N, SDNode *U, SDNode *Root) const;
171
172    virtual void PreprocessISelDAG();
173
174    inline bool immSext8(SDNode *N) const {
175      return isInt<8>(cast<ConstantSDNode>(N)->getSExtValue());
176    }
177
178    // i64immSExt32 predicate - True if the 64-bit immediate fits in a 32-bit
179    // sign extended field.
180    inline bool i64immSExt32(SDNode *N) const {
181      uint64_t v = cast<ConstantSDNode>(N)->getZExtValue();
182      return (int64_t)v == (int32_t)v;
183    }
184
185// Include the pieces autogenerated from the target description.
186#include "X86GenDAGISel.inc"
187
188  private:
189    SDNode *Select(SDNode *N);
190    SDNode *SelectAtomic64(SDNode *Node, unsigned Opc);
191    SDNode *SelectAtomicLoadAdd(SDNode *Node, EVT NVT);
192    SDNode *SelectAtomicLoadOr(SDNode *Node, EVT NVT);
193
194    bool MatchLoadInAddress(LoadSDNode *N, X86ISelAddressMode &AM);
195    bool MatchWrapper(SDValue N, X86ISelAddressMode &AM);
196    bool MatchAddress(SDValue N, X86ISelAddressMode &AM);
197    bool MatchAddressRecursively(SDValue N, X86ISelAddressMode &AM,
198                                 unsigned Depth);
199    bool MatchAddressBase(SDValue N, X86ISelAddressMode &AM);
200    bool SelectAddr(SDNode *Parent, SDValue N, SDValue &Base,
201                    SDValue &Scale, SDValue &Index, SDValue &Disp,
202                    SDValue &Segment);
203    bool SelectLEAAddr(SDValue N, SDValue &Base,
204                       SDValue &Scale, SDValue &Index, SDValue &Disp,
205                       SDValue &Segment);
206    bool SelectTLSADDRAddr(SDValue N, SDValue &Base,
207                           SDValue &Scale, SDValue &Index, SDValue &Disp,
208                           SDValue &Segment);
209    bool SelectScalarSSELoad(SDNode *Root, SDValue N,
210                             SDValue &Base, SDValue &Scale,
211                             SDValue &Index, SDValue &Disp,
212                             SDValue &Segment,
213                             SDValue &NodeWithChain);
214
215    bool TryFoldLoad(SDNode *P, SDValue N,
216                     SDValue &Base, SDValue &Scale,
217                     SDValue &Index, SDValue &Disp,
218                     SDValue &Segment);
219
220    /// SelectInlineAsmMemoryOperand - Implement addressing mode selection for
221    /// inline asm expressions.
222    virtual bool SelectInlineAsmMemoryOperand(const SDValue &Op,
223                                              char ConstraintCode,
224                                              std::vector<SDValue> &OutOps);
225
226    void EmitSpecialCodeForMain(MachineBasicBlock *BB, MachineFrameInfo *MFI);
227
228    inline void getAddressOperands(X86ISelAddressMode &AM, SDValue &Base,
229                                   SDValue &Scale, SDValue &Index,
230                                   SDValue &Disp, SDValue &Segment) {
231      Base  = (AM.BaseType == X86ISelAddressMode::FrameIndexBase) ?
232        CurDAG->getTargetFrameIndex(AM.Base_FrameIndex, TLI.getPointerTy()) :
233        AM.Base_Reg;
234      Scale = getI8Imm(AM.Scale);
235      Index = AM.IndexReg;
236      // These are 32-bit even in 64-bit mode since RIP relative offset
237      // is 32-bit.
238      if (AM.GV)
239        Disp = CurDAG->getTargetGlobalAddress(AM.GV, DebugLoc(),
240                                              MVT::i32, AM.Disp,
241                                              AM.SymbolFlags);
242      else if (AM.CP)
243        Disp = CurDAG->getTargetConstantPool(AM.CP, MVT::i32,
244                                             AM.Align, AM.Disp, AM.SymbolFlags);
245      else if (AM.ES)
246        Disp = CurDAG->getTargetExternalSymbol(AM.ES, MVT::i32, AM.SymbolFlags);
247      else if (AM.JT != -1)
248        Disp = CurDAG->getTargetJumpTable(AM.JT, MVT::i32, AM.SymbolFlags);
249      else if (AM.BlockAddr)
250        Disp = CurDAG->getBlockAddress(AM.BlockAddr, MVT::i32,
251                                       true, AM.SymbolFlags);
252      else
253        Disp = CurDAG->getTargetConstant(AM.Disp, MVT::i32);
254
255      if (AM.Segment.getNode())
256        Segment = AM.Segment;
257      else
258        Segment = CurDAG->getRegister(0, MVT::i32);
259    }
260
261    /// getI8Imm - Return a target constant with the specified value, of type
262    /// i8.
263    inline SDValue getI8Imm(unsigned Imm) {
264      return CurDAG->getTargetConstant(Imm, MVT::i8);
265    }
266
267    /// getI32Imm - Return a target constant with the specified value, of type
268    /// i32.
269    inline SDValue getI32Imm(unsigned Imm) {
270      return CurDAG->getTargetConstant(Imm, MVT::i32);
271    }
272
273    /// getGlobalBaseReg - Return an SDNode that returns the value of
274    /// the global base register. Output instructions required to
275    /// initialize the global base register, if necessary.
276    ///
277    SDNode *getGlobalBaseReg();
278
279    /// getTargetMachine - Return a reference to the TargetMachine, casted
280    /// to the target-specific type.
281    const X86TargetMachine &getTargetMachine() {
282      return static_cast<const X86TargetMachine &>(TM);
283    }
284
285    /// getInstrInfo - Return a reference to the TargetInstrInfo, casted
286    /// to the target-specific type.
287    const X86InstrInfo *getInstrInfo() {
288      return getTargetMachine().getInstrInfo();
289    }
290  };
291}
292
293
294bool
295X86DAGToDAGISel::IsProfitableToFold(SDValue N, SDNode *U, SDNode *Root) const {
296  if (OptLevel == CodeGenOpt::None) return false;
297
298  if (!N.hasOneUse())
299    return false;
300
301  if (N.getOpcode() != ISD::LOAD)
302    return true;
303
304  // If N is a load, do additional profitability checks.
305  if (U == Root) {
306    switch (U->getOpcode()) {
307    default: break;
308    case X86ISD::ADD:
309    case X86ISD::SUB:
310    case X86ISD::AND:
311    case X86ISD::XOR:
312    case X86ISD::OR:
313    case ISD::ADD:
314    case ISD::ADDC:
315    case ISD::ADDE:
316    case ISD::AND:
317    case ISD::OR:
318    case ISD::XOR: {
319      SDValue Op1 = U->getOperand(1);
320
321      // If the other operand is a 8-bit immediate we should fold the immediate
322      // instead. This reduces code size.
323      // e.g.
324      // movl 4(%esp), %eax
325      // addl $4, %eax
326      // vs.
327      // movl $4, %eax
328      // addl 4(%esp), %eax
329      // The former is 2 bytes shorter. In case where the increment is 1, then
330      // the saving can be 4 bytes (by using incl %eax).
331      if (ConstantSDNode *Imm = dyn_cast<ConstantSDNode>(Op1))
332        if (Imm->getAPIntValue().isSignedIntN(8))
333          return false;
334
335      // If the other operand is a TLS address, we should fold it instead.
336      // This produces
337      // movl    %gs:0, %eax
338      // leal    i@NTPOFF(%eax), %eax
339      // instead of
340      // movl    $i@NTPOFF, %eax
341      // addl    %gs:0, %eax
342      // if the block also has an access to a second TLS address this will save
343      // a load.
344      // FIXME: This is probably also true for non TLS addresses.
345      if (Op1.getOpcode() == X86ISD::Wrapper) {
346        SDValue Val = Op1.getOperand(0);
347        if (Val.getOpcode() == ISD::TargetGlobalTLSAddress)
348          return false;
349      }
350    }
351    }
352  }
353
354  return true;
355}
356
357/// MoveBelowCallOrigChain - Replace the original chain operand of the call with
358/// load's chain operand and move load below the call's chain operand.
359static void MoveBelowOrigChain(SelectionDAG *CurDAG, SDValue Load,
360                                  SDValue Call, SDValue OrigChain) {
361  SmallVector<SDValue, 8> Ops;
362  SDValue Chain = OrigChain.getOperand(0);
363  if (Chain.getNode() == Load.getNode())
364    Ops.push_back(Load.getOperand(0));
365  else {
366    assert(Chain.getOpcode() == ISD::TokenFactor &&
367           "Unexpected chain operand");
368    for (unsigned i = 0, e = Chain.getNumOperands(); i != e; ++i)
369      if (Chain.getOperand(i).getNode() == Load.getNode())
370        Ops.push_back(Load.getOperand(0));
371      else
372        Ops.push_back(Chain.getOperand(i));
373    SDValue NewChain =
374      CurDAG->getNode(ISD::TokenFactor, Load.getDebugLoc(),
375                      MVT::Other, &Ops[0], Ops.size());
376    Ops.clear();
377    Ops.push_back(NewChain);
378  }
379  for (unsigned i = 1, e = OrigChain.getNumOperands(); i != e; ++i)
380    Ops.push_back(OrigChain.getOperand(i));
381  CurDAG->UpdateNodeOperands(OrigChain.getNode(), &Ops[0], Ops.size());
382  CurDAG->UpdateNodeOperands(Load.getNode(), Call.getOperand(0),
383                             Load.getOperand(1), Load.getOperand(2));
384  Ops.clear();
385  Ops.push_back(SDValue(Load.getNode(), 1));
386  for (unsigned i = 1, e = Call.getNode()->getNumOperands(); i != e; ++i)
387    Ops.push_back(Call.getOperand(i));
388  CurDAG->UpdateNodeOperands(Call.getNode(), &Ops[0], Ops.size());
389}
390
391/// isCalleeLoad - Return true if call address is a load and it can be
392/// moved below CALLSEQ_START and the chains leading up to the call.
393/// Return the CALLSEQ_START by reference as a second output.
394/// In the case of a tail call, there isn't a callseq node between the call
395/// chain and the load.
396static bool isCalleeLoad(SDValue Callee, SDValue &Chain, bool HasCallSeq) {
397  if (Callee.getNode() == Chain.getNode() || !Callee.hasOneUse())
398    return false;
399  LoadSDNode *LD = dyn_cast<LoadSDNode>(Callee.getNode());
400  if (!LD ||
401      LD->isVolatile() ||
402      LD->getAddressingMode() != ISD::UNINDEXED ||
403      LD->getExtensionType() != ISD::NON_EXTLOAD)
404    return false;
405
406  // Now let's find the callseq_start.
407  while (HasCallSeq && Chain.getOpcode() != ISD::CALLSEQ_START) {
408    if (!Chain.hasOneUse())
409      return false;
410    Chain = Chain.getOperand(0);
411  }
412
413  if (!Chain.getNumOperands())
414    return false;
415  if (Chain.getOperand(0).getNode() == Callee.getNode())
416    return true;
417  if (Chain.getOperand(0).getOpcode() == ISD::TokenFactor &&
418      Callee.getValue(1).isOperandOf(Chain.getOperand(0).getNode()) &&
419      Callee.getValue(1).hasOneUse())
420    return true;
421  return false;
422}
423
424void X86DAGToDAGISel::PreprocessISelDAG() {
425  // OptForSize is used in pattern predicates that isel is matching.
