X86ISelDAGToDAG.cpp revision dddcd78e24babb4ca6b35d99abe40bdedde71fab
1//===- X86ISelDAGToDAG.cpp - A DAG pattern matching inst selector for X86 -===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines a DAG pattern matching instruction selector for X86,
11// converting from a legalized dag to a X86 dag.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "x86-isel"
16#include "X86.h"
17#include "X86InstrBuilder.h"
18#include "X86MachineFunctionInfo.h"
19#include "X86RegisterInfo.h"
20#include "X86Subtarget.h"
21#include "X86TargetMachine.h"
22#include "llvm/Instructions.h"
23#include "llvm/Intrinsics.h"
24#include "llvm/Support/CFG.h"
25#include "llvm/Type.h"
26#include "llvm/CodeGen/FunctionLoweringInfo.h"
27#include "llvm/CodeGen/MachineConstantPool.h"
28#include "llvm/CodeGen/MachineFunction.h"
29#include "llvm/CodeGen/MachineFrameInfo.h"
30#include "llvm/CodeGen/MachineInstrBuilder.h"
31#include "llvm/CodeGen/MachineRegisterInfo.h"
32#include "llvm/CodeGen/SelectionDAGISel.h"
33#include "llvm/Target/TargetMachine.h"
34#include "llvm/Target/TargetOptions.h"
35#include "llvm/Support/Debug.h"
36#include "llvm/Support/ErrorHandling.h"
37#include "llvm/Support/MathExtras.h"
38#include "llvm/Support/raw_ostream.h"
39#include "llvm/ADT/SmallPtrSet.h"
40#include "llvm/ADT/Statistic.h"
41using namespace llvm;
42
43STATISTIC(NumLoadMoved, "Number of loads moved below TokenFactor");
44
45//===----------------------------------------------------------------------===//
46//                      Pattern Matcher Implementation
47//===----------------------------------------------------------------------===//
48
49namespace {
50  /// X86ISelAddressMode - This corresponds to X86AddressMode, but uses
51  /// SDValue's instead of register numbers for the leaves of the matched
52  /// tree.
53  struct X86ISelAddressMode {
54    enum {
55      RegBase,
56      FrameIndexBase
57    } BaseType;
58
59    // This is really a union, discriminated by BaseType!
60    SDValue Base_Reg;
61    int Base_FrameIndex;
62
63    unsigned Scale;
64    SDValue IndexReg;
65    int32_t Disp;
66    SDValue Segment;
67    const GlobalValue *GV;
68    const Constant *CP;
69    const BlockAddress *BlockAddr;
70    const char *ES;
71    int JT;
72    unsigned Align;    // CP alignment.
73    unsigned char SymbolFlags;  // X86II::MO_*
74
75    X86ISelAddressMode()
76      : BaseType(RegBase), Base_FrameIndex(0), Scale(1), IndexReg(), Disp(0),
77        Segment(), GV(0), CP(0), BlockAddr(0), ES(0), JT(-1), Align(0),
78        SymbolFlags(X86II::MO_NO_FLAG) {
79    }
80
81    bool hasSymbolicDisplacement() const {
82      return GV != 0 || CP != 0 || ES != 0 || JT != -1 || BlockAddr != 0;
83    }
84
85    bool hasBaseOrIndexReg() const {
86      return IndexReg.getNode() != 0 || Base_Reg.getNode() != 0;
87    }
88
89    /// isRIPRelative - Return true if this addressing mode is already RIP
90    /// relative.
91    bool isRIPRelative() const {
92      if (BaseType != RegBase) return false;
93      if (RegisterSDNode *RegNode =
94            dyn_cast_or_null<RegisterSDNode>(Base_Reg.getNode()))
95        return RegNode->getReg() == X86::RIP;
96      return false;
97    }
98
99    void setBaseReg(SDValue Reg) {
100      BaseType = RegBase;
101      Base_Reg = Reg;
102    }
103
104    void dump() {
105      dbgs() << "X86ISelAddressMode " << this << '\n';
106      dbgs() << "Base_Reg ";
107      if (Base_Reg.getNode() != 0)
108        Base_Reg.getNode()->dump();
109      else
110        dbgs() << "nul";
111      dbgs() << " Base.FrameIndex " << Base_FrameIndex << '\n'
112             << " Scale" << Scale << '\n'
113             << "IndexReg ";
114      if (IndexReg.getNode() != 0)
115        IndexReg.getNode()->dump();
116      else
117        dbgs() << "nul";
118      dbgs() << " Disp " << Disp << '\n'
119             << "GV ";
120      if (GV)
121        GV->dump();
122      else
123        dbgs() << "nul";
124      dbgs() << " CP ";
125      if (CP)
126        CP->dump();
127      else
128        dbgs() << "nul";
129      dbgs() << '\n'
130             << "ES ";
131      if (ES)
132        dbgs() << ES;
133      else
134        dbgs() << "nul";
135      dbgs() << " JT" << JT << " Align" << Align << '\n';
136    }
137  };
138}
139
140namespace {
141  //===--------------------------------------------------------------------===//
142  /// ISel - X86 specific code to select X86 machine instructions for
143  /// SelectionDAG operations.
144  ///
145  class X86DAGToDAGISel : public SelectionDAGISel {
146    /// X86Lowering - This object fully describes how to lower LLVM code to an
147    /// X86-specific SelectionDAG.
148    const X86TargetLowering &X86Lowering;
149
150    /// Subtarget - Keep a pointer to the X86Subtarget around so that we can
151    /// make the right decision when generating code for different targets.
152    const X86Subtarget *Subtarget;
153
154    /// OptForSize - If true, selector should try to optimize for code size
155    /// instead of performance.
156    bool OptForSize;
157
158  public:
159    explicit X86DAGToDAGISel(X86TargetMachine &tm, CodeGenOpt::Level OptLevel)
160      : SelectionDAGISel(tm, OptLevel),
161        X86Lowering(*tm.getTargetLowering()),
162        Subtarget(&tm.getSubtarget<X86Subtarget>()),
163        OptForSize(false) {}
164
165    virtual const char *getPassName() const {
166      return "X86 DAG->DAG Instruction Selection";
167    }
168
169    virtual void EmitFunctionEntryCode();
170
171    virtual bool IsProfitableToFold(SDValue N, SDNode *U, SDNode *Root) const;
172
173    virtual void PreprocessISelDAG();
174
175    inline bool immSext8(SDNode *N) const {
176      return isInt<8>(cast<ConstantSDNode>(N)->getSExtValue());
177    }
178
179    // i64immSExt32 predicate - True if the 64-bit immediate fits in a 32-bit
180    // sign extended field.
181    inline bool i64immSExt32(SDNode *N) const {
182      uint64_t v = cast<ConstantSDNode>(N)->getZExtValue();
183      return (int64_t)v == (int32_t)v;
184    }
185
186// Include the pieces autogenerated from the target description.
187#include "X86GenDAGISel.inc"
188
189  private:
190    SDNode *Select(SDNode *N);
191    SDNode *SelectAtomic64(SDNode *Node, unsigned Opc);
192    SDNode *SelectAtomicLoadAdd(SDNode *Node, EVT NVT);
193    SDNode *SelectAtomicLoadArith(SDNode *Node, EVT NVT);
194
195    bool FoldOffsetIntoAddress(uint64_t Offset, X86ISelAddressMode &AM);
196    bool MatchLoadInAddress(LoadSDNode *N, X86ISelAddressMode &AM);
197    bool MatchWrapper(SDValue N, X86ISelAddressMode &AM);
198    bool MatchAddress(SDValue N, X86ISelAddressMode &AM);
199    bool MatchAddressRecursively(SDValue N, X86ISelAddressMode &AM,
200                                 unsigned Depth);
201    bool MatchAddressBase(SDValue N, X86ISelAddressMode &AM);
202    bool SelectAddr(SDNode *Parent, SDValue N, SDValue &Base,
203                    SDValue &Scale, SDValue &Index, SDValue &Disp,
204                    SDValue &Segment);
205    bool SelectLEAAddr(SDValue N, SDValue &Base,
206                       SDValue &Scale, SDValue &Index, SDValue &Disp,
207                       SDValue &Segment);
208    bool SelectTLSADDRAddr(SDValue N, SDValue &Base,
209                           SDValue &Scale, SDValue &Index, SDValue &Disp,
210                           SDValue &Segment);
211    bool SelectScalarSSELoad(SDNode *Root, SDValue N,
212                             SDValue &Base, SDValue &Scale,
213                             SDValue &Index, SDValue &Disp,
214                             SDValue &Segment,
215                             SDValue &NodeWithChain);
216
217    bool TryFoldLoad(SDNode *P, SDValue N,
218                     SDValue &Base, SDValue &Scale,
219                     SDValue &Index, SDValue &Disp,
220                     SDValue &Segment);
221
222    /// SelectInlineAsmMemoryOperand - Implement addressing mode selection for
223    /// inline asm expressions.
224    virtual bool SelectInlineAsmMemoryOperand(const SDValue &Op,
225                                              char ConstraintCode,
226                                              std::vector<SDValue> &OutOps);
227
228    void EmitSpecialCodeForMain(MachineBasicBlock *BB, MachineFrameInfo *MFI);
229
230    inline void getAddressOperands(X86ISelAddressMode &AM, SDValue &Base,
231                                   SDValue &Scale, SDValue &Index,
232                                   SDValue &Disp, SDValue &Segment) {
233      Base  = (AM.BaseType == X86ISelAddressMode::FrameIndexBase) ?
234        CurDAG->getTargetFrameIndex(AM.Base_FrameIndex, TLI.getPointerTy()) :
235        AM.Base_Reg;
236      Scale = getI8Imm(AM.Scale);
237      Index = AM.IndexReg;
238      // These are 32-bit even in 64-bit mode since RIP relative offset
239      // is 32-bit.
240      if (AM.GV)
241        Disp = CurDAG->getTargetGlobalAddress(AM.GV, DebugLoc(),
242                                              MVT::i32, AM.Disp,
243                                              AM.SymbolFlags);
244      else if (AM.CP)
245        Disp = CurDAG->getTargetConstantPool(AM.CP, MVT::i32,
246                                             AM.Align, AM.Disp, AM.SymbolFlags);
247      else if (AM.ES)
248        Disp = CurDAG->getTargetExternalSymbol(AM.ES, MVT::i32, AM.SymbolFlags);
249      else if (AM.JT != -1)
250        Disp = CurDAG->getTargetJumpTable(AM.JT, MVT::i32, AM.SymbolFlags);
251      else if (AM.BlockAddr)
252        Disp = CurDAG->getBlockAddress(AM.BlockAddr, MVT::i32,
253                                       true, AM.SymbolFlags);
254      else
255        Disp = CurDAG->getTargetConstant(AM.Disp, MVT::i32);
256
257      if (AM.Segment.getNode())
258        Segment = AM.Segment;
259      else
260        Segment = CurDAG->getRegister(0, MVT::i32);
261    }
262
263    /// getI8Imm - Return a target constant with the specified value, of type
264    /// i8.
265    inline SDValue getI8Imm(unsigned Imm) {
266      return CurDAG->getTargetConstant(Imm, MVT::i8);
267    }
268
269    /// getI32Imm - Return a target constant with the specified value, of type
270    /// i32.
271    inline SDValue getI32Imm(unsigned Imm) {
272      return CurDAG->getTargetConstant(Imm, MVT::i32);
273    }
274
275    /// getGlobalBaseReg - Return an SDNode that returns the value of
276    /// the global base register. Output instructions required to
277    /// initialize the global base register, if necessary.
278    ///
279    SDNode *getGlobalBaseReg();
280
281    /// getTargetMachine - Return a reference to the TargetMachine, casted
282    /// to the target-specific type.
283    const X86TargetMachine &getTargetMachine() {
284      return static_cast<const X86TargetMachine &>(TM);
285    }
286
287    /// getInstrInfo - Return a reference to the TargetInstrInfo, casted
288    /// to the target-specific type.
289    const X86InstrInfo *getInstrInfo() {
290      return getTargetMachine().getInstrInfo();
291    }
292  };
293}
294
295
296bool
297X86DAGToDAGISel::IsProfitableToFold(SDValue N, SDNode *U, SDNode *Root) const {
298  if (OptLevel == CodeGenOpt::None) return false;
299
300  if (!N.hasOneUse())
301    return false;
302
303  if (N.getOpcode() != ISD::LOAD)
304    return true;
305
306  // If N is a load, do additional profitability checks.
307  if (U == Root) {
308    switch (U->getOpcode()) {
309    default: break;
310    case X86ISD::ADD:
311    case X86ISD::SUB:
312    case X86ISD::AND:
313    case X86ISD::XOR:
314    case X86ISD::OR:
315    case ISD::ADD:
316    case ISD::ADDC:
317    case ISD::ADDE:
318    case ISD::AND:
319    case ISD::OR:
320    case ISD::XOR: {
321      SDValue Op1 = U->getOperand(1);
322
323      // If the other operand is a 8-bit immediate we should fold the immediate
324      // instead. This reduces code size.
325      // e.g.
326      // movl 4(%esp), %eax
327      // addl $4, %eax
328      // vs.
329      // movl $4, %eax
330      // addl 4(%esp), %eax
331      // The former is 2 bytes shorter. In case where the increment is 1, then
332      // the saving can be 4 bytes (by using incl %eax).
333      if (ConstantSDNode *Imm = dyn_cast<ConstantSDNode>(Op1))
334        if (Imm->getAPIntValue().isSignedIntN(8))
335          return false;
336
337      // If the other operand is a TLS address, we should fold it instead.
338      // This produces
339      // movl    %gs:0, %eax
340      // leal    i@NTPOFF(%eax), %eax
341      // instead of
342      // movl    $i@NTPOFF, %eax
343      // addl    %gs:0, %eax
344      // if the block also has an access to a second TLS address this will save
345      // a load.
346      // FIXME: This is probably also true for non TLS addresses.
347      if (Op1.getOpcode() == X86ISD::Wrapper) {
348        SDValue Val = Op1.getOperand(0);
349        if (Val.getOpcode() == ISD::TargetGlobalTLSAddress)
350          return false;
351      }
352    }
353    }
354  }
355
356  return true;
357}
358
359/// MoveBelowCallOrigChain - Replace the original chain operand of the call with
360/// load's chain operand and move load below the call's chain operand.
