X86ISelDAGToDAG.cpp revision f103b3d1b99db0ae314c36d8b4ae71427816379e
1//===- X86ISelDAGToDAG.cpp - A DAG pattern matching inst selector for X86 -===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines a DAG pattern matching instruction selector for X86,
11// converting from a legalized dag to a X86 dag.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "x86-isel"
16#include "X86.h"
17#include "X86InstrBuilder.h"
18#include "X86MachineFunctionInfo.h"
19#include "X86RegisterInfo.h"
20#include "X86Subtarget.h"
21#include "X86TargetMachine.h"
22#include "llvm/Instructions.h"
23#include "llvm/Intrinsics.h"
24#include "llvm/Support/CFG.h"
25#include "llvm/Type.h"
26#include "llvm/CodeGen/FunctionLoweringInfo.h"
27#include "llvm/CodeGen/MachineConstantPool.h"
28#include "llvm/CodeGen/MachineFunction.h"
29#include "llvm/CodeGen/MachineFrameInfo.h"
30#include "llvm/CodeGen/MachineInstrBuilder.h"
31#include "llvm/CodeGen/MachineRegisterInfo.h"
32#include "llvm/CodeGen/SelectionDAGISel.h"
33#include "llvm/Target/TargetMachine.h"
34#include "llvm/Target/TargetOptions.h"
35#include "llvm/Support/Debug.h"
36#include "llvm/Support/ErrorHandling.h"
37#include "llvm/Support/MathExtras.h"
38#include "llvm/Support/raw_ostream.h"
39#include "llvm/ADT/SmallPtrSet.h"
40#include "llvm/ADT/Statistic.h"
41using namespace llvm;
42
43STATISTIC(NumLoadMoved, "Number of loads moved below TokenFactor");
44
45//===----------------------------------------------------------------------===//
46//                      Pattern Matcher Implementation
47//===----------------------------------------------------------------------===//
48
49namespace {
50  /// X86ISelAddressMode - This corresponds to X86AddressMode, but uses
51  /// SDValue's instead of register numbers for the leaves of the matched
52  /// tree.
53  struct X86ISelAddressMode {
54    enum {
55      RegBase,
56      FrameIndexBase
57    } BaseType;
58
59    // This is really a union, discriminated by BaseType!
60    SDValue Base_Reg;
61    int Base_FrameIndex;
62
63    unsigned Scale;
64    SDValue IndexReg;
65    int32_t Disp;
66    SDValue Segment;
67    const GlobalValue *GV;
68    const Constant *CP;
69    const BlockAddress *BlockAddr;
70    const char *ES;
71    int JT;
72    unsigned Align;    // CP alignment.
73    unsigned char SymbolFlags;  // X86II::MO_*
74
75    X86ISelAddressMode()
76      : BaseType(RegBase), Base_FrameIndex(0), Scale(1), IndexReg(), Disp(0),
77        Segment(), GV(0), CP(0), BlockAddr(0), ES(0), JT(-1), Align(0),
78        SymbolFlags(X86II::MO_NO_FLAG) {
79    }
80
81    bool hasSymbolicDisplacement() const {
82      return GV != 0 || CP != 0 || ES != 0 || JT != -1 || BlockAddr != 0;
83    }
84
85    bool hasBaseOrIndexReg() const {
86      return IndexReg.getNode() != 0 || Base_Reg.getNode() != 0;
87    }
88
89    /// isRIPRelative - Return true if this addressing mode is already RIP
90    /// relative.
91    bool isRIPRelative() const {
92      if (BaseType != RegBase) return false;
93      if (RegisterSDNode *RegNode =
94            dyn_cast_or_null<RegisterSDNode>(Base_Reg.getNode()))
95        return RegNode->getReg() == X86::RIP;
96      return false;
97    }
98
99    void setBaseReg(SDValue Reg) {
100      BaseType = RegBase;
101      Base_Reg = Reg;
102    }
103
104    void dump() {
105      dbgs() << "X86ISelAddressMode " << this << '\n';
106      dbgs() << "Base_Reg ";
107      if (Base_Reg.getNode() != 0)
108        Base_Reg.getNode()->dump();
109      else
110        dbgs() << "nul";
111      dbgs() << " Base.FrameIndex " << Base_FrameIndex << '\n'
112             << " Scale" << Scale << '\n'
113             << "IndexReg ";
114      if (IndexReg.getNode() != 0)
115        IndexReg.getNode()->dump();
116      else
117        dbgs() << "nul";
118      dbgs() << " Disp " << Disp << '\n'
119             << "GV ";
120      if (GV)
121        GV->dump();
122      else
123        dbgs() << "nul";
124      dbgs() << " CP ";
125      if (CP)
126        CP->dump();
127      else
128        dbgs() << "nul";
129      dbgs() << '\n'
130             << "ES ";
131      if (ES)
132        dbgs() << ES;
133      else
134        dbgs() << "nul";
135      dbgs() << " JT" << JT << " Align" << Align << '\n';
136    }
137  };
138}
139
140namespace {
141  //===--------------------------------------------------------------------===//
142  /// ISel - X86 specific code to select X86 machine instructions for
143  /// SelectionDAG operations.