426  OptForSize = MF->getFunction()->hasFnAttr(Attribute::OptimizeForSize);
427
428  for (SelectionDAG::allnodes_iterator I = CurDAG->allnodes_begin(),
429       E = CurDAG->allnodes_end(); I != E; ) {
430    SDNode *N = I++;  // Preincrement iterator to avoid invalidation issues.
431
432    if (OptLevel != CodeGenOpt::None &&
433        (N->getOpcode() == X86ISD::CALL ||
434         N->getOpcode() == X86ISD::TC_RETURN)) {
435      /// Also try moving call address load from outside callseq_start to just
436      /// before the call to allow it to be folded.
437      ///
438      ///     [Load chain]
439      ///         ^
440      ///         |
441      ///       [Load]
442      ///       ^    ^
443      ///       |    |
444      ///      /      \--
445      ///     /          |
446      ///[CALLSEQ_START] |
447      ///     ^          |
448      ///     |          |
449      /// [LOAD/C2Reg]   |
450      ///     |          |
451      ///      \        /
452      ///       \      /
453      ///       [CALL]
454      bool HasCallSeq = N->getOpcode() == X86ISD::CALL;
455      SDValue Chain = N->getOperand(0);
456      SDValue Load  = N->getOperand(1);
457      if (!isCalleeLoad(Load, Chain, HasCallSeq))
458        continue;
459      MoveBelowOrigChain(CurDAG, Load, SDValue(N, 0), Chain);
460      ++NumLoadMoved;
461      continue;
462    }
463
464    // Lower fpround and fpextend nodes that target the FP stack to be store and
465    // load to the stack.  This is a gross hack.  We would like to simply mark
466    // these as being illegal, but when we do that, legalize produces these when
467    // it expands calls, then expands these in the same legalize pass.  We would
468    // like dag combine to be able to hack on these between the call expansion
469    // and the node legalization.  As such this pass basically does "really
470    // late" legalization of these inline with the X86 isel pass.
471    // FIXME: This should only happen when not compiled with -O0.
472    if (N->getOpcode() != ISD::FP_ROUND && N->getOpcode() != ISD::FP_EXTEND)
473      continue;
474
475    // If the source and destination are SSE registers, then this is a legal
476    // conversion that should not be lowered.
477    EVT SrcVT = N->getOperand(0).getValueType();
478    EVT DstVT = N->getValueType(0);
479    bool SrcIsSSE = X86Lowering.isScalarFPTypeInSSEReg(SrcVT);
480    bool DstIsSSE = X86Lowering.isScalarFPTypeInSSEReg(DstVT);
481    if (SrcIsSSE && DstIsSSE)
482      continue;
483
484    if (!SrcIsSSE && !DstIsSSE) {
485      // If this is an FPStack extension, it is a noop.
486      if (N->getOpcode() == ISD::FP_EXTEND)
487        continue;
488      // If this is a value-preserving FPStack truncation, it is a noop.
489      if (N->getConstantOperandVal(1))
490        continue;
491    }
492
493    // Here we could have an FP stack truncation or an FPStack <-> SSE convert.
494    // FPStack has extload and truncstore.  SSE can fold direct loads into other
495    // operations.  Based on this, decide what we want to do.
496    EVT MemVT;
497    if (N->getOpcode() == ISD::FP_ROUND)
498      MemVT = DstVT;  // FP_ROUND must use DstVT, we can't do a 'trunc load'.
499    else
500      MemVT = SrcIsSSE ? SrcVT : DstVT;
501
502    SDValue MemTmp = CurDAG->CreateStackTemporary(MemVT);
503    DebugLoc dl = N->getDebugLoc();
504
505    // FIXME: optimize the case where the src/dest is a load or store?
506    SDValue Store = CurDAG->getTruncStore(CurDAG->getEntryNode(), dl,
507                                          N->getOperand(0),
508                                          MemTmp, MachinePointerInfo(), MemVT,
509                                          false, false, 0);
510    SDValue Result = CurDAG->getExtLoad(ISD::EXTLOAD, dl, DstVT, Store, MemTmp,
511                                        MachinePointerInfo(),
512                                        MemVT, false, false, 0);
513
514    // We're about to replace all uses of the FP_ROUND/FP_EXTEND with the
515    // extload we created.  This will cause general havok on the dag because
516    // anything below the conversion could be folded into other existing nodes.
517    // To avoid invalidating 'I', back it up to the convert node.
518    --I;
519    CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Result);
520
521    // Now that we did that, the node is dead.  Increment the iterator to the
522    // next node to process, then delete N.
523    ++I;
524    CurDAG->DeleteNode(N);
525  }
526}
527
528
529/// EmitSpecialCodeForMain - Emit any code that needs to be executed only in
530/// the main function.
531void X86DAGToDAGISel::EmitSpecialCodeForMain(MachineBasicBlock *BB,
532                                             MachineFrameInfo *MFI) {
533  const TargetInstrInfo *TII = TM.getInstrInfo();
534  if (Subtarget->isTargetCygMing()) {
535    unsigned CallOp =
536      Subtarget->is64Bit() ? X86::WINCALL64pcrel32 : X86::CALLpcrel32;
537    BuildMI(BB, DebugLoc(),
538            TII->get(CallOp)).addExternalSymbol("__main");
539  }
540}
541
542void X86DAGToDAGISel::EmitFunctionEntryCode() {
543  // If this is main, emit special code for main.
544  if (const Function *Fn = MF->getFunction())
545    if (Fn->hasExternalLinkage() && Fn->getName() == "main")
546      EmitSpecialCodeForMain(MF->begin(), MF->getFrameInfo());
547}
548
549
550bool X86DAGToDAGISel::MatchLoadInAddress(LoadSDNode *N, X86ISelAddressMode &AM){
551  SDValue Address = N->getOperand(1);
552
553  // load gs:0 -> GS segment register.
554  // load fs:0 -> FS segment register.
555  //
556  // This optimization is valid because the GNU TLS model defines that
557  // gs:0 (or fs:0 on X86-64) contains its own address.
558  // For more information see http://people.redhat.com/drepper/tls.pdf
559  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Address))
560    if (C->getSExtValue() == 0 && AM.Segment.getNode() == 0 &&
561        Subtarget->isTargetELF())
562      switch (N->getPointerInfo().getAddrSpace()) {
563      case 256:
564        AM.Segment = CurDAG->getRegister(X86::GS, MVT::i16);
565        return false;
566      case 257:
567        AM.Segment = CurDAG->getRegister(X86::FS, MVT::i16);
568        return false;
569      }
570
571  return true;
572}
573
574/// MatchWrapper - Try to match X86ISD::Wrapper and X86ISD::WrapperRIP nodes
575/// into an addressing mode.  These wrap things that will resolve down into a
576/// symbol reference.  If no match is possible, this returns true, otherwise it
577/// returns false.
578bool X86DAGToDAGISel::MatchWrapper(SDValue N, X86ISelAddressMode &AM) {
579  // If the addressing mode already has a symbol as the displacement, we can
580  // never match another symbol.
581  if (AM.hasSymbolicDisplacement())
582    return true;
583
584  SDValue N0 = N.getOperand(0);
585  CodeModel::Model M = TM.getCodeModel();
586
587  // Handle X86-64 rip-relative addresses.  We check this before checking direct
588  // folding because RIP is preferable to non-RIP accesses.
589  if (Subtarget->is64Bit() &&
590      // Under X86-64 non-small code model, GV (and friends) are 64-bits, so
591      // they cannot be folded into immediate fields.
592      // FIXME: This can be improved for kernel and other models?
593      (M == CodeModel::Small || M == CodeModel::Kernel) &&
594      // Base and index reg must be 0 in order to use %rip as base and lowering
595      // must allow RIP.
596      !AM.hasBaseOrIndexReg() && N.getOpcode() == X86ISD::WrapperRIP) {
597    if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(N0)) {
598      int64_t Offset = AM.Disp + G->getOffset();
599      if (!X86::isOffsetSuitableForCodeModel(Offset, M)) return true;
600      AM.GV = G->getGlobal();
601      AM.Disp = Offset;
602      AM.SymbolFlags = G->getTargetFlags();
603    } else if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(N0)) {
604      int64_t Offset = AM.Disp + CP->getOffset();
605      if (!X86::isOffsetSuitableForCodeModel(Offset, M)) return true;
606      AM.CP = CP->getConstVal();
607      AM.Align = CP->getAlignment();
608      AM.Disp = Offset;
609      AM.SymbolFlags = CP->getTargetFlags();
610    } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(N0)) {
611      AM.ES = S->getSymbol();
612      AM.SymbolFlags = S->getTargetFlags();
613    } else if (JumpTableSDNode *J = dyn_cast<JumpTableSDNode>(N0)) {
614      AM.JT = J->getIndex();
615      AM.SymbolFlags = J->getTargetFlags();
616    } else {
617      AM.BlockAddr = cast<BlockAddressSDNode>(N0)->getBlockAddress();
618      AM.SymbolFlags = cast<BlockAddressSDNode>(N0)->getTargetFlags();
619    }
620
621    if (N.getOpcode() == X86ISD::WrapperRIP)
622      AM.setBaseReg(CurDAG->getRegister(X86::RIP, MVT::i64));
623    return false;
624  }
625
626  // Handle the case when globals fit in our immediate field: This is true for
627  // X86-32 always and X86-64 when in -static -mcmodel=small mode.  In 64-bit
628  // mode, this results in a non-RIP-relative computation.
629  if (!Subtarget->is64Bit() ||
630      ((M == CodeModel::Small || M == CodeModel::Kernel) &&
631       TM.getRelocationModel() == Reloc::Static)) {
632    if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(N0)) {
633      AM.GV = G->getGlobal();
634      AM.Disp += G->getOffset();
635      AM.SymbolFlags = G->getTargetFlags();
636    } else if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(N0)) {
637      AM.CP = CP->getConstVal();
638      AM.Align = CP->getAlignment();
639      AM.Disp += CP->getOffset();
640      AM.SymbolFlags = CP->getTargetFlags();
641    } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(N0)) {
642      AM.ES = S->getSymbol();
643      AM.SymbolFlags = S->getTargetFlags();
644    } else if (JumpTableSDNode *J = dyn_cast<JumpTableSDNode>(N0)) {
645      AM.JT = J->getIndex();
646      AM.SymbolFlags = J->getTargetFlags();
647    } else {
648      AM.BlockAddr = cast<BlockAddressSDNode>(N0)->getBlockAddress();
649      AM.SymbolFlags = cast<BlockAddressSDNode>(N0)->getTargetFlags();
650    }
651    return false;
652  }
653
654  return true;
655}
656
657/// MatchAddress - Add the specified node to the specified addressing mode,
658/// returning true if it cannot be done.  This just pattern matches for the
659/// addressing mode.
660bool X86DAGToDAGISel::MatchAddress(SDValue N, X86ISelAddressMode &AM) {
661  if (MatchAddressRecursively(N, AM, 0))
662    return true;
663
664  // Post-processing: Convert lea(,%reg,2) to lea(%reg,%reg), which has
665  // a smaller encoding and avoids a scaled-index.
666  if (AM.Scale == 2 &&
667      AM.BaseType == X86ISelAddressMode::RegBase &&
668      AM.Base_Reg.getNode() == 0) {
669    AM.Base_Reg = AM.IndexReg;
670    AM.Scale = 1;
671  }
672
673  // Post-processing: Convert foo to foo(%rip), even in non-PIC mode,
674  // because it has a smaller encoding.
675  // TODO: Which other code models can use this?
