X86ISelDAGToDAG.cpp revision be8cc2a3dedeb7685f07e68cdc4b9502eb97eb2b
1//===- X86ISelDAGToDAG.cpp - A DAG pattern matching inst selector for X86 -===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines a DAG pattern matching instruction selector for X86,
11// converting from a legalized dag to a X86 dag.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "x86-isel"
16#include "X86.h"
17#include "X86InstrBuilder.h"
18#include "X86ISelLowering.h"
19#include "X86MachineFunctionInfo.h"
20#include "X86RegisterInfo.h"
21#include "X86Subtarget.h"
22#include "X86TargetMachine.h"
23#include "llvm/GlobalValue.h"
24#include "llvm/Instructions.h"
25#include "llvm/Intrinsics.h"
26#include "llvm/Support/CFG.h"
27#include "llvm/Type.h"
28#include "llvm/CodeGen/MachineConstantPool.h"
29#include "llvm/CodeGen/MachineFunction.h"
30#include "llvm/CodeGen/MachineFrameInfo.h"
31#include "llvm/CodeGen/MachineInstrBuilder.h"
32#include "llvm/CodeGen/MachineRegisterInfo.h"
33#include "llvm/CodeGen/SelectionDAGISel.h"
34#include "llvm/Target/TargetMachine.h"
35#include "llvm/Target/TargetOptions.h"
36#include "llvm/Support/Compiler.h"
37#include "llvm/Support/Debug.h"
38#include "llvm/Support/MathExtras.h"
39#include "llvm/Support/Streams.h"
40#include "llvm/ADT/SmallPtrSet.h"
41#include "llvm/ADT/Statistic.h"
42using namespace llvm;
43
44#include "llvm/Support/CommandLine.h"
45static cl::opt<bool> AvoidDupAddrCompute("x86-avoid-dup-address", cl::Hidden);
46
47STATISTIC(NumLoadMoved, "Number of loads moved below TokenFactor");
48
49//===----------------------------------------------------------------------===//
50//                      Pattern Matcher Implementation
51//===----------------------------------------------------------------------===//
52
53namespace {
54  /// X86ISelAddressMode - This corresponds to X86AddressMode, but uses
55  /// SDValue's instead of register numbers for the leaves of the matched
56  /// tree.
57  struct X86ISelAddressMode {
58    enum {
59      RegBase,
60      FrameIndexBase
61    } BaseType;
62
63    struct {            // This is really a union, discriminated by BaseType!
64      SDValue Reg;
65      int FrameIndex;
66    } Base;
67
68    bool isRIPRel;     // RIP as base?
69    unsigned Scale;
70    SDValue IndexReg;
71    int32_t Disp;
72    SDValue Segment;
73    GlobalValue *GV;
74    Constant *CP;
75    const char *ES;
76    int JT;
77    unsigned Align;    // CP alignment.
78
79    X86ISelAddressMode()
80      : BaseType(RegBase), isRIPRel(false), Scale(1), IndexReg(), Disp(0),
81        Segment(), GV(0), CP(0), ES(0), JT(-1), Align(0) {
82    }
83
84    bool hasSymbolicDisplacement() const {
85      return GV != 0 || CP != 0 || ES != 0 || JT != -1;
86    }
87
88    void dump() {
89      cerr << "X86ISelAddressMode " << this << "\n";
90      cerr << "Base.Reg ";
91              if (Base.Reg.getNode() != 0) Base.Reg.getNode()->dump();
92              else cerr << "nul";
93      cerr << " Base.FrameIndex " << Base.FrameIndex << "\n";
94      cerr << "isRIPRel " << isRIPRel << " Scale" << Scale << "\n";
95      cerr << "IndexReg ";
96              if (IndexReg.getNode() != 0) IndexReg.getNode()->dump();
97              else cerr << "nul";
98      cerr << " Disp " << Disp << "\n";
99      cerr << "GV "; if (GV) GV->dump();
100                     else cerr << "nul";
101      cerr << " CP "; if (CP) CP->dump();
102                     else cerr << "nul";
103      cerr << "\n";
104      cerr << "ES "; if (ES) cerr << ES; else cerr << "nul";
105      cerr  << " JT" << JT << " Align" << Align << "\n";
106    }
107  };
108}
109
110namespace {
111  //===--------------------------------------------------------------------===//
112  /// ISel - X86 specific code to select X86 machine instructions for
113  /// SelectionDAG operations.
114  ///
115  class VISIBILITY_HIDDEN X86DAGToDAGISel : public SelectionDAGISel {
116    /// TM - Keep a reference to X86TargetMachine.
117    ///
118    X86TargetMachine &TM;
119
120    /// X86Lowering - This object fully describes how to lower LLVM code to an
121    /// X86-specific SelectionDAG.
122    X86TargetLowering &X86Lowering;
123
124    /// Subtarget - Keep a pointer to the X86Subtarget around so that we can
125    /// make the right decision when generating code for different targets.
126    const X86Subtarget *Subtarget;
127
128    /// CurBB - Current BB being isel'd.
129    ///
130    MachineBasicBlock *CurBB;
131
132    /// OptForSize - If true, selector should try to optimize for code size
133    /// instead of performance.
134    bool OptForSize;
135
136  public:
137    explicit X86DAGToDAGISel(X86TargetMachine &tm, unsigned OptLevel)
138      : SelectionDAGISel(tm, OptLevel),
139        TM(tm), X86Lowering(*TM.getTargetLowering()),
140        Subtarget(&TM.getSubtarget<X86Subtarget>()),
141        OptForSize(false) {}
142
143    virtual const char *getPassName() const {
144      return "X86 DAG->DAG Instruction Selection";
145    }
146
147    /// InstructionSelect - This callback is invoked by
148    /// SelectionDAGISel when it has created a SelectionDAG for us to codegen.
149    virtual void InstructionSelect();
150
151    virtual void EmitFunctionEntryCode(Function &Fn, MachineFunction &MF);
152
153    virtual
154      bool IsLegalAndProfitableToFold(SDNode *N, SDNode *U, SDNode *Root) const;
155
156// Include the pieces autogenerated from the target description.
157#include "X86GenDAGISel.inc"
158
159  private:
160    SDNode *Select(SDValue N);
161    SDNode *SelectAtomic64(SDNode *Node, unsigned Opc);
162
163    bool MatchSegmentBaseAddress(SDValue N, X86ISelAddressMode &AM);
164    bool MatchLoad(SDValue N, X86ISelAddressMode &AM);
165    bool MatchWrapper(SDValue N, X86ISelAddressMode &AM);
166    bool MatchAddress(SDValue N, X86ISelAddressMode &AM,
167                      unsigned Depth = 0);
168    bool MatchAddressBase(SDValue N, X86ISelAddressMode &AM);
169    bool SelectAddr(SDValue Op, SDValue N, SDValue &Base,
170                    SDValue &Scale, SDValue &Index, SDValue &Disp,
171                    SDValue &Segment);
172    bool SelectLEAAddr(SDValue Op, SDValue N, SDValue &Base,
173                       SDValue &Scale, SDValue &Index, SDValue &Disp);
174    bool SelectScalarSSELoad(SDValue Op, SDValue Pred,
175                             SDValue N, SDValue &Base, SDValue &Scale,
176                             SDValue &Index, SDValue &Disp,
177                             SDValue &Segment,
178                             SDValue &InChain, SDValue &OutChain);
179    bool TryFoldLoad(SDValue P, SDValue N,
180                     SDValue &Base, SDValue &Scale,
181                     SDValue &Index, SDValue &Disp,
182                     SDValue &Segment);
183    void PreprocessForRMW();
184    void PreprocessForFPConvert();
185
186    /// SelectInlineAsmMemoryOperand - Implement addressing mode selection for
187    /// inline asm expressions.
188    virtual bool SelectInlineAsmMemoryOperand(const SDValue &Op,
189                                              char ConstraintCode,
190                                              std::vector<SDValue> &OutOps);
191
192    void EmitSpecialCodeForMain(MachineBasicBlock *BB, MachineFrameInfo *MFI);
193
194    inline void getAddressOperands(X86ISelAddressMode &AM, SDValue &Base,
195                                   SDValue &Scale, SDValue &Index,
196                                   SDValue &Disp, SDValue &Segment) {
197      Base  = (AM.BaseType == X86ISelAddressMode::FrameIndexBase) ?
198        CurDAG->getTargetFrameIndex(AM.Base.FrameIndex, TLI.getPointerTy()) :
199        AM.Base.Reg;
200      Scale = getI8Imm(AM.Scale);
201      Index = AM.IndexReg;
202      // These are 32-bit even in 64-bit mode since RIP relative offset
203      // is 32-bit.
204      if (AM.GV)
205        Disp = CurDAG->getTargetGlobalAddress(AM.GV, MVT::i32, AM.Disp);
206      else if (AM.CP)
207        Disp = CurDAG->getTargetConstantPool(AM.CP, MVT::i32,
208                                             AM.Align, AM.Disp);
209      else if (AM.ES)
210        Disp = CurDAG->getTargetExternalSymbol(AM.ES, MVT::i32);
211      else if (AM.JT != -1)
212        Disp = CurDAG->getTargetJumpTable(AM.JT, MVT::i32);
213      else
214        Disp = CurDAG->getTargetConstant(AM.Disp, MVT::i32);
215
216      if (AM.Segment.getNode())
217        Segment = AM.Segment;
218      else
219        Segment = CurDAG->getRegister(0, MVT::i32);
220    }
221
222    /// getI8Imm - Return a target constant with the specified value, of type
223    /// i8.