144  ///
145  class X86DAGToDAGISel : public SelectionDAGISel {
146    /// X86Lowering - This object fully describes how to lower LLVM code to an
147    /// X86-specific SelectionDAG.
148    const X86TargetLowering &X86Lowering;
149
150    /// Subtarget - Keep a pointer to the X86Subtarget around so that we can
151    /// make the right decision when generating code for different targets.
152    const X86Subtarget *Subtarget;
153
154    /// OptForSize - If true, selector should try to optimize for code size
155    /// instead of performance.
156    bool OptForSize;
157
158  public:
159    explicit X86DAGToDAGISel(X86TargetMachine &tm, CodeGenOpt::Level OptLevel)
160      : SelectionDAGISel(tm, OptLevel),
161        X86Lowering(*tm.getTargetLowering()),
162        Subtarget(&tm.getSubtarget<X86Subtarget>()),
163        OptForSize(false) {}
164
165    virtual const char *getPassName() const {
166      return "X86 DAG->DAG Instruction Selection";
167    }
168
169    virtual void EmitFunctionEntryCode();
170
171    virtual bool IsProfitableToFold(SDValue N, SDNode *U, SDNode *Root) const;
172
173    virtual void PreprocessISelDAG();
174
175    inline bool immSext8(SDNode *N) const {
176      return isInt<8>(cast<ConstantSDNode>(N)->getSExtValue());
177    }
178
179    // i64immSExt32 predicate - True if the 64-bit immediate fits in a 32-bit
180    // sign extended field.
181    inline bool i64immSExt32(SDNode *N) const {
182      uint64_t v = cast<ConstantSDNode>(N)->getZExtValue();
183      return (int64_t)v == (int32_t)v;
184    }
185
186// Include the pieces autogenerated from the target description.
187#include "X86GenDAGISel.inc"
188
189  private:
190    SDNode *Select(SDNode *N);
191    SDNode *SelectAtomic64(SDNode *Node, unsigned Opc);
192    SDNode *SelectAtomicLoadAdd(SDNode *Node, EVT NVT);
193    SDNode *SelectAtomicLoadArith(SDNode *Node, EVT NVT);
194
195    bool FoldOffsetIntoAddress(uint64_t Offset, X86ISelAddressMode &AM);
196    bool MatchLoadInAddress(LoadSDNode *N, X86ISelAddressMode &AM);
197    bool MatchWrapper(SDValue N, X86ISelAddressMode &AM);
198    bool MatchAddress(SDValue N, X86ISelAddressMode &AM);
199    bool MatchAddressRecursively(SDValue N, X86ISelAddressMode &AM,
200                                 unsigned Depth);
201    bool MatchAddressBase(SDValue N, X86ISelAddressMode &AM);
202    bool SelectAddr(SDNode *Parent, SDValue N, SDValue &Base,
203                    SDValue &Scale, SDValue &Index, SDValue &Disp,
204                    SDValue &Segment);
205    bool SelectLEAAddr(SDValue N, SDValue &Base,
206                       SDValue &Scale, SDValue &Index, SDValue &Disp,
207                       SDValue &Segment);
208    bool SelectTLSADDRAddr(SDValue N, SDValue &Base,
209                           SDValue &Scale, SDValue &Index, SDValue &Disp,
210                           SDValue &Segment);
211    bool SelectScalarSSELoad(SDNode *Root, SDValue N,
212                             SDValue &Base, SDValue &Scale,
213                             SDValue &Index, SDValue &Disp,
214                             SDValue &Segment,
215                             SDValue &NodeWithChain);
216
217    bool TryFoldLoad(SDNode *P, SDValue N,
218                     SDValue &Base, SDValue &Scale,
219                     SDValue &Index, SDValue &Disp,
220                     SDValue &Segment);
221
222    /// SelectInlineAsmMemoryOperand - Implement addressing mode selection for
223    /// inline asm expressions.