361static void MoveBelowOrigChain(SelectionDAG *CurDAG, SDValue Load,
362                                  SDValue Call, SDValue OrigChain) {
363  SmallVector<SDValue, 8> Ops;
364  SDValue Chain = OrigChain.getOperand(0);
365  if (Chain.getNode() == Load.getNode())
366    Ops.push_back(Load.getOperand(0));
367  else {
368    assert(Chain.getOpcode() == ISD::TokenFactor &&
369           "Unexpected chain operand");
370    for (unsigned i = 0, e = Chain.getNumOperands(); i != e; ++i)
371      if (Chain.getOperand(i).getNode() == Load.getNode())
372        Ops.push_back(Load.getOperand(0));
373      else
374        Ops.push_back(Chain.getOperand(i));
375    SDValue NewChain =
376      CurDAG->getNode(ISD::TokenFactor, Load.getDebugLoc(),
377                      MVT::Other, &Ops[0], Ops.size());
378    Ops.clear();
379    Ops.push_back(NewChain);
380  }
381  for (unsigned i = 1, e = OrigChain.getNumOperands(); i != e; ++i)
382    Ops.push_back(OrigChain.getOperand(i));
383  CurDAG->UpdateNodeOperands(OrigChain.getNode(), &Ops[0], Ops.size());
384  CurDAG->UpdateNodeOperands(Load.getNode(), Call.getOperand(0),
385                             Load.getOperand(1), Load.getOperand(2));
386  Ops.clear();
387  Ops.push_back(SDValue(Load.getNode(), 1));
388  for (unsigned i = 1, e = Call.getNode()->getNumOperands(); i != e; ++i)
389    Ops.push_back(Call.getOperand(i));
390  CurDAG->UpdateNodeOperands(Call.getNode(), &Ops[0], Ops.size());
391}
392
393/// isCalleeLoad - Return true if call address is a load and it can be
394/// moved below CALLSEQ_START and the chains leading up to the call.
395/// Return the CALLSEQ_START by reference as a second output.
396/// In the case of a tail call, there isn't a callseq node between the call
397/// chain and the load.
398static bool isCalleeLoad(SDValue Callee, SDValue &Chain, bool HasCallSeq) {
399  if (Callee.getNode() == Chain.getNode() || !Callee.hasOneUse())
400    return false;
401  LoadSDNode *LD = dyn_cast<LoadSDNode>(Callee.getNode());
402  if (!LD ||
403      LD->isVolatile() ||
404      LD->getAddressingMode() != ISD::UNINDEXED ||
405      LD->getExtensionType() != ISD::NON_EXTLOAD)
406    return false;
407
408  // Now let's find the callseq_start.
409  while (HasCallSeq && Chain.getOpcode() != ISD::CALLSEQ_START) {
410    if (!Chain.hasOneUse())
411      return false;
412    Chain = Chain.getOperand(0);
413  }
414
415  if (!Chain.getNumOperands())
416    return false;
417  if (Chain.getOperand(0).getNode() == Callee.getNode())
418    return true;
419  if (Chain.getOperand(0).getOpcode() == ISD::TokenFactor &&
420      Callee.getValue(1).isOperandOf(Chain.getOperand(0).getNode()) &&
421      Callee.getValue(1).hasOneUse())
422    return true;
423  return false;
424}
425
426void X86DAGToDAGISel::PreprocessISelDAG() {
427  // OptForSize is used in pattern predicates that isel is matching.
428  OptForSize = MF->getFunction()->hasFnAttr(Attribute::OptimizeForSize);
429
430  for (SelectionDAG::allnodes_iterator I = CurDAG->allnodes_begin(),
431       E = CurDAG->allnodes_end(); I != E; ) {
432    SDNode *N = I++;  // Preincrement iterator to avoid invalidation issues.
433
434    if (OptLevel != CodeGenOpt::None &&
435        (N->getOpcode() == X86ISD::CALL ||
436         N->getOpcode() == X86ISD::TC_RETURN)) {
437      /// Also try moving call address load from outside callseq_start to just
438      /// before the call to allow it to be folded.
439      ///
440      ///     [Load chain]
441      ///         ^
442      ///         |
443      ///       [Load]
444      ///       ^    ^
445      ///       |    |
446      ///      /      \--
447      ///     /          |
448      ///[CALLSEQ_START] |
449      ///     ^          |
450      ///     |          |
451      /// [LOAD/C2Reg]   |
452      ///     |          |
453      ///      \        /
454      ///       \      /
455      ///       [CALL]
456      bool HasCallSeq = N->getOpcode() == X86ISD::CALL;
457      SDValue Chain = N->getOperand(0);
458      SDValue Load  = N->getOperand(1);
459      if (!isCalleeLoad(Load, Chain, HasCallSeq))
460        continue;
461      MoveBelowOrigChain(CurDAG, Load, SDValue(N, 0), Chain);
462      ++NumLoadMoved;
463      continue;
464    }
465
466    // Lower fpround and fpextend nodes that target the FP stack to be store and
467    // load to the stack.  This is a gross hack.  We would like to simply mark
468    // these as being illegal, but when we do that, legalize produces these when
469    // it expands calls, then expands these in the same legalize pass.  We would
470    // like dag combine to be able to hack on these between the call expansion
471    // and the node legalization.  As such this pass basically does "really
472    // late" legalization of these inline with the X86 isel pass.
473    // FIXME: This should only happen when not compiled with -O0.
474    if (N->getOpcode() != ISD::FP_ROUND && N->getOpcode() != ISD::FP_EXTEND)
475      continue;
476
477    EVT SrcVT = N->getOperand(0).getValueType();
478    EVT DstVT = N->getValueType(0);
479
480    // If any of the sources are vectors, no fp stack involved.
481    if (SrcVT.isVector() || DstVT.isVector())
482      continue;
483
484    // If the source and destination are SSE registers, then this is a legal
485    // conversion that should not be lowered.
486    bool SrcIsSSE = X86Lowering.isScalarFPTypeInSSEReg(SrcVT);
487    bool DstIsSSE = X86Lowering.isScalarFPTypeInSSEReg(DstVT);
488    if (SrcIsSSE && DstIsSSE)
489      continue;
490
491    if (!SrcIsSSE && !DstIsSSE) {
492      // If this is an FPStack extension, it is a noop.
493      if (N->getOpcode() == ISD::FP_EXTEND)
494        continue;
495      // If this is a value-preserving FPStack truncation, it is a noop.
496      if (N->getConstantOperandVal(1))
497        continue;
498    }
499
500    // Here we could have an FP stack truncation or an FPStack <-> SSE convert.
501    // FPStack has extload and truncstore.  SSE can fold direct loads into other
502    // operations.  Based on this, decide what we want to do.
503    EVT MemVT;
504    if (N->getOpcode() == ISD::FP_ROUND)
505      MemVT = DstVT;  // FP_ROUND must use DstVT, we can't do a 'trunc load'.
506    else
507      MemVT = SrcIsSSE ? SrcVT : DstVT;
508
509    SDValue MemTmp = CurDAG->CreateStackTemporary(MemVT);
510    DebugLoc dl = N->getDebugLoc();
511
512    // FIXME: optimize the case where the src/dest is a load or store?
513    SDValue Store = CurDAG->getTruncStore(CurDAG->getEntryNode(), dl,
514                                          N->getOperand(0),
515                                          MemTmp, MachinePointerInfo(), MemVT,
516                                          false, false, 0);
517    SDValue Result = CurDAG->getExtLoad(ISD::EXTLOAD, dl, DstVT, Store, MemTmp,
518                                        MachinePointerInfo(),
519                                        MemVT, false, false, 0);
520
521    // We're about to replace all uses of the FP_ROUND/FP_EXTEND with the
522    // extload we created.  This will cause general havok on the dag because
523    // anything below the conversion could be folded into other existing nodes.
524    // To avoid invalidating 'I', back it up to the convert node.
525    --I;
526    CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Result);
527
528    // Now that we did that, the node is dead.  Increment the iterator to the
529    // next node to process, then delete N.
530    ++I;
531    CurDAG->DeleteNode(N);
532  }
533}
534
535
536/// EmitSpecialCodeForMain - Emit any code that needs to be executed only in
537/// the main function.
538void X86DAGToDAGISel::EmitSpecialCodeForMain(MachineBasicBlock *BB,
539                                             MachineFrameInfo *MFI) {
540  const TargetInstrInfo *TII = TM.getInstrInfo();
541  if (Subtarget->isTargetCygMing()) {
542    unsigned CallOp =
543      Subtarget->is64Bit() ? X86::WINCALL64pcrel32 : X86::CALLpcrel32;
544    BuildMI(BB, DebugLoc(),
545            TII->get(CallOp)).addExternalSymbol("__main");
546  }
547}
548
549void X86DAGToDAGISel::EmitFunctionEntryCode() {
550  // If this is main, emit special code for main.
551  if (const Function *Fn = MF->getFunction())
552    if (Fn->hasExternalLinkage() && Fn->getName() == "main")
553      EmitSpecialCodeForMain(MF->begin(), MF->getFrameInfo());
554}
555
556static bool isDispSafeForFrameIndex(int64_t Val) {
557  // On 64-bit platforms, we can run into an issue where a frame index
558  // includes a displacement that, when added to the explicit displacement,
559  // will overflow the displacement field. Assuming that the frame index
560  // displacement fits into a 31-bit integer  (which is only slightly more
561  // aggressive than the current fundamental assumption that it fits into
562  // a 32-bit integer), a 31-bit disp should always be safe.
563  return isInt<31>(Val);
564}
565
566bool X86DAGToDAGISel::FoldOffsetIntoAddress(uint64_t Offset,
567                                            X86ISelAddressMode &AM) {
568  int64_t Val = AM.Disp + Offset;
569  CodeModel::Model M = TM.getCodeModel();
570  if (Subtarget->is64Bit()) {
571    if (!X86::isOffsetSuitableForCodeModel(Val, M,
572                                           AM.hasSymbolicDisplacement()))
573      return true;
574    // In addition to the checks required for a register base, check that
575    // we do not try to use an unsafe Disp with a frame index.
576    if (AM.BaseType == X86ISelAddressMode::FrameIndexBase &&
577        !isDispSafeForFrameIndex(Val))
578      return true;
579  }
580  AM.Disp = Val;
581  return false;
582
583}
584
585bool X86DAGToDAGISel::MatchLoadInAddress(LoadSDNode *N, X86ISelAddressMode &AM){
586  SDValue Address = N->getOperand(1);
587
588  // load gs:0 -> GS segment register.
589  // load fs:0 -> FS segment register.
590  //
591  // This optimization is valid because the GNU TLS model defines that
592  // gs:0 (or fs:0 on X86-64) contains its own address.
593  // For more information see http://people.redhat.com/drepper/tls.pdf
594  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Address))
595    if (C->getSExtValue() == 0 && AM.Segment.getNode() == 0 &&
596        Subtarget->isTargetELF())
597      switch (N->getPointerInfo().getAddrSpace()) {
598      case 256:
599        AM.Segment = CurDAG->getRegister(X86::GS, MVT::i16);
600        return false;
601      case 257:
602        AM.Segment = CurDAG->getRegister(X86::FS, MVT::i16);
603        return false;
604      }
605
606  return true;
607}
608
609/// MatchWrapper - Try to match X86ISD::Wrapper and X86ISD::WrapperRIP nodes
610/// into an addressing mode.  These wrap things that will resolve down into a
611/// symbol reference.  If no match is possible, this returns true, otherwise it
612/// returns false.
613bool X86DAGToDAGISel::MatchWrapper(SDValue N, X86ISelAddressMode &AM) {
614  // If the addressing mode already has a symbol as the displacement, we can
615  // never match another symbol.
616  if (AM.hasSymbolicDisplacement())
617    return true;
618
619  SDValue N0 = N.getOperand(0);
620  CodeModel::Model M = TM.getCodeModel();
621
622  // Handle X86-64 rip-relative addresses.  We check this before checking direct
623  // folding because RIP is preferable to non-RIP accesses.
624  if (Subtarget->is64Bit() &&
625      // Under X86-64 non-small code model, GV (and friends) are 64-bits, so
626      // they cannot be folded into immediate fields.
627      // FIXME: This can be improved for kernel and other models?
628      (M == CodeModel::Small || M == CodeModel::Kernel) &&
629      // Base and index reg must be 0 in order to use %rip as base and lowering
630      // must allow RIP.
631      !AM.hasBaseOrIndexReg() && N.getOpcode() == X86ISD::WrapperRIP) {
632    if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(N0)) {
633      X86ISelAddressMode Backup = AM;
634      AM.GV = G->getGlobal();
635      AM.SymbolFlags = G->getTargetFlags();
636      if (FoldOffsetIntoAddress(G->getOffset(), AM)) {
637        AM = Backup;
638        return true;
639      }
640    } else if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(N0)) {
641      X86ISelAddressMode Backup = AM;
642      AM.CP = CP->getConstVal();
643      AM.Align = CP->getAlignment();
644      AM.SymbolFlags = CP->getTargetFlags();
645      if (FoldOffsetIntoAddress(CP->getOffset(), AM)) {
646        AM = Backup;
647        return true;
648      }
649    } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(N0)) {
650      AM.ES = S->getSymbol();
651      AM.SymbolFlags = S->getTargetFlags();
652    } else if (JumpTableSDNode *J = dyn_cast<JumpTableSDNode>(N0)) {
653      AM.JT = J->getIndex();
654      AM.SymbolFlags = J->getTargetFlags();
655    } else {
656      AM.BlockAddr = cast<BlockAddressSDNode>(N0)->getBlockAddress();
657      AM.SymbolFlags = cast<BlockAddressSDNode>(N0)->getTargetFlags();
658    }
659
660    if (N.getOpcode() == X86ISD::WrapperRIP)
661      AM.setBaseReg(CurDAG->getRegister(X86::RIP, MVT::i64));
662    return false;
663  }
664
665  // Handle the case when globals fit in our immediate field: This is true for
666  // X86-32 always and X86-64 when in -static -mcmodel=small mode.  In 64-bit
667  // mode, this results in a non-RIP-relative computation.