224    inline SDValue getI8Imm(unsigned Imm) {
225      return CurDAG->getTargetConstant(Imm, MVT::i8);
226    }
227
228    /// getI16Imm - Return a target constant with the specified value, of type
229    /// i16.
230    inline SDValue getI16Imm(unsigned Imm) {
231      return CurDAG->getTargetConstant(Imm, MVT::i16);
232    }
233
234    /// getI32Imm - Return a target constant with the specified value, of type
235    /// i32.
236    inline SDValue getI32Imm(unsigned Imm) {
237      return CurDAG->getTargetConstant(Imm, MVT::i32);
238    }
239
240    /// getGlobalBaseReg - Return an SDNode that returns the value of
241    /// the global base register. Output instructions required to
242    /// initialize the global base register, if necessary.
243    ///
244    SDNode *getGlobalBaseReg();
245
246#ifndef NDEBUG
247    unsigned Indent;
248#endif
249  };
250}
251
252/// findFlagUse - Return use of MVT::Flag value produced by the specified
253/// SDNode.
254///
255static SDNode *findFlagUse(SDNode *N) {
256  unsigned FlagResNo = N->getNumValues()-1;
257  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
258    SDUse &Use = I.getUse();
259    if (Use.getResNo() == FlagResNo)
260      return Use.getUser();
261  }
262  return NULL;
263}
264
265/// findNonImmUse - Return true if "Use" is a non-immediate use of "Def".
266/// This function recursively traverses up the operand chain, ignoring
267/// certain nodes.
268static bool findNonImmUse(SDNode *Use, SDNode* Def, SDNode *ImmedUse,
269                          SDNode *Root,
270                          SmallPtrSet<SDNode*, 16> &Visited) {
271  if (Use->getNodeId() < Def->getNodeId() ||
272      !Visited.insert(Use))
273    return false;
274
275  for (unsigned i = 0, e = Use->getNumOperands(); i != e; ++i) {
276    SDNode *N = Use->getOperand(i).getNode();
277    if (N == Def) {
278      if (Use == ImmedUse || Use == Root)
279        continue;  // We are not looking for immediate use.
280      assert(N != Root);
281      return true;
282    }
283
284    // Traverse up the operand chain.
285    if (findNonImmUse(N, Def, ImmedUse, Root, Visited))
286      return true;
287  }
288  return false;
289}
290
291/// isNonImmUse - Start searching from Root up the DAG to check is Def can
292/// be reached. Return true if that's the case. However, ignore direct uses
293/// by ImmedUse (which would be U in the example illustrated in
294/// IsLegalAndProfitableToFold) and by Root (which can happen in the store
295/// case).
296/// FIXME: to be really generic, we should allow direct use by any node
297/// that is being folded. But realisticly since we only fold loads which
298/// have one non-chain use, we only need to watch out for load/op/store
299/// and load/op/cmp case where the root (store / cmp) may reach the load via
300/// its chain operand.
301static inline bool isNonImmUse(SDNode *Root, SDNode *Def, SDNode *ImmedUse) {
302  SmallPtrSet<SDNode*, 16> Visited;
303  return findNonImmUse(Root, Def, ImmedUse, Root, Visited);
304}
305
306
307bool X86DAGToDAGISel::IsLegalAndProfitableToFold(SDNode *N, SDNode *U,
308                                                 SDNode *Root) const {
309  if (OptLevel == 0) return false;
310
311  if (U == Root)
312    switch (U->getOpcode()) {
313    default: break;
314    case ISD::ADD:
315    case ISD::ADDC:
316    case ISD::ADDE:
317    case ISD::AND:
318    case ISD::OR:
319    case ISD::XOR: {
320      SDValue Op1 = U->getOperand(1);
321
322      // If the other operand is a 8-bit immediate we should fold the immediate
323      // instead. This reduces code size.
324      // e.g.
325      // movl 4(%esp), %eax
326      // addl $4, %eax
327      // vs.
328      // movl $4, %eax
329      // addl 4(%esp), %eax
330      // The former is 2 bytes shorter. In case where the increment is 1, then
331      // the saving can be 4 bytes (by using incl %eax).
332      if (ConstantSDNode *Imm = dyn_cast<ConstantSDNode>(Op1))
333        if (Imm->getAPIntValue().isSignedIntN(8))
334          return false;
335
336      // If the other operand is a TLS address, we should fold it instead.
337      // This produces
338      // movl    %gs:0, %eax
339      // leal    i@NTPOFF(%eax), %eax
340      // instead of
341      // movl    $i@NTPOFF, %eax
342      // addl    %gs:0, %eax
343      // if the block also has an access to a second TLS address this will save
344      // a load.
345      // FIXME: This is probably also true for non TLS addresses.
346      if (Op1.getOpcode() == X86ISD::Wrapper) {
347        SDValue Val = Op1.getOperand(0);
348        if (Val.getOpcode() == ISD::TargetGlobalTLSAddress)
349          return false;
350      }
351    }
352    }
353
354  // If Root use can somehow reach N through a path that that doesn't contain
355  // U then folding N would create a cycle. e.g. In the following
356  // diagram, Root can reach N through X. If N is folded into into Root, then
357  // X is both a predecessor and a successor of U.
358  //
359  //          [N*]           //
360  //         ^   ^           //
361  //        /     \          //
362  //      [U*]    [X]?       //
363  //        ^     ^          //
364  //         \   /           //
365  //          \ /            //
366  //         [Root*]         //
367  //
368  // * indicates nodes to be folded together.
369  //
370  // If Root produces a flag, then it gets (even more) interesting. Since it
371  // will be "glued" together with its flag use in the scheduler, we need to
372  // check if it might reach N.
373  //
374  //          [N*]           //
375  //         ^   ^           //
376  //        /     \          //
377  //      [U*]    [X]?       //
378  //        ^       ^        //
379  //         \       \       //
380  //          \      |       //
381  //         [Root*] |       //
382  //          ^      |       //
383  //          f      |       //
384  //          |      /       //
385  //         [Y]    /        //
386  //           ^   /         //
387  //           f  /          //
388  //           | /           //
389  //          [FU]           //
390  //
391  // If FU (flag use) indirectly reaches N (the load), and Root folds N
392  // (call it Fold), then X is a predecessor of FU and a successor of
393  // Fold. But since Fold and FU are flagged together, this will create
394  // a cycle in the scheduling graph.
395
396  MVT VT = Root->getValueType(Root->getNumValues()-1);
397  while (VT == MVT::Flag) {
398    SDNode *FU = findFlagUse(Root);
399    if (FU == NULL)
400      break;
401    Root = FU;
402    VT = Root->getValueType(Root->getNumValues()-1);
403  }
404
405  return !isNonImmUse(Root, N, U);
406}
407
408/// MoveBelowTokenFactor - Replace TokenFactor operand with load's chain operand
409/// and move load below the TokenFactor. Replace store's chain operand with
410/// load's chain result.
411static void MoveBelowTokenFactor(SelectionDAG *CurDAG, SDValue Load,
412                                 SDValue Store, SDValue TF) {
413  SmallVector<SDValue, 4> Ops;
414  for (unsigned i = 0, e = TF.getNode()->getNumOperands(); i != e; ++i)
415    if (Load.getNode() == TF.getOperand(i).getNode())
416      Ops.push_back(Load.getOperand(0));
417    else
418      Ops.push_back(TF.getOperand(i));
419  CurDAG->UpdateNodeOperands(TF, &Ops[0], Ops.size());
420  CurDAG->UpdateNodeOperands(Load, TF, Load.getOperand(1), Load.getOperand(2));
421  CurDAG->UpdateNodeOperands(Store, Load.getValue(1), Store.getOperand(1),
422                             Store.getOperand(2), Store.getOperand(3));
423}
424
425/// isRMWLoad - Return true if N is a load that's part of RMW sub-DAG.
426///
427static bool isRMWLoad(SDValue N, SDValue Chain, SDValue Address,
428                      SDValue &Load) {
429  if (N.getOpcode() == ISD::BIT_CONVERT)
430    N = N.getOperand(0);
431
432  LoadSDNode *LD = dyn_cast<LoadSDNode>(N);
433  if (!LD || LD->isVolatile())
434    return false;
435  if (LD->getAddressingMode() != ISD::UNINDEXED)
436    return false;
437
438  ISD::LoadExtType ExtType = LD->getExtensionType();
439  if (ExtType != ISD::NON_EXTLOAD && ExtType != ISD::EXTLOAD)
440    return false;
441
442  if (N.hasOneUse() &&
443      N.getOperand(1) == Address &&
444      N.getNode()->isOperandOf(Chain.getNode())) {
445    Load = N;
446    return true;
447  }
448  return false;
449}
450
451/// MoveBelowCallSeqStart - Replace CALLSEQ_START operand with load's chain
452/// operand and move load below the call's chain operand.