224    virtual bool SelectInlineAsmMemoryOperand(const SDValue &Op,
225                                              char ConstraintCode,
226                                              std::vector<SDValue> &OutOps);
227
228    void EmitSpecialCodeForMain(MachineBasicBlock *BB, MachineFrameInfo *MFI);
229
230    inline void getAddressOperands(X86ISelAddressMode &AM, SDValue &Base,
231                                   SDValue &Scale, SDValue &Index,
232                                   SDValue &Disp, SDValue &Segment) {
233      Base  = (AM.BaseType == X86ISelAddressMode::FrameIndexBase) ?
234        CurDAG->getTargetFrameIndex(AM.Base_FrameIndex, TLI.getPointerTy()) :
235        AM.Base_Reg;
236      Scale = getI8Imm(AM.Scale);
237      Index = AM.IndexReg;
238      // These are 32-bit even in 64-bit mode since RIP relative offset
239      // is 32-bit.
240      if (AM.GV)
241        Disp = CurDAG->getTargetGlobalAddress(AM.GV, DebugLoc(),
242                                              MVT::i32, AM.Disp,
243                                              AM.SymbolFlags);
244      else if (AM.CP)
245        Disp = CurDAG->getTargetConstantPool(AM.CP, MVT::i32,
246                                             AM.Align, AM.Disp, AM.SymbolFlags);
247      else if (AM.ES)
248        Disp = CurDAG->getTargetExternalSymbol(AM.ES, MVT::i32, AM.SymbolFlags);
249      else if (AM.JT != -1)
250        Disp = CurDAG->getTargetJumpTable(AM.JT, MVT::i32, AM.SymbolFlags);
251      else if (AM.BlockAddr)
252        Disp = CurDAG->getBlockAddress(AM.BlockAddr, MVT::i32,
253                                       true, AM.SymbolFlags);
254      else
255        Disp = CurDAG->getTargetConstant(AM.Disp, MVT::i32);
256
257      if (AM.Segment.getNode())
258        Segment = AM.Segment;
259      else
260        Segment = CurDAG->getRegister(0, MVT::i32);
261    }
262
263    /// getI8Imm - Return a target constant with the specified value, of type
264    /// i8.
265    inline SDValue getI8Imm(unsigned Imm) {
266      return CurDAG->getTargetConstant(Imm, MVT::i8);
267    }
268
269    /// getI32Imm - Return a target constant with the specified value, of type
270    /// i32.
271    inline SDValue getI32Imm(unsigned Imm) {
272      return CurDAG->getTargetConstant(Imm, MVT::i32);
273    }
274
275    /// getGlobalBaseReg - Return an SDNode that returns the value of
276    /// the global base register. Output instructions required to
277    /// initialize the global base register, if necessary.
278    ///
279    SDNode *getGlobalBaseReg();
280
281    /// getTargetMachine - Return a reference to the TargetMachine, casted
282    /// to the target-specific type.
283    const X86TargetMachine &getTargetMachine() {
284      return static_cast<const X86TargetMachine &>(TM);
285    }
286
287    /// getInstrInfo - Return a reference to the TargetInstrInfo, casted
288    /// to the target-specific type.
289    const X86InstrInfo *getInstrInfo() {
290      return getTargetMachine().getInstrInfo();
291    }
292  };
293}
294
295
296bool
297X86DAGToDAGISel::IsProfitableToFold(SDValue N, SDNode *U, SDNode *Root) const {
298  if (OptLevel == CodeGenOpt::None) return false;
299
300  if (!N.hasOneUse())
301    return false;
302
303  if (N.getOpcode() != ISD::LOAD)
304    return true;
305
306  // If N is a load, do additional profitability checks.
307  if (U == Root) {
308    switch (U->getOpcode()) {
309    default: break;
310    case X86ISD::ADD:
311    case X86ISD::SUB:
312    case X86ISD::AND:
313    case X86ISD::XOR:
314    case X86ISD::OR:
315    case ISD::ADD:
316    case ISD::ADDC:
317    case ISD::ADDE:
318    case ISD::AND:
319    case ISD::OR:
320    case ISD::XOR: {
321      SDValue Op1 = U->getOperand(1);
322
323      // If the other operand is a 8-bit immediate we should fold the immediate
324      // instead. This reduces code size.
325      // e.g.
326      // movl 4(%esp), %eax
327      // addl $4, %eax
328      // vs.
329      // movl $4, %eax
330      // addl 4(%esp), %eax
331      // The former is 2 bytes shorter. In case where the increment is 1, then
332      // the saving can be 4 bytes (by using incl %eax).
333      if (ConstantSDNode *Imm = dyn_cast<ConstantSDNode>(Op1))
334        if (Imm->getAPIntValue().isSignedIntN(8))
335          return false;
336
337      // If the other operand is a TLS address, we should fold it instead.
338      // This produces
339      // movl    %gs:0, %eax
340      // leal    i@NTPOFF(%eax), %eax
341      // instead of
342      // movl    $i@NTPOFF, %eax
343      // addl    %gs:0, %eax
344      // if the block also has an access to a second TLS address this will save
345      // a load.