668  if (!Subtarget->is64Bit() ||
669      ((M == CodeModel::Small || M == CodeModel::Kernel) &&
670       TM.getRelocationModel() == Reloc::Static)) {
671    if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(N0)) {
672      AM.GV = G->getGlobal();
673      AM.Disp += G->getOffset();
674      AM.SymbolFlags = G->getTargetFlags();
675    } else if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(N0)) {
676      AM.CP = CP->getConstVal();
677      AM.Align = CP->getAlignment();
678      AM.Disp += CP->getOffset();
679      AM.SymbolFlags = CP->getTargetFlags();
680    } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(N0)) {
681      AM.ES = S->getSymbol();
682      AM.SymbolFlags = S->getTargetFlags();
683    } else if (JumpTableSDNode *J = dyn_cast<JumpTableSDNode>(N0)) {
684      AM.JT = J->getIndex();
685      AM.SymbolFlags = J->getTargetFlags();
686    } else {
687      AM.BlockAddr = cast<BlockAddressSDNode>(N0)->getBlockAddress();
688      AM.SymbolFlags = cast<BlockAddressSDNode>(N0)->getTargetFlags();
689    }
690    return false;
691  }
692
693  return true;
694}
695
696/// MatchAddress - Add the specified node to the specified addressing mode,
697/// returning true if it cannot be done.  This just pattern matches for the
698/// addressing mode.
699bool X86DAGToDAGISel::MatchAddress(SDValue N, X86ISelAddressMode &AM) {
700  if (MatchAddressRecursively(N, AM, 0))
701    return true;
702
703  // Post-processing: Convert lea(,%reg,2) to lea(%reg,%reg), which has
704  // a smaller encoding and avoids a scaled-index.
705  if (AM.Scale == 2 &&
706      AM.BaseType == X86ISelAddressMode::RegBase &&
707      AM.Base_Reg.getNode() == 0) {
708    AM.Base_Reg = AM.IndexReg;
709    AM.Scale = 1;
710  }
711
712  // Post-processing: Convert foo to foo(%rip), even in non-PIC mode,
713  // because it has a smaller encoding.
714  // TODO: Which other code models can use this?
715  if (TM.getCodeModel() == CodeModel::Small &&
716      Subtarget->is64Bit() &&
717      AM.Scale == 1 &&
718      AM.BaseType == X86ISelAddressMode::RegBase &&
719      AM.Base_Reg.getNode() == 0 &&
720      AM.IndexReg.getNode() == 0 &&
721      AM.SymbolFlags == X86II::MO_NO_FLAG &&
722      AM.hasSymbolicDisplacement())
723    AM.Base_Reg = CurDAG->getRegister(X86::RIP, MVT::i64);
724
725  return false;
726}
727
728// Transform "(X >> (8-C1)) & C2" to "(X >> 8) & 0xff)" if safe. This
729// allows us to convert the shift and and into an h-register extract and
730// a scaled index. Returns false if the simplification is performed.
731static bool FoldMaskAndShiftToExtract(SelectionDAG &DAG, SDValue N,
732                                      uint64_t Mask,
733                                      SDValue Shift, SDValue X,
734                                      X86ISelAddressMode &AM) {
735  if (Shift.getOpcode() != ISD::SRL ||
736      !isa<ConstantSDNode>(Shift.getOperand(1)) ||
737      !Shift.hasOneUse())
738    return true;
739
740  int ScaleLog = 8 - Shift.getConstantOperandVal(1);
741  if (ScaleLog <= 0 || ScaleLog >= 4 ||
742      Mask != (0xffu << ScaleLog))
743    return true;
744
745  EVT VT = N.getValueType();
746  DebugLoc DL = N.getDebugLoc();
747  SDValue Eight = DAG.getConstant(8, MVT::i8);
748  SDValue NewMask = DAG.getConstant(0xff, VT);
749  SDValue Srl = DAG.getNode(ISD::SRL, DL, VT, X, Eight);
750  SDValue And = DAG.getNode(ISD::AND, DL, VT, Srl, NewMask);
751  SDValue ShlCount = DAG.getConstant(ScaleLog, MVT::i8);
752  SDValue Shl = DAG.getNode(ISD::SHL, DL, VT, And, ShlCount);
753
754  // Insert the new nodes into the topological ordering.
755  if (Eight.getNode()->getNodeId() == -1 ||
756      Eight.getNode()->getNodeId() > X.getNode()->getNodeId()) {
757    DAG.RepositionNode(X.getNode(), Eight.getNode());
758    Eight.getNode()->setNodeId(X.getNode()->getNodeId());
759  }
760  if (NewMask.getNode()->getNodeId() == -1 ||
761      NewMask.getNode()->getNodeId() > X.getNode()->getNodeId()) {
762    DAG.RepositionNode(X.getNode(), NewMask.getNode());
763    NewMask.getNode()->setNodeId(X.getNode()->getNodeId());
764  }
765  if (Srl.getNode()->getNodeId() == -1 ||
766      Srl.getNode()->getNodeId() > Shift.getNode()->getNodeId()) {
767    DAG.RepositionNode(Shift.getNode(), Srl.getNode());
768    Srl.getNode()->setNodeId(Shift.getNode()->getNodeId());
769  }
770  if (And.getNode()->getNodeId() == -1 ||
771      And.getNode()->getNodeId() > N.getNode()->getNodeId()) {
772    DAG.RepositionNode(N.getNode(), And.getNode());
773    And.getNode()->setNodeId(N.getNode()->getNodeId());
774  }
775  if (ShlCount.getNode()->getNodeId() == -1 ||
776      ShlCount.getNode()->getNodeId() > X.getNode()->getNodeId()) {
777    DAG.RepositionNode(X.getNode(), ShlCount.getNode());
778    ShlCount.getNode()->setNodeId(N.getNode()->getNodeId());
779  }
780  if (Shl.getNode()->getNodeId() == -1 ||
781      Shl.getNode()->getNodeId() > N.getNode()->getNodeId()) {
782    DAG.RepositionNode(N.getNode(), Shl.getNode());
783    Shl.getNode()->setNodeId(N.getNode()->getNodeId());
784  }
785  DAG.ReplaceAllUsesWith(N, Shl);
786  AM.IndexReg = And;
787  AM.Scale = (1 << ScaleLog);
788  return false;
789}
790
791// Transforms "(X << C1) & C2" to "(X & (C2>>C1)) << C1" if safe and if this
792// allows us to fold the shift into this addressing mode. Returns false if the
793// transform succeeded.
794static bool FoldMaskedShiftToScaledMask(SelectionDAG &DAG, SDValue N,
795                                        uint64_t Mask,
796                                        SDValue Shift, SDValue X,
797                                        X86ISelAddressMode &AM) {
798  if (Shift.getOpcode() != ISD::SHL ||
799      !isa<ConstantSDNode>(Shift.getOperand(1)))
800    return true;
801
802  // Not likely to be profitable if either the AND or SHIFT node has more
803  // than one use (unless all uses are for address computation). Besides,
804  // isel mechanism requires their node ids to be reused.
805  if (!N.hasOneUse() || !Shift.hasOneUse())
806    return true;
807
808  // Verify that the shift amount is something we can fold.
809  unsigned ShiftAmt = Shift.getConstantOperandVal(1);
810  if (ShiftAmt != 1 && ShiftAmt != 2 && ShiftAmt != 3)
811    return true;
812
813  EVT VT = N.getValueType();
814  DebugLoc DL = N.getDebugLoc();
815  SDValue NewMask = DAG.getConstant(Mask >> ShiftAmt, VT);
816  SDValue NewAnd = DAG.getNode(ISD::AND, DL, VT, X, NewMask);
817  SDValue NewShift = DAG.getNode(ISD::SHL, DL, VT, NewAnd, Shift.getOperand(1));
818
819  // Insert the new nodes into the topological ordering.
820  if (NewMask.getNode()->getNodeId() == -1 ||
821      NewMask.getNode()->getNodeId() > X.getNode()->getNodeId()) {
822    DAG.RepositionNode(X.getNode(), NewMask.getNode());
823    NewMask.getNode()->setNodeId(X.getNode()->getNodeId());
824  }
825  if (NewAnd.getNode()->getNodeId() == -1 ||
826      NewAnd.getNode()->getNodeId() > Shift.getNode()->getNodeId()) {
827    DAG.RepositionNode(Shift.getNode(), NewAnd.getNode());
828    NewAnd.getNode()->setNodeId(Shift.getNode()->getNodeId());
829  }
830  if (NewShift.getNode()->getNodeId() == -1 ||
831      NewShift.getNode()->getNodeId() > N.getNode()->getNodeId()) {
832    DAG.RepositionNode(N.getNode(), NewShift.getNode());
833    NewShift.getNode()->setNodeId(N.getNode()->getNodeId());
834  }
835  DAG.ReplaceAllUsesWith(N, NewShift);
836
837  AM.Scale = 1 << ShiftAmt;
838  AM.IndexReg = NewAnd;
839  return false;
840}
841
842// Implement some heroics to detect shifts of masked values where the mask can
843// be replaced by extending the shift and undoing that in the addressing mode
844// scale. Patterns such as (shl (srl x, c1), c2) are canonicalized into (and
845// (srl x, SHIFT), MASK) by DAGCombines that don't know the shl can be done in
846// the addressing mode. This results in code such as:
847//
848//   int f(short *y, int *lookup_table) {
849//     ...
850//     return *y + lookup_table[*y >> 11];
851//   }
852//
853// Turning into:
854//   movzwl (%rdi), %eax
855//   movl %eax, %ecx
856//   shrl $11, %ecx
857//   addl (%rsi,%rcx,4), %eax
858//
859// Instead of:
860//   movzwl (%rdi), %eax
861//   movl %eax, %ecx
862//   shrl $9, %ecx
863//   andl $124, %rcx
864//   addl (%rsi,%rcx), %eax
865//
866// Note that this function assumes the mask is provided as a mask *after* the
867// value is shifted. The input chain may or may not match that, but computing
868// such a mask is trivial.
869static bool FoldMaskAndShiftToScale(SelectionDAG &DAG, SDValue N,
870                                    uint64_t Mask,
871                                    SDValue Shift, SDValue X,
872                                    X86ISelAddressMode &AM) {
873  if (Shift.getOpcode() != ISD::SRL || !Shift.hasOneUse() ||
874      !isa<ConstantSDNode>(Shift.getOperand(1)))
875    return true;
876
877  unsigned ShiftAmt = Shift.getConstantOperandVal(1);
878  unsigned MaskLZ = CountLeadingZeros_64(Mask);
879  unsigned MaskTZ = CountTrailingZeros_64(Mask);
880
881  // The amount of shift we're trying to fit into the addressing mode is taken
882  // from the trailing zeros of the mask.
883  unsigned AMShiftAmt = MaskTZ;
884
885  // There is nothing we can do here unless the mask is removing some bits.
886  // Also, the addressing mode can only represent shifts of 1, 2, or 3 bits.
887  if (AMShiftAmt <= 0 || AMShiftAmt > 3) return true;
888
889  // We also need to ensure that mask is a continuous run of bits.
890  if (CountTrailingOnes_64(Mask >> MaskTZ) + MaskTZ + MaskLZ != 64) return true;
891
892  // Scale the leading zero count down based on the actual size of the value.
893  // Also scale it down based on the size of the shift.
894  MaskLZ -= (64 - X.getValueSizeInBits()) + ShiftAmt;
895
896  // The final check is to ensure that any masked out high bits of X are
897  // already known to be zero. Otherwise, the mask has a semantic impact
898  // other than masking out a couple of low bits. Unfortunately, because of
899  // the mask, zero extensions will be removed from operands in some cases.
900  // This code works extra hard to look through extensions because we can
901  // replace them with zero extensions cheaply if necessary.
902  bool ReplacingAnyExtend = false;
903  if (X.getOpcode() == ISD::ANY_EXTEND) {
904    unsigned ExtendBits =
905      X.getValueSizeInBits() - X.getOperand(0).getValueSizeInBits();
906    // Assume that we'll replace the any-extend with a zero-extend, and
907    // narrow the search to the extended value.
908    X = X.getOperand(0);
909    MaskLZ = ExtendBits > MaskLZ ? 0 : MaskLZ - ExtendBits;
910    ReplacingAnyExtend = true;
911  }
912  APInt MaskedHighBits = APInt::getHighBitsSet(X.getValueSizeInBits(),
913                                               MaskLZ);
914  APInt KnownZero, KnownOne;
915  DAG.ComputeMaskedBits(X, MaskedHighBits, KnownZero, KnownOne);
916  if (MaskedHighBits != KnownZero) return true;
917
918  // We've identified a pattern that can be transformed into a single shift
919  // and an addressing mode. Make it so.
920  EVT VT = N.getValueType();
921  if (ReplacingAnyExtend) {
922    assert(X.getValueType() != VT);
923    // We looked through an ANY_EXTEND node, insert a ZERO_EXTEND.
924    SDValue NewX = DAG.getNode(ISD::ZERO_EXTEND, X.getDebugLoc(), VT, X);
925    if (NewX.getNode()->getNodeId() == -1 ||
926        NewX.getNode()->getNodeId() > N.getNode()->getNodeId()) {
927      DAG.RepositionNode(N.getNode(), NewX.getNode());
928      NewX.getNode()->setNodeId(N.getNode()->getNodeId());
929    }
930    X = NewX;
931  }
932  DebugLoc DL = N.getDebugLoc();
933  SDValue NewSRLAmt = DAG.getConstant(ShiftAmt + AMShiftAmt, MVT::i8);
934  SDValue NewSRL = DAG.getNode(ISD::SRL, DL, VT, X, NewSRLAmt);
935  SDValue NewSHLAmt = DAG.getConstant(AMShiftAmt, MVT::i8);
936  SDValue NewSHL = DAG.getNode(ISD::SHL, DL, VT, NewSRL, NewSHLAmt);
937  if (NewSRLAmt.getNode()->getNodeId() == -1 ||
938      NewSRLAmt.getNode()->getNodeId() > N.getNode()->getNodeId()) {
939    DAG.RepositionNode(N.getNode(), NewSRLAmt.getNode());
940    NewSRLAmt.getNode()->setNodeId(N.getNode()->getNodeId());
941  }
942  if (NewSRL.getNode()->getNodeId() == -1 ||
943      NewSRL.getNode()->getNodeId() > N.getNode()->getNodeId()) {
944    DAG.RepositionNode(N.getNode(), NewSRL.getNode());
945    NewSRL.getNode()->setNodeId(N.getNode()->getNodeId());
946  }
947  if (NewSHLAmt.getNode()->getNodeId() == -1 ||
948      NewSHLAmt.getNode()->getNodeId() > N.getNode()->getNodeId()) {
949    DAG.RepositionNode(N.getNode(), NewSHLAmt.getNode());
950    NewSHLAmt.getNode()->setNodeId(N.getNode()->getNodeId());
951  }
952  if (NewSHL.getNode()->getNodeId() == -1 ||
953      NewSHL.getNode()->getNodeId() > N.getNode()->getNodeId()) {
954    DAG.RepositionNode(N.getNode(), NewSHL.getNode());
955    NewSHL.getNode()->setNodeId(N.getNode()->getNodeId());
956  }
957  DAG.ReplaceAllUsesWith(N, NewSHL);
958
959  AM.Scale = 1 << AMShiftAmt;
960  AM.IndexReg = NewSRL;
961  return false;
962}
963
964bool X86DAGToDAGISel::MatchAddressRecursively(SDValue N, X86ISelAddressMode &AM,
965                                              unsigned Depth) {
966  DebugLoc dl = N.getDebugLoc();
967  DEBUG({
968      dbgs() << "MatchAddress: ";
969      AM.dump();
970    });
971  // Limit recursion.