676  if (TM.getCodeModel() == CodeModel::Small &&
677      Subtarget->is64Bit() &&
678      AM.Scale == 1 &&
679      AM.BaseType == X86ISelAddressMode::RegBase &&
680      AM.Base_Reg.getNode() == 0 &&
681      AM.IndexReg.getNode() == 0 &&
682      AM.SymbolFlags == X86II::MO_NO_FLAG &&
683      AM.hasSymbolicDisplacement())
684    AM.Base_Reg = CurDAG->getRegister(X86::RIP, MVT::i64);
685
686  return false;
687}
688
689bool X86DAGToDAGISel::MatchAddressRecursively(SDValue N, X86ISelAddressMode &AM,
690                                              unsigned Depth) {
691  bool is64Bit = Subtarget->is64Bit();
692  DebugLoc dl = N.getDebugLoc();
693  DEBUG({
694      dbgs() << "MatchAddress: ";
695      AM.dump();
696    });
697  // Limit recursion.
698  if (Depth > 5)
699    return MatchAddressBase(N, AM);
700
701  CodeModel::Model M = TM.getCodeModel();
702
703  // If this is already a %rip relative address, we can only merge immediates
704  // into it.  Instead of handling this in every case, we handle it here.
705  // RIP relative addressing: %rip + 32-bit displacement!
706  if (AM.isRIPRelative()) {
707    // FIXME: JumpTable and ExternalSymbol address currently don't like
708    // displacements.  It isn't very important, but this should be fixed for
709    // consistency.
710    if (!AM.ES && AM.JT != -1) return true;
711
712    if (ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(N)) {
713      int64_t Val = AM.Disp + Cst->getSExtValue();
714      if (X86::isOffsetSuitableForCodeModel(Val, M,
715                                            AM.hasSymbolicDisplacement())) {
716        AM.Disp = Val;
717        return false;
718      }
719    }
720    return true;
721  }
722
723  switch (N.getOpcode()) {
724  default: break;
725  case ISD::Constant: {
726    uint64_t Val = cast<ConstantSDNode>(N)->getSExtValue();
727    if (!is64Bit ||
728        X86::isOffsetSuitableForCodeModel(AM.Disp + Val, M,
729                                          AM.hasSymbolicDisplacement())) {
730      AM.Disp += Val;
731      return false;
732    }
733    break;
734  }
735
736  case X86ISD::Wrapper:
737  case X86ISD::WrapperRIP:
738    if (!MatchWrapper(N, AM))
739      return false;
740    break;
741
742  case ISD::LOAD:
743    if (!MatchLoadInAddress(cast<LoadSDNode>(N), AM))
744      return false;
745    break;
746
747  case ISD::FrameIndex:
748    if (AM.BaseType == X86ISelAddressMode::RegBase
749        && AM.Base_Reg.getNode() == 0) {
750      AM.BaseType = X86ISelAddressMode::FrameIndexBase;
751      AM.Base_FrameIndex = cast<FrameIndexSDNode>(N)->getIndex();
752      return false;
753    }
754    break;
755
756  case ISD::SHL:
757    if (AM.IndexReg.getNode() != 0 || AM.Scale != 1)
758      break;
759
760    if (ConstantSDNode
761          *CN = dyn_cast<ConstantSDNode>(N.getNode()->getOperand(1))) {
762      unsigned Val = CN->getZExtValue();
763      // Note that we handle x<<1 as (,x,2) rather than (x,x) here so
764      // that the base operand remains free for further matching. If
765      // the base doesn't end up getting used, a post-processing step
766      // in MatchAddress turns (,x,2) into (x,x), which is cheaper.
767      if (Val == 1 || Val == 2 || Val == 3) {
768        AM.Scale = 1 << Val;
769        SDValue ShVal = N.getNode()->getOperand(0);
770
771        // Okay, we know that we have a scale by now.  However, if the scaled
772        // value is an add of something and a constant, we can fold the
773        // constant into the disp field here.
774        if (CurDAG->isBaseWithConstantOffset(ShVal)) {
775          AM.IndexReg = ShVal.getNode()->getOperand(0);
776          ConstantSDNode *AddVal =
777            cast<ConstantSDNode>(ShVal.getNode()->getOperand(1));
778          uint64_t Disp = AM.Disp + (AddVal->getSExtValue() << Val);
779          if (!is64Bit ||
780              X86::isOffsetSuitableForCodeModel(Disp, M,
781                                                AM.hasSymbolicDisplacement()))
782            AM.Disp = Disp;
783          else
784            AM.IndexReg = ShVal;
785        } else {
786          AM.IndexReg = ShVal;
787        }
788        return false;
789      }
790    break;
791    }
792
793  case ISD::SMUL_LOHI:
794  case ISD::UMUL_LOHI:
795    // A mul_lohi where we need the low part can be folded as a plain multiply.
796    if (N.getResNo() != 0) break;
797    // FALL THROUGH
798  case ISD::MUL:
799  case X86ISD::MUL_IMM:
800    // X*[3,5,9] -> X+X*[2,4,8]
801    if (AM.BaseType == X86ISelAddressMode::RegBase &&
802        AM.Base_Reg.getNode() == 0 &&
803        AM.IndexReg.getNode() == 0) {
804      if (ConstantSDNode
805            *CN = dyn_cast<ConstantSDNode>(N.getNode()->getOperand(1)))
806        if (CN->getZExtValue() == 3 || CN->getZExtValue() == 5 ||
807            CN->getZExtValue() == 9) {
808          AM.Scale = unsigned(CN->getZExtValue())-1;
809
810          SDValue MulVal = N.getNode()->getOperand(0);
811          SDValue Reg;
812
813          // Okay, we know that we have a scale by now.  However, if the scaled
814          // value is an add of something and a constant, we can fold the
815          // constant into the disp field here.
816          if (MulVal.getNode()->getOpcode() == ISD::ADD && MulVal.hasOneUse() &&
817              isa<ConstantSDNode>(MulVal.getNode()->getOperand(1))) {
818            Reg = MulVal.getNode()->getOperand(0);
819            ConstantSDNode *AddVal =
820              cast<ConstantSDNode>(MulVal.getNode()->getOperand(1));
821            uint64_t Disp = AM.Disp + AddVal->getSExtValue() *
822                                      CN->getZExtValue();
823            if (!is64Bit ||
824                X86::isOffsetSuitableForCodeModel(Disp, M,
825                                                  AM.hasSymbolicDisplacement()))
826              AM.Disp = Disp;
827            else
828              Reg = N.getNode()->getOperand(0);
829          } else {
830            Reg = N.getNode()->getOperand(0);
831          }
832
833          AM.IndexReg = AM.Base_Reg = Reg;
834          return false;
835        }
836    }
837    break;
838
839  case ISD::SUB: {
840    // Given A-B, if A can be completely folded into the address and
841    // the index field with the index field unused, use -B as the index.
842    // This is a win if a has multiple parts that can be folded into
843    // the address. Also, this saves a mov if the base register has
844    // other uses, since it avoids a two-address sub instruction, however
845    // it costs an additional mov if the index register has other uses.
846
847    // Add an artificial use to this node so that we can keep track of
848    // it if it gets CSE'd with a different node.
849    HandleSDNode Handle(N);
850
851    // Test if the LHS of the sub can be folded.
852    X86ISelAddressMode Backup = AM;
853    if (MatchAddressRecursively(N.getNode()->getOperand(0), AM, Depth+1)) {
854      AM = Backup;
855      break;
856    }
857    // Test if the index field is free for use.
858    if (AM.IndexReg.getNode() || AM.isRIPRelative()) {
859      AM = Backup;
860      break;
861    }
862
863    int Cost = 0;
864    SDValue RHS = Handle.getValue().getNode()->getOperand(1);
865    // If the RHS involves a register with multiple uses, this
866    // transformation incurs an extra mov, due to the neg instruction
867    // clobbering its operand.
868    if (!RHS.getNode()->hasOneUse() ||
869        RHS.getNode()->getOpcode() == ISD::CopyFromReg ||
870        RHS.getNode()->getOpcode() == ISD::TRUNCATE ||
871        RHS.getNode()->getOpcode() == ISD::ANY_EXTEND ||
872        (RHS.getNode()->getOpcode() == ISD::ZERO_EXTEND &&
873         RHS.getNode()->getOperand(0).getValueType() == MVT::i32))
874      ++Cost;
875    // If the base is a register with multiple uses, this
876    // transformation may save a mov.
877    if ((AM.BaseType == X86ISelAddressMode::RegBase &&
878         AM.Base_Reg.getNode() &&
879         !AM.Base_Reg.getNode()->hasOneUse()) ||
880        AM.BaseType == X86ISelAddressMode::FrameIndexBase)
881      --Cost;
882    // If the folded LHS was interesting, this transformation saves
883    // address arithmetic.
884    if ((AM.hasSymbolicDisplacement() && !Backup.hasSymbolicDisplacement()) +
885        ((AM.Disp != 0) && (Backup.Disp == 0)) +
886        (AM.Segment.getNode() && !Backup.Segment.getNode()) >= 2)
887      --Cost;
888    // If it doesn't look like it may be an overall win, don't do it.
889    if (Cost >= 0) {
890      AM = Backup;
891      break;
892    }
893
894    // Ok, the transformation is legal and appears profitable. Go for it.
895    SDValue Zero = CurDAG->getConstant(0, N.getValueType());
896    SDValue Neg = CurDAG->getNode(ISD::SUB, dl, N.getValueType(), Zero, RHS);
897    AM.IndexReg = Neg;
898    AM.Scale = 1;
899
900    // Insert the new nodes into the topological ordering.
901    if (Zero.getNode()->getNodeId() == -1 ||
902        Zero.getNode()->getNodeId() > N.getNode()->getNodeId()) {
903      CurDAG->RepositionNode(N.getNode(), Zero.getNode());
904      Zero.getNode()->setNodeId(N.getNode()->getNodeId());
905    }
906    if (Neg.getNode()->getNodeId() == -1 ||
907        Neg.getNode()->getNodeId() > N.getNode()->getNodeId()) {
908      CurDAG->RepositionNode(N.getNode(), Neg.getNode());
909      Neg.getNode()->setNodeId(N.getNode()->getNodeId());
910    }
911    return false;
912  }
913
914  case ISD::ADD: {
915    // Add an artificial use to this node so that we can keep track of
916    // it if it gets CSE'd with a different node.
917    HandleSDNode Handle(N);
918
919    X86ISelAddressMode Backup = AM;
920    if (!MatchAddressRecursively(N.getOperand(0), AM, Depth+1) &&
921        !MatchAddressRecursively(Handle.getValue().getOperand(1), AM, Depth+1))
922      return false;
923    AM = Backup;
924
925    // Try again after commuting the operands.
926    if (!MatchAddressRecursively(Handle.getValue().getOperand(1), AM, Depth+1)&&
927        !MatchAddressRecursively(Handle.getValue().getOperand(0), AM, Depth+1))
928      return false;
929    AM = Backup;
930
931    // If we couldn't fold both operands into the address at the same time,
932    // see if we can just put each operand into a register and fold at least
933    // the add.
934    if (AM.BaseType == X86ISelAddressMode::RegBase &&
935        !AM.Base_Reg.getNode() &&
936        !AM.IndexReg.getNode()) {
937      N = Handle.getValue();
938      AM.Base_Reg = N.getOperand(0);
939      AM.IndexReg = N.getOperand(1);
940      AM.Scale = 1;
941      return false;
942    }
943    N = Handle.getValue();
944    break;
945  }
946
947  case ISD::OR:
948    // Handle "X | C" as "X + C" iff X is known to have C bits clear.
949    if (CurDAG->isBaseWithConstantOffset(N)) {
950      X86ISelAddressMode Backup = AM;
951      ConstantSDNode *CN = cast<ConstantSDNode>(N.getOperand(1));
952      uint64_t Offset = CN->getSExtValue();
953
954      // Start with the LHS as an addr mode.
955      if (!MatchAddressRecursively(N.getOperand(0), AM, Depth+1) &&
956          // Address could not have picked a GV address for the displacement.