346      // FIXME: This is probably also true for non TLS addresses.
347      if (Op1.getOpcode() == X86ISD::Wrapper) {
348        SDValue Val = Op1.getOperand(0);
349        if (Val.getOpcode() == ISD::TargetGlobalTLSAddress)
350          return false;
351      }
352    }
353    }
354  }
355
356  return true;
357}
358
359/// MoveBelowCallOrigChain - Replace the original chain operand of the call with
360/// load's chain operand and move load below the call's chain operand.
361static void MoveBelowOrigChain(SelectionDAG *CurDAG, SDValue Load,
362                                  SDValue Call, SDValue OrigChain) {
363  SmallVector<SDValue, 8> Ops;
364  SDValue Chain = OrigChain.getOperand(0);
365  if (Chain.getNode() == Load.getNode())
366    Ops.push_back(Load.getOperand(0));
367  else {
368    assert(Chain.getOpcode() == ISD::TokenFactor &&
369           "Unexpected chain operand");
370    for (unsigned i = 0, e = Chain.getNumOperands(); i != e; ++i)
371      if (Chain.getOperand(i).getNode() == Load.getNode())
372        Ops.push_back(Load.getOperand(0));
373      else
374        Ops.push_back(Chain.getOperand(i));
375    SDValue NewChain =
376      CurDAG->getNode(ISD::TokenFactor, Load.getDebugLoc(),
377                      MVT::Other, &Ops[0], Ops.size());
378    Ops.clear();
379    Ops.push_back(NewChain);
380  }
381  for (unsigned i = 1, e = OrigChain.getNumOperands(); i != e; ++i)
382    Ops.push_back(OrigChain.getOperand(i));
383  CurDAG->UpdateNodeOperands(OrigChain.getNode(), &Ops[0], Ops.size());
384  CurDAG->UpdateNodeOperands(Load.getNode(), Call.getOperand(0),
385                             Load.getOperand(1), Load.getOperand(2));
386  Ops.clear();
387  Ops.push_back(SDValue(Load.getNode(), 1));
388  for (unsigned i = 1, e = Call.getNode()->getNumOperands(); i != e; ++i)
389    Ops.push_back(Call.getOperand(i));
390  CurDAG->UpdateNodeOperands(Call.getNode(), &Ops[0], Ops.size());
391}
392
393/// isCalleeLoad - Return true if call address is a load and it can be
394/// moved below CALLSEQ_START and the chains leading up to the call.
395/// Return the CALLSEQ_START by reference as a second output.
396/// In the case of a tail call, there isn't a callseq node between the call
397/// chain and the load.
398static bool isCalleeLoad(SDValue Callee, SDValue &Chain, bool HasCallSeq) {
399  if (Callee.getNode() == Chain.getNode() || !Callee.hasOneUse())
400    return false;
401  LoadSDNode *LD = dyn_cast<LoadSDNode>(Callee.getNode());
402  if (!LD ||
403      LD->isVolatile() ||
404      LD->getAddressingMode() != ISD::UNINDEXED ||
405      LD->getExtensionType() != ISD::NON_EXTLOAD)
406    return false;
407
408  // Now let's find the callseq_start.
409  while (HasCallSeq && Chain.getOpcode() != ISD::CALLSEQ_START) {
410    if (!Chain.hasOneUse())
411      return false;
412    Chain = Chain.getOperand(0);
413  }
414
415  if (!Chain.getNumOperands())
416    return false;
417  if (Chain.getOperand(0).getNode() == Callee.getNode())
418    return true;
419  if (Chain.getOperand(0).getOpcode() == ISD::TokenFactor &&
420      Callee.getValue(1).isOperandOf(Chain.getOperand(0).getNode()) &&
421      Callee.getValue(1).hasOneUse())
422    return true;
423  return false;
424}
425
426void X86DAGToDAGISel::PreprocessISelDAG() {
427  // OptForSize is used in pattern predicates that isel is matching.
428  OptForSize = MF->getFunction()->hasFnAttr(Attribute::OptimizeForSize);
429
430  for (SelectionDAG::allnodes_iterator I = CurDAG->allnodes_begin(),
431       E = CurDAG->allnodes_end(); I != E; ) {
432    SDNode *N = I++;  // Preincrement iterator to avoid invalidation issues.
433
434    if (OptLevel != CodeGenOpt::None &&
435        (N->getOpcode() == X86ISD::CALL ||
436         N->getOpcode() == X86ISD::TC_RETURN)) {
437      /// Also try moving call address load from outside callseq_start to just
438      /// before the call to allow it to be folded.