453static void MoveBelowCallSeqStart(SelectionDAG *CurDAG, SDValue Load,
454                                  SDValue Call, SDValue CallSeqStart) {
455  SmallVector<SDValue, 8> Ops;
456  SDValue Chain = CallSeqStart.getOperand(0);
457  if (Chain.getNode() == Load.getNode())
458    Ops.push_back(Load.getOperand(0));
459  else {
460    assert(Chain.getOpcode() == ISD::TokenFactor &&
461           "Unexpected CallSeqStart chain operand");
462    for (unsigned i = 0, e = Chain.getNumOperands(); i != e; ++i)
463      if (Chain.getOperand(i).getNode() == Load.getNode())
464        Ops.push_back(Load.getOperand(0));
465      else
466        Ops.push_back(Chain.getOperand(i));
467    SDValue NewChain =
468      CurDAG->getNode(ISD::TokenFactor, Load.getDebugLoc(),
469                      MVT::Other, &Ops[0], Ops.size());
470    Ops.clear();
471    Ops.push_back(NewChain);
472  }
473  for (unsigned i = 1, e = CallSeqStart.getNumOperands(); i != e; ++i)
474    Ops.push_back(CallSeqStart.getOperand(i));
475  CurDAG->UpdateNodeOperands(CallSeqStart, &Ops[0], Ops.size());
476  CurDAG->UpdateNodeOperands(Load, Call.getOperand(0),
477                             Load.getOperand(1), Load.getOperand(2));
478  Ops.clear();
479  Ops.push_back(SDValue(Load.getNode(), 1));
480  for (unsigned i = 1, e = Call.getNode()->getNumOperands(); i != e; ++i)
481    Ops.push_back(Call.getOperand(i));
482  CurDAG->UpdateNodeOperands(Call, &Ops[0], Ops.size());
483}
484
485/// isCalleeLoad - Return true if call address is a load and it can be
486/// moved below CALLSEQ_START and the chains leading up to the call.
487/// Return the CALLSEQ_START by reference as a second output.
488static bool isCalleeLoad(SDValue Callee, SDValue &Chain) {
489  if (Callee.getNode() == Chain.getNode() || !Callee.hasOneUse())
490    return false;
491  LoadSDNode *LD = dyn_cast<LoadSDNode>(Callee.getNode());
492  if (!LD ||
493      LD->isVolatile() ||
494      LD->getAddressingMode() != ISD::UNINDEXED ||
495      LD->getExtensionType() != ISD::NON_EXTLOAD)
496    return false;
497
498  // Now let's find the callseq_start.
499  while (Chain.getOpcode() != ISD::CALLSEQ_START) {
500    if (!Chain.hasOneUse())
501      return false;
502    Chain = Chain.getOperand(0);
503  }
504
505  if (Chain.getOperand(0).getNode() == Callee.getNode())
506    return true;
507  if (Chain.getOperand(0).getOpcode() == ISD::TokenFactor &&
508      Callee.getValue(1).isOperandOf(Chain.getOperand(0).getNode()))
509    return true;
510  return false;
511}
512
513
514/// PreprocessForRMW - Preprocess the DAG to make instruction selection better.
515/// This is only run if not in -O0 mode.
516/// This allows the instruction selector to pick more read-modify-write
517/// instructions. This is a common case:
518///
519///     [Load chain]
520///         ^
521///         |
522///       [Load]
523///       ^    ^
524///       |    |
525///      /      \-
526///     /         |
527/// [TokenFactor] [Op]
528///     ^          ^
529///     |          |
530///      \        /
531///       \      /
532///       [Store]
533///
534/// The fact the store's chain operand != load's chain will prevent the
535/// (store (op (load))) instruction from being selected. We can transform it to:
536///
537///     [Load chain]
538///         ^
539///         |
540///    [TokenFactor]
541///         ^
542///         |
543///       [Load]
544///       ^    ^
545///       |    |
546///       |     \-
547///       |       |
548///       |     [Op]
549///       |       ^
550///       |       |
551///       \      /
552///        \    /
553///       [Store]
554void X86DAGToDAGISel::PreprocessForRMW() {
555  for (SelectionDAG::allnodes_iterator I = CurDAG->allnodes_begin(),
556         E = CurDAG->allnodes_end(); I != E; ++I) {
557    if (I->getOpcode() == X86ISD::CALL) {
558      /// Also try moving call address load from outside callseq_start to just
559      /// before the call to allow it to be folded.
560      ///
561      ///     [Load chain]
562      ///         ^
563      ///         |
564      ///       [Load]
565      ///       ^    ^
566      ///       |    |
567      ///      /      \--
568      ///     /          |
569      ///[CALLSEQ_START] |
570      ///     ^          |
571      ///     |          |
572      /// [LOAD/C2Reg]   |
573      ///     |          |
574      ///      \        /
575      ///       \      /
576      ///       [CALL]
577      SDValue Chain = I->getOperand(0);
578      SDValue Load  = I->getOperand(1);
579      if (!isCalleeLoad(Load, Chain))
580        continue;
581      MoveBelowCallSeqStart(CurDAG, Load, SDValue(I, 0), Chain);
582      ++NumLoadMoved;
583      continue;
584    }
585
586    if (!ISD::isNON_TRUNCStore(I))
587      continue;
588    SDValue Chain = I->getOperand(0);
589
590    if (Chain.getNode()->getOpcode() != ISD::TokenFactor)
591      continue;
592
593    SDValue N1 = I->getOperand(1);
594    SDValue N2 = I->getOperand(2);
595    if ((N1.getValueType().isFloatingPoint() &&
596         !N1.getValueType().isVector()) ||
597        !N1.hasOneUse())
598      continue;
599
600    bool RModW = false;
601    SDValue Load;
602    unsigned Opcode = N1.getNode()->getOpcode();
603    switch (Opcode) {
604    case ISD::ADD:
605    case ISD::MUL:
606    case ISD::AND:
607    case ISD::OR:
608    case ISD::XOR:
609    case ISD::ADDC:
610    case ISD::ADDE:
611    case ISD::VECTOR_SHUFFLE: {
612      SDValue N10 = N1.getOperand(0);
613      SDValue N11 = N1.getOperand(1);
614      RModW = isRMWLoad(N10, Chain, N2, Load);
615      if (!RModW)
616        RModW = isRMWLoad(N11, Chain, N2, Load);
617      break;
618    }
619    case ISD::SUB:
620    case ISD::SHL:
621    case ISD::SRA:
622    case ISD::SRL:
623    case ISD::ROTL:
624    case ISD::ROTR:
625    case ISD::SUBC:
626    case ISD::SUBE:
627    case X86ISD::SHLD:
628    case X86ISD::SHRD: {
629      SDValue N10 = N1.getOperand(0);
630      RModW = isRMWLoad(N10, Chain, N2, Load);
631      break;
632    }
633    }
634
635    if (RModW) {
636      MoveBelowTokenFactor(CurDAG, Load, SDValue(I, 0), Chain);
637      ++NumLoadMoved;
638    }
639  }
640}
641
642
643/// PreprocessForFPConvert - Walk over the dag lowering fpround and fpextend
644/// nodes that target the FP stack to be store and load to the stack.  This is a
645/// gross hack.  We would like to simply mark these as being illegal, but when
646/// we do that, legalize produces these when it expands calls, then expands
647/// these in the same legalize pass.  We would like dag combine to be able to
648/// hack on these between the call expansion and the node legalization.  As such
649/// this pass basically does "really late" legalization of these inline with the
650/// X86 isel pass.
651void X86DAGToDAGISel::PreprocessForFPConvert() {
652  for (SelectionDAG::allnodes_iterator I = CurDAG->allnodes_begin(),
653       E = CurDAG->allnodes_end(); I != E; ) {
654    SDNode *N = I++;  // Preincrement iterator to avoid invalidation issues.
655    if (N->getOpcode() != ISD::FP_ROUND && N->getOpcode() != ISD::FP_EXTEND)
656      continue;
657
658    // If the source and destination are SSE registers, then this is a legal
659    // conversion that should not be lowered.
660    MVT SrcVT = N->getOperand(0).getValueType();
661    MVT DstVT = N->getValueType(0);
662    bool SrcIsSSE = X86Lowering.isScalarFPTypeInSSEReg(SrcVT);
663    bool DstIsSSE = X86Lowering.isScalarFPTypeInSSEReg(DstVT);
664    if (SrcIsSSE && DstIsSSE)
665      continue;
666
667    if (!SrcIsSSE && !DstIsSSE) {
668      // If this is an FPStack extension, it is a noop.
669      if (N->getOpcode() == ISD::FP_EXTEND)
670        continue;
671      // If this is a value-preserving FPStack truncation, it is a noop.
672      if (N->getConstantOperandVal(1))
673        continue;
674    }
675
676    // Here we could have an FP stack truncation or an FPStack <-> SSE convert.
677    // FPStack has extload and truncstore.  SSE can fold direct loads into other
678    // operations.  Based on this, decide what we want to do.
679    MVT MemVT;
680    if (N->getOpcode() == ISD::FP_ROUND)
681      MemVT = DstVT;  // FP_ROUND must use DstVT, we can't do a 'trunc load'.
682    else
683      MemVT = SrcIsSSE ? SrcVT : DstVT;
684
685    SDValue MemTmp = CurDAG->CreateStackTemporary(MemVT);
686    DebugLoc dl = N->getDebugLoc();
687
688    // FIXME: optimize the case where the src/dest is a load or store?
689    SDValue Store = CurDAG->getTruncStore(CurDAG->getEntryNode(), dl,
690                                          N->getOperand(0),
691                                          MemTmp, NULL, 0, MemVT);
692    SDValue Result = CurDAG->getExtLoad(ISD::EXTLOAD, dl, DstVT, Store, MemTmp,
693                                        NULL, 0, MemVT);
694
695    // We're about to replace all uses of the FP_ROUND/FP_EXTEND with the
696    // extload we created.  This will cause general havok on the dag because
697    // anything below the conversion could be folded into other existing nodes.
698    // To avoid invalidating 'I', back it up to the convert node.
699    --I;
700    CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Result);
701
702    // Now that we did that, the node is dead.  Increment the iterator to the
703    // next node to process, then delete N.
704    ++I;
705    CurDAG->DeleteNode(N);
706  }
707}
708
709/// InstructionSelectBasicBlock - This callback is invoked by SelectionDAGISel
710/// when it has created a SelectionDAG for us to codegen.