957          AM.GV == NULL &&
958          // On x86-64, the resultant disp must fit in 32-bits.
959          (!is64Bit ||
960           X86::isOffsetSuitableForCodeModel(AM.Disp + Offset, M,
961                                             AM.hasSymbolicDisplacement()))) {
962        AM.Disp += Offset;
963        return false;
964      }
965      AM = Backup;
966    }
967    break;
968
969  case ISD::AND: {
970    // Perform some heroic transforms on an and of a constant-count shift
971    // with a constant to enable use of the scaled offset field.
972
973    SDValue Shift = N.getOperand(0);
974    if (Shift.getNumOperands() != 2) break;
975
976    // Scale must not be used already.
977    if (AM.IndexReg.getNode() != 0 || AM.Scale != 1) break;
978
979    SDValue X = Shift.getOperand(0);
980    ConstantSDNode *C2 = dyn_cast<ConstantSDNode>(N.getOperand(1));
981    ConstantSDNode *C1 = dyn_cast<ConstantSDNode>(Shift.getOperand(1));
982    if (!C1 || !C2) break;
983
984    // Handle "(X >> (8-C1)) & C2" as "(X >> 8) & 0xff)" if safe. This
985    // allows us to convert the shift and and into an h-register extract and
986    // a scaled index.
987    if (Shift.getOpcode() == ISD::SRL && Shift.hasOneUse()) {
988      unsigned ScaleLog = 8 - C1->getZExtValue();
989      if (ScaleLog > 0 && ScaleLog < 4 &&
990          C2->getZExtValue() == (UINT64_C(0xff) << ScaleLog)) {
991        SDValue Eight = CurDAG->getConstant(8, MVT::i8);
992        SDValue Mask = CurDAG->getConstant(0xff, N.getValueType());
993        SDValue Srl = CurDAG->getNode(ISD::SRL, dl, N.getValueType(),
994                                      X, Eight);
995        SDValue And = CurDAG->getNode(ISD::AND, dl, N.getValueType(),
996                                      Srl, Mask);
997        SDValue ShlCount = CurDAG->getConstant(ScaleLog, MVT::i8);
998        SDValue Shl = CurDAG->getNode(ISD::SHL, dl, N.getValueType(),
999                                      And, ShlCount);
1000
1001        // Insert the new nodes into the topological ordering.
1002        if (Eight.getNode()->getNodeId() == -1 ||
1003            Eight.getNode()->getNodeId() > X.getNode()->getNodeId()) {
1004          CurDAG->RepositionNode(X.getNode(), Eight.getNode());
1005          Eight.getNode()->setNodeId(X.getNode()->getNodeId());
1006        }
1007        if (Mask.getNode()->getNodeId() == -1 ||
1008            Mask.getNode()->getNodeId() > X.getNode()->getNodeId()) {
1009          CurDAG->RepositionNode(X.getNode(), Mask.getNode());
1010          Mask.getNode()->setNodeId(X.getNode()->getNodeId());
1011        }
1012        if (Srl.getNode()->getNodeId() == -1 ||
1013            Srl.getNode()->getNodeId() > Shift.getNode()->getNodeId()) {
1014          CurDAG->RepositionNode(Shift.getNode(), Srl.getNode());
1015          Srl.getNode()->setNodeId(Shift.getNode()->getNodeId());
1016        }
1017        if (And.getNode()->getNodeId() == -1 ||
1018            And.getNode()->getNodeId() > N.getNode()->getNodeId()) {
1019          CurDAG->RepositionNode(N.getNode(), And.getNode());
1020          And.getNode()->setNodeId(N.getNode()->getNodeId());
1021        }
1022        if (ShlCount.getNode()->getNodeId() == -1 ||
1023            ShlCount.getNode()->getNodeId() > X.getNode()->getNodeId()) {
1024          CurDAG->RepositionNode(X.getNode(), ShlCount.getNode());
1025          ShlCount.getNode()->setNodeId(N.getNode()->getNodeId());
1026        }
1027        if (Shl.getNode()->getNodeId() == -1 ||
1028            Shl.getNode()->getNodeId() > N.getNode()->getNodeId()) {
1029          CurDAG->RepositionNode(N.getNode(), Shl.getNode());
1030          Shl.getNode()->setNodeId(N.getNode()->getNodeId());
1031        }
1032        CurDAG->ReplaceAllUsesWith(N, Shl);
1033        AM.IndexReg = And;
1034        AM.Scale = (1 << ScaleLog);
1035        return false;
1036      }
1037    }
1038
1039    // Handle "(X << C1) & C2" as "(X & (C2>>C1)) << C1" if safe and if this
1040    // allows us to fold the shift into this addressing mode.
1041    if (Shift.getOpcode() != ISD::SHL) break;
1042
1043    // Not likely to be profitable if either the AND or SHIFT node has more
1044    // than one use (unless all uses are for address computation). Besides,
1045    // isel mechanism requires their node ids to be reused.
1046    if (!N.hasOneUse() || !Shift.hasOneUse())
1047      break;
1048
1049    // Verify that the shift amount is something we can fold.
1050    unsigned ShiftCst = C1->getZExtValue();
1051    if (ShiftCst != 1 && ShiftCst != 2 && ShiftCst != 3)
1052      break;
1053
1054    // Get the new AND mask, this folds to a constant.
1055    SDValue NewANDMask = CurDAG->getNode(ISD::SRL, dl, N.getValueType(),
1056                                         SDValue(C2, 0), SDValue(C1, 0));
1057    SDValue NewAND = CurDAG->getNode(ISD::AND, dl, N.getValueType(), X,
1058                                     NewANDMask);
1059    SDValue NewSHIFT = CurDAG->getNode(ISD::SHL, dl, N.getValueType(),
1060                                       NewAND, SDValue(C1, 0));
1061
1062    // Insert the new nodes into the topological ordering.
1063    if (C1->getNodeId() > X.getNode()->getNodeId()) {
1064      CurDAG->RepositionNode(X.getNode(), C1);
1065      C1->setNodeId(X.getNode()->getNodeId());
1066    }
1067    if (NewANDMask.getNode()->getNodeId() == -1 ||
1068        NewANDMask.getNode()->getNodeId() > X.getNode()->getNodeId()) {
1069      CurDAG->RepositionNode(X.getNode(), NewANDMask.getNode());
1070      NewANDMask.getNode()->setNodeId(X.getNode()->getNodeId());
1071    }
1072    if (NewAND.getNode()->getNodeId() == -1 ||
1073        NewAND.getNode()->getNodeId() > Shift.getNode()->getNodeId()) {
1074      CurDAG->RepositionNode(Shift.getNode(), NewAND.getNode());
1075      NewAND.getNode()->setNodeId(Shift.getNode()->getNodeId());
1076    }
1077    if (NewSHIFT.getNode()->getNodeId() == -1 ||
1078        NewSHIFT.getNode()->getNodeId() > N.getNode()->getNodeId()) {
1079      CurDAG->RepositionNode(N.getNode(), NewSHIFT.getNode());
1080      NewSHIFT.getNode()->setNodeId(N.getNode()->getNodeId());
1081    }
1082
1083    CurDAG->ReplaceAllUsesWith(N, NewSHIFT);
1084
1085    AM.Scale = 1 << ShiftCst;
1086    AM.IndexReg = NewAND;
1087    return false;
1088  }
1089  }
1090
1091  return MatchAddressBase(N, AM);
1092}
1093
1094/// MatchAddressBase - Helper for MatchAddress. Add the specified node to the
1095/// specified addressing mode without any further recursion.
1096bool X86DAGToDAGISel::MatchAddressBase(SDValue N, X86ISelAddressMode &AM) {
1097  // Is the base register already occupied?
1098  if (AM.BaseType != X86ISelAddressMode::RegBase || AM.Base_Reg.getNode()) {
1099    // If so, check to see if the scale index register is set.
1100    if (AM.IndexReg.getNode() == 0) {
1101      AM.IndexReg = N;
1102      AM.Scale = 1;
1103      return false;
1104    }
1105
1106    // Otherwise, we cannot select it.
1107    return true;
1108  }
1109
1110  // Default, generate it as a register.
1111  AM.BaseType = X86ISelAddressMode::RegBase;
1112  AM.Base_Reg = N;
1113  return false;
1114}
1115
1116/// SelectAddr - returns true if it is able pattern match an addressing mode.
1117/// It returns the operands which make up the maximal addressing mode it can
1118/// match by reference.
1119///
1120/// Parent is the parent node of the addr operand that is being matched.  It
1121/// is always a load, store, atomic node, or null.  It is only null when
1122/// checking memory operands for inline asm nodes.
1123bool X86DAGToDAGISel::SelectAddr(SDNode *Parent, SDValue N, SDValue &Base,
1124                                 SDValue &Scale, SDValue &Index,
1125                                 SDValue &Disp, SDValue &Segment) {
1126  X86ISelAddressMode AM;
1127
1128  if (Parent &&
1129      // This list of opcodes are all the nodes that have an "addr:$ptr" operand
1130      // that are not a MemSDNode, and thus don't have proper addrspace info.
1131      Parent->getOpcode() != ISD::INTRINSIC_W_CHAIN && // unaligned loads, fixme
1132      Parent->getOpcode() != ISD::INTRINSIC_VOID && // nontemporal stores
1133      Parent->getOpcode() != X86ISD::TLSCALL) { // Fixme
1134    unsigned AddrSpace =
1135      cast<MemSDNode>(Parent)->getPointerInfo().getAddrSpace();
1136    // AddrSpace 256 -> GS, 257 -> FS.
1137    if (AddrSpace == 256)
1138      AM.Segment = CurDAG->getRegister(X86::GS, MVT::i16);
1139    if (AddrSpace == 257)
1140      AM.Segment = CurDAG->getRegister(X86::FS, MVT::i16);
1141  }
1142
1143  if (MatchAddress(N, AM))
1144    return false;
1145
1146  EVT VT = N.getValueType();
1147  if (AM.BaseType == X86ISelAddressMode::RegBase) {
1148    if (!AM.Base_Reg.getNode())
1149      AM.Base_Reg = CurDAG->getRegister(0, VT);
1150  }
1151
1152  if (!AM.IndexReg.getNode())
1153    AM.IndexReg = CurDAG->getRegister(0, VT);
1154
1155  getAddressOperands(AM, Base, Scale, Index, Disp, Segment);
1156  return true;
1157}
1158
1159/// SelectScalarSSELoad - Match a scalar SSE load.  In particular, we want to
1160/// match a load whose top elements are either undef or zeros.  The load flavor
1161/// is derived from the type of N, which is either v4f32 or v2f64.
1162///
1163/// We also return:
1164///   PatternChainNode: this is the matched node that has a chain input and
1165///   output.
1166bool X86DAGToDAGISel::SelectScalarSSELoad(SDNode *Root,
1167                                          SDValue N, SDValue &Base,
1168                                          SDValue &Scale, SDValue &Index,
1169                                          SDValue &Disp, SDValue &Segment,
1170                                          SDValue &PatternNodeWithChain) {
1171  if (N.getOpcode() == ISD::SCALAR_TO_VECTOR) {
1172    PatternNodeWithChain = N.getOperand(0);
1173    if (ISD::isNON_EXTLoad(PatternNodeWithChain.getNode()) &&
1174        PatternNodeWithChain.hasOneUse() &&
1175        IsProfitableToFold(N.getOperand(0), N.getNode(), Root) &&
1176        IsLegalToFold(N.getOperand(0), N.getNode(), Root, OptLevel)) {
1177      LoadSDNode *LD = cast<LoadSDNode>(PatternNodeWithChain);
1178      if (!SelectAddr(LD, LD->getBasePtr(), Base, Scale, Index, Disp, Segment))
1179        return false;
1180      return true;
1181    }
1182  }
1183
1184  // Also handle the case where we explicitly require zeros in the top
1185  // elements.  This is a vector shuffle from the zero vector.