439      ///
440      ///     [Load chain]
441      ///         ^
442      ///         |
443      ///       [Load]
444      ///       ^    ^
445      ///       |    |
446      ///      /      \--
447      ///     /          |
448      ///[CALLSEQ_START] |
449      ///     ^          |
450      ///     |          |
451      /// [LOAD/C2Reg]   |
452      ///     |          |
453      ///      \        /
454      ///       \      /
455      ///       [CALL]
456      bool HasCallSeq = N->getOpcode() == X86ISD::CALL;
457      SDValue Chain = N->getOperand(0);
458      SDValue Load  = N->getOperand(1);
459      if (!isCalleeLoad(Load, Chain, HasCallSeq))
460        continue;
461      MoveBelowOrigChain(CurDAG, Load, SDValue(N, 0), Chain);
462      ++NumLoadMoved;
463      continue;
464    }
465
466    // Lower fpround and fpextend nodes that target the FP stack to be store and
467    // load to the stack.  This is a gross hack.  We would like to simply mark
468    // these as being illegal, but when we do that, legalize produces these when
469    // it expands calls, then expands these in the same legalize pass.  We would
470    // like dag combine to be able to hack on these between the call expansion
471    // and the node legalization.  As such this pass basically does "really
472    // late" legalization of these inline with the X86 isel pass.
473    // FIXME: This should only happen when not compiled with -O0.
474    if (N->getOpcode() != ISD::FP_ROUND && N->getOpcode() != ISD::FP_EXTEND)
475      continue;
476
477    EVT SrcVT = N->getOperand(0).getValueType();
478    EVT DstVT = N->getValueType(0);
479
480    // If any of the sources are vectors, no fp stack involved.
481    if (SrcVT.isVector() || DstVT.isVector())
482      continue;
483
484    // If the source and destination are SSE registers, then this is a legal
485    // conversion that should not be lowered.
486    bool SrcIsSSE = X86Lowering.isScalarFPTypeInSSEReg(SrcVT);
487    bool DstIsSSE = X86Lowering.isScalarFPTypeInSSEReg(DstVT);
488    if (SrcIsSSE && DstIsSSE)
489      continue;
490
491    if (!SrcIsSSE && !DstIsSSE) {
492      // If this is an FPStack extension, it is a noop.
493      if (N->getOpcode() == ISD::FP_EXTEND)
494        continue;
495      // If this is a value-preserving FPStack truncation, it is a noop.
496      if (N->getConstantOperandVal(1))
497        continue;
498    }
499
500    // Here we could have an FP stack truncation or an FPStack <-> SSE convert.
501    // FPStack has extload and truncstore.  SSE can fold direct loads into other
502    // operations.  Based on this, decide what we want to do.
503    EVT MemVT;
504    if (N->getOpcode() == ISD::FP_ROUND)
505      MemVT = DstVT;  // FP_ROUND must use DstVT, we can't do a 'trunc load'.
506    else
507      MemVT = SrcIsSSE ? SrcVT : DstVT;
508
509    SDValue MemTmp = CurDAG->CreateStackTemporary(MemVT);
510    DebugLoc dl = N->getDebugLoc();
511
512    // FIXME: optimize the case where the src/dest is a load or store?
513    SDValue Store = CurDAG->getTruncStore(CurDAG->getEntryNode(), dl,
514                                          N->getOperand(0),
515                                          MemTmp, MachinePointerInfo(), MemVT,
516                                          false, false, 0);
517    SDValue Result = CurDAG->getExtLoad(ISD::EXTLOAD, dl, DstVT, Store, MemTmp,
518                                        MachinePointerInfo(),
519                                        MemVT, false, false, 0);
520
521    // We're about to replace all uses of the FP_ROUND/FP_EXTEND with the
522    // extload we created.  This will cause general havok on the dag because
523    // anything below the conversion could be folded into other existing nodes.
524    // To avoid invalidating 'I', back it up to the convert node.
525    --I;
526    CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Result);
527
528    // Now that we did that, the node is dead.  Increment the iterator to the
529    // next node to process, then delete N.
530    ++I;
531    CurDAG->DeleteNode(N);
532  }
533}
534
535
536/// EmitSpecialCodeForMain - Emit any code that needs to be executed only in
537/// the main function.
538void X86DAGToDAGISel::EmitSpecialCodeForMain(MachineBasicBlock *BB,
539                                             MachineFrameInfo *MFI) {
540  const TargetInstrInfo *TII = TM.getInstrInfo();
541  if (Subtarget->isTargetCygMing()) {
542    unsigned CallOp =
543      Subtarget->is64Bit() ? X86::WINCALL64pcrel32 : X86::CALLpcrel32;
544    BuildMI(BB, DebugLoc(),
545            TII->get(CallOp)).addExternalSymbol("__main");
546  }
547}
548
549void X86DAGToDAGISel::EmitFunctionEntryCode() {
550  // If this is main, emit special code for main.