972  if (Depth > 5)
973    return MatchAddressBase(N, AM);
974
975  // If this is already a %rip relative address, we can only merge immediates
976  // into it.  Instead of handling this in every case, we handle it here.
977  // RIP relative addressing: %rip + 32-bit displacement!
978  if (AM.isRIPRelative()) {
979    // FIXME: JumpTable and ExternalSymbol address currently don't like
980    // displacements.  It isn't very important, but this should be fixed for
981    // consistency.
982    if (!AM.ES && AM.JT != -1) return true;
983
984    if (ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(N))
985      if (!FoldOffsetIntoAddress(Cst->getSExtValue(), AM))
986        return false;
987    return true;
988  }
989
990  switch (N.getOpcode()) {
991  default: break;
992  case ISD::Constant: {
993    uint64_t Val = cast<ConstantSDNode>(N)->getSExtValue();
994    if (!FoldOffsetIntoAddress(Val, AM))
995      return false;
996    break;
997  }
998
999  case X86ISD::Wrapper:
1000  case X86ISD::WrapperRIP:
1001    if (!MatchWrapper(N, AM))
1002      return false;
1003    break;
1004
1005  case ISD::LOAD:
1006    if (!MatchLoadInAddress(cast<LoadSDNode>(N), AM))
1007      return false;
1008    break;
1009
1010  case ISD::FrameIndex:
1011    if (AM.BaseType == X86ISelAddressMode::RegBase &&
1012        AM.Base_Reg.getNode() == 0 &&
1013        (!Subtarget->is64Bit() || isDispSafeForFrameIndex(AM.Disp))) {
1014      AM.BaseType = X86ISelAddressMode::FrameIndexBase;
1015      AM.Base_FrameIndex = cast<FrameIndexSDNode>(N)->getIndex();
1016      return false;
1017    }
1018    break;
1019
1020  case ISD::SHL:
1021    if (AM.IndexReg.getNode() != 0 || AM.Scale != 1)
1022      break;
1023
1024    if (ConstantSDNode
1025          *CN = dyn_cast<ConstantSDNode>(N.getNode()->getOperand(1))) {
1026      unsigned Val = CN->getZExtValue();
1027      // Note that we handle x<<1 as (,x,2) rather than (x,x) here so
1028      // that the base operand remains free for further matching. If
1029      // the base doesn't end up getting used, a post-processing step
1030      // in MatchAddress turns (,x,2) into (x,x), which is cheaper.
1031      if (Val == 1 || Val == 2 || Val == 3) {
1032        AM.Scale = 1 << Val;
1033        SDValue ShVal = N.getNode()->getOperand(0);
1034
1035        // Okay, we know that we have a scale by now.  However, if the scaled
1036        // value is an add of something and a constant, we can fold the
1037        // constant into the disp field here.
1038        if (CurDAG->isBaseWithConstantOffset(ShVal)) {
1039          AM.IndexReg = ShVal.getNode()->getOperand(0);
1040          ConstantSDNode *AddVal =
1041            cast<ConstantSDNode>(ShVal.getNode()->getOperand(1));
1042          uint64_t Disp = AddVal->getSExtValue() << Val;
1043          if (!FoldOffsetIntoAddress(Disp, AM))
1044            return false;
1045        }
1046
1047        AM.IndexReg = ShVal;
1048        return false;
1049      }
1050    break;
1051    }
1052
1053  case ISD::SRL: {
1054    // Scale must not be used already.
1055    if (AM.IndexReg.getNode() != 0 || AM.Scale != 1) break;
1056
1057    SDValue And = N.getOperand(0);
1058    if (And.getOpcode() != ISD::AND) break;
1059    SDValue X = And.getOperand(0);
1060
1061    // We only handle up to 64-bit values here as those are what matter for
1062    // addressing mode optimizations.
1063    if (X.getValueSizeInBits() > 64) break;
1064
1065    // The mask used for the transform is expected to be post-shift, but we
1066    // found the shift first so just apply the shift to the mask before passing
1067    // it down.
1068    if (!isa<ConstantSDNode>(N.getOperand(1)) ||
1069        !isa<ConstantSDNode>(And.getOperand(1)))
1070      break;
1071    uint64_t Mask = And.getConstantOperandVal(1) >> N.getConstantOperandVal(1);
1072
1073    // Try to fold the mask and shift into the scale, and return false if we
1074    // succeed.
1075    if (!FoldMaskAndShiftToScale(*CurDAG, N, Mask, N, X, AM))
1076      return false;
1077    break;
1078  }
1079
1080  case ISD::SMUL_LOHI:
1081  case ISD::UMUL_LOHI:
1082    // A mul_lohi where we need the low part can be folded as a plain multiply.
1083    if (N.getResNo() != 0) break;
1084    // FALL THROUGH
1085  case ISD::MUL:
1086  case X86ISD::MUL_IMM:
1087    // X*[3,5,9] -> X+X*[2,4,8]
1088    if (AM.BaseType == X86ISelAddressMode::RegBase &&
1089        AM.Base_Reg.getNode() == 0 &&
1090        AM.IndexReg.getNode() == 0) {
1091      if (ConstantSDNode
1092            *CN = dyn_cast<ConstantSDNode>(N.getNode()->getOperand(1)))
1093        if (CN->getZExtValue() == 3 || CN->getZExtValue() == 5 ||
1094            CN->getZExtValue() == 9) {
1095          AM.Scale = unsigned(CN->getZExtValue())-1;
1096
1097          SDValue MulVal = N.getNode()->getOperand(0);
1098          SDValue Reg;
1099
1100          // Okay, we know that we have a scale by now.  However, if the scaled
1101          // value is an add of something and a constant, we can fold the
1102          // constant into the disp field here.
1103          if (MulVal.getNode()->getOpcode() == ISD::ADD && MulVal.hasOneUse() &&
1104              isa<ConstantSDNode>(MulVal.getNode()->getOperand(1))) {
1105            Reg = MulVal.getNode()->getOperand(0);
1106            ConstantSDNode *AddVal =
1107              cast<ConstantSDNode>(MulVal.getNode()->getOperand(1));
1108            uint64_t Disp = AddVal->getSExtValue() * CN->getZExtValue();
1109            if (FoldOffsetIntoAddress(Disp, AM))
1110              Reg = N.getNode()->getOperand(0);
1111          } else {
1112            Reg = N.getNode()->getOperand(0);
1113          }
1114
1115          AM.IndexReg = AM.Base_Reg = Reg;
1116          return false;
1117        }
1118    }
1119    break;
1120
1121  case ISD::SUB: {
1122    // Given A-B, if A can be completely folded into the address and
1123    // the index field with the index field unused, use -B as the index.
1124    // This is a win if a has multiple parts that can be folded into
1125    // the address. Also, this saves a mov if the base register has
1126    // other uses, since it avoids a two-address sub instruction, however
1127    // it costs an additional mov if the index register has other uses.
1128
1129    // Add an artificial use to this node so that we can keep track of
1130    // it if it gets CSE'd with a different node.
1131    HandleSDNode Handle(N);
1132
1133    // Test if the LHS of the sub can be folded.
1134    X86ISelAddressMode Backup = AM;
1135    if (MatchAddressRecursively(N.getNode()->getOperand(0), AM, Depth+1)) {
1136      AM = Backup;
1137      break;
1138    }
1139    // Test if the index field is free for use.
1140    if (AM.IndexReg.getNode() || AM.isRIPRelative()) {
1141      AM = Backup;
1142      break;
1143    }
1144
1145    int Cost = 0;
1146    SDValue RHS = Handle.getValue().getNode()->getOperand(1);
1147    // If the RHS involves a register with multiple uses, this
1148    // transformation incurs an extra mov, due to the neg instruction
1149    // clobbering its operand.
1150    if (!RHS.getNode()->hasOneUse() ||
1151        RHS.getNode()->getOpcode() == ISD::CopyFromReg ||
1152        RHS.getNode()->getOpcode() == ISD::TRUNCATE ||
1153        RHS.getNode()->getOpcode() == ISD::ANY_EXTEND ||
1154        (RHS.getNode()->getOpcode() == ISD::ZERO_EXTEND &&
1155         RHS.getNode()->getOperand(0).getValueType() == MVT::i32))
1156      ++Cost;
1157    // If the base is a register with multiple uses, this
1158    // transformation may save a mov.
1159    if ((AM.BaseType == X86ISelAddressMode::RegBase &&
1160         AM.Base_Reg.getNode() &&
1161         !AM.Base_Reg.getNode()->hasOneUse()) ||
1162        AM.BaseType == X86ISelAddressMode::FrameIndexBase)
1163      --Cost;
1164    // If the folded LHS was interesting, this transformation saves
1165    // address arithmetic.
1166    if ((AM.hasSymbolicDisplacement() && !Backup.hasSymbolicDisplacement()) +
1167        ((AM.Disp != 0) && (Backup.Disp == 0)) +
1168        (AM.Segment.getNode() && !Backup.Segment.getNode()) >= 2)
1169      --Cost;
1170    // If it doesn't look like it may be an overall win, don't do it.
1171    if (Cost >= 0) {
1172      AM = Backup;
1173      break;
1174    }
1175
1176    // Ok, the transformation is legal and appears profitable. Go for it.
1177    SDValue Zero = CurDAG->getConstant(0, N.getValueType());
1178    SDValue Neg = CurDAG->getNode(ISD::SUB, dl, N.getValueType(), Zero, RHS);
1179    AM.IndexReg = Neg;
1180    AM.Scale = 1;
1181
1182    // Insert the new nodes into the topological ordering.
1183    if (Zero.getNode()->getNodeId() == -1 ||
1184        Zero.getNode()->getNodeId() > N.getNode()->getNodeId()) {
1185      CurDAG->RepositionNode(N.getNode(), Zero.getNode());
1186      Zero.getNode()->setNodeId(N.getNode()->getNodeId());
1187    }
1188    if (Neg.getNode()->getNodeId() == -1 ||
1189        Neg.getNode()->getNodeId() > N.getNode()->getNodeId()) {
1190      CurDAG->RepositionNode(N.getNode(), Neg.getNode());
1191      Neg.getNode()->setNodeId(N.getNode()->getNodeId());
1192    }
1193    return false;
1194  }
1195
1196  case ISD::ADD: {
1197    // Add an artificial use to this node so that we can keep track of
1198    // it if it gets CSE'd with a different node.
1199    HandleSDNode Handle(N);
1200
1201    X86ISelAddressMode Backup = AM;
1202    if (!MatchAddressRecursively(N.getOperand(0), AM, Depth+1) &&
1203        !MatchAddressRecursively(Handle.getValue().getOperand(1), AM, Depth+1))
1204      return false;
1205    AM = Backup;
1206
1207    // Try again after commuting the operands.
1208    if (!MatchAddressRecursively(Handle.getValue().getOperand(1), AM, Depth+1)&&
1209        !MatchAddressRecursively(Handle.getValue().getOperand(0), AM, Depth+1))
1210      return false;
1211    AM = Backup;
1212
1213    // If we couldn't fold both operands into the address at the same time,
1214    // see if we can just put each operand into a register and fold at least
1215    // the add.
1216    if (AM.BaseType == X86ISelAddressMode::RegBase &&
1217        !AM.Base_Reg.getNode() &&
1218        !AM.IndexReg.getNode()) {
1219      N = Handle.getValue();
1220      AM.Base_Reg = N.getOperand(0);
1221      AM.IndexReg = N.getOperand(1);
1222      AM.Scale = 1;
1223      return false;
1224    }
1225    N = Handle.getValue();
1226    break;
1227  }
1228
1229  case ISD::OR:
1230    // Handle "X | C" as "X + C" iff X is known to have C bits clear.
1231    if (CurDAG->isBaseWithConstantOffset(N)) {
1232      X86ISelAddressMode Backup = AM;
1233      ConstantSDNode *CN = cast<ConstantSDNode>(N.getOperand(1));
1234
1235      // Start with the LHS as an addr mode.
1236      if (!MatchAddressRecursively(N.getOperand(0), AM, Depth+1) &&
1237          !FoldOffsetIntoAddress(CN->getSExtValue(), AM))
1238        return false;
1239      AM = Backup;
1240    }
1241    break;
1242
1243  case ISD::AND: {
1244    // Perform some heroic transforms on an and of a constant-count shift
1245    // with a constant to enable use of the scaled offset field.
1246
1247    // Scale must not be used already.
1248    if (AM.IndexReg.getNode() != 0 || AM.Scale != 1) break;
1249
1250    SDValue Shift = N.getOperand(0);
1251    if (Shift.getOpcode() != ISD::SRL && Shift.getOpcode() != ISD::SHL) break;
1252    SDValue X = Shift.getOperand(0);
1253
1254    // We only handle up to 64-bit values here as those are what matter for
1255    // addressing mode optimizations.
1256    if (X.getValueSizeInBits() > 64) break;
1257
1258    ConstantSDNode *C2 = dyn_cast<ConstantSDNode>(N.getOperand(1));
1259    ConstantSDNode *C1 = dyn_cast<ConstantSDNode>(Shift.getOperand(1));
1260    if (!C1 || !C2) break;
1261
1262    // Try to fold the mask and shift into an extract and scale.
1263    if (!FoldMaskAndShiftToExtract(*CurDAG, N, C2->getZExtValue(),
1264                                   Shift, X, AM))
1265      return false;
1266
1267    // Try to fold the mask and shift directly into the scale.
1268    if (!FoldMaskAndShiftToScale(*CurDAG, N, C2->getZExtValue(), Shift, X, AM))
1269      return false;
1270
1271    // Try to swap the mask and shift to place shifts which can be done as
1272    // a scale on the outside of the mask.