1186  if (N.getOpcode() == X86ISD::VZEXT_MOVL && N.getNode()->hasOneUse() &&
1187      // Check to see if the top elements are all zeros (or bitcast of zeros).
1188      N.getOperand(0).getOpcode() == ISD::SCALAR_TO_VECTOR &&
1189      N.getOperand(0).getNode()->hasOneUse() &&
1190      ISD::isNON_EXTLoad(N.getOperand(0).getOperand(0).getNode()) &&
1191      N.getOperand(0).getOperand(0).hasOneUse() &&
1192      IsProfitableToFold(N.getOperand(0), N.getNode(), Root) &&
1193      IsLegalToFold(N.getOperand(0), N.getNode(), Root, OptLevel)) {
1194    // Okay, this is a zero extending load.  Fold it.
1195    LoadSDNode *LD = cast<LoadSDNode>(N.getOperand(0).getOperand(0));
1196    if (!SelectAddr(LD, LD->getBasePtr(), Base, Scale, Index, Disp, Segment))
1197      return false;
1198    PatternNodeWithChain = SDValue(LD, 0);
1199    return true;
1200  }
1201  return false;
1202}
1203
1204
1205/// SelectLEAAddr - it calls SelectAddr and determines if the maximal addressing
1206/// mode it matches can be cost effectively emitted as an LEA instruction.
1207bool X86DAGToDAGISel::SelectLEAAddr(SDValue N,
1208                                    SDValue &Base, SDValue &Scale,
1209                                    SDValue &Index, SDValue &Disp,
1210                                    SDValue &Segment) {
1211  X86ISelAddressMode AM;
1212
1213  // Set AM.Segment to prevent MatchAddress from using one. LEA doesn't support
1214  // segments.
1215  SDValue Copy = AM.Segment;
1216  SDValue T = CurDAG->getRegister(0, MVT::i32);
1217  AM.Segment = T;
1218  if (MatchAddress(N, AM))
1219    return false;
1220  assert (T == AM.Segment);
1221  AM.Segment = Copy;
1222
1223  EVT VT = N.getValueType();
1224  unsigned Complexity = 0;
1225  if (AM.BaseType == X86ISelAddressMode::RegBase)
1226    if (AM.Base_Reg.getNode())
1227      Complexity = 1;
1228    else
1229      AM.Base_Reg = CurDAG->getRegister(0, VT);
1230  else if (AM.BaseType == X86ISelAddressMode::FrameIndexBase)
1231    Complexity = 4;
1232
1233  if (AM.IndexReg.getNode())
1234    Complexity++;
1235  else
1236    AM.IndexReg = CurDAG->getRegister(0, VT);
1237
1238  // Don't match just leal(,%reg,2). It's cheaper to do addl %reg, %reg, or with
1239  // a simple shift.
1240  if (AM.Scale > 1)
1241    Complexity++;
1242
1243  // FIXME: We are artificially lowering the criteria to turn ADD %reg, $GA
1244  // to a LEA. This is determined with some expermentation but is by no means
1245  // optimal (especially for code size consideration). LEA is nice because of
1246  // its three-address nature. Tweak the cost function again when we can run
1247  // convertToThreeAddress() at register allocation time.
1248  if (AM.hasSymbolicDisplacement()) {
1249    // For X86-64, we should always use lea to materialize RIP relative
1250    // addresses.
1251    if (Subtarget->is64Bit())
1252      Complexity = 4;
1253    else
1254      Complexity += 2;
1255  }
1256
1257  if (AM.Disp && (AM.Base_Reg.getNode() || AM.IndexReg.getNode()))
1258    Complexity++;
1259
1260  // If it isn't worth using an LEA, reject it.
1261  if (Complexity <= 2)
1262    return false;
1263
1264  getAddressOperands(AM, Base, Scale, Index, Disp, Segment);
1265  return true;
1266}
1267
1268/// SelectTLSADDRAddr - This is only run on TargetGlobalTLSAddress nodes.
1269bool X86DAGToDAGISel::SelectTLSADDRAddr(SDValue N, SDValue &Base,
1270                                        SDValue &Scale, SDValue &Index,
1271                                        SDValue &Disp, SDValue &Segment) {
1272  assert(N.getOpcode() == ISD::TargetGlobalTLSAddress);
1273  const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
1274
1275  X86ISelAddressMode AM;
1276  AM.GV = GA->getGlobal();
1277  AM.Disp += GA->getOffset();
1278  AM.Base_Reg = CurDAG->getRegister(0, N.getValueType());
1279  AM.SymbolFlags = GA->getTargetFlags();
1280
1281  if (N.getValueType() == MVT::i32) {
1282    AM.Scale = 1;
1283    AM.IndexReg = CurDAG->getRegister(X86::EBX, MVT::i32);
1284  } else {
1285    AM.IndexReg = CurDAG->getRegister(0, MVT::i64);
1286  }
1287
1288  getAddressOperands(AM, Base, Scale, Index, Disp, Segment);
1289  return true;
1290}
1291
1292
1293bool X86DAGToDAGISel::TryFoldLoad(SDNode *P, SDValue N,
1294                                  SDValue &Base, SDValue &Scale,
1295                                  SDValue &Index, SDValue &Disp,
1296                                  SDValue &Segment) {
1297  if (!ISD::isNON_EXTLoad(N.getNode()) ||
1298      !IsProfitableToFold(N, P, P) ||
1299      !IsLegalToFold(N, P, P, OptLevel))
1300    return false;
1301
1302  return SelectAddr(N.getNode(),
1303                    N.getOperand(1), Base, Scale, Index, Disp, Segment);
1304}
1305
1306/// getGlobalBaseReg - Return an SDNode that returns the value of
1307/// the global base register. Output instructions required to
1308/// initialize the global base register, if necessary.
1309///
1310SDNode *X86DAGToDAGISel::getGlobalBaseReg() {
1311  unsigned GlobalBaseReg = getInstrInfo()->getGlobalBaseReg(MF);
1312  return CurDAG->getRegister(GlobalBaseReg, TLI.getPointerTy()).getNode();
1313}
1314
1315SDNode *X86DAGToDAGISel::SelectAtomic64(SDNode *Node, unsigned Opc) {
1316  SDValue Chain = Node->getOperand(0);
1317  SDValue In1 = Node->getOperand(1);
1318  SDValue In2L = Node->getOperand(2);
1319  SDValue In2H = Node->getOperand(3);
1320  SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
1321  if (!SelectAddr(Node, In1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4))
1322    return NULL;
1323  MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
1324  MemOp[0] = cast<MemSDNode>(Node)->getMemOperand();
1325  const SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, In2L, In2H, Chain};
1326  SDNode *ResNode = CurDAG->getMachineNode(Opc, Node->getDebugLoc(),
1327                                           MVT::i32, MVT::i32, MVT::Other, Ops,
1328                                           array_lengthof(Ops));
1329  cast<MachineSDNode>(ResNode)->setMemRefs(MemOp, MemOp + 1);
1330  return ResNode;
1331}
1332
1333// FIXME: Figure out some way to unify this with the 'or' and other code
1334// below.
1335SDNode *X86DAGToDAGISel::SelectAtomicLoadAdd(SDNode *Node, EVT NVT) {
1336  if (Node->hasAnyUseOfValue(0))
1337    return 0;
1338
1339  // Optimize common patterns for __sync_add_and_fetch and
1340  // __sync_sub_and_fetch where the result is not used. This allows us
1341  // to use "lock" version of add, sub, inc, dec instructions.
1342  // FIXME: Do not use special instructions but instead add the "lock"
1343  // prefix to the target node somehow. The extra information will then be
1344  // transferred to machine instruction and it denotes the prefix.
1345  SDValue Chain = Node->getOperand(0);
1346  SDValue Ptr = Node->getOperand(1);
1347  SDValue Val = Node->getOperand(2);
1348  SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
1349  if (!SelectAddr(Node, Ptr, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4))
1350    return 0;
1351
1352  bool isInc = false, isDec = false, isSub = false, isCN = false;
1353  ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Val);
1354  if (CN) {
1355    isCN = true;
1356    int64_t CNVal = CN->getSExtValue();
1357    if (CNVal == 1)
1358      isInc = true;
1359    else if (CNVal == -1)
1360      isDec = true;
1361    else if (CNVal >= 0)
1362      Val = CurDAG->getTargetConstant(CNVal, NVT);
1363    else {
1364      isSub = true;
1365      Val = CurDAG->getTargetConstant(-CNVal, NVT);
1366    }
1367  } else if (Val.hasOneUse() &&
1368             Val.getOpcode() == ISD::SUB &&
1369             X86::isZeroNode(Val.getOperand(0))) {
1370    isSub = true;
1371    Val = Val.getOperand(1);
1372  }
1373
1374  unsigned Opc = 0;
1375  switch (NVT.getSimpleVT().SimpleTy) {
1376  default: return 0;
1377  case MVT::i8:
1378    if (isInc)
1379      Opc = X86::LOCK_INC8m;
1380    else if (isDec)
1381      Opc = X86::LOCK_DEC8m;
1382    else if (isSub) {
1383      if (isCN)
1384        Opc = X86::LOCK_SUB8mi;
1385      else
1386        Opc = X86::LOCK_SUB8mr;
1387    } else {
1388      if (isCN)
1389        Opc = X86::LOCK_ADD8mi;
1390      else
1391        Opc = X86::LOCK_ADD8mr;
1392    }
1393    break;
1394  case MVT::i16:
1395    if (isInc)
1396      Opc = X86::LOCK_INC16m;
1397    else if (isDec)
1398      Opc = X86::LOCK_DEC16m;
1399    else if (isSub) {
1400      if (isCN) {
1401        if (immSext8(Val.getNode()))
1402          Opc = X86::LOCK_SUB16mi8;
1403        else
1404          Opc = X86::LOCK_SUB16mi;
1405      } else
1406        Opc = X86::LOCK_SUB16mr;
1407    } else {
1408      if (isCN) {
1409        if (immSext8(Val.getNode()))
1410          Opc = X86::LOCK_ADD16mi8;
1411        else
1412          Opc = X86::LOCK_ADD16mi;
1413      } else
1414        Opc = X86::LOCK_ADD16mr;
1415    }
1416    break;
1417  case MVT::i32:
1418    if (isInc)
1419      Opc = X86::LOCK_INC32m;
1420    else if (isDec)
1421      Opc = X86::LOCK_DEC32m;
1422    else if (isSub) {
1423      if (isCN) {
1424        if (immSext8(Val.getNode()))
1425          Opc = X86::LOCK_SUB32mi8;
1426        else
1427          Opc = X86::LOCK_SUB32mi;
1428      } else
1429        Opc = X86::LOCK_SUB32mr;
1430    } else {
1431      if (isCN) {
1432        if (immSext8(Val.getNode()))
1433          Opc = X86::LOCK_ADD32mi8;
1434        else
1435          Opc = X86::LOCK_ADD32mi;
1436      } else
1437        Opc = X86::LOCK_ADD32mr;
1438    }
1439    break;
1440  case MVT::i64:
1441    if (isInc)
1442      Opc = X86::LOCK_INC64m;
1443    else if (isDec)
1444      Opc = X86::LOCK_DEC64m;
1445    else if (isSub) {
1446      Opc = X86::LOCK_SUB64mr;
1447      if (isCN) {
1448        if (immSext8(Val.getNode()))
1449          Opc = X86::LOCK_SUB64mi8;
1450        else if (i64immSExt32(Val.getNode()))
1451          Opc = X86::LOCK_SUB64mi32;
1452      }
1453    } else {
1454      Opc = X86::LOCK_ADD64mr;
1455      if (isCN) {
1456        if (immSext8(Val.getNode()))
1457          Opc = X86::LOCK_ADD64mi8;
1458        else if (i64immSExt32(Val.getNode()))
1459          Opc = X86::LOCK_ADD64mi32;
1460      }
1461    }
1462    break;
1463  }
1464
1465  DebugLoc dl = Node->getDebugLoc();
1466  SDValue Undef = SDValue(CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF,
1467                                                 dl, NVT), 0);
1468  MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
1469  MemOp[0] = cast<MemSDNode>(Node)->getMemOperand();
1470  if (isInc || isDec) {
1471    SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Chain };
1472    SDValue Ret = SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Other, Ops, 6), 0);
1473    cast<MachineSDNode>(Ret)->setMemRefs(MemOp, MemOp + 1);
1474    SDValue RetVals[] = { Undef, Ret };
1475    return CurDAG->getMergeValues(RetVals, 2, dl).getNode();
1476  } else {
1477    SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Val, Chain };
1478    SDValue Ret = SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Other, Ops, 7), 0);
1479    cast<MachineSDNode>(Ret)->setMemRefs(MemOp, MemOp + 1);
1480    SDValue RetVals[] = { Undef, Ret };
1481    return CurDAG->getMergeValues(RetVals, 2, dl).getNode();
1482  }
1483}
1484
1485SDNode *X86DAGToDAGISel::SelectAtomicLoadOr(SDNode *Node, EVT NVT) {
1486  if (Node->hasAnyUseOfValue(0))
1487    return 0;
1488
1489  // Optimize common patterns for __sync_or_and_fetch  where the result
1490  // is not used. This allows us to use the "lock" version of the or
1491  // instruction.