551  if (const Function *Fn = MF->getFunction())
552    if (Fn->hasExternalLinkage() && Fn->getName() == "main")
553      EmitSpecialCodeForMain(MF->begin(), MF->getFrameInfo());
554}
555
556static bool isDispSafeForFrameIndex(int64_t Val) {
557  // On 64-bit platforms, we can run into an issue where a frame index
558  // includes a displacement that, when added to the explicit displacement,
559  // will overflow the displacement field. Assuming that the frame index
560  // displacement fits into a 31-bit integer  (which is only slightly more
561  // aggressive than the current fundamental assumption that it fits into
562  // a 32-bit integer), a 31-bit disp should always be safe.
563  return isInt<31>(Val);
564}
565
566bool X86DAGToDAGISel::FoldOffsetIntoAddress(uint64_t Offset,
567                                            X86ISelAddressMode &AM) {
568  int64_t Val = AM.Disp + Offset;
569  CodeModel::Model M = TM.getCodeModel();
570  if (Subtarget->is64Bit()) {
571    if (!X86::isOffsetSuitableForCodeModel(Val, M,
572                                           AM.hasSymbolicDisplacement()))
573      return true;
574    // In addition to the checks required for a register base, check that
575    // we do not try to use an unsafe Disp with a frame index.
576    if (AM.BaseType == X86ISelAddressMode::FrameIndexBase &&
577        !isDispSafeForFrameIndex(Val))
578      return true;
579  }
580  AM.Disp = Val;
581  return false;
582
583}
584
585bool X86DAGToDAGISel::MatchLoadInAddress(LoadSDNode *N, X86ISelAddressMode &AM){
586  SDValue Address = N->getOperand(1);
587
588  // load gs:0 -> GS segment register.
589  // load fs:0 -> FS segment register.
590  //
591  // This optimization is valid because the GNU TLS model defines that
592  // gs:0 (or fs:0 on X86-64) contains its own address.
593  // For more information see http://people.redhat.com/drepper/tls.pdf
594  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Address))
595    if (C->getSExtValue() == 0 && AM.Segment.getNode() == 0 &&
596        Subtarget->isTargetELF())
597      switch (N->getPointerInfo().getAddrSpace()) {
598      case 256:
599        AM.Segment = CurDAG->getRegister(X86::GS, MVT::i16);
600        return false;
601      case 257:
602        AM.Segment = CurDAG->getRegister(X86::FS, MVT::i16);
603        return false;
604      }
605
606  return true;
607}
608
609/// MatchWrapper - Try to match X86ISD::Wrapper and X86ISD::WrapperRIP nodes
610/// into an addressing mode.  These wrap things that will resolve down into a
611/// symbol reference.  If no match is possible, this returns true, otherwise it
612/// returns false.
613bool X86DAGToDAGISel::MatchWrapper(SDValue N, X86ISelAddressMode &AM) {
614  // If the addressing mode already has a symbol as the displacement, we can
615  // never match another symbol.
616  if (AM.hasSymbolicDisplacement())
617    return true;
618
619  SDValue N0 = N.getOperand(0);
620  CodeModel::Model M = TM.getCodeModel();
621
622  // Handle X86-64 rip-relative addresses.  We check this before checking direct
623  // folding because RIP is preferable to non-RIP accesses.
624  if (Subtarget->is64Bit() &&
625      // Under X86-64 non-small code model, GV (and friends) are 64-bits, so
626      // they cannot be folded into immediate fields.
627      // FIXME: This can be improved for kernel and other models?
628      (M == CodeModel::Small || M == CodeModel::Kernel) &&
629      // Base and index reg must be 0 in order to use %rip as base and lowering
630      // must allow RIP.