1273    if (!FoldMaskedShiftToScaledMask(*CurDAG, N, C2->getZExtValue(),
1274                                     Shift, X, AM))
1275      return false;
1276    break;
1277  }
1278  }
1279
1280  return MatchAddressBase(N, AM);
1281}
1282
1283/// MatchAddressBase - Helper for MatchAddress. Add the specified node to the
1284/// specified addressing mode without any further recursion.
1285bool X86DAGToDAGISel::MatchAddressBase(SDValue N, X86ISelAddressMode &AM) {
1286  // Is the base register already occupied?
1287  if (AM.BaseType != X86ISelAddressMode::RegBase || AM.Base_Reg.getNode()) {
1288    // If so, check to see if the scale index register is set.
1289    if (AM.IndexReg.getNode() == 0) {
1290      AM.IndexReg = N;
1291      AM.Scale = 1;
1292      return false;
1293    }
1294
1295    // Otherwise, we cannot select it.
1296    return true;
1297  }
1298
1299  // Default, generate it as a register.
1300  AM.BaseType = X86ISelAddressMode::RegBase;
1301  AM.Base_Reg = N;
1302  return false;
1303}
1304
1305/// SelectAddr - returns true if it is able pattern match an addressing mode.
1306/// It returns the operands which make up the maximal addressing mode it can
1307/// match by reference.
1308///
1309/// Parent is the parent node of the addr operand that is being matched.  It
1310/// is always a load, store, atomic node, or null.  It is only null when
1311/// checking memory operands for inline asm nodes.
1312bool X86DAGToDAGISel::SelectAddr(SDNode *Parent, SDValue N, SDValue &Base,
1313                                 SDValue &Scale, SDValue &Index,
1314                                 SDValue &Disp, SDValue &Segment) {
1315  X86ISelAddressMode AM;
1316
1317  if (Parent &&
1318      // This list of opcodes are all the nodes that have an "addr:$ptr" operand
1319      // that are not a MemSDNode, and thus don't have proper addrspace info.
1320      Parent->getOpcode() != ISD::INTRINSIC_W_CHAIN && // unaligned loads, fixme
1321      Parent->getOpcode() != ISD::INTRINSIC_VOID && // nontemporal stores
1322      Parent->getOpcode() != X86ISD::TLSCALL) { // Fixme
1323    unsigned AddrSpace =
1324      cast<MemSDNode>(Parent)->getPointerInfo().getAddrSpace();
1325    // AddrSpace 256 -> GS, 257 -> FS.
1326    if (AddrSpace == 256)
1327      AM.Segment = CurDAG->getRegister(X86::GS, MVT::i16);
1328    if (AddrSpace == 257)
1329      AM.Segment = CurDAG->getRegister(X86::FS, MVT::i16);
1330  }
1331
1332  if (MatchAddress(N, AM))
1333    return false;
1334
1335  EVT VT = N.getValueType();
1336  if (AM.BaseType == X86ISelAddressMode::RegBase) {
1337    if (!AM.Base_Reg.getNode())
1338      AM.Base_Reg = CurDAG->getRegister(0, VT);
1339  }
1340
1341  if (!AM.IndexReg.getNode())
1342    AM.IndexReg = CurDAG->getRegister(0, VT);
1343
1344  getAddressOperands(AM, Base, Scale, Index, Disp, Segment);
1345  return true;
1346}
1347
1348/// SelectScalarSSELoad - Match a scalar SSE load.  In particular, we want to
1349/// match a load whose top elements are either undef or zeros.  The load flavor
1350/// is derived from the type of N, which is either v4f32 or v2f64.
1351///
1352/// We also return:
1353///   PatternChainNode: this is the matched node that has a chain input and
1354///   output.
1355bool X86DAGToDAGISel::SelectScalarSSELoad(SDNode *Root,
1356                                          SDValue N, SDValue &Base,
1357                                          SDValue &Scale, SDValue &Index,
1358                                          SDValue &Disp, SDValue &Segment,
1359                                          SDValue &PatternNodeWithChain) {
1360  if (N.getOpcode() == ISD::SCALAR_TO_VECTOR) {
1361    PatternNodeWithChain = N.getOperand(0);
1362    if (ISD::isNON_EXTLoad(PatternNodeWithChain.getNode()) &&
1363        PatternNodeWithChain.hasOneUse() &&
1364        IsProfitableToFold(N.getOperand(0), N.getNode(), Root) &&
1365        IsLegalToFold(N.getOperand(0), N.getNode(), Root, OptLevel)) {
1366      LoadSDNode *LD = cast<LoadSDNode>(PatternNodeWithChain);
1367      if (!SelectAddr(LD, LD->getBasePtr(), Base, Scale, Index, Disp, Segment))
1368        return false;
1369      return true;
1370    }
1371  }
1372
1373  // Also handle the case where we explicitly require zeros in the top
1374  // elements.  This is a vector shuffle from the zero vector.
1375  if (N.getOpcode() == X86ISD::VZEXT_MOVL && N.getNode()->hasOneUse() &&
1376      // Check to see if the top elements are all zeros (or bitcast of zeros).
1377      N.getOperand(0).getOpcode() == ISD::SCALAR_TO_VECTOR &&
1378      N.getOperand(0).getNode()->hasOneUse() &&
1379      ISD::isNON_EXTLoad(N.getOperand(0).getOperand(0).getNode()) &&
1380      N.getOperand(0).getOperand(0).hasOneUse() &&
1381      IsProfitableToFold(N.getOperand(0), N.getNode(), Root) &&
1382      IsLegalToFold(N.getOperand(0), N.getNode(), Root, OptLevel)) {
1383    // Okay, this is a zero extending load.  Fold it.
1384    LoadSDNode *LD = cast<LoadSDNode>(N.getOperand(0).getOperand(0));
1385    if (!SelectAddr(LD, LD->getBasePtr(), Base, Scale, Index, Disp, Segment))
1386      return false;
1387    PatternNodeWithChain = SDValue(LD, 0);
1388    return true;
1389  }
1390  return false;
1391}
1392
1393
1394/// SelectLEAAddr - it calls SelectAddr and determines if the maximal addressing
1395/// mode it matches can be cost effectively emitted as an LEA instruction.
1396bool X86DAGToDAGISel::SelectLEAAddr(SDValue N,
1397                                    SDValue &Base, SDValue &Scale,
1398                                    SDValue &Index, SDValue &Disp,
1399                                    SDValue &Segment) {
1400  X86ISelAddressMode AM;
1401
1402  // Set AM.Segment to prevent MatchAddress from using one. LEA doesn't support
1403  // segments.
1404  SDValue Copy = AM.Segment;
1405  SDValue T = CurDAG->getRegister(0, MVT::i32);
1406  AM.Segment = T;
1407  if (MatchAddress(N, AM))
1408    return false;
1409  assert (T == AM.Segment);
1410  AM.Segment = Copy;
1411
1412  EVT VT = N.getValueType();
1413  unsigned Complexity = 0;
1414  if (AM.BaseType == X86ISelAddressMode::RegBase)
1415    if (AM.Base_Reg.getNode())
1416      Complexity = 1;
1417    else
1418      AM.Base_Reg = CurDAG->getRegister(0, VT);
1419  else if (AM.BaseType == X86ISelAddressMode::FrameIndexBase)
1420    Complexity = 4;
1421
1422  if (AM.IndexReg.getNode())
1423    Complexity++;
1424  else
1425    AM.IndexReg = CurDAG->getRegister(0, VT);
1426
1427  // Don't match just leal(,%reg,2). It's cheaper to do addl %reg, %reg, or with
1428  // a simple shift.
1429  if (AM.Scale > 1)
1430    Complexity++;
1431
1432  // FIXME: We are artificially lowering the criteria to turn ADD %reg, $GA
1433  // to a LEA. This is determined with some expermentation but is by no means
1434  // optimal (especially for code size consideration). LEA is nice because of
1435  // its three-address nature. Tweak the cost function again when we can run
1436  // convertToThreeAddress() at register allocation time.
1437  if (AM.hasSymbolicDisplacement()) {
1438    // For X86-64, we should always use lea to materialize RIP relative
1439    // addresses.
1440    if (Subtarget->is64Bit())
1441      Complexity = 4;
1442    else
1443      Complexity += 2;
1444  }
1445
1446  if (AM.Disp && (AM.Base_Reg.getNode() || AM.IndexReg.getNode()))
1447    Complexity++;
1448
1449  // If it isn't worth using an LEA, reject it.
1450  if (Complexity <= 2)
1451    return false;
1452
1453  getAddressOperands(AM, Base, Scale, Index, Disp, Segment);
1454  return true;
1455}
1456
1457/// SelectTLSADDRAddr - This is only run on TargetGlobalTLSAddress nodes.
1458bool X86DAGToDAGISel::SelectTLSADDRAddr(SDValue N, SDValue &Base,
1459                                        SDValue &Scale, SDValue &Index,
1460                                        SDValue &Disp, SDValue &Segment) {
1461  assert(N.getOpcode() == ISD::TargetGlobalTLSAddress);
1462  const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
1463
1464  X86ISelAddressMode AM;
1465  AM.GV = GA->getGlobal();
1466  AM.Disp += GA->getOffset();
1467  AM.Base_Reg = CurDAG->getRegister(0, N.getValueType());
1468  AM.SymbolFlags = GA->getTargetFlags();
1469
1470  if (N.getValueType() == MVT::i32) {
1471    AM.Scale = 1;
1472    AM.IndexReg = CurDAG->getRegister(X86::EBX, MVT::i32);
1473  } else {
1474    AM.IndexReg = CurDAG->getRegister(0, MVT::i64);
1475  }
1476
1477  getAddressOperands(AM, Base, Scale, Index, Disp, Segment);
1478  return true;
1479}
1480
1481
1482bool X86DAGToDAGISel::TryFoldLoad(SDNode *P, SDValue N,
1483                                  SDValue &Base, SDValue &Scale,
1484                                  SDValue &Index, SDValue &Disp,
1485                                  SDValue &Segment) {
1486  if (!ISD::isNON_EXTLoad(N.getNode()) ||
1487      !IsProfitableToFold(N, P, P) ||
1488      !IsLegalToFold(N, P, P, OptLevel))
1489    return false;
1490
1491  return SelectAddr(N.getNode(),
1492                    N.getOperand(1), Base, Scale, Index, Disp, Segment);
1493}
1494
1495/// getGlobalBaseReg - Return an SDNode that returns the value of
1496/// the global base register. Output instructions required to
1497/// initialize the global base register, if necessary.
1498///
1499SDNode *X86DAGToDAGISel::getGlobalBaseReg() {
1500  unsigned GlobalBaseReg = getInstrInfo()->getGlobalBaseReg(MF);
1501  return CurDAG->getRegister(GlobalBaseReg, TLI.getPointerTy()).getNode();
1502}
1503
1504SDNode *X86DAGToDAGISel::SelectAtomic64(SDNode *Node, unsigned Opc) {
1505  SDValue Chain = Node->getOperand(0);
1506  SDValue In1 = Node->getOperand(1);
1507  SDValue In2L = Node->getOperand(2);
1508  SDValue In2H = Node->getOperand(3);
1509  SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
1510  if (!SelectAddr(Node, In1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4))
1511    return NULL;
1512  MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
1513  MemOp[0] = cast<MemSDNode>(Node)->getMemOperand();
1514  const SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, In2L, In2H, Chain};
1515  SDNode *ResNode = CurDAG->getMachineNode(Opc, Node->getDebugLoc(),
1516                                           MVT::i32, MVT::i32, MVT::Other, Ops,
1517                                           array_lengthof(Ops));
1518  cast<MachineSDNode>(ResNode)->setMemRefs(MemOp, MemOp + 1);
1519  return ResNode;
1520}
1521
1522// FIXME: Figure out some way to unify this with the 'or' and other code
1523// below.
1524SDNode *X86DAGToDAGISel::SelectAtomicLoadAdd(SDNode *Node, EVT NVT) {
1525  if (Node->hasAnyUseOfValue(0))
1526    return 0;
1527
1528  // Optimize common patterns for __sync_add_and_fetch and
1529  // __sync_sub_and_fetch where the result is not used. This allows us
1530  // to use "lock" version of add, sub, inc, dec instructions.
1531  // FIXME: Do not use special instructions but instead add the "lock"
1532  // prefix to the target node somehow. The extra information will then be
1533  // transferred to machine instruction and it denotes the prefix.