1492  // FIXME: Same as for 'add' and 'sub'.
1493  SDValue Chain = Node->getOperand(0);
1494  SDValue Ptr = Node->getOperand(1);
1495  SDValue Val = Node->getOperand(2);
1496  SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
1497  if (!SelectAddr(Node, Ptr, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4))
1498    return 0;
1499
1500  bool isCN = false;
1501  ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Val);
1502  if (CN) {
1503    isCN = true;
1504    Val = CurDAG->getTargetConstant(CN->getSExtValue(), NVT);
1505  }
1506
1507  unsigned Opc = 0;
1508  switch (NVT.getSimpleVT().SimpleTy) {
1509    default: return 0;
1510    case MVT::i8:
1511      if (isCN)
1512        Opc = X86::LOCK_OR8mi;
1513      else
1514        Opc = X86::LOCK_OR8mr;
1515      break;
1516    case MVT::i16:
1517      if (isCN) {
1518        if (immSext8(Val.getNode()))
1519          Opc = X86::LOCK_OR16mi8;
1520        else
1521          Opc = X86::LOCK_OR16mi;
1522      } else
1523        Opc = X86::LOCK_OR16mr;
1524      break;
1525    case MVT::i32:
1526      if (isCN) {
1527        if (immSext8(Val.getNode()))
1528          Opc = X86::LOCK_OR32mi8;
1529        else
1530          Opc = X86::LOCK_OR32mi;
1531      } else
1532        Opc = X86::LOCK_OR32mr;
1533      break;
1534    case MVT::i64:
1535      if (isCN) {
1536        if (immSext8(Val.getNode()))
1537          Opc = X86::LOCK_OR64mi8;
1538        else if (i64immSExt32(Val.getNode()))
1539          Opc = X86::LOCK_OR64mi32;
1540      } else
1541        Opc = X86::LOCK_OR64mr;
1542      break;
1543  }
1544
1545  DebugLoc dl = Node->getDebugLoc();
1546  SDValue Undef = SDValue(CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF,
1547                                                 dl, NVT), 0);
1548  MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
1549  MemOp[0] = cast<MemSDNode>(Node)->getMemOperand();
1550  SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Val, Chain };
1551  SDValue Ret = SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Other, Ops, 7), 0);
1552  cast<MachineSDNode>(Ret)->setMemRefs(MemOp, MemOp + 1);
1553  SDValue RetVals[] = { Undef, Ret };
1554  return CurDAG->getMergeValues(RetVals, 2, dl).getNode();
1555}
1556
1557/// HasNoSignedComparisonUses - Test whether the given X86ISD::CMP node has
1558/// any uses which require the SF or OF bits to be accurate.
1559static bool HasNoSignedComparisonUses(SDNode *N) {
1560  // Examine each user of the node.
1561  for (SDNode::use_iterator UI = N->use_begin(),
1562         UE = N->use_end(); UI != UE; ++UI) {
1563    // Only examine CopyToReg uses.
1564    if (UI->getOpcode() != ISD::CopyToReg)
1565      return false;
1566    // Only examine CopyToReg uses that copy to EFLAGS.
1567    if (cast<RegisterSDNode>(UI->getOperand(1))->getReg() !=
1568          X86::EFLAGS)
1569      return false;
1570    // Examine each user of the CopyToReg use.
1571    for (SDNode::use_iterator FlagUI = UI->use_begin(),
1572           FlagUE = UI->use_end(); FlagUI != FlagUE; ++FlagUI) {
1573      // Only examine the Flag result.
1574      if (FlagUI.getUse().getResNo() != 1) continue;
1575      // Anything unusual: assume conservatively.
1576      if (!FlagUI->isMachineOpcode()) return false;
1577      // Examine the opcode of the user.
1578      switch (FlagUI->getMachineOpcode()) {
1579      // These comparisons don't treat the most significant bit specially.
1580      case X86::SETAr: case X86::SETAEr: case X86::SETBr: case X86::SETBEr:
1581      case X86::SETEr: case X86::SETNEr: case X86::SETPr: case X86::SETNPr:
1582      case X86::SETAm: case X86::SETAEm: case X86::SETBm: case X86::SETBEm:
1583      case X86::SETEm: case X86::SETNEm: case X86::SETPm: case X86::SETNPm:
1584      case X86::JA_4: case X86::JAE_4: case X86::JB_4: case X86::JBE_4:
1585      case X86::JE_4: case X86::JNE_4: case X86::JP_4: case X86::JNP_4:
1586      case X86::CMOVA16rr: case X86::CMOVA16rm:
1587      case X86::CMOVA32rr: case X86::CMOVA32rm:
1588      case X86::CMOVA64rr: case X86::CMOVA64rm:
1589      case X86::CMOVAE16rr: case X86::CMOVAE16rm:
1590      case X86::CMOVAE32rr: case X86::CMOVAE32rm:
1591      case X86::CMOVAE64rr: case X86::CMOVAE64rm:
1592      case X86::CMOVB16rr: case X86::CMOVB16rm:
1593      case X86::CMOVB32rr: case X86::CMOVB32rm:
1594      case X86::CMOVB64rr: case X86::CMOVB64rm:
1595      case X86::CMOVBE16rr: case X86::CMOVBE16rm:
1596      case X86::CMOVBE32rr: case X86::CMOVBE32rm:
1597      case X86::CMOVBE64rr: case X86::CMOVBE64rm:
1598      case X86::CMOVE16rr: case X86::CMOVE16rm:
1599      case X86::CMOVE32rr: case X86::CMOVE32rm:
1600      case X86::CMOVE64rr: case X86::CMOVE64rm:
1601      case X86::CMOVNE16rr: case X86::CMOVNE16rm:
1602      case X86::CMOVNE32rr: case X86::CMOVNE32rm:
1603      case X86::CMOVNE64rr: case X86::CMOVNE64rm:
1604      case X86::CMOVNP16rr: case X86::CMOVNP16rm:
1605      case X86::CMOVNP32rr: case X86::CMOVNP32rm:
1606      case X86::CMOVNP64rr: case X86::CMOVNP64rm:
1607      case X86::CMOVP16rr: case X86::CMOVP16rm:
1608      case X86::CMOVP32rr: case X86::CMOVP32rm:
1609      case X86::CMOVP64rr: case X86::CMOVP64rm:
1610        continue;
1611      // Anything else: assume conservatively.
1612      default: return false;
1613      }
1614    }
1615  }
1616  return true;
1617}
1618
1619SDNode *X86DAGToDAGISel::Select(SDNode *Node) {
1620  EVT NVT = Node->getValueType(0);
1621  unsigned Opc, MOpc;
1622  unsigned Opcode = Node->getOpcode();
1623  DebugLoc dl = Node->getDebugLoc();
1624
1625  DEBUG(dbgs() << "Selecting: "; Node->dump(CurDAG); dbgs() << '\n');
1626
1627  if (Node->isMachineOpcode()) {
1628    DEBUG(dbgs() << "== ";  Node->dump(CurDAG); dbgs() << '\n');
1629    return NULL;   // Already selected.
1630  }
1631
1632  switch (Opcode) {
1633  default: break;
1634  case X86ISD::GlobalBaseReg:
1635    return getGlobalBaseReg();
1636
1637  case X86ISD::ATOMOR64_DAG:
1638    return SelectAtomic64(Node, X86::ATOMOR6432);
1639  case X86ISD::ATOMXOR64_DAG:
1640    return SelectAtomic64(Node, X86::ATOMXOR6432);
1641  case X86ISD::ATOMADD64_DAG:
1642    return SelectAtomic64(Node, X86::ATOMADD6432);
1643  case X86ISD::ATOMSUB64_DAG:
1644    return SelectAtomic64(Node, X86::ATOMSUB6432);
1645  case X86ISD::ATOMNAND64_DAG:
1646    return SelectAtomic64(Node, X86::ATOMNAND6432);
1647  case X86ISD::ATOMAND64_DAG:
1648    return SelectAtomic64(Node, X86::ATOMAND6432);
1649  case X86ISD::ATOMSWAP64_DAG:
1650    return SelectAtomic64(Node, X86::ATOMSWAP6432);
1651
1652  case ISD::ATOMIC_LOAD_ADD: {
1653    SDNode *RetVal = SelectAtomicLoadAdd(Node, NVT);
1654    if (RetVal)
1655      return RetVal;
1656    break;
1657  }
1658  case ISD::ATOMIC_LOAD_OR: {
1659    SDNode *RetVal = SelectAtomicLoadOr(Node, NVT);
1660    if (RetVal)
1661      return RetVal;
1662    break;
1663  }
1664  case ISD::AND:
1665  case ISD::OR:
1666  case ISD::XOR: {
1667    // For operations of the form (x << C1) op C2, check if we can use a smaller
1668    // encoding for C2 by transforming it into (x op (C2>>C1)) << C1.
1669    SDValue N0 = Node->getOperand(0);
1670    SDValue N1 = Node->getOperand(1);
1671
1672    if (N0->getOpcode() != ISD::SHL || !N0->hasOneUse())
1673      break;
1674
1675    // i8 is unshrinkable, i16 should be promoted to i32.
1676    if (NVT != MVT::i32 && NVT != MVT::i64)
1677      break;
1678
1679    ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(N1);
1680    ConstantSDNode *ShlCst = dyn_cast<ConstantSDNode>(N0->getOperand(1));
1681    if (!Cst || !ShlCst)
1682      break;
1683
1684    int64_t Val = Cst->getSExtValue();
1685    uint64_t ShlVal = ShlCst->getZExtValue();
1686
1687    // Make sure that we don't change the operation by removing bits.
1688    // This only matters for OR and XOR, AND is unaffected.
1689    if (Opcode != ISD::AND && ((Val >> ShlVal) << ShlVal) != Val)
1690      break;
1691
1692    unsigned ShlOp, Op = 0;
1693    EVT CstVT = NVT;
1694
1695    // Check the minimum bitwidth for the new constant.