631      !AM.hasBaseOrIndexReg() && N.getOpcode() == X86ISD::WrapperRIP) {
632    if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(N0)) {
633      X86ISelAddressMode Backup = AM;
634      AM.GV = G->getGlobal();
635      AM.SymbolFlags = G->getTargetFlags();
636      if (FoldOffsetIntoAddress(G->getOffset(), AM)) {
637        AM = Backup;
638        return true;
639      }
640    } else if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(N0)) {
641      X86ISelAddressMode Backup = AM;
642      AM.CP = CP->getConstVal();
643      AM.Align = CP->getAlignment();
644      AM.SymbolFlags = CP->getTargetFlags();
645      if (FoldOffsetIntoAddress(CP->getOffset(), AM)) {
646        AM = Backup;
647        return true;
648      }
649    } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(N0)) {
650      AM.ES = S->getSymbol();
651      AM.SymbolFlags = S->getTargetFlags();
652    } else if (JumpTableSDNode *J = dyn_cast<JumpTableSDNode>(N0)) {
653      AM.JT = J->getIndex();
654      AM.SymbolFlags = J->getTargetFlags();
655    } else {
656      AM.BlockAddr = cast<BlockAddressSDNode>(N0)->getBlockAddress();
657      AM.SymbolFlags = cast<BlockAddressSDNode>(N0)->getTargetFlags();
658    }
659
660    if (N.getOpcode() == X86ISD::WrapperRIP)
661      AM.setBaseReg(CurDAG->getRegister(X86::RIP, MVT::i64));
662    return false;
663  }
664
665  // Handle the case when globals fit in our immediate field: This is true for
666  // X86-32 always and X86-64 when in -static -mcmodel=small mode.  In 64-bit
667  // mode, this results in a non-RIP-relative computation.
668  if (!Subtarget->is64Bit() ||
669      ((M == CodeModel::Small || M == CodeModel::Kernel) &&
670       TM.getRelocationModel() == Reloc::Static)) {
671    if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(N0)) {
672      AM.GV = G->getGlobal();
673      AM.Disp += G->getOffset();
674      AM.SymbolFlags = G->getTargetFlags();
675    } else if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(N0)) {
676      AM.CP = CP->getConstVal();
677      AM.Align = CP->getAlignment();
678      AM.Disp += CP->getOffset();
679      AM.SymbolFlags = CP->getTargetFlags();
680    } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(N0)) {
681      AM.ES = S->getSymbol();
682      AM.SymbolFlags = S->getTargetFlags();
683    } else if (JumpTableSDNode *J = dyn_cast<JumpTableSDNode>(N0)) {
684      AM.JT = J->getIndex();
685      AM.SymbolFlags = J->getTargetFlags();
686    } else {
687      AM.BlockAddr = cast<BlockAddressSDNode>(N0)->getBlockAddress();
688      AM.SymbolFlags = cast<BlockAddressSDNode>(N0)->getTargetFlags();
689    }
690    return false;
691  }
692
693  return true;
694}
695
696/// MatchAddress - Add the specified node to the specified addressing mode,
697/// returning true if it cannot be done.  This just pattern matches for the
698/// addressing mode.
699bool X86DAGToDAGISel::MatchAddress(SDValue N, X86ISelAddressMode &AM) {
700  if (MatchAddressRecursively(N, AM, 0))
701    return true;
702
703  // Post-processing: Convert lea(,%reg,2) to lea(%reg,%reg), which has
704  // a smaller encoding and avoids a scaled-index.
705  if (AM.Scale == 2 &&
706      AM.BaseType == X86ISelAddressMode::RegBase &&
707      AM.Base_Reg.getNode() == 0) {
708    AM.Base_Reg = AM.IndexReg;
709    AM.Scale = 1;
710  }
711
712  // Post-processing: Convert foo to foo(%rip), even in non-PIC mode,
713  // because it has a smaller encoding.
714  // TODO: Which other code models can use this?
715  if (TM.getCodeModel() == CodeModel::Small &&
716      Subtarget->is64Bit() &&
717      AM.Scale == 1 &&
718      AM.BaseType == X86ISelAddressMode::RegBase &&
719      AM.Base_Reg.getNode() == 0 &&
720      AM.IndexReg.getNode() == 0 &&
721      AM.SymbolFlags == X86II::MO_NO_FLAG &&
722      AM.hasSymbolicDisplacement())
723    AM.Base_Reg = CurDAG->getRegister(X86::RIP, MVT::i64);
724
725  return false;
726}
727
728// Implement some heroics to detect shifts of masked values where the mask can
729// be replaced by extending the shift and undoing that in the addressing mode
730// scale. Patterns such as (shl (srl x, c1), c2) are canonicalized into (and
731// (srl x, SHIFT), MASK) by DAGCombines that don't know the shl can be done in
732// the addressing mode. This results in code such as:
733//
734//   int f(short *y, int *lookup_table) {
735//     ...
736//     return *y + lookup_table[*y >> 11];
737//   }
738//
739// Turning into:
740//   movzwl (%rdi), %eax
741//   movl %eax, %ecx
742//   shrl $11, %ecx
743//   addl (%rsi,%rcx,4), %eax
744//
745// Instead of:
746//   movzwl (%rdi), %eax
747//   movl %eax, %ecx
748//   shrl $9, %ecx
749//   andl $124, %rcx
750//   addl (%rsi,%rcx), %eax
751//
752static bool FoldMaskAndShiftToScale(SelectionDAG &DAG, SDValue N,
753                                    X86ISelAddressMode &AM) {
754  // Scale must not be used already.