1534  SDValue Chain = Node->getOperand(0);
1535  SDValue Ptr = Node->getOperand(1);
1536  SDValue Val = Node->getOperand(2);
1537  SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
1538  if (!SelectAddr(Node, Ptr, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4))
1539    return 0;
1540
1541  bool isInc = false, isDec = false, isSub = false, isCN = false;
1542  ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Val);
1543  if (CN && CN->getSExtValue() == (int32_t)CN->getSExtValue()) {
1544    isCN = true;
1545    int64_t CNVal = CN->getSExtValue();
1546    if (CNVal == 1)
1547      isInc = true;
1548    else if (CNVal == -1)
1549      isDec = true;
1550    else if (CNVal >= 0)
1551      Val = CurDAG->getTargetConstant(CNVal, NVT);
1552    else {
1553      isSub = true;
1554      Val = CurDAG->getTargetConstant(-CNVal, NVT);
1555    }
1556  } else if (Val.hasOneUse() &&
1557             Val.getOpcode() == ISD::SUB &&
1558             X86::isZeroNode(Val.getOperand(0))) {
1559    isSub = true;
1560    Val = Val.getOperand(1);
1561  }
1562
1563  DebugLoc dl = Node->getDebugLoc();
1564  unsigned Opc = 0;
1565  switch (NVT.getSimpleVT().SimpleTy) {
1566  default: return 0;
1567  case MVT::i8:
1568    if (isInc)
1569      Opc = X86::LOCK_INC8m;
1570    else if (isDec)
1571      Opc = X86::LOCK_DEC8m;
1572    else if (isSub) {
1573      if (isCN)
1574        Opc = X86::LOCK_SUB8mi;
1575      else
1576        Opc = X86::LOCK_SUB8mr;
1577    } else {
1578      if (isCN)
1579        Opc = X86::LOCK_ADD8mi;
1580      else
1581        Opc = X86::LOCK_ADD8mr;
1582    }
1583    break;
1584  case MVT::i16:
1585    if (isInc)
1586      Opc = X86::LOCK_INC16m;
1587    else if (isDec)
1588      Opc = X86::LOCK_DEC16m;
1589    else if (isSub) {
1590      if (isCN) {
1591        if (immSext8(Val.getNode()))
1592          Opc = X86::LOCK_SUB16mi8;
1593        else
1594          Opc = X86::LOCK_SUB16mi;
1595      } else
1596        Opc = X86::LOCK_SUB16mr;
1597    } else {
1598      if (isCN) {
1599        if (immSext8(Val.getNode()))
1600          Opc = X86::LOCK_ADD16mi8;
1601        else
1602          Opc = X86::LOCK_ADD16mi;
1603      } else
1604        Opc = X86::LOCK_ADD16mr;
1605    }
1606    break;
1607  case MVT::i32:
1608    if (isInc)
1609      Opc = X86::LOCK_INC32m;
1610    else if (isDec)
1611      Opc = X86::LOCK_DEC32m;
1612    else if (isSub) {
1613      if (isCN) {
1614        if (immSext8(Val.getNode()))
1615          Opc = X86::LOCK_SUB32mi8;
1616        else
1617          Opc = X86::LOCK_SUB32mi;
1618      } else
1619        Opc = X86::LOCK_SUB32mr;
1620    } else {
1621      if (isCN) {
1622        if (immSext8(Val.getNode()))
1623          Opc = X86::LOCK_ADD32mi8;
1624        else
1625          Opc = X86::LOCK_ADD32mi;
1626      } else
1627        Opc = X86::LOCK_ADD32mr;
1628    }
1629    break;
1630  case MVT::i64:
1631    if (isInc)
1632      Opc = X86::LOCK_INC64m;
1633    else if (isDec)
1634      Opc = X86::LOCK_DEC64m;
1635    else if (isSub) {
1636      Opc = X86::LOCK_SUB64mr;
1637      if (isCN) {
1638        if (immSext8(Val.getNode()))
1639          Opc = X86::LOCK_SUB64mi8;
1640        else if (i64immSExt32(Val.getNode()))
1641          Opc = X86::LOCK_SUB64mi32;
1642      }
1643    } else {
1644      Opc = X86::LOCK_ADD64mr;
1645      if (isCN) {
1646        if (immSext8(Val.getNode()))
1647          Opc = X86::LOCK_ADD64mi8;
1648        else if (i64immSExt32(Val.getNode()))
1649          Opc = X86::LOCK_ADD64mi32;
1650      }
1651    }
1652    break;
1653  }
1654
1655  SDValue Undef = SDValue(CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF,
1656                                                 dl, NVT), 0);
1657  MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
1658  MemOp[0] = cast<MemSDNode>(Node)->getMemOperand();
1659  if (isInc || isDec) {
1660    SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Chain };
1661    SDValue Ret = SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Other, Ops, 6), 0);
1662    cast<MachineSDNode>(Ret)->setMemRefs(MemOp, MemOp + 1);
1663    SDValue RetVals[] = { Undef, Ret };
1664    return CurDAG->getMergeValues(RetVals, 2, dl).getNode();
1665  } else {
1666    SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Val, Chain };
1667    SDValue Ret = SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Other, Ops, 7), 0);
1668    cast<MachineSDNode>(Ret)->setMemRefs(MemOp, MemOp + 1);
1669    SDValue RetVals[] = { Undef, Ret };
1670    return CurDAG->getMergeValues(RetVals, 2, dl).getNode();
1671  }
1672}
1673
1674enum AtomicOpc {
1675  OR,
1676  AND,
1677  XOR,
1678  AtomicOpcEnd
1679};
1680
1681enum AtomicSz {
1682  ConstantI8,
1683  I8,
1684  SextConstantI16,
1685  ConstantI16,
1686  I16,
1687  SextConstantI32,
1688  ConstantI32,
1689  I32,
1690  SextConstantI64,
1691  ConstantI64,
1692  I64,
1693  AtomicSzEnd
1694};
1695
1696static const unsigned int AtomicOpcTbl[AtomicOpcEnd][AtomicSzEnd] = {
1697  {
1698    X86::LOCK_OR8mi,
1699    X86::LOCK_OR8mr,
1700    X86::LOCK_OR16mi8,
1701    X86::LOCK_OR16mi,
1702    X86::LOCK_OR16mr,
1703    X86::LOCK_OR32mi8,
1704    X86::LOCK_OR32mi,
1705    X86::LOCK_OR32mr,
1706    X86::LOCK_OR64mi8,
1707    X86::LOCK_OR64mi32,
1708    X86::LOCK_OR64mr
1709  },
1710  {
1711    X86::LOCK_AND8mi,
1712    X86::LOCK_AND8mr,
1713    X86::LOCK_AND16mi8,
1714    X86::LOCK_AND16mi,
1715    X86::LOCK_AND16mr,
1716    X86::LOCK_AND32mi8,
1717    X86::LOCK_AND32mi,
1718    X86::LOCK_AND32mr,
1719    X86::LOCK_AND64mi8,
1720    X86::LOCK_AND64mi32,
1721    X86::LOCK_AND64mr
1722  },
1723  {
1724    X86::LOCK_XOR8mi,
1725    X86::LOCK_XOR8mr,
1726    X86::LOCK_XOR16mi8,
1727    X86::LOCK_XOR16mi,
1728    X86::LOCK_XOR16mr,
1729    X86::LOCK_XOR32mi8,
1730    X86::LOCK_XOR32mi,
1731    X86::LOCK_XOR32mr,
1732    X86::LOCK_XOR64mi8,
1733    X86::LOCK_XOR64mi32,
1734    X86::LOCK_XOR64mr
1735  }
1736};
1737
1738SDNode *X86DAGToDAGISel::SelectAtomicLoadArith(SDNode *Node, EVT NVT) {
1739  if (Node->hasAnyUseOfValue(0))
1740    return 0;
1741
1742  // Optimize common patterns for __sync_or_and_fetch and similar arith
1743  // operations where the result is not used. This allows us to use the "lock"
1744  // version of the arithmetic instruction.
1745  // FIXME: Same as for 'add' and 'sub', try to merge those down here.
1746  SDValue Chain = Node->getOperand(0);
1747  SDValue Ptr = Node->getOperand(1);
1748  SDValue Val = Node->getOperand(2);
1749  SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
1750  if (!SelectAddr(Node, Ptr, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4))
1751    return 0;
1752
1753  // Which index into the table.
1754  enum AtomicOpc Op;
1755  switch (Node->getOpcode()) {
1756    case ISD::ATOMIC_LOAD_OR:
1757      Op = OR;
1758      break;
1759    case ISD::ATOMIC_LOAD_AND:
1760      Op = AND;
1761      break;
1762    case ISD::ATOMIC_LOAD_XOR:
1763      Op = XOR;
1764      break;
1765    default:
1766      return 0;
1767  }
1768
1769  bool isCN = false;
1770  ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Val);
1771  if (CN && (int32_t)CN->getSExtValue() == CN->getSExtValue()) {
1772    isCN = true;
1773    Val = CurDAG->getTargetConstant(CN->getSExtValue(), NVT);
1774  }
1775
1776  unsigned Opc = 0;
1777  switch (NVT.getSimpleVT().SimpleTy) {
1778    default: return 0;
1779    case MVT::i8:
1780      if (isCN)
1781        Opc = AtomicOpcTbl[Op][ConstantI8];
1782      else
1783        Opc = AtomicOpcTbl[Op][I8];
1784      break;
1785    case MVT::i16:
1786      if (isCN) {
1787        if (immSext8(Val.getNode()))
1788          Opc = AtomicOpcTbl[Op][SextConstantI16];
1789        else
1790          Opc = AtomicOpcTbl[Op][ConstantI16];
1791      } else
1792        Opc = AtomicOpcTbl[Op][I16];
1793      break;
1794    case MVT::i32:
1795      if (isCN) {
1796        if (immSext8(Val.getNode()))
1797          Opc = AtomicOpcTbl[Op][SextConstantI32];
1798        else
1799          Opc = AtomicOpcTbl[Op][ConstantI32];
1800      } else
1801        Opc = AtomicOpcTbl[Op][I32];
1802      break;
1803    case MVT::i64:
1804      Opc = AtomicOpcTbl[Op][I64];
1805      if (isCN) {
1806        if (immSext8(Val.getNode()))
1807          Opc = AtomicOpcTbl[Op][SextConstantI64];
1808        else if (i64immSExt32(Val.getNode()))
1809          Opc = AtomicOpcTbl[Op][ConstantI64];
1810      }
1811      break;
1812  }
1813
1814  assert(Opc != 0 && "Invalid arith lock transform!");
1815
1816  DebugLoc dl = Node->getDebugLoc();
1817  SDValue Undef = SDValue(CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF,
1818                                                 dl, NVT), 0);
1819  MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
1820  MemOp[0] = cast<MemSDNode>(Node)->getMemOperand();
1821  SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Val, Chain };
1822  SDValue Ret = SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Other, Ops, 7), 0);
1823  cast<MachineSDNode>(Ret)->setMemRefs(MemOp, MemOp + 1);
1824  SDValue RetVals[] = { Undef, Ret };
1825  return CurDAG->getMergeValues(RetVals, 2, dl).getNode();
1826}
1827
1828/// HasNoSignedComparisonUses - Test whether the given X86ISD::CMP node has
1829/// any uses which require the SF or OF bits to be accurate.
1830static bool HasNoSignedComparisonUses(SDNode *N) {
1831  // Examine each user of the node.
1832  for (SDNode::use_iterator UI = N->use_begin(),
1833         UE = N->use_end(); UI != UE; ++UI) {
1834    // Only examine CopyToReg uses.
1835    if (UI->getOpcode() != ISD::CopyToReg)
1836      return false;
1837    // Only examine CopyToReg uses that copy to EFLAGS.
1838    if (cast<RegisterSDNode>(UI->getOperand(1))->getReg() !=
1839          X86::EFLAGS)
1840      return false;
1841    // Examine each user of the CopyToReg use.
1842    for (SDNode::use_iterator FlagUI = UI->use_begin(),
1843           FlagUE = UI->use_end(); FlagUI != FlagUE; ++FlagUI) {
1844      // Only examine the Flag result.
1845      if (FlagUI.getUse().getResNo() != 1) continue;
1846      // Anything unusual: assume conservatively.
1847      if (!FlagUI->isMachineOpcode()) return false;
1848      // Examine the opcode of the user.
1849      switch (FlagUI->getMachineOpcode()) {
1850      // These comparisons don't treat the most significant bit specially.
1851      case X86::SETAr: case X86::SETAEr: case X86::SETBr: case X86::SETBEr:
1852      case X86::SETEr: case X86::SETNEr: case X86::SETPr: case X86::SETNPr:
1853      case X86::SETAm: case X86::SETAEm: case X86::SETBm: case X86::SETBEm:
1854      case X86::SETEm: case X86::SETNEm: case X86::SETPm: case X86::SETNPm:
1855      case X86::JA_4: case X86::JAE_4: case X86::JB_4: case X86::JBE_4:
1856      case X86::JE_4: case X86::JNE_4: case X86::JP_4: case X86::JNP_4:
1857      case X86::CMOVA16rr: case X86::CMOVA16rm:
1858      case X86::CMOVA32rr: case X86::CMOVA32rm:
1859      case X86::CMOVA64rr: case X86::CMOVA64rm:
1860      case X86::CMOVAE16rr: case X86::CMOVAE16rm:
1861      case X86::CMOVAE32rr: case X86::CMOVAE32rm:
1862      case X86::CMOVAE64rr: case X86::CMOVAE64rm:
1863      case X86::CMOVB16rr: case X86::CMOVB16rm:
1864      case X86::CMOVB32rr: case X86::CMOVB32rm:
1865      case X86::CMOVB64rr: case X86::CMOVB64rm:
1866      case X86::CMOVBE16rr: case X86::CMOVBE16rm:
1867      case X86::CMOVBE32rr: case X86::CMOVBE32rm:
1868      case X86::CMOVBE64rr: case X86::CMOVBE64rm:
1869      case X86::CMOVE16rr: case X86::CMOVE16rm:
1870      case X86::CMOVE32rr: case X86::CMOVE32rm:
1871      case X86::CMOVE64rr: case X86::CMOVE64rm:
1872      case X86::CMOVNE16rr: case X86::CMOVNE16rm:
1873      case X86::CMOVNE32rr: case X86::CMOVNE32rm:
1874      case X86::CMOVNE64rr: case X86::CMOVNE64rm:
1875      case X86::CMOVNP16rr: case X86::CMOVNP16rm:
1876      case X86::CMOVNP32rr: case X86::CMOVNP32rm:
1877      case X86::CMOVNP64rr: case X86::CMOVNP64rm:
1878      case X86::CMOVP16rr: case X86::CMOVP16rm:
1879      case X86::CMOVP32rr: case X86::CMOVP32rm:
1880      case X86::CMOVP64rr: case X86::CMOVP64rm:
1881        continue;
1882      // Anything else: assume conservatively.
1883      default: return false;
1884      }
1885    }
1886  }
1887  return true;
1888}
1889
1890SDNode *X86DAGToDAGISel::Select(SDNode *Node) {
1891  EVT NVT = Node->getValueType(0);
1892  unsigned Opc, MOpc;
1893  unsigned Opcode = Node->getOpcode();
1894  DebugLoc dl = Node->getDebugLoc();
1895
1896  DEBUG(dbgs() << "Selecting: "; Node->dump(CurDAG); dbgs() << '\n');
1897
1898  if (Node->isMachineOpcode()) {
1899    DEBUG(dbgs() << "== ";  Node->dump(CurDAG); dbgs() << '\n');
1900    return NULL;   // Already selected.