711void X86DAGToDAGISel::InstructionSelect() {
712  CurBB = BB;  // BB can change as result of isel.
713  const Function *F = CurDAG->getMachineFunction().getFunction();
714  OptForSize = F->hasFnAttr(Attribute::OptimizeForSize);
715
716  DEBUG(BB->dump());
717  if (OptLevel != 0)
718    PreprocessForRMW();
719
720  // FIXME: This should only happen when not compiled with -O0.
721  PreprocessForFPConvert();
722
723  // Codegen the basic block.
724#ifndef NDEBUG
725  DOUT << "===== Instruction selection begins:\n";
726  Indent = 0;
727#endif
728  SelectRoot(*CurDAG);
729#ifndef NDEBUG
730  DOUT << "===== Instruction selection ends:\n";
731#endif
732
733  CurDAG->RemoveDeadNodes();
734}
735
736/// EmitSpecialCodeForMain - Emit any code that needs to be executed only in
737/// the main function.
738void X86DAGToDAGISel::EmitSpecialCodeForMain(MachineBasicBlock *BB,
739                                             MachineFrameInfo *MFI) {
740  const TargetInstrInfo *TII = TM.getInstrInfo();
741  if (Subtarget->isTargetCygMing())
742    BuildMI(BB, DebugLoc::getUnknownLoc(),
743            TII->get(X86::CALLpcrel32)).addExternalSymbol("__main");
744}
745
746void X86DAGToDAGISel::EmitFunctionEntryCode(Function &Fn, MachineFunction &MF) {
747  // If this is main, emit special code for main.
748  MachineBasicBlock *BB = MF.begin();
749  if (Fn.hasExternalLinkage() && Fn.getName() == "main")
750    EmitSpecialCodeForMain(BB, MF.getFrameInfo());
751}
752
753
754bool X86DAGToDAGISel::MatchSegmentBaseAddress(SDValue N,
755                                              X86ISelAddressMode &AM) {
756  assert(N.getOpcode() == X86ISD::SegmentBaseAddress);
757  SDValue Segment = N.getOperand(0);
758
759  if (AM.Segment.getNode() == 0) {
760    AM.Segment = Segment;
761    return false;
762  }
763
764  return true;
765}
766
767bool X86DAGToDAGISel::MatchLoad(SDValue N, X86ISelAddressMode &AM) {
768  // This optimization is valid because the GNU TLS model defines that
769  // gs:0 (or fs:0 on X86-64) contains its own address.
770  // For more information see http://people.redhat.com/drepper/tls.pdf
771
772  SDValue Address = N.getOperand(1);
773  if (Address.getOpcode() == X86ISD::SegmentBaseAddress &&
774      !MatchSegmentBaseAddress (Address, AM))
775    return false;
776
777  return true;
778}
779
780bool X86DAGToDAGISel::MatchWrapper(SDValue N, X86ISelAddressMode &AM) {
781  bool is64Bit = Subtarget->is64Bit();
782  DOUT << "Wrapper: 64bit " << is64Bit;
783  DOUT << " AM "; DEBUG(AM.dump()); DOUT << "\n";
784
785  // Under X86-64 non-small code model, GV (and friends) are 64-bits.
786  if (is64Bit && (TM.getCodeModel() != CodeModel::Small))
787    return true;
788
789  // Base and index reg must be 0 in order to use rip as base.
790  bool canUsePICRel = !AM.Base.Reg.getNode() && !AM.IndexReg.getNode();
791  if (is64Bit && !canUsePICRel && TM.symbolicAddressesAreRIPRel())
792    return true;
793
794  if (AM.hasSymbolicDisplacement())
795    return true;
796  // If value is available in a register both base and index components have
797  // been picked, we can't fit the result available in the register in the
798  // addressing mode. Duplicate GlobalAddress or ConstantPool as displacement.
799
800  SDValue N0 = N.getOperand(0);
801  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(N0)) {
802    uint64_t Offset = G->getOffset();
803    if (!is64Bit || isInt32(AM.Disp + Offset)) {
804      GlobalValue *GV = G->getGlobal();
805      bool isRIPRel = TM.symbolicAddressesAreRIPRel();
806      if (N0.getOpcode() == llvm::ISD::TargetGlobalTLSAddress) {
807        TLSModel::Model model =
808          getTLSModel (GV, TM.getRelocationModel());
809        if (is64Bit && model == TLSModel::InitialExec)
810          isRIPRel = true;
811      }
812      AM.GV = GV;
813      AM.Disp += Offset;
814      AM.isRIPRel = isRIPRel;
815      return false;
816    }
817  } else if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(N0)) {
818    uint64_t Offset = CP->getOffset();
819    if (!is64Bit || isInt32(AM.Disp + Offset)) {
820      AM.CP = CP->getConstVal();
821      AM.Align = CP->getAlignment();
822      AM.Disp += Offset;
823      AM.isRIPRel = TM.symbolicAddressesAreRIPRel();
824      return false;
825    }
826  } else if (ExternalSymbolSDNode *S =dyn_cast<ExternalSymbolSDNode>(N0)) {
827    AM.ES = S->getSymbol();
828    AM.isRIPRel = TM.symbolicAddressesAreRIPRel();
829    return false;
830  } else if (JumpTableSDNode *J = dyn_cast<JumpTableSDNode>(N0)) {
831    AM.JT = J->getIndex();
832    AM.isRIPRel = TM.symbolicAddressesAreRIPRel();
833    return false;
834  }
835
836  return true;
837}
838
839/// MatchAddress - Add the specified node to the specified addressing mode,
840/// returning true if it cannot be done.  This just pattern matches for the
841/// addressing mode.
842bool X86DAGToDAGISel::MatchAddress(SDValue N, X86ISelAddressMode &AM,
843                                   unsigned Depth) {
844  bool is64Bit = Subtarget->is64Bit();
845  DebugLoc dl = N.getDebugLoc();
846  DOUT << "MatchAddress: "; DEBUG(AM.dump());
847  // Limit recursion.
848  if (Depth > 5)
849    return MatchAddressBase(N, AM);
850
851  // RIP relative addressing: %rip + 32-bit displacement!
852  if (AM.isRIPRel) {
853    if (!AM.ES && AM.JT != -1 && N.getOpcode() == ISD::Constant) {
854      uint64_t Val = cast<ConstantSDNode>(N)->getSExtValue();
855      if (!is64Bit || isInt32(AM.Disp + Val)) {
856        AM.Disp += Val;
857        return false;
858      }
859    }
860    return true;
861  }
862
863  switch (N.getOpcode()) {
864  default: break;
865  case ISD::Constant: {
866    uint64_t Val = cast<ConstantSDNode>(N)->getSExtValue();
867    if (!is64Bit || isInt32(AM.Disp + Val)) {
868      AM.Disp += Val;
869      return false;
870    }
871    break;
872  }
873
874  case X86ISD::SegmentBaseAddress:
875    if (!MatchSegmentBaseAddress(N, AM))
876      return false;
877    break;
878
879  case X86ISD::Wrapper:
880    if (!MatchWrapper(N, AM))
881      return false;
882    break;
883
884  case ISD::LOAD:
885    if (!MatchLoad(N, AM))
886      return false;
887    break;
888
889  case ISD::FrameIndex:
890    if (AM.BaseType == X86ISelAddressMode::RegBase
891        && AM.Base.Reg.getNode() == 0) {
892      AM.BaseType = X86ISelAddressMode::FrameIndexBase;
893      AM.Base.FrameIndex = cast<FrameIndexSDNode>(N)->getIndex();
894      return false;
895    }
896    break;
897
898  case ISD::SHL:
899    if (AM.IndexReg.getNode() != 0 || AM.Scale != 1 || AM.isRIPRel)
900      break;
901
902    if (ConstantSDNode
903          *CN = dyn_cast<ConstantSDNode>(N.getNode()->getOperand(1))) {
904      unsigned Val = CN->getZExtValue();
905      if (Val == 1 || Val == 2 || Val == 3) {
906        AM.Scale = 1 << Val;
907        SDValue ShVal = N.getNode()->getOperand(0);
908
909        // Okay, we know that we have a scale by now.  However, if the scaled
910        // value is an add of something and a constant, we can fold the
911        // constant into the disp field here.
912        if (ShVal.getNode()->getOpcode() == ISD::ADD && ShVal.hasOneUse() &&
913            isa<ConstantSDNode>(ShVal.getNode()->getOperand(1))) {
914          AM.IndexReg = ShVal.getNode()->getOperand(0);
915          ConstantSDNode *AddVal =
916            cast<ConstantSDNode>(ShVal.getNode()->getOperand(1));
917          uint64_t Disp = AM.Disp + (AddVal->getSExtValue() << Val);
918          if (!is64Bit || isInt32(Disp))
919            AM.Disp = Disp;
920          else
921            AM.IndexReg = ShVal;
922        } else {
923          AM.IndexReg = ShVal;
924        }
925        return false;
926      }
927    break;
928    }
929
930  case ISD::SMUL_LOHI:
931  case ISD::UMUL_LOHI:
932    // A mul_lohi where we need the low part can be folded as a plain multiply.