1696    // TODO: AND32ri is the same as AND64ri32 with zext imm.
1697    // TODO: MOV32ri+OR64r is cheaper than MOV64ri64+OR64rr
1698    // TODO: Using 16 and 8 bit operations is also possible for or32 & xor32.
1699    if (!isInt<8>(Val) && isInt<8>(Val >> ShlVal))
1700      CstVT = MVT::i8;
1701    else if (!isInt<32>(Val) && isInt<32>(Val >> ShlVal))
1702      CstVT = MVT::i32;
1703
1704    // Bail if there is no smaller encoding.
1705    if (NVT == CstVT)
1706      break;
1707
1708    switch (NVT.getSimpleVT().SimpleTy) {
1709    default: llvm_unreachable("Unsupported VT!");
1710    case MVT::i32:
1711      assert(CstVT == MVT::i8);
1712      ShlOp = X86::SHL32ri;
1713
1714      switch (Opcode) {
1715      case ISD::AND: Op = X86::AND32ri8; break;
1716      case ISD::OR:  Op =  X86::OR32ri8; break;
1717      case ISD::XOR: Op = X86::XOR32ri8; break;
1718      }
1719      break;
1720    case MVT::i64:
1721      assert(CstVT == MVT::i8 || CstVT == MVT::i32);
1722      ShlOp = X86::SHL64ri;
1723
1724      switch (Opcode) {
1725      case ISD::AND: Op = CstVT==MVT::i8? X86::AND64ri8 : X86::AND64ri32; break;
1726      case ISD::OR:  Op = CstVT==MVT::i8?  X86::OR64ri8 :  X86::OR64ri32; break;
1727      case ISD::XOR: Op = CstVT==MVT::i8? X86::XOR64ri8 : X86::XOR64ri32; break;
1728      }
1729      break;
1730    }
1731
1732    // Emit the smaller op and the shift.
1733    SDValue NewCst = CurDAG->getTargetConstant(Val >> ShlVal, CstVT);
1734    SDNode *New = CurDAG->getMachineNode(Op, dl, NVT, N0->getOperand(0),NewCst);
1735    return CurDAG->SelectNodeTo(Node, ShlOp, NVT, SDValue(New, 0),
1736                                getI8Imm(ShlVal));
1737    break;
1738  }
1739  case X86ISD::UMUL: {
1740    SDValue N0 = Node->getOperand(0);
1741    SDValue N1 = Node->getOperand(1);
1742
1743    unsigned LoReg;
1744    switch (NVT.getSimpleVT().SimpleTy) {
1745    default: llvm_unreachable("Unsupported VT!");
1746    case MVT::i8:  LoReg = X86::AL;  Opc = X86::MUL8r; break;
1747    case MVT::i16: LoReg = X86::AX;  Opc = X86::MUL16r; break;
1748    case MVT::i32: LoReg = X86::EAX; Opc = X86::MUL32r; break;
1749    case MVT::i64: LoReg = X86::RAX; Opc = X86::MUL64r; break;
1750    }
1751
1752    SDValue InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, LoReg,
1753                                          N0, SDValue()).getValue(1);
1754
1755    SDVTList VTs = CurDAG->getVTList(NVT, NVT, MVT::i32);
1756    SDValue Ops[] = {N1, InFlag};
1757    SDNode *CNode = CurDAG->getMachineNode(Opc, dl, VTs, Ops, 2);
1758
1759    ReplaceUses(SDValue(Node, 0), SDValue(CNode, 0));
1760    ReplaceUses(SDValue(Node, 1), SDValue(CNode, 1));
1761    ReplaceUses(SDValue(Node, 2), SDValue(CNode, 2));
1762    return NULL;
1763  }
1764
1765  case ISD::SMUL_LOHI:
1766  case ISD::UMUL_LOHI: {
1767    SDValue N0 = Node->getOperand(0);
1768    SDValue N1 = Node->getOperand(1);
1769
1770    bool isSigned = Opcode == ISD::SMUL_LOHI;
1771    if (!isSigned) {
1772      switch (NVT.getSimpleVT().SimpleTy) {
1773      default: llvm_unreachable("Unsupported VT!");
1774      case MVT::i8:  Opc = X86::MUL8r;  MOpc = X86::MUL8m;  break;
1775      case MVT::i16: Opc = X86::MUL16r; MOpc = X86::MUL16m; break;
1776      case MVT::i32: Opc = X86::MUL32r; MOpc = X86::MUL32m; break;
1777      case MVT::i64: Opc = X86::MUL64r; MOpc = X86::MUL64m; break;
1778      }
1779    } else {
1780      switch (NVT.getSimpleVT().SimpleTy) {
1781      default: llvm_unreachable("Unsupported VT!");
1782      case MVT::i8:  Opc = X86::IMUL8r;  MOpc = X86::IMUL8m;  break;
1783      case MVT::i16: Opc = X86::IMUL16r; MOpc = X86::IMUL16m; break;
1784      case MVT::i32: Opc = X86::IMUL32r; MOpc = X86::IMUL32m; break;
1785      case MVT::i64: Opc = X86::IMUL64r; MOpc = X86::IMUL64m; break;
1786      }
1787    }
1788
1789    unsigned LoReg, HiReg;
1790    switch (NVT.getSimpleVT().SimpleTy) {
1791    default: llvm_unreachable("Unsupported VT!");
1792    case MVT::i8:  LoReg = X86::AL;  HiReg = X86::AH;  break;
1793    case MVT::i16: LoReg = X86::AX;  HiReg = X86::DX;  break;
1794    case MVT::i32: LoReg = X86::EAX; HiReg = X86::EDX; break;
1795    case MVT::i64: LoReg = X86::RAX; HiReg = X86::RDX; break;
1796    }
1797
1798    SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
1799    bool foldedLoad = TryFoldLoad(Node, N1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4);
1800    // Multiply is commmutative.
1801    if (!foldedLoad) {
1802      foldedLoad = TryFoldLoad(Node, N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4);
1803      if (foldedLoad)
1804        std::swap(N0, N1);
1805    }
1806
1807    SDValue InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, LoReg,
1808                                            N0, SDValue()).getValue(1);
1809
1810    if (foldedLoad) {
1811      SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N1.getOperand(0),
1812                        InFlag };
1813      SDNode *CNode =
1814        CurDAG->getMachineNode(MOpc, dl, MVT::Other, MVT::Glue, Ops,
1815                               array_lengthof(Ops));
1816      InFlag = SDValue(CNode, 1);
1817
1818      // Update the chain.
1819      ReplaceUses(N1.getValue(1), SDValue(CNode, 0));
1820    } else {
1821      SDNode *CNode = CurDAG->getMachineNode(Opc, dl, MVT::Glue, N1, InFlag);
1822      InFlag = SDValue(CNode, 0);
1823    }
1824
1825    // Prevent use of AH in a REX instruction by referencing AX instead.
1826    if (HiReg == X86::AH && Subtarget->is64Bit() &&
1827        !SDValue(Node, 1).use_empty()) {
1828      SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
1829                                              X86::AX, MVT::i16, InFlag);
1830      InFlag = Result.getValue(2);
1831      // Get the low part if needed. Don't use getCopyFromReg for aliasing
1832      // registers.
1833      if (!SDValue(Node, 0).use_empty())
1834        ReplaceUses(SDValue(Node, 1),
1835          CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl, MVT::i8, Result));
1836
1837      // Shift AX down 8 bits.
1838      Result = SDValue(CurDAG->getMachineNode(X86::SHR16ri, dl, MVT::i16,
1839                                              Result,
1840                                     CurDAG->getTargetConstant(8, MVT::i8)), 0);
1841      // Then truncate it down to i8.
1842      ReplaceUses(SDValue(Node, 1),
1843        CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl, MVT::i8, Result));
1844    }
1845    // Copy the low half of the result, if it is needed.
1846    if (!SDValue(Node, 0).use_empty()) {
1847      SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
1848                                                LoReg, NVT, InFlag);
1849      InFlag = Result.getValue(2);
1850      ReplaceUses(SDValue(Node, 0), Result);
1851      DEBUG(dbgs() << "=> "; Result.getNode()->dump(CurDAG); dbgs() << '\n');
1852    }
1853    // Copy the high half of the result, if it is needed.
1854    if (!SDValue(Node, 1).use_empty()) {
1855      SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
1856                                              HiReg, NVT, InFlag);
1857      InFlag = Result.getValue(2);
1858      ReplaceUses(SDValue(Node, 1), Result);
1859      DEBUG(dbgs() << "=> "; Result.getNode()->dump(CurDAG); dbgs() << '\n');
1860    }
1861
1862    return NULL;
1863  }
1864
1865  case ISD::SDIVREM:
1866  case ISD::UDIVREM: {
1867    SDValue N0 = Node->getOperand(0);
1868    SDValue N1 = Node->getOperand(1);
1869
1870    bool isSigned = Opcode == ISD::SDIVREM;
1871    if (!isSigned) {
1872      switch (NVT.getSimpleVT().SimpleTy) {
1873      default: llvm_unreachable("Unsupported VT!");
1874      case MVT::i8:  Opc = X86::DIV8r;  MOpc = X86::DIV8m;  break;
1875      case MVT::i16: Opc = X86::DIV16r; MOpc = X86::DIV16m; break;
1876      case MVT::i32: Opc = X86::DIV32r; MOpc = X86::DIV32m; break;
1877      case MVT::i64: Opc = X86::DIV64r; MOpc = X86::DIV64m; break;
1878      }
1879    } else {
1880      switch (NVT.getSimpleVT().SimpleTy) {
1881      default: llvm_unreachable("Unsupported VT!");
1882      case MVT::i8:  Opc = X86::IDIV8r;  MOpc = X86::IDIV8m;  break;
1883      case MVT::i16: Opc = X86::IDIV16r; MOpc = X86::IDIV16m; break;
1884      case MVT::i32: Opc = X86::IDIV32r; MOpc = X86::IDIV32m; break;
1885      case MVT::i64: Opc = X86::IDIV64r; MOpc = X86::IDIV64m; break;
1886      }
1887    }
1888
1889    unsigned LoReg, HiReg, ClrReg;
1890    unsigned ClrOpcode, SExtOpcode;
1891    switch (NVT.getSimpleVT().SimpleTy) {
1892    default: llvm_unreachable("Unsupported VT!");
1893    case MVT::i8:
1894      LoReg = X86::AL;  ClrReg = HiReg = X86::AH;
1895      ClrOpcode  = 0;
1896      SExtOpcode = X86::CBW;
1897      break;
1898    case MVT::i16:
1899      LoReg = X86::AX;  HiReg = X86::DX;
1900      ClrOpcode  = X86::MOV16r0; ClrReg = X86::DX;
1901      SExtOpcode = X86::CWD;
1902      break;
1903    case MVT::i32:
1904      LoReg = X86::EAX; ClrReg = HiReg = X86::EDX;
1905      ClrOpcode  = X86::MOV32r0;
1906      SExtOpcode = X86::CDQ;
1907      break;
1908    case MVT::i64:
1909      LoReg = X86::RAX; ClrReg = HiReg = X86::RDX;
1910      ClrOpcode  = X86::MOV64r0;
1911      SExtOpcode = X86::CQO;
1912      break;
1913    }
1914
1915    SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
1916    bool foldedLoad = TryFoldLoad(Node, N1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4);
1917    bool signBitIsZero = CurDAG->SignBitIsZero(N0);
1918
1919    SDValue InFlag;
1920    if (NVT == MVT::i8 && (!isSigned || signBitIsZero)) {
1921      // Special case for div8, just use a move with zero extension to AX to
1922      // clear the upper 8 bits (AH).