1901  }
1902
1903  switch (Opcode) {
1904  default: break;
1905  case X86ISD::GlobalBaseReg:
1906    return getGlobalBaseReg();
1907
1908  case X86ISD::ATOMOR64_DAG:
1909    return SelectAtomic64(Node, X86::ATOMOR6432);
1910  case X86ISD::ATOMXOR64_DAG:
1911    return SelectAtomic64(Node, X86::ATOMXOR6432);
1912  case X86ISD::ATOMADD64_DAG:
1913    return SelectAtomic64(Node, X86::ATOMADD6432);
1914  case X86ISD::ATOMSUB64_DAG:
1915    return SelectAtomic64(Node, X86::ATOMSUB6432);
1916  case X86ISD::ATOMNAND64_DAG:
1917    return SelectAtomic64(Node, X86::ATOMNAND6432);
1918  case X86ISD::ATOMAND64_DAG:
1919    return SelectAtomic64(Node, X86::ATOMAND6432);
1920  case X86ISD::ATOMSWAP64_DAG:
1921    return SelectAtomic64(Node, X86::ATOMSWAP6432);
1922
1923  case ISD::ATOMIC_LOAD_ADD: {
1924    SDNode *RetVal = SelectAtomicLoadAdd(Node, NVT);
1925    if (RetVal)
1926      return RetVal;
1927    break;
1928  }
1929  case ISD::ATOMIC_LOAD_XOR:
1930  case ISD::ATOMIC_LOAD_AND:
1931  case ISD::ATOMIC_LOAD_OR: {
1932    SDNode *RetVal = SelectAtomicLoadArith(Node, NVT);
1933    if (RetVal)
1934      return RetVal;
1935    break;
1936  }
1937  case ISD::AND:
1938  case ISD::OR:
1939  case ISD::XOR: {
1940    // For operations of the form (x << C1) op C2, check if we can use a smaller
1941    // encoding for C2 by transforming it into (x op (C2>>C1)) << C1.
1942    SDValue N0 = Node->getOperand(0);
1943    SDValue N1 = Node->getOperand(1);
1944
1945    if (N0->getOpcode() != ISD::SHL || !N0->hasOneUse())
1946      break;
1947
1948    // i8 is unshrinkable, i16 should be promoted to i32.
1949    if (NVT != MVT::i32 && NVT != MVT::i64)
1950      break;
1951
1952    ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(N1);
1953    ConstantSDNode *ShlCst = dyn_cast<ConstantSDNode>(N0->getOperand(1));
1954    if (!Cst || !ShlCst)
1955      break;
1956
1957    int64_t Val = Cst->getSExtValue();
1958    uint64_t ShlVal = ShlCst->getZExtValue();
1959
1960    // Make sure that we don't change the operation by removing bits.
1961    // This only matters for OR and XOR, AND is unaffected.
1962    if (Opcode != ISD::AND && ((Val >> ShlVal) << ShlVal) != Val)
1963      break;
1964
1965    unsigned ShlOp, Op = 0;
1966    EVT CstVT = NVT;
1967
1968    // Check the minimum bitwidth for the new constant.
1969    // TODO: AND32ri is the same as AND64ri32 with zext imm.
1970    // TODO: MOV32ri+OR64r is cheaper than MOV64ri64+OR64rr
1971    // TODO: Using 16 and 8 bit operations is also possible for or32 & xor32.
1972    if (!isInt<8>(Val) && isInt<8>(Val >> ShlVal))
1973      CstVT = MVT::i8;
1974    else if (!isInt<32>(Val) && isInt<32>(Val >> ShlVal))
1975      CstVT = MVT::i32;
1976
1977    // Bail if there is no smaller encoding.
1978    if (NVT == CstVT)
1979      break;
1980
1981    switch (NVT.getSimpleVT().SimpleTy) {
1982    default: llvm_unreachable("Unsupported VT!");
1983    case MVT::i32:
1984      assert(CstVT == MVT::i8);
1985      ShlOp = X86::SHL32ri;
1986
1987      switch (Opcode) {
1988      case ISD::AND: Op = X86::AND32ri8; break;
1989      case ISD::OR:  Op =  X86::OR32ri8; break;
1990      case ISD::XOR: Op = X86::XOR32ri8; break;
1991      }
1992      break;
1993    case MVT::i64:
1994      assert(CstVT == MVT::i8 || CstVT == MVT::i32);
1995      ShlOp = X86::SHL64ri;
1996
1997      switch (Opcode) {
1998      case ISD::AND: Op = CstVT==MVT::i8? X86::AND64ri8 : X86::AND64ri32; break;
1999      case ISD::OR:  Op = CstVT==MVT::i8?  X86::OR64ri8 :  X86::OR64ri32; break;
2000      case ISD::XOR: Op = CstVT==MVT::i8? X86::XOR64ri8 : X86::XOR64ri32; break;
2001      }
2002      break;
2003    }
2004
2005    // Emit the smaller op and the shift.
2006    SDValue NewCst = CurDAG->getTargetConstant(Val >> ShlVal, CstVT);
2007    SDNode *New = CurDAG->getMachineNode(Op, dl, NVT, N0->getOperand(0),NewCst);
2008    return CurDAG->SelectNodeTo(Node, ShlOp, NVT, SDValue(New, 0),
2009                                getI8Imm(ShlVal));
2010    break;
2011  }
2012  case X86ISD::UMUL: {
2013    SDValue N0 = Node->getOperand(0);
2014    SDValue N1 = Node->getOperand(1);
2015
2016    unsigned LoReg;
2017    switch (NVT.getSimpleVT().SimpleTy) {
2018    default: llvm_unreachable("Unsupported VT!");
2019    case MVT::i8:  LoReg = X86::AL;  Opc = X86::MUL8r; break;
2020    case MVT::i16: LoReg = X86::AX;  Opc = X86::MUL16r; break;
2021    case MVT::i32: LoReg = X86::EAX; Opc = X86::MUL32r; break;
2022    case MVT::i64: LoReg = X86::RAX; Opc = X86::MUL64r; break;
2023    }
2024
2025    SDValue InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, LoReg,
2026                                          N0, SDValue()).getValue(1);
2027
2028    SDVTList VTs = CurDAG->getVTList(NVT, NVT, MVT::i32);
2029    SDValue Ops[] = {N1, InFlag};
2030    SDNode *CNode = CurDAG->getMachineNode(Opc, dl, VTs, Ops, 2);
2031
2032    ReplaceUses(SDValue(Node, 0), SDValue(CNode, 0));
2033    ReplaceUses(SDValue(Node, 1), SDValue(CNode, 1));
2034    ReplaceUses(SDValue(Node, 2), SDValue(CNode, 2));
2035    return NULL;
2036  }
2037
2038  case ISD::SMUL_LOHI:
2039  case ISD::UMUL_LOHI: {
2040    SDValue N0 = Node->getOperand(0);
2041    SDValue N1 = Node->getOperand(1);
2042
2043    bool isSigned = Opcode == ISD::SMUL_LOHI;
2044    if (!isSigned) {
2045      switch (NVT.getSimpleVT().SimpleTy) {
2046      default: llvm_unreachable("Unsupported VT!");
2047      case MVT::i8:  Opc = X86::MUL8r;  MOpc = X86::MUL8m;  break;
2048      case MVT::i16: Opc = X86::MUL16r; MOpc = X86::MUL16m; break;
2049      case MVT::i32: Opc = X86::MUL32r; MOpc = X86::MUL32m; break;
2050      case MVT::i64: Opc = X86::MUL64r; MOpc = X86::MUL64m; break;
2051      }
2052    } else {
2053      switch (NVT.getSimpleVT().SimpleTy) {
2054      default: llvm_unreachable("Unsupported VT!");
2055      case MVT::i8:  Opc = X86::IMUL8r;  MOpc = X86::IMUL8m;  break;
2056      case MVT::i16: Opc = X86::IMUL16r; MOpc = X86::IMUL16m; break;
2057      case MVT::i32: Opc = X86::IMUL32r; MOpc = X86::IMUL32m; break;
2058      case MVT::i64: Opc = X86::IMUL64r; MOpc = X86::IMUL64m; break;
2059      }
2060    }
2061
2062    unsigned LoReg, HiReg;
2063    switch (NVT.getSimpleVT().SimpleTy) {
2064    default: llvm_unreachable("Unsupported VT!");
2065    case MVT::i8:  LoReg = X86::AL;  HiReg = X86::AH;  break;
2066    case MVT::i16: LoReg = X86::AX;  HiReg = X86::DX;  break;
2067    case MVT::i32: LoReg = X86::EAX; HiReg = X86::EDX; break;
2068    case MVT::i64: LoReg = X86::RAX; HiReg = X86::RDX; break;
2069    }
2070
2071    SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
2072    bool foldedLoad = TryFoldLoad(Node, N1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4);
2073    // Multiply is commmutative.
2074    if (!foldedLoad) {
2075      foldedLoad = TryFoldLoad(Node, N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4);
2076      if (foldedLoad)
2077        std::swap(N0, N1);
2078    }
2079
2080    SDValue InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, LoReg,
2081                                            N0, SDValue()).getValue(1);
2082
2083    if (foldedLoad) {
2084      SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N1.getOperand(0),
2085                        InFlag };
2086      SDNode *CNode =
2087        CurDAG->getMachineNode(MOpc, dl, MVT::Other, MVT::Glue, Ops,
2088                               array_lengthof(Ops));
2089      InFlag = SDValue(CNode, 1);
2090
2091      // Update the chain.
2092      ReplaceUses(N1.getValue(1), SDValue(CNode, 0));
2093    } else {
2094      SDNode *CNode = CurDAG->getMachineNode(Opc, dl, MVT::Glue, N1, InFlag);
2095      InFlag = SDValue(CNode, 0);
2096    }
2097
2098    // Prevent use of AH in a REX instruction by referencing AX instead.
2099    if (HiReg == X86::AH && Subtarget->is64Bit() &&
2100        !SDValue(Node, 1).use_empty()) {
2101      SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
2102                                              X86::AX, MVT::i16, InFlag);
2103      InFlag = Result.getValue(2);
2104      // Get the low part if needed. Don't use getCopyFromReg for aliasing
2105      // registers.
2106      if (!SDValue(Node, 0).use_empty())
2107        ReplaceUses(SDValue(Node, 1),
2108          CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl, MVT::i8, Result));
2109
2110      // Shift AX down 8 bits.
2111      Result = SDValue(CurDAG->getMachineNode(X86::SHR16ri, dl, MVT::i16,
2112                                              Result,
2113                                     CurDAG->getTargetConstant(8, MVT::i8)), 0);
2114      // Then truncate it down to i8.
2115      ReplaceUses(SDValue(Node, 1),
2116        CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl, MVT::i8, Result));
2117    }
2118    // Copy the low half of the result, if it is needed.
2119    if (!SDValue(Node, 0).use_empty()) {
2120      SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
2121                                                LoReg, NVT, InFlag);
2122      InFlag = Result.getValue(2);
2123      ReplaceUses(SDValue(Node, 0), Result);
2124      DEBUG(dbgs() << "=> "; Result.getNode()->dump(CurDAG); dbgs() << '\n');
2125    }
2126    // Copy the high half of the result, if it is needed.
2127    if (!SDValue(Node, 1).use_empty()) {
2128      SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
2129                                              HiReg, NVT, InFlag);
2130      InFlag = Result.getValue(2);
2131      ReplaceUses(SDValue(Node, 1), Result);
2132      DEBUG(dbgs() << "=> "; Result.getNode()->dump(CurDAG); dbgs() << '\n');
2133    }
2134
2135    return NULL;
2136  }
2137
2138  case ISD::SDIVREM:
2139  case ISD::UDIVREM: {
2140    SDValue N0 = Node->getOperand(0);
2141    SDValue N1 = Node->getOperand(1);
2142
2143    bool isSigned = Opcode == ISD::SDIVREM;
2144    if (!isSigned) {
2145      switch (NVT.getSimpleVT().SimpleTy) {
2146      default: llvm_unreachable("Unsupported VT!");
2147      case MVT::i8:  Opc = X86::DIV8r;  MOpc = X86::DIV8m;  break;
2148      case MVT::i16: Opc = X86::DIV16r; MOpc = X86::DIV16m; break;
2149      case MVT::i32: Opc = X86::DIV32r; MOpc = X86::DIV32m; break;
2150      case MVT::i64: Opc = X86::DIV64r; MOpc = X86::DIV64m; break;
2151      }
2152    } else {
2153      switch (NVT.getSimpleVT().SimpleTy) {
2154      default: llvm_unreachable("Unsupported VT!");
2155      case MVT::i8:  Opc = X86::IDIV8r;  MOpc = X86::IDIV8m;  break;
2156      case MVT::i16: Opc = X86::IDIV16r; MOpc = X86::IDIV16m; break;
2157      case MVT::i32: Opc = X86::IDIV32r; MOpc = X86::IDIV32m; break;
2158      case MVT::i64: Opc = X86::IDIV64r; MOpc = X86::IDIV64m; break;
2159      }
2160    }
2161
2162    unsigned LoReg, HiReg, ClrReg;
2163    unsigned ClrOpcode, SExtOpcode;
2164    switch (NVT.getSimpleVT().SimpleTy) {
2165    default: llvm_unreachable("Unsupported VT!");
2166    case MVT::i8:
2167      LoReg = X86::AL;  ClrReg = HiReg = X86::AH;
2168      ClrOpcode  = 0;
2169      SExtOpcode = X86::CBW;
2170      break;
2171    case MVT::i16:
2172      LoReg = X86::AX;  HiReg = X86::DX;
2173      ClrOpcode  = X86::MOV16r0; ClrReg = X86::DX;
2174      SExtOpcode = X86::CWD;
2175      break;
2176    case MVT::i32:
2177      LoReg = X86::EAX; ClrReg = HiReg = X86::EDX;
2178      ClrOpcode  = X86::MOV32r0;
2179      SExtOpcode = X86::CDQ;
2180      break;
2181    case MVT::i64:
2182      LoReg = X86::RAX; ClrReg = HiReg = X86::RDX;
2183      ClrOpcode  = X86::MOV64r0;
2184      SExtOpcode = X86::CQO;
2185      break;
2186    }
2187
2188    SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
2189    bool foldedLoad = TryFoldLoad(Node, N1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4);
2190    bool signBitIsZero = CurDAG->SignBitIsZero(N0);
2191
2192    SDValue InFlag;
2193    if (NVT == MVT::i8 && (!isSigned || signBitIsZero)) {
2194      // Special case for div8, just use a move with zero extension to AX to
2195      // clear the upper 8 bits (AH).
2196      SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Move, Chain;
2197      if (TryFoldLoad(Node, N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4)) {
2198        SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N0.getOperand(0) };
2199        Move =
2200          SDValue(CurDAG->getMachineNode(X86::MOVZX32rm8, dl, MVT::i32,
2201                                         MVT::Other, Ops,
2202                                         array_lengthof(Ops)), 0);
2203        Chain = Move.getValue(1);
2204        ReplaceUses(N0.getValue(1), Chain);
2205      } else {
2206        Move =
2207          SDValue(CurDAG->getMachineNode(X86::MOVZX32rr8, dl, MVT::i32, N0),0);
2208        Chain = CurDAG->getEntryNode();
2209      }
2210      Chain  = CurDAG->getCopyToReg(Chain, dl, X86::EAX, Move, SDValue());
2211      InFlag = Chain.getValue(1);
2212    } else {
2213      InFlag =
2214        CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl,
2215                             LoReg, N0, SDValue()).getValue(1);
2216      if (isSigned && !signBitIsZero) {
2217        // Sign extend the low part into the high part.