933    if (N.getResNo() != 0) break;
934    // FALL THROUGH
935  case ISD::MUL:
936  case X86ISD::MUL_IMM:
937    // X*[3,5,9] -> X+X*[2,4,8]
938    if (AM.BaseType == X86ISelAddressMode::RegBase &&
939        AM.Base.Reg.getNode() == 0 &&
940        AM.IndexReg.getNode() == 0 &&
941        !AM.isRIPRel) {
942      if (ConstantSDNode
943            *CN = dyn_cast<ConstantSDNode>(N.getNode()->getOperand(1)))
944        if (CN->getZExtValue() == 3 || CN->getZExtValue() == 5 ||
945            CN->getZExtValue() == 9) {
946          AM.Scale = unsigned(CN->getZExtValue())-1;
947
948          SDValue MulVal = N.getNode()->getOperand(0);
949          SDValue Reg;
950
951          // Okay, we know that we have a scale by now.  However, if the scaled
952          // value is an add of something and a constant, we can fold the
953          // constant into the disp field here.
954          if (MulVal.getNode()->getOpcode() == ISD::ADD && MulVal.hasOneUse() &&
955              isa<ConstantSDNode>(MulVal.getNode()->getOperand(1))) {
956            Reg = MulVal.getNode()->getOperand(0);
957            ConstantSDNode *AddVal =
958              cast<ConstantSDNode>(MulVal.getNode()->getOperand(1));
959            uint64_t Disp = AM.Disp + AddVal->getSExtValue() *
960                                      CN->getZExtValue();
961            if (!is64Bit || isInt32(Disp))
962              AM.Disp = Disp;
963            else
964              Reg = N.getNode()->getOperand(0);
965          } else {
966            Reg = N.getNode()->getOperand(0);
967          }
968
969          AM.IndexReg = AM.Base.Reg = Reg;
970          return false;
971        }
972    }
973    break;
974
975  case ISD::ADD: {
976    X86ISelAddressMode Backup = AM;
977    if (!MatchAddress(N.getNode()->getOperand(0), AM, Depth+1) &&
978        !MatchAddress(N.getNode()->getOperand(1), AM, Depth+1))
979      return false;
980    AM = Backup;
981    if (!MatchAddress(N.getNode()->getOperand(1), AM, Depth+1) &&
982        !MatchAddress(N.getNode()->getOperand(0), AM, Depth+1))
983      return false;
984    AM = Backup;
985
986    // If we couldn't fold both operands into the address at the same time,
987    // see if we can just put each operand into a register and fold at least
988    // the add.
989    if (AM.BaseType == X86ISelAddressMode::RegBase &&
990        !AM.Base.Reg.getNode() &&
991        !AM.IndexReg.getNode() &&
992        !AM.isRIPRel) {
993      AM.Base.Reg = N.getNode()->getOperand(0);
994      AM.IndexReg = N.getNode()->getOperand(1);
995      AM.Scale = 1;
996      return false;
997    }
998    break;
999  }
1000
1001  case ISD::OR:
1002    // Handle "X | C" as "X + C" iff X is known to have C bits clear.
1003    if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
1004      X86ISelAddressMode Backup = AM;
1005      uint64_t Offset = CN->getSExtValue();
1006      // Start with the LHS as an addr mode.
1007      if (!MatchAddress(N.getOperand(0), AM, Depth+1) &&
1008          // Address could not have picked a GV address for the displacement.
1009          AM.GV == NULL &&
1010          // On x86-64, the resultant disp must fit in 32-bits.
1011          (!is64Bit || isInt32(AM.Disp + Offset)) &&
1012          // Check to see if the LHS & C is zero.
1013          CurDAG->MaskedValueIsZero(N.getOperand(0), CN->getAPIntValue())) {
1014        AM.Disp += Offset;
1015        return false;
1016      }
1017      AM = Backup;
1018    }
1019    break;
1020
1021  case ISD::AND: {
1022    // Perform some heroic transforms on an and of a constant-count shift
1023    // with a constant to enable use of the scaled offset field.
1024
1025    SDValue Shift = N.getOperand(0);
1026    if (Shift.getNumOperands() != 2) break;
1027
1028    // Scale must not be used already.
1029    if (AM.IndexReg.getNode() != 0 || AM.Scale != 1) break;
1030
1031    // Not when RIP is used as the base.
1032    if (AM.isRIPRel) break;
1033
1034    SDValue X = Shift.getOperand(0);
1035    ConstantSDNode *C2 = dyn_cast<ConstantSDNode>(N.getOperand(1));
1036    ConstantSDNode *C1 = dyn_cast<ConstantSDNode>(Shift.getOperand(1));
1037    if (!C1 || !C2) break;
1038
1039    // Handle "(X >> (8-C1)) & C2" as "(X >> 8) & 0xff)" if safe. This
1040    // allows us to convert the shift and and into an h-register extract and
1041    // a scaled index.
1042    if (Shift.getOpcode() == ISD::SRL && Shift.hasOneUse()) {
1043      unsigned ScaleLog = 8 - C1->getZExtValue();
1044      if (ScaleLog > 0 && ScaleLog < 4 &&
1045          C2->getZExtValue() == (UINT64_C(0xff) << ScaleLog)) {
1046        SDValue Eight = CurDAG->getConstant(8, MVT::i8);
1047        SDValue Mask = CurDAG->getConstant(0xff, N.getValueType());
1048        SDValue Srl = CurDAG->getNode(ISD::SRL, dl, N.getValueType(),
1049                                      X, Eight);
1050        SDValue And = CurDAG->getNode(ISD::AND, dl, N.getValueType(),
1051                                      Srl, Mask);
1052        SDValue ShlCount = CurDAG->getConstant(ScaleLog, MVT::i8);
1053        SDValue Shl = CurDAG->getNode(ISD::SHL, dl, N.getValueType(),
1054                                      And, ShlCount);
1055
1056        // Insert the new nodes into the topological ordering.
1057        if (Eight.getNode()->getNodeId() == -1 ||
1058            Eight.getNode()->getNodeId() > X.getNode()->getNodeId()) {
1059          CurDAG->RepositionNode(X.getNode(), Eight.getNode());
1060          Eight.getNode()->setNodeId(X.getNode()->getNodeId());
1061        }
1062        if (Mask.getNode()->getNodeId() == -1 ||
1063            Mask.getNode()->getNodeId() > X.getNode()->getNodeId()) {
1064          CurDAG->RepositionNode(X.getNode(), Mask.getNode());
1065          Mask.getNode()->setNodeId(X.getNode()->getNodeId());
1066        }
1067        if (Srl.getNode()->getNodeId() == -1 ||
1068            Srl.getNode()->getNodeId() > Shift.getNode()->getNodeId()) {
1069          CurDAG->RepositionNode(Shift.getNode(), Srl.getNode());
1070          Srl.getNode()->setNodeId(Shift.getNode()->getNodeId());
1071        }
1072        if (And.getNode()->getNodeId() == -1 ||
1073            And.getNode()->getNodeId() > N.getNode()->getNodeId()) {
1074          CurDAG->RepositionNode(N.getNode(), And.getNode());
1075          And.getNode()->setNodeId(N.getNode()->getNodeId());
1076        }
1077        if (ShlCount.getNode()->getNodeId() == -1 ||
1078            ShlCount.getNode()->getNodeId() > X.getNode()->getNodeId()) {
1079          CurDAG->RepositionNode(X.getNode(), ShlCount.getNode());
1080          ShlCount.getNode()->setNodeId(N.getNode()->getNodeId());
1081        }
1082        if (Shl.getNode()->getNodeId() == -1 ||
1083            Shl.getNode()->getNodeId() > N.getNode()->getNodeId()) {
1084          CurDAG->RepositionNode(N.getNode(), Shl.getNode());
1085          Shl.getNode()->setNodeId(N.getNode()->getNodeId());
1086        }
1087        CurDAG->ReplaceAllUsesWith(N, Shl);
1088        AM.IndexReg = And;
1089        AM.Scale = (1 << ScaleLog);
1090        return false;
1091      }
1092    }
1093
1094    // Handle "(X << C1) & C2" as "(X & (C2>>C1)) << C1" if safe and if this
1095    // allows us to fold the shift into this addressing mode.
1096    if (Shift.getOpcode() != ISD::SHL) break;
1097
1098    // Not likely to be profitable if either the AND or SHIFT node has more
1099    // than one use (unless all uses are for address computation). Besides,
1100    // isel mechanism requires their node ids to be reused.
1101    if (!N.hasOneUse() || !Shift.hasOneUse())
1102      break;
1103
1104    // Verify that the shift amount is something we can fold.
1105    unsigned ShiftCst = C1->getZExtValue();
1106    if (ShiftCst != 1 && ShiftCst != 2 && ShiftCst != 3)
1107      break;
1108
1109    // Get the new AND mask, this folds to a constant.
1110    SDValue NewANDMask = CurDAG->getNode(ISD::SRL, dl, N.getValueType(),
1111                                         SDValue(C2, 0), SDValue(C1, 0));
1112    SDValue NewAND = CurDAG->getNode(ISD::AND, dl, N.getValueType(), X,
1113                                     NewANDMask);
1114    SDValue NewSHIFT = CurDAG->getNode(ISD::SHL, dl, N.getValueType(),
1115                                       NewAND, SDValue(C1, 0));
1116
1117    // Insert the new nodes into the topological ordering.