755  if (AM.IndexReg.getNode() != 0 || AM.Scale != 1) return true;
756
757  SDValue Shift = N;
758  SDValue And = N.getOperand(0);
759  if (N.getOpcode() != ISD::SRL)
760    std::swap(Shift, And);
761  if (Shift.getOpcode() != ISD::SRL || And.getOpcode() != ISD::AND ||
762      !Shift.hasOneUse() ||
763      !isa<ConstantSDNode>(Shift.getOperand(1)) ||
764      !isa<ConstantSDNode>(And.getOperand(1)))
765    return true;
766  SDValue X = (N == Shift ? And.getOperand(0) : Shift.getOperand(0));
767
768  // We only handle up to 64-bit values here as those are what matter for
769  // addressing mode optimizations.
770  if (X.getValueSizeInBits() > 64) return true;
771
772  uint64_t Mask = And.getConstantOperandVal(1);
773  unsigned ShiftAmt = Shift.getConstantOperandVal(1);
774  unsigned MaskLZ = CountLeadingZeros_64(Mask);
775  unsigned MaskTZ = CountTrailingZeros_64(Mask);
776
777  // The amount of shift we're trying to fit into the addressing mode is taken
778  // from the trailing zeros of the mask. If the mask is pre-shift, we subtract
779  // the shift amount.
780  int AMShiftAmt = MaskTZ - (N == Shift ? ShiftAmt : 0);
781
782  // There is nothing we can do here unless the mask is removing some bits.
783  // Also, the addressing mode can only represent shifts of 1, 2, or 3 bits.
784  if (AMShiftAmt <= 0 || AMShiftAmt > 3) return true;
785
786  // We also need to ensure that mask is a continuous run of bits.
787  if (CountTrailingOnes_64(Mask >> MaskTZ) + MaskTZ + MaskLZ != 64) return true;
788
789  // Scale the leading zero count down based on the actual size of the value.
790  // Also scale it down based on the size of the shift if it was applied
791  // before the mask.
792  MaskLZ -= (64 - X.getValueSizeInBits()) + (N == Shift ? 0 : ShiftAmt);
793
794  // The final check is to ensure that any masked out high bits of X are
795  // already known to be zero. Otherwise, the mask has a semantic impact
796  // other than masking out a couple of low bits. Unfortunately, because of
797  // the mask, zero extensions will be removed from operands in some cases.
798  // This code works extra hard to look through extensions because we can
799  // replace them with zero extensions cheaply if necessary.
800  bool ReplacingAnyExtend = false;
801  if (X.getOpcode() == ISD::ANY_EXTEND) {
802    unsigned ExtendBits =
803      X.getValueSizeInBits() - X.getOperand(0).getValueSizeInBits();
804    // Assume that we'll replace the any-extend with a zero-extend, and
805    // narrow the search to the extended value.
806    X = X.getOperand(0);
807    MaskLZ = ExtendBits > MaskLZ ? 0 : MaskLZ - ExtendBits;
808    ReplacingAnyExtend = true;
809  }
810  APInt MaskedHighBits = APInt::getHighBitsSet(X.getValueSizeInBits(),
811                                               MaskLZ);
812  APInt KnownZero, KnownOne;
813  DAG.ComputeMaskedBits(X, MaskedHighBits, KnownZero, KnownOne);
814  if (MaskedHighBits != KnownZero) return true;
815
816  // We've identified a pattern that can be transformed into a single shift
817  // and an addressing mode. Make it so.
818  EVT VT = N.getValueType();
819  if (ReplacingAnyExtend) {
820    assert(X.getValueType() != VT);
821    // We looked through an ANY_EXTEND node, insert a ZERO_EXTEND.
822    SDValue NewX = DAG.getNode(ISD::ZERO_EXTEND, X.getDebugLoc(), VT, X);
823    if (NewX.getNode()->getNodeId() == -1 ||
824        NewX.getNode()->getNodeId() > N.getNode()->getNodeId()) {
825      DAG.RepositionNode(N.getNode(), NewX.getNode());
826      NewX.getNode()->setNodeId(N.getNode()->getNodeId());
827    }
828    X = NewX;
829  }
830  DebugLoc DL = N.getDebugLoc();
831  SDValue NewSRLAmt = DAG.getConstant(ShiftAmt + AMShiftAmt, MVT::i8);
832  SDValue NewSRL = DAG.getNode(ISD::SRL, DL, VT, X, NewSRLAmt);
833  SDValue NewSHLAmt = DAG.getConstant(AMShiftAmt, MVT::i8);
834  SDValue NewSHL = DAG.getNode(ISD::SHL, DL, VT, NewSRL, NewSHLAmt);