2218        InFlag =
2219          SDValue(CurDAG->getMachineNode(SExtOpcode, dl, MVT::Glue, InFlag),0);
2220      } else {
2221        // Zero out the high part, effectively zero extending the input.
2222        SDValue ClrNode =
2223          SDValue(CurDAG->getMachineNode(ClrOpcode, dl, NVT), 0);
2224        InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, ClrReg,
2225                                      ClrNode, InFlag).getValue(1);
2226      }
2227    }
2228
2229    if (foldedLoad) {
2230      SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N1.getOperand(0),
2231                        InFlag };
2232      SDNode *CNode =
2233        CurDAG->getMachineNode(MOpc, dl, MVT::Other, MVT::Glue, Ops,
2234                               array_lengthof(Ops));
2235      InFlag = SDValue(CNode, 1);
2236      // Update the chain.
2237      ReplaceUses(N1.getValue(1), SDValue(CNode, 0));
2238    } else {
2239      InFlag =
2240        SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Glue, N1, InFlag), 0);
2241    }
2242
2243    // Prevent use of AH in a REX instruction by referencing AX instead.
2244    // Shift it down 8 bits.
2245    if (HiReg == X86::AH && Subtarget->is64Bit() &&
2246        !SDValue(Node, 1).use_empty()) {
2247      SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
2248                                              X86::AX, MVT::i16, InFlag);
2249      InFlag = Result.getValue(2);
2250
2251      // If we also need AL (the quotient), get it by extracting a subreg from
2252      // Result. The fast register allocator does not like multiple CopyFromReg
2253      // nodes using aliasing registers.
2254      if (!SDValue(Node, 0).use_empty())
2255        ReplaceUses(SDValue(Node, 0),
2256          CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl, MVT::i8, Result));
2257
2258      // Shift AX right by 8 bits instead of using AH.
2259      Result = SDValue(CurDAG->getMachineNode(X86::SHR16ri, dl, MVT::i16,
2260                                         Result,
2261                                         CurDAG->getTargetConstant(8, MVT::i8)),
2262                       0);
2263      ReplaceUses(SDValue(Node, 1),
2264        CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl, MVT::i8, Result));
2265    }
2266    // Copy the division (low) result, if it is needed.
2267    if (!SDValue(Node, 0).use_empty()) {
2268      SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
2269                                                LoReg, NVT, InFlag);
2270      InFlag = Result.getValue(2);
2271      ReplaceUses(SDValue(Node, 0), Result);
2272      DEBUG(dbgs() << "=> "; Result.getNode()->dump(CurDAG); dbgs() << '\n');
2273    }
2274    // Copy the remainder (high) result, if it is needed.
2275    if (!SDValue(Node, 1).use_empty()) {
2276      SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
2277                                              HiReg, NVT, InFlag);
2278      InFlag = Result.getValue(2);
2279      ReplaceUses(SDValue(Node, 1), Result);
2280      DEBUG(dbgs() << "=> "; Result.getNode()->dump(CurDAG); dbgs() << '\n');
2281    }
2282    return NULL;
2283  }
2284
2285  case X86ISD::CMP: {
2286    SDValue N0 = Node->getOperand(0);
2287    SDValue N1 = Node->getOperand(1);
2288
2289    // Look for (X86cmp (and $op, $imm), 0) and see if we can convert it to
2290    // use a smaller encoding.
2291    if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse() &&
2292        HasNoSignedComparisonUses(Node))
2293      // Look past the truncate if CMP is the only use of it.
2294      N0 = N0.getOperand(0);
2295    if ((N0.getNode()->getOpcode() == ISD::AND ||
2296         (N0.getResNo() == 0 && N0.getNode()->getOpcode() == X86ISD::AND)) &&
2297        N0.getNode()->hasOneUse() &&
2298        N0.getValueType() != MVT::i8 &&
2299        X86::isZeroNode(N1)) {
2300      ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getNode()->getOperand(1));
2301      if (!C) break;
2302
2303      // For example, convert "testl %eax, $8" to "testb %al, $8"
2304      if ((C->getZExtValue() & ~UINT64_C(0xff)) == 0 &&
2305          (!(C->getZExtValue() & 0x80) ||
2306           HasNoSignedComparisonUses(Node))) {
2307        SDValue Imm = CurDAG->getTargetConstant(C->getZExtValue(), MVT::i8);
2308        SDValue Reg = N0.getNode()->getOperand(0);
2309
2310        // On x86-32, only the ABCD registers have 8-bit subregisters.
2311        if (!Subtarget->is64Bit()) {
2312          TargetRegisterClass *TRC = 0;
2313          switch (N0.getValueType().getSimpleVT().SimpleTy) {
2314          case MVT::i32: TRC = &X86::GR32_ABCDRegClass; break;
2315          case MVT::i16: TRC = &X86::GR16_ABCDRegClass; break;
2316          default: llvm_unreachable("Unsupported TEST operand type!");
2317          }
2318          SDValue RC = CurDAG->getTargetConstant(TRC->getID(), MVT::i32);
2319          Reg = SDValue(CurDAG->getMachineNode(X86::COPY_TO_REGCLASS, dl,
2320                                               Reg.getValueType(), Reg, RC), 0);
2321        }
2322
2323        // Extract the l-register.
2324        SDValue Subreg = CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl,
2325                                                        MVT::i8, Reg);
2326
2327        // Emit a testb.
2328        return CurDAG->getMachineNode(X86::TEST8ri, dl, MVT::i32, Subreg, Imm);
2329      }
2330
2331      // For example, "testl %eax, $2048" to "testb %ah, $8".
2332      if ((C->getZExtValue() & ~UINT64_C(0xff00)) == 0 &&
2333          (!(C->getZExtValue() & 0x8000) ||
2334           HasNoSignedComparisonUses(Node))) {
2335        // Shift the immediate right by 8 bits.
2336        SDValue ShiftedImm = CurDAG->getTargetConstant(C->getZExtValue() >> 8,
2337                                                       MVT::i8);
2338        SDValue Reg = N0.getNode()->getOperand(0);
2339
2340        // Put the value in an ABCD register.
2341        TargetRegisterClass *TRC = 0;
2342        switch (N0.getValueType().getSimpleVT().SimpleTy) {
2343        case MVT::i64: TRC = &X86::GR64_ABCDRegClass; break;
2344        case MVT::i32: TRC = &X86::GR32_ABCDRegClass; break;
2345        case MVT::i16: TRC = &X86::GR16_ABCDRegClass; break;
2346        default: llvm_unreachable("Unsupported TEST operand type!");
2347        }
2348        SDValue RC = CurDAG->getTargetConstant(TRC->getID(), MVT::i32);
2349        Reg = SDValue(CurDAG->getMachineNode(X86::COPY_TO_REGCLASS, dl,
2350                                             Reg.getValueType(), Reg, RC), 0);
2351
2352        // Extract the h-register.
2353        SDValue Subreg = CurDAG->getTargetExtractSubreg(X86::sub_8bit_hi, dl,
2354                                                        MVT::i8, Reg);
2355
2356        // Emit a testb.  The EXTRACT_SUBREG becomes a COPY that can only
2357        // target GR8_NOREX registers, so make sure the register class is
2358        // forced.
2359        return CurDAG->getMachineNode(X86::TEST8ri_NOREX, dl, MVT::i32,
2360                                      Subreg, ShiftedImm);
2361      }
2362
2363      // For example, "testl %eax, $32776" to "testw %ax, $32776".
2364      if ((C->getZExtValue() & ~UINT64_C(0xffff)) == 0 &&
2365          N0.getValueType() != MVT::i16 &&
2366          (!(C->getZExtValue() & 0x8000) ||
2367           HasNoSignedComparisonUses(Node))) {
2368        SDValue Imm = CurDAG->getTargetConstant(C->getZExtValue(), MVT::i16);
2369        SDValue Reg = N0.getNode()->getOperand(0);
2370
2371        // Extract the 16-bit subregister.
2372        SDValue Subreg = CurDAG->getTargetExtractSubreg(X86::sub_16bit, dl,
2373                                                        MVT::i16, Reg);
2374
2375        // Emit a testw.
2376        return CurDAG->getMachineNode(X86::TEST16ri, dl, MVT::i32, Subreg, Imm);
2377      }
2378
2379      // For example, "testq %rax, $268468232" to "testl %eax, $268468232".
2380      if ((C->getZExtValue() & ~UINT64_C(0xffffffff)) == 0 &&
2381          N0.getValueType() == MVT::i64 &&
2382          (!(C->getZExtValue() & 0x80000000) ||
2383           HasNoSignedComparisonUses(Node))) {
2384        SDValue Imm = CurDAG->getTargetConstant(C->getZExtValue(), MVT::i32);
2385        SDValue Reg = N0.getNode()->getOperand(0);
2386
2387        // Extract the 32-bit subregister.
2388        SDValue Subreg = CurDAG->getTargetExtractSubreg(X86::sub_32bit, dl,
2389                                                        MVT::i32, Reg);
2390
2391        // Emit a testl.
2392        return CurDAG->getMachineNode(X86::TEST32ri, dl, MVT::i32, Subreg, Imm);
2393      }
2394    }
2395    break;
2396  }
2397  case ISD::STORE: {
2398    // The DEC64m tablegen pattern is currently not able to match the case where
2399    // the EFLAGS on the original DEC are used.
2400    // we'll need to improve tablegen to allow flags to be transferred from a
2401    // node in the pattern to the result node.  probably with a new keyword
2402    // for example, we have this
2403    // def DEC64m : RI<0xFF, MRM1m, (outs), (ins i64mem:$dst), "dec{q}\t$dst",
2404    //  [(store (add (loadi64 addr:$dst), -1), addr:$dst),
2405    //   (implicit EFLAGS)]>;
2406    // but maybe need something like this
2407    // def DEC64m : RI<0xFF, MRM1m, (outs), (ins i64mem:$dst), "dec{q}\t$dst",
2408    //  [(store (add (loadi64 addr:$dst), -1), addr:$dst),
2409    //   (transferrable EFLAGS)]>;
2410    StoreSDNode *StoreNode = cast<StoreSDNode>(Node);
2411    SDValue Chain = StoreNode->getOperand(0);
2412    SDValue StoredVal = StoreNode->getOperand(1);
2413    SDValue Address = StoreNode->getOperand(2);
2414    SDValue Undef = StoreNode->getOperand(3);
2415
2416    if (StoreNode->getMemOperand()->getSize() != 8 ||
2417        Undef->getOpcode() != ISD::UNDEF ||
2418        Chain->getOpcode() != ISD::LOAD ||
2419        StoredVal->getOpcode() != X86ISD::DEC ||
2420        StoredVal.getResNo() != 0 ||
2421        StoredVal->getOperand(0).getNode() != Chain.getNode())
2422      break;
2423
2424    //OPC_CheckPredicate, 1, // Predicate_nontemporalstore
2425    if (StoreNode->isNonTemporal())
2426      break;
2427
2428    LoadSDNode *LoadNode = cast<LoadSDNode>(Chain.getNode());
2429    if (LoadNode->getOperand(1) != Address ||
2430        LoadNode->getOperand(2) != Undef)
2431      break;
2432
2433    if (!ISD::isNormalLoad(LoadNode))
2434      break;
2435
2436    if (!ISD::isNormalStore(StoreNode))
2437      break;
2438
2439    // check load chain has only one use (from the store)
2440    if (!Chain.hasOneUse())
2441      break;
2442
2443    // Merge the input chains if they are not intra-pattern references.
2444    SDValue InputChain = LoadNode->getOperand(0);
2445
2446    SDValue Base, Scale, Index, Disp, Segment;
2447    if (!SelectAddr(LoadNode, LoadNode->getBasePtr(),
2448                    Base, Scale, Index, Disp, Segment))
2449      break;
2450
2451    MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(2);
2452    MemOp[0] = StoreNode->getMemOperand();
2453    MemOp[1] = LoadNode->getMemOperand();
2454    const SDValue Ops[] = { Base, Scale, Index, Disp, Segment, InputChain };
2455    MachineSDNode *Result = CurDAG->getMachineNode(X86::DEC64m,
2456                                                   Node->getDebugLoc(),
2457                                                   MVT::i32, MVT::Other, Ops,
2458                                                   array_lengthof(Ops));
2459    Result->setMemRefs(MemOp, MemOp + 2);
2460
2461    ReplaceUses(SDValue(StoreNode, 0), SDValue(Result, 1));
2462    ReplaceUses(SDValue(StoredVal.getNode(), 1), SDValue(Result, 0));
2463
2464    return Result;
2465  }
2466  }
2467
2468  SDNode *ResNode = SelectCode(Node);
2469
2470  DEBUG(dbgs() << "=> ";
2471        if (ResNode == NULL || ResNode == Node)
2472          Node->dump(CurDAG);
2473        else
2474          ResNode->dump(CurDAG);
2475        dbgs() << '\n');
2476
2477  return ResNode;
2478}
2479
2480bool X86DAGToDAGISel::
2481SelectInlineAsmMemoryOperand(const SDValue &Op, char ConstraintCode,
2482                             std::vector<SDValue> &OutOps) {
2483  SDValue Op0, Op1, Op2, Op3, Op4;
2484  switch (ConstraintCode) {
2485  case 'o':   // offsetable        ??
2486  case 'v':   // not offsetable    ??
2487  default: return true;
2488  case 'm':   // memory
2489    if (!SelectAddr(0, Op, Op0, Op1, Op2, Op3, Op4))
2490      return true;
2491    break;
2492  }
2493
2494  OutOps.push_back(Op0);
2495  OutOps.push_back(Op1);
2496  OutOps.push_back(Op2);
2497  OutOps.push_back(Op3);
2498  OutOps.push_back(Op4);
2499  return false;
2500}
2501
2502/// createX86ISelDag - This pass converts a legalized DAG into a
2503/// X86-specific DAG, ready for instruction scheduling.
2504///
2505FunctionPass *llvm::createX86ISelDag(X86TargetMachine &TM,
2506                                     llvm::CodeGenOpt::Level OptLevel) {
2507  return new X86DAGToDAGISel(TM, OptLevel);
2508}
2509