1118    if (C1->getNodeId() > X.getNode()->getNodeId()) {
1119      CurDAG->RepositionNode(X.getNode(), C1);
1120      C1->setNodeId(X.getNode()->getNodeId());
1121    }
1122    if (NewANDMask.getNode()->getNodeId() == -1 ||
1123        NewANDMask.getNode()->getNodeId() > X.getNode()->getNodeId()) {
1124      CurDAG->RepositionNode(X.getNode(), NewANDMask.getNode());
1125      NewANDMask.getNode()->setNodeId(X.getNode()->getNodeId());
1126    }
1127    if (NewAND.getNode()->getNodeId() == -1 ||
1128        NewAND.getNode()->getNodeId() > Shift.getNode()->getNodeId()) {
1129      CurDAG->RepositionNode(Shift.getNode(), NewAND.getNode());
1130      NewAND.getNode()->setNodeId(Shift.getNode()->getNodeId());
1131    }
1132    if (NewSHIFT.getNode()->getNodeId() == -1 ||
1133        NewSHIFT.getNode()->getNodeId() > N.getNode()->getNodeId()) {
1134      CurDAG->RepositionNode(N.getNode(), NewSHIFT.getNode());
1135      NewSHIFT.getNode()->setNodeId(N.getNode()->getNodeId());
1136    }
1137
1138    CurDAG->ReplaceAllUsesWith(N, NewSHIFT);
1139
1140    AM.Scale = 1 << ShiftCst;
1141    AM.IndexReg = NewAND;
1142    return false;
1143  }
1144  }
1145
1146  return MatchAddressBase(N, AM);
1147}
1148
1149/// MatchAddressBase - Helper for MatchAddress. Add the specified node to the
1150/// specified addressing mode without any further recursion.
1151bool X86DAGToDAGISel::MatchAddressBase(SDValue N, X86ISelAddressMode &AM) {
1152  // Is the base register already occupied?
1153  if (AM.BaseType != X86ISelAddressMode::RegBase || AM.Base.Reg.getNode()) {
1154    // If so, check to see if the scale index register is set.
1155    if (AM.IndexReg.getNode() == 0 && !AM.isRIPRel) {
1156      AM.IndexReg = N;
1157      AM.Scale = 1;
1158      return false;
1159    }
1160
1161    // Otherwise, we cannot select it.
1162    return true;
1163  }
1164
1165  // Default, generate it as a register.
1166  AM.BaseType = X86ISelAddressMode::RegBase;
1167  AM.Base.Reg = N;
1168  return false;
1169}
1170
1171/// SelectAddr - returns true if it is able pattern match an addressing mode.
1172/// It returns the operands which make up the maximal addressing mode it can
1173/// match by reference.
1174bool X86DAGToDAGISel::SelectAddr(SDValue Op, SDValue N, SDValue &Base,
1175                                 SDValue &Scale, SDValue &Index,
1176                                 SDValue &Disp, SDValue &Segment) {
1177  X86ISelAddressMode AM;
1178  bool Done = false;
1179  if (AvoidDupAddrCompute && !N.hasOneUse()) {
1180    unsigned Opcode = N.getOpcode();
1181    if (Opcode != ISD::Constant && Opcode != ISD::FrameIndex &&
1182        Opcode != X86ISD::Wrapper) {
1183      // If we are able to fold N into addressing mode, then we'll allow it even
1184      // if N has multiple uses. In general, addressing computation is used as
1185      // addresses by all of its uses. But watch out for CopyToReg uses, that
1186      // means the address computation is liveout. It will be computed by a LEA
1187      // so we want to avoid computing the address twice.
1188      for (SDNode::use_iterator UI = N.getNode()->use_begin(),
1189             UE = N.getNode()->use_end(); UI != UE; ++UI) {
1190        if (UI->getOpcode() == ISD::CopyToReg) {
1191          MatchAddressBase(N, AM);
1192          Done = true;
1193          break;
1194        }
1195      }
1196    }
1197  }
1198
1199  if (!Done && MatchAddress(N, AM))
1200    return false;
1201
1202  MVT VT = N.getValueType();
1203  if (AM.BaseType == X86ISelAddressMode::RegBase) {
1204    if (!AM.Base.Reg.getNode())
1205      AM.Base.Reg = CurDAG->getRegister(0, VT);
1206  }
1207
1208  if (!AM.IndexReg.getNode())
1209    AM.IndexReg = CurDAG->getRegister(0, VT);
1210
1211  getAddressOperands(AM, Base, Scale, Index, Disp, Segment);
1212  return true;
1213}
1214
1215/// SelectScalarSSELoad - Match a scalar SSE load.  In particular, we want to
1216/// match a load whose top elements are either undef or zeros.  The load flavor
1217/// is derived from the type of N, which is either v4f32 or v2f64.
1218bool X86DAGToDAGISel::SelectScalarSSELoad(SDValue Op, SDValue Pred,
1219                                          SDValue N, SDValue &Base,
1220                                          SDValue &Scale, SDValue &Index,
1221                                          SDValue &Disp, SDValue &Segment,
1222                                          SDValue &InChain,
1223                                          SDValue &OutChain) {
1224  if (N.getOpcode() == ISD::SCALAR_TO_VECTOR) {
1225    InChain = N.getOperand(0).getValue(1);
1226    if (ISD::isNON_EXTLoad(InChain.getNode()) &&
1227        InChain.getValue(0).hasOneUse() &&
1228        N.hasOneUse() &&
1229        IsLegalAndProfitableToFold(N.getNode(), Pred.getNode(), Op.getNode())) {
1230      LoadSDNode *LD = cast<LoadSDNode>(InChain);
1231      if (!SelectAddr(Op, LD->getBasePtr(), Base, Scale, Index, Disp, Segment))
1232        return false;
1233      OutChain = LD->getChain();
1234      return true;
1235    }
1236  }
1237
1238  // Also handle the case where we explicitly require zeros in the top
1239  // elements.  This is a vector shuffle from the zero vector.
1240  if (N.getOpcode() == X86ISD::VZEXT_MOVL && N.getNode()->hasOneUse() &&
1241      // Check to see if the top elements are all zeros (or bitcast of zeros).
1242      N.getOperand(0).getOpcode() == ISD::SCALAR_TO_VECTOR &&
1243      N.getOperand(0).getNode()->hasOneUse() &&
1244      ISD::isNON_EXTLoad(N.getOperand(0).getOperand(0).getNode()) &&
1245      N.getOperand(0).getOperand(0).hasOneUse()) {
1246    // Okay, this is a zero extending load.  Fold it.
1247    LoadSDNode *LD = cast<LoadSDNode>(N.getOperand(0).getOperand(0));
1248    if (!SelectAddr(Op, LD->getBasePtr(), Base, Scale, Index, Disp, Segment))
1249      return false;
1250    OutChain = LD->getChain();
1251    InChain = SDValue(LD, 1);
1252    return true;
1253  }
1254  return false;
1255}
1256
1257
1258/// SelectLEAAddr - it calls SelectAddr and determines if the maximal addressing
1259/// mode it matches can be cost effectively emitted as an LEA instruction.
1260bool X86DAGToDAGISel::SelectLEAAddr(SDValue Op, SDValue N,
1261                                    SDValue &Base, SDValue &Scale,
1262                                    SDValue &Index, SDValue &Disp) {
1263  X86ISelAddressMode AM;
1264
1265  // Set AM.Segment to prevent MatchAddress from using one. LEA doesn't support
1266  // segments.
1267  SDValue Copy = AM.Segment;
1268  SDValue T = CurDAG->getRegister(0, MVT::i32);
1269  AM.Segment = T;
1270  if (MatchAddress(N, AM))
1271    return false;
1272  assert (T == AM.Segment);
1273  AM.Segment = Copy;
1274
1275  MVT VT = N.getValueType();
1276  unsigned Complexity = 0;
1277  if (AM.BaseType == X86ISelAddressMode::RegBase)
1278    if (AM.Base.Reg.getNode())
1279      Complexity = 1;
1280    else
1281      AM.Base.Reg = CurDAG->getRegister(0, VT);
1282  else if (AM.BaseType == X86ISelAddressMode::FrameIndexBase)
1283    Complexity = 4;
1284
1285  if (AM.IndexReg.getNode())
1286    Complexity++;
1287  else
1288    AM.IndexReg = CurDAG->getRegister(0, VT);
1289
1290  // Don't match just leal(,%reg,2). It's cheaper to do addl %reg, %reg, or with
1291  // a simple shift.
1292  if (AM.Scale > 1)
1293    Complexity++;
1294
1295  // FIXME: We are artificially lowering the criteria to turn ADD %reg, $GA
1296  // to a LEA. This is determined with some expermentation but is by no means
1297  // optimal (especially for code size consideration). LEA is nice because of
1298  // its three-address nature. Tweak the cost function again when we can run
1299  // convertToThreeAddress() at register allocation time.
1300  if (AM.hasSymbolicDisplacement()) {
1301    // For X86-64, we should always use lea to materialize RIP relative
1302    // addresses.
1303    if (Subtarget->is64Bit())
1304      Complexity = 4;
1305    else
1306      Complexity += 2;
1307  }
1308
1309  if (AM.Disp && (AM.Base.Reg.getNode() || AM.IndexReg.getNode()))
1310    Complexity++;
1311
1312  if (Complexity > 2) {
1313    SDValue Segment;
1314    getAddressOperands(AM, Base, Scale, Index, Disp, Segment);
1315    return true;
1316  }
1317  return false;
1318}
1319
1320bool X86DAGToDAGISel::TryFoldLoad(SDValue P, SDValue N,
1321                                  SDValue &Base, SDValue &Scale,
1322                                  SDValue &Index, SDValue &Disp,
1323                                  SDValue &Segment) {
1324  if (ISD::isNON_EXTLoad(N.getNode()) &&
1325      N.hasOneUse() &&
1326      IsLegalAndProfitableToFold(N.getNode(), P.getNode(), P.getNode()))
1327    return SelectAddr(P, N.getOperand(1), Base, Scale, Index, Disp, Segment);
1328  return false;
1329}
1330
1331/// getGlobalBaseReg - Return an SDNode that returns the value of
1332/// the global base register. Output instructions required to
1333/// initialize the global base register, if necessary.