1923      SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Move, Chain;
1924      if (TryFoldLoad(Node, N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4)) {
1925        SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N0.getOperand(0) };
1926        Move =
1927          SDValue(CurDAG->getMachineNode(X86::MOVZX16rm8, dl, MVT::i16,
1928                                         MVT::Other, Ops,
1929                                         array_lengthof(Ops)), 0);
1930        Chain = Move.getValue(1);
1931        ReplaceUses(N0.getValue(1), Chain);
1932      } else {
1933        Move =
1934          SDValue(CurDAG->getMachineNode(X86::MOVZX16rr8, dl, MVT::i16, N0),0);
1935        Chain = CurDAG->getEntryNode();
1936      }
1937      Chain  = CurDAG->getCopyToReg(Chain, dl, X86::AX, Move, SDValue());
1938      InFlag = Chain.getValue(1);
1939    } else {
1940      InFlag =
1941        CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl,
1942                             LoReg, N0, SDValue()).getValue(1);
1943      if (isSigned && !signBitIsZero) {
1944        // Sign extend the low part into the high part.
1945        InFlag =
1946          SDValue(CurDAG->getMachineNode(SExtOpcode, dl, MVT::Glue, InFlag),0);
1947      } else {
1948        // Zero out the high part, effectively zero extending the input.
1949        SDValue ClrNode =
1950          SDValue(CurDAG->getMachineNode(ClrOpcode, dl, NVT), 0);
1951        InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, ClrReg,
1952                                      ClrNode, InFlag).getValue(1);
1953      }
1954    }
1955
1956    if (foldedLoad) {
1957      SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N1.getOperand(0),
1958                        InFlag };
1959      SDNode *CNode =
1960        CurDAG->getMachineNode(MOpc, dl, MVT::Other, MVT::Glue, Ops,
1961                               array_lengthof(Ops));
1962      InFlag = SDValue(CNode, 1);
1963      // Update the chain.
1964      ReplaceUses(N1.getValue(1), SDValue(CNode, 0));
1965    } else {
1966      InFlag =
1967        SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Glue, N1, InFlag), 0);
1968    }
1969
1970    // Prevent use of AH in a REX instruction by referencing AX instead.
1971    // Shift it down 8 bits.
1972    if (HiReg == X86::AH && Subtarget->is64Bit() &&
1973        !SDValue(Node, 1).use_empty()) {
1974      SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
1975                                              X86::AX, MVT::i16, InFlag);
1976      InFlag = Result.getValue(2);
1977
1978      // If we also need AL (the quotient), get it by extracting a subreg from
1979      // Result. The fast register allocator does not like multiple CopyFromReg
1980      // nodes using aliasing registers.
1981      if (!SDValue(Node, 0).use_empty())
1982        ReplaceUses(SDValue(Node, 0),
1983          CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl, MVT::i8, Result));
1984
1985      // Shift AX right by 8 bits instead of using AH.
1986      Result = SDValue(CurDAG->getMachineNode(X86::SHR16ri, dl, MVT::i16,
1987                                         Result,
1988                                         CurDAG->getTargetConstant(8, MVT::i8)),
1989                       0);
1990      ReplaceUses(SDValue(Node, 1),
1991        CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl, MVT::i8, Result));
1992    }
1993    // Copy the division (low) result, if it is needed.
1994    if (!SDValue(Node, 0).use_empty()) {
1995      SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
1996                                                LoReg, NVT, InFlag);
1997      InFlag = Result.getValue(2);
1998      ReplaceUses(SDValue(Node, 0), Result);
1999      DEBUG(dbgs() << "=> "; Result.getNode()->dump(CurDAG); dbgs() << '\n');
2000    }
2001    // Copy the remainder (high) result, if it is needed.
2002    if (!SDValue(Node, 1).use_empty()) {
2003      SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
2004                                              HiReg, NVT, InFlag);
2005      InFlag = Result.getValue(2);
2006      ReplaceUses(SDValue(Node, 1), Result);
2007      DEBUG(dbgs() << "=> "; Result.getNode()->dump(CurDAG); dbgs() << '\n');
2008    }
2009    return NULL;
2010  }
2011
2012  case X86ISD::CMP: {
2013    SDValue N0 = Node->getOperand(0);
2014    SDValue N1 = Node->getOperand(1);
2015
2016    // Look for (X86cmp (and $op, $imm), 0) and see if we can convert it to
2017    // use a smaller encoding.
2018    if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse() &&
2019        HasNoSignedComparisonUses(Node))
2020      // Look past the truncate if CMP is the only use of it.
2021      N0 = N0.getOperand(0);
2022    if (N0.getNode()->getOpcode() == ISD::AND && N0.getNode()->hasOneUse() &&
2023        N0.getValueType() != MVT::i8 &&
2024        X86::isZeroNode(N1)) {
2025      ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getNode()->getOperand(1));
2026      if (!C) break;
2027
2028      // For example, convert "testl %eax, $8" to "testb %al, $8"
2029      if ((C->getZExtValue() & ~UINT64_C(0xff)) == 0 &&
2030          (!(C->getZExtValue() & 0x80) ||
2031           HasNoSignedComparisonUses(Node))) {
2032        SDValue Imm = CurDAG->getTargetConstant(C->getZExtValue(), MVT::i8);
2033        SDValue Reg = N0.getNode()->getOperand(0);
2034
2035        // On x86-32, only the ABCD registers have 8-bit subregisters.
2036        if (!Subtarget->is64Bit()) {
2037          TargetRegisterClass *TRC = 0;
2038          switch (N0.getValueType().getSimpleVT().SimpleTy) {
2039          case MVT::i32: TRC = &X86::GR32_ABCDRegClass; break;
2040          case MVT::i16: TRC = &X86::GR16_ABCDRegClass; break;
2041          default: llvm_unreachable("Unsupported TEST operand type!");
2042          }
2043          SDValue RC = CurDAG->getTargetConstant(TRC->getID(), MVT::i32);
2044          Reg = SDValue(CurDAG->getMachineNode(X86::COPY_TO_REGCLASS, dl,
2045                                               Reg.getValueType(), Reg, RC), 0);
2046        }
2047
2048        // Extract the l-register.
2049        SDValue Subreg = CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl,
2050                                                        MVT::i8, Reg);
2051
2052        // Emit a testb.
2053        return CurDAG->getMachineNode(X86::TEST8ri, dl, MVT::i32, Subreg, Imm);
2054      }
2055
2056      // For example, "testl %eax, $2048" to "testb %ah, $8".
2057      if ((C->getZExtValue() & ~UINT64_C(0xff00)) == 0 &&
2058          (!(C->getZExtValue() & 0x8000) ||
2059           HasNoSignedComparisonUses(Node))) {
2060        // Shift the immediate right by 8 bits.
2061        SDValue ShiftedImm = CurDAG->getTargetConstant(C->getZExtValue() >> 8,
2062                                                       MVT::i8);
2063        SDValue Reg = N0.getNode()->getOperand(0);
2064
2065        // Put the value in an ABCD register.
2066        TargetRegisterClass *TRC = 0;
2067        switch (N0.getValueType().getSimpleVT().SimpleTy) {
2068        case MVT::i64: TRC = &X86::GR64_ABCDRegClass; break;
2069        case MVT::i32: TRC = &X86::GR32_ABCDRegClass; break;
2070        case MVT::i16: TRC = &X86::GR16_ABCDRegClass; break;
2071        default: llvm_unreachable("Unsupported TEST operand type!");
2072        }
2073        SDValue RC = CurDAG->getTargetConstant(TRC->getID(), MVT::i32);
2074        Reg = SDValue(CurDAG->getMachineNode(X86::COPY_TO_REGCLASS, dl,
2075                                             Reg.getValueType(), Reg, RC), 0);
2076
2077        // Extract the h-register.
2078        SDValue Subreg = CurDAG->getTargetExtractSubreg(X86::sub_8bit_hi, dl,
2079                                                        MVT::i8, Reg);
2080
2081        // Emit a testb. No special NOREX tricks are needed since there's
2082        // only one GPR operand!
2083        return CurDAG->getMachineNode(X86::TEST8ri, dl, MVT::i32,
2084                                      Subreg, ShiftedImm);
2085      }
2086
2087      // For example, "testl %eax, $32776" to "testw %ax, $32776".
2088      if ((C->getZExtValue() & ~UINT64_C(0xffff)) == 0 &&
2089          N0.getValueType() != MVT::i16 &&
2090          (!(C->getZExtValue() & 0x8000) ||
2091           HasNoSignedComparisonUses(Node))) {
2092        SDValue Imm = CurDAG->getTargetConstant(C->getZExtValue(), MVT::i16);
2093        SDValue Reg = N0.getNode()->getOperand(0);
2094
2095        // Extract the 16-bit subregister.
2096        SDValue Subreg = CurDAG->getTargetExtractSubreg(X86::sub_16bit, dl,
2097                                                        MVT::i16, Reg);
2098
2099        // Emit a testw.
2100        return CurDAG->getMachineNode(X86::TEST16ri, dl, MVT::i32, Subreg, Imm);
2101      }
2102
2103      // For example, "testq %rax, $268468232" to "testl %eax, $268468232".
2104      if ((C->getZExtValue() & ~UINT64_C(0xffffffff)) == 0 &&
2105          N0.getValueType() == MVT::i64 &&
2106          (!(C->getZExtValue() & 0x80000000) ||
2107           HasNoSignedComparisonUses(Node))) {
2108        SDValue Imm = CurDAG->getTargetConstant(C->getZExtValue(), MVT::i32);
2109        SDValue Reg = N0.getNode()->getOperand(0);
2110
2111        // Extract the 32-bit subregister.
2112        SDValue Subreg = CurDAG->getTargetExtractSubreg(X86::sub_32bit, dl,
2113                                                        MVT::i32, Reg);
2114
2115        // Emit a testl.
2116        return CurDAG->getMachineNode(X86::TEST32ri, dl, MVT::i32, Subreg, Imm);
2117      }
2118    }
2119    break;
2120  }
2121  }
2122
2123  SDNode *ResNode = SelectCode(Node);
2124
2125  DEBUG(dbgs() << "=> ";
2126        if (ResNode == NULL || ResNode == Node)
2127          Node->dump(CurDAG);
2128        else
2129          ResNode->dump(CurDAG);
2130        dbgs() << '\n');
2131
2132  return ResNode;
2133}
2134
2135bool X86DAGToDAGISel::
2136SelectInlineAsmMemoryOperand(const SDValue &Op, char ConstraintCode,
2137                             std::vector<SDValue> &OutOps) {
2138  SDValue Op0, Op1, Op2, Op3, Op4;
2139  switch (ConstraintCode) {
2140  case 'o':   // offsetable        ??
2141  case 'v':   // not offsetable    ??
2142  default: return true;
2143  case 'm':   // memory
2144    if (!SelectAddr(0, Op, Op0, Op1, Op2, Op3, Op4))
2145      return true;
2146    break;
2147  }
2148
2149  OutOps.push_back(Op0);
2150  OutOps.push_back(Op1);
2151  OutOps.push_back(Op2);
2152  OutOps.push_back(Op3);
2153  OutOps.push_back(Op4);
2154  return false;
2155}
2156
2157/// createX86ISelDag - This pass converts a legalized DAG into a
2158/// X86-specific DAG, ready for instruction scheduling.
2159///
2160FunctionPass *llvm::createX86ISelDag(X86TargetMachine &TM,
2161                                     llvm::CodeGenOpt::Level OptLevel) {
2162  return new X86DAGToDAGISel(TM, OptLevel);
2163}
2164