1334///
1335SDNode *X86DAGToDAGISel::getGlobalBaseReg() {
1336  MachineFunction *MF = CurBB->getParent();
1337  unsigned GlobalBaseReg = TM.getInstrInfo()->getGlobalBaseReg(MF);
1338  return CurDAG->getRegister(GlobalBaseReg, TLI.getPointerTy()).getNode();
1339}
1340
1341static SDNode *FindCallStartFromCall(SDNode *Node) {
1342  if (Node->getOpcode() == ISD::CALLSEQ_START) return Node;
1343    assert(Node->getOperand(0).getValueType() == MVT::Other &&
1344         "Node doesn't have a token chain argument!");
1345  return FindCallStartFromCall(Node->getOperand(0).getNode());
1346}
1347
1348SDNode *X86DAGToDAGISel::SelectAtomic64(SDNode *Node, unsigned Opc) {
1349  SDValue Chain = Node->getOperand(0);
1350  SDValue In1 = Node->getOperand(1);
1351  SDValue In2L = Node->getOperand(2);
1352  SDValue In2H = Node->getOperand(3);
1353  SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
1354  if (!SelectAddr(In1, In1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4))
1355    return NULL;
1356  SDValue LSI = Node->getOperand(4);    // MemOperand
1357  const SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, In2L, In2H, LSI, Chain};
1358  return CurDAG->getTargetNode(Opc, Node->getDebugLoc(),
1359                               MVT::i32, MVT::i32, MVT::Other, Ops,
1360                               array_lengthof(Ops));
1361}
1362
1363SDNode *X86DAGToDAGISel::Select(SDValue N) {
1364  SDNode *Node = N.getNode();
1365  MVT NVT = Node->getValueType(0);
1366  unsigned Opc, MOpc;
1367  unsigned Opcode = Node->getOpcode();
1368  DebugLoc dl = Node->getDebugLoc();
1369
1370#ifndef NDEBUG
1371  DOUT << std::string(Indent, ' ') << "Selecting: ";
1372  DEBUG(Node->dump(CurDAG));
1373  DOUT << "\n";
1374  Indent += 2;
1375#endif
1376
1377  if (Node->isMachineOpcode()) {
1378#ifndef NDEBUG
1379    DOUT << std::string(Indent-2, ' ') << "== ";
1380    DEBUG(Node->dump(CurDAG));
1381    DOUT << "\n";
1382    Indent -= 2;
1383#endif
1384    return NULL;   // Already selected.
1385  }
1386
1387  switch (Opcode) {
1388    default: break;
1389    case X86ISD::GlobalBaseReg:
1390      return getGlobalBaseReg();
1391
1392    case X86ISD::ATOMOR64_DAG:
1393      return SelectAtomic64(Node, X86::ATOMOR6432);
1394    case X86ISD::ATOMXOR64_DAG:
1395      return SelectAtomic64(Node, X86::ATOMXOR6432);
1396    case X86ISD::ATOMADD64_DAG:
1397      return SelectAtomic64(Node, X86::ATOMADD6432);
1398    case X86ISD::ATOMSUB64_DAG:
1399      return SelectAtomic64(Node, X86::ATOMSUB6432);
1400    case X86ISD::ATOMNAND64_DAG:
1401      return SelectAtomic64(Node, X86::ATOMNAND6432);
1402    case X86ISD::ATOMAND64_DAG:
1403      return SelectAtomic64(Node, X86::ATOMAND6432);
1404    case X86ISD::ATOMSWAP64_DAG:
1405      return SelectAtomic64(Node, X86::ATOMSWAP6432);
1406
1407    case ISD::SMUL_LOHI:
1408    case ISD::UMUL_LOHI: {
1409      SDValue N0 = Node->getOperand(0);
1410      SDValue N1 = Node->getOperand(1);
1411
1412      bool isSigned = Opcode == ISD::SMUL_LOHI;
1413      if (!isSigned)
1414        switch (NVT.getSimpleVT()) {
1415        default: assert(0 && "Unsupported VT!");
1416        case MVT::i8:  Opc = X86::MUL8r;  MOpc = X86::MUL8m;  break;
1417        case MVT::i16: Opc = X86::MUL16r; MOpc = X86::MUL16m; break;
1418        case MVT::i32: Opc = X86::MUL32r; MOpc = X86::MUL32m; break;
1419        case MVT::i64: Opc = X86::MUL64r; MOpc = X86::MUL64m; break;
1420        }
1421      else
1422        switch (NVT.getSimpleVT()) {
1423        default: assert(0 && "Unsupported VT!");
1424        case MVT::i8:  Opc = X86::IMUL8r;  MOpc = X86::IMUL8m;  break;
1425        case MVT::i16: Opc = X86::IMUL16r; MOpc = X86::IMUL16m; break;
1426        case MVT::i32: Opc = X86::IMUL32r; MOpc = X86::IMUL32m; break;
1427        case MVT::i64: Opc = X86::IMUL64r; MOpc = X86::IMUL64m; break;
1428        }
1429
1430      unsigned LoReg, HiReg;
1431      switch (NVT.getSimpleVT()) {
1432      default: assert(0 && "Unsupported VT!");
1433      case MVT::i8:  LoReg = X86::AL;  HiReg = X86::AH;  break;
1434      case MVT::i16: LoReg = X86::AX;  HiReg = X86::DX;  break;
1435      case MVT::i32: LoReg = X86::EAX; HiReg = X86::EDX; break;
1436      case MVT::i64: LoReg = X86::RAX; HiReg = X86::RDX; break;
1437      }
1438
1439      SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
1440      bool foldedLoad = TryFoldLoad(N, N1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4);
1441      // multiplty is commmutative
1442      if (!foldedLoad) {
1443        foldedLoad = TryFoldLoad(N, N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4);
1444        if (foldedLoad)
1445          std::swap(N0, N1);
1446      }
1447
1448      SDValue InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, LoReg,
1449                                              N0, SDValue()).getValue(1);
1450
1451      if (foldedLoad) {
1452        SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N1.getOperand(0),
1453                          InFlag };
1454        SDNode *CNode =
1455          CurDAG->getTargetNode(MOpc, dl, MVT::Other, MVT::Flag, Ops,
1456                                array_lengthof(Ops));
1457        InFlag = SDValue(CNode, 1);
1458        // Update the chain.
1459        ReplaceUses(N1.getValue(1), SDValue(CNode, 0));
1460      } else {
1461        InFlag =
1462          SDValue(CurDAG->getTargetNode(Opc, dl, MVT::Flag, N1, InFlag), 0);
1463      }
1464
1465      // Copy the low half of the result, if it is needed.
1466      if (!N.getValue(0).use_empty()) {
1467        SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
1468                                                  LoReg, NVT, InFlag);
1469        InFlag = Result.getValue(2);
1470        ReplaceUses(N.getValue(0), Result);
1471#ifndef NDEBUG
1472        DOUT << std::string(Indent-2, ' ') << "=> ";
1473        DEBUG(Result.getNode()->dump(CurDAG));
1474        DOUT << "\n";
1475#endif
1476      }
1477      // Copy the high half of the result, if it is needed.
1478      if (!N.getValue(1).use_empty()) {
1479        SDValue Result;
1480        if (HiReg == X86::AH && Subtarget->is64Bit()) {
1481          // Prevent use of AH in a REX instruction by referencing AX instead.
1482          // Shift it down 8 bits.
1483          Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
1484                                          X86::AX, MVT::i16, InFlag);
1485          InFlag = Result.getValue(2);
1486          Result = SDValue(CurDAG->getTargetNode(X86::SHR16ri, dl, MVT::i16,
1487                                                 Result,
1488                                     CurDAG->getTargetConstant(8, MVT::i8)), 0);
1489          // Then truncate it down to i8.
1490          SDValue SRIdx = CurDAG->getTargetConstant(X86::SUBREG_8BIT, MVT::i32);
1491          Result = SDValue(CurDAG->getTargetNode(X86::EXTRACT_SUBREG, dl,
1492                                                   MVT::i8, Result, SRIdx), 0);
1493        } else {
1494          Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
1495                                          HiReg, NVT, InFlag);
1496          InFlag = Result.getValue(2);
1497        }
1498        ReplaceUses(N.getValue(1), Result);
1499#ifndef NDEBUG
1500        DOUT << std::string(Indent-2, ' ') << "=> ";
1501        DEBUG(Result.getNode()->dump(CurDAG));
1502        DOUT << "\n";
1503#endif
1504      }
1505
1506#ifndef NDEBUG
1507      Indent -= 2;
1508#endif
1509
1510      return NULL;
1511    }
1512
1513    case ISD::SDIVREM:
1514    case ISD::UDIVREM: {
1515      SDValue N0 = Node->getOperand(0);
1516      SDValue N1 = Node->getOperand(1);
1517
1518      bool isSigned = Opcode == ISD::SDIVREM;
1519      if (!isSigned)
1520        switch (NVT.getSimpleVT()) {
1521        default: assert(0 && "Unsupported VT!");
1522        case MVT::i8:  Opc = X86::DIV8r;  MOpc = X86::DIV8m;  break;
1523        case MVT::i16: Opc = X86::DIV16r; MOpc = X86::DIV16m; break;
1524        case MVT::i32: Opc = X86::DIV32r; MOpc = X86::DIV32m; break;
1525        case MVT::i64: Opc = X86::DIV64r; MOpc = X86::DIV64m; break;
1526        }
1527      else
1528        switch (NVT.getSimpleVT()) {
1529        default: assert(0 && "Unsupported VT!");
1530        case MVT::i8:  Opc = X86::IDIV8r;  MOpc = X86::IDIV8m;  break;
1531        case MVT::i16: Opc = X86::IDIV16r; MOpc = X86::IDIV16m; break;
1532        case MVT::i32: Opc = X86::IDIV32r; MOpc = X86::IDIV32m; break;
1533        case MVT::i64: Opc = X86::IDIV64r; MOpc = X86::IDIV64m; break;
1534        }
1535
1536      unsigned LoReg, HiReg;
1537      unsigned ClrOpcode, SExtOpcode;
1538      switch (NVT.getSimpleVT()) {
1539      default: assert(0 && "Unsupported VT!");
1540      case MVT::i8:
1541        LoReg = X86::AL;  HiReg = X86::AH;
1542        ClrOpcode  = 0;
1543        SExtOpcode = X86::CBW;
1544        break;
1545      case MVT::i16:
1546        LoReg = X86::AX;  HiReg = X86::DX;
1547        ClrOpcode  = X86::MOV16r0;
1548        SExtOpcode = X86::CWD;
1549        break;
1550      case MVT::i32:
1551        LoReg = X86::EAX; HiReg = X86::EDX;
1552        ClrOpcode  = X86::MOV32r0;
1553        SExtOpcode = X86::CDQ;
1554        break;
1555      case MVT::i64:
1556        LoReg = X86::RAX; HiReg = X86::RDX;
1557        ClrOpcode  = X86::MOV64r0;
1558        SExtOpcode = X86::CQO;
1559        break;
1560      }
1561
1562      SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
1563      bool foldedLoad = TryFoldLoad(N, N1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4);
1564      bool signBitIsZero = CurDAG->SignBitIsZero(N0);
1565
1566      SDValue InFlag;
1567      if (NVT == MVT::i8 && (!isSigned || signBitIsZero)) {
1568        // Special case for div8, just use a move with zero extension to AX to
1569        // clear the upper 8 bits (AH).
1570        SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Move, Chain;
1571        if (TryFoldLoad(N, N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4)) {
1572          SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N0.getOperand(0) };
1573          Move =
1574            SDValue(CurDAG->getTargetNode(X86::MOVZX16rm8, dl, MVT::i16,
1575                                          MVT::Other, Ops,
1576                                          array_lengthof(Ops)), 0);
1577          Chain = Move.getValue(1);
1578          ReplaceUses(N0.getValue(1), Chain);
1579        } else {
1580          Move =
1581            SDValue(CurDAG->getTargetNode(X86::MOVZX16rr8, dl, MVT::i16, N0),0);
1582          Chain = CurDAG->getEntryNode();
1583        }
1584        Chain  = CurDAG->getCopyToReg(Chain, dl, X86::AX, Move, SDValue());
1585        InFlag = Chain.getValue(1);
1586      } else {
1587        InFlag =
1588          CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl,
1589                               LoReg, N0, SDValue()).getValue(1);
1590        if (isSigned && !signBitIsZero) {
1591          // Sign extend the low part into the high part.
1592          InFlag =
1593            SDValue(CurDAG->getTargetNode(SExtOpcode, dl, MVT::Flag, InFlag),0);
1594        } else {
1595          // Zero out the high part, effectively zero extending the input.
1596          SDValue ClrNode = SDValue(CurDAG->getTargetNode(ClrOpcode, dl, NVT),
1597                                    0);
1598          InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, HiReg,
1599                                        ClrNode, InFlag).getValue(1);
1600        }
1601      }
1602
1603      if (foldedLoad) {
1604        SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N1.getOperand(0),
1605                          InFlag };
1606        SDNode *CNode =
1607          CurDAG->getTargetNode(MOpc, dl, MVT::Other, MVT::Flag, Ops,
1608                                array_lengthof(Ops));
1609        InFlag = SDValue(CNode, 1);
1610        // Update the chain.
1611        ReplaceUses(N1.getValue(1), SDValue(CNode, 0));
1612      } else {
1613        InFlag =
1614          SDValue(CurDAG->getTargetNode(Opc, dl, MVT::Flag, N1, InFlag), 0);
1615      }
1616
1617      // Copy the division (low) result, if it is needed.
1618      if (!N.getValue(0).use_empty()) {
1619        SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
1620                                                  LoReg, NVT, InFlag);
1621        InFlag = Result.getValue(2);
1622        ReplaceUses(N.getValue(0), Result);
1623#ifndef NDEBUG
1624        DOUT << std::string(Indent-2, ' ') << "=> ";
1625        DEBUG(Result.getNode()->dump(CurDAG));
1626        DOUT << "\n";
1627#endif
1628      }
1629      // Copy the remainder (high) result, if it is needed.
1630      if (!N.getValue(1).use_empty()) {
1631        SDValue Result;
1632        if (HiReg == X86::AH && Subtarget->is64Bit()) {
1633          // Prevent use of AH in a REX instruction by referencing AX instead.
1634          // Shift it down 8 bits.
1635          Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
1636                                          X86::AX, MVT::i16, InFlag);
1637          InFlag = Result.getValue(2);
1638          Result = SDValue(CurDAG->getTargetNode(X86::SHR16ri, dl, MVT::i16,
1639                                        Result,
1640                                        CurDAG->getTargetConstant(8, MVT::i8)),
1641                           0);
1642          // Then truncate it down to i8.
1643          SDValue SRIdx = CurDAG->getTargetConstant(X86::SUBREG_8BIT, MVT::i32);
1644          Result = SDValue(CurDAG->getTargetNode(X86::EXTRACT_SUBREG, dl,
1645                                                   MVT::i8, Result, SRIdx), 0);
1646        } else {
1647          Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
1648                                          HiReg, NVT, InFlag);
1649          InFlag = Result.getValue(2);
1650        }
1651        ReplaceUses(N.getValue(1), Result);
1652#ifndef NDEBUG
1653        DOUT << std::string(Indent-2, ' ') << "=> ";
1654        DEBUG(Result.getNode()->dump(CurDAG));
1655        DOUT << "\n";
1656#endif
1657      }
1658
1659#ifndef NDEBUG
1660      Indent -= 2;
1661#endif
1662
1663      return NULL;
1664    }
1665
1666    case ISD::DECLARE: {
1667      // Handle DECLARE nodes here because the second operand may have been
1668      // wrapped in X86ISD::Wrapper.
1669      SDValue Chain = Node->getOperand(0);
1670      SDValue N1 = Node->getOperand(1);
1671      SDValue N2 = Node->getOperand(2);
1672      FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N1);
1673
1674      // FIXME: We need to handle this for VLAs.
1675      if (!FINode) {
1676        ReplaceUses(N.getValue(0), Chain);
1677        return NULL;
1678      }
1679
1680      if (N2.getOpcode() == ISD::ADD &&
1681          N2.getOperand(0).getOpcode() == X86ISD::GlobalBaseReg)
1682        N2 = N2.getOperand(1);
1683
1684      // If N2 is not Wrapper(decriptor) then the llvm.declare is mangled
1685      // somehow, just ignore it.
1686      if (N2.getOpcode() != X86ISD::Wrapper) {
1687        ReplaceUses(N.getValue(0), Chain);
1688        return NULL;
1689      }
1690      GlobalAddressSDNode *GVNode =
1691        dyn_cast<GlobalAddressSDNode>(N2.getOperand(0));
1692      if (GVNode == 0) {
1693        ReplaceUses(N.getValue(0), Chain);
1694        return NULL;
1695      }
1696      SDValue Tmp1 = CurDAG->getTargetFrameIndex(FINode->getIndex(),
1697                                                 TLI.getPointerTy());
1698      SDValue Tmp2 = CurDAG->getTargetGlobalAddress(GVNode->getGlobal(),
1699                                                    TLI.getPointerTy());
1700      SDValue Ops[] = { Tmp1, Tmp2, Chain };
1701      return CurDAG->getTargetNode(TargetInstrInfo::DECLARE, dl,
1702                                   MVT::Other, Ops,
1703                                   array_lengthof(Ops));
1704    }
1705  }
1706
1707  SDNode *ResNode = SelectCode(N);
1708
1709#ifndef NDEBUG
1710  DOUT << std::string(Indent-2, ' ') << "=> ";
1711  if (ResNode == NULL || ResNode == N.getNode())
1712    DEBUG(N.getNode()->dump(CurDAG));
1713  else
1714    DEBUG(ResNode->dump(CurDAG));
1715  DOUT << "\n";
1716  Indent -= 2;
1717#endif
1718
1719  return ResNode;
1720}
1721
1722bool X86DAGToDAGISel::
1723SelectInlineAsmMemoryOperand(const SDValue &Op, char ConstraintCode,
1724                             std::vector<SDValue> &OutOps) {
1725  SDValue Op0, Op1, Op2, Op3, Op4;
1726  switch (ConstraintCode) {
1727  case 'o':   // offsetable        ??
1728  case 'v':   // not offsetable    ??
1729  default: return true;
1730  case 'm':   // memory
1731    if (!SelectAddr(Op, Op, Op0, Op1, Op2, Op3, Op4))
1732      return true;
1733    break;
1734  }
1735
1736  OutOps.push_back(Op0);
1737  OutOps.push_back(Op1);
1738  OutOps.push_back(Op2);
1739  OutOps.push_back(Op3);
1740  OutOps.push_back(Op4);
1741  return false;
1742}
1743
1744/// createX86ISelDag - This pass converts a legalized DAG into a
1745/// X86-specific DAG, ready for instruction scheduling.
1746///
1747FunctionPass *llvm::createX86ISelDag(X86TargetMachine &TM, unsigned OptLevel) {
1748  return new X86DAGToDAGISel(TM, OptLevel);
1749}
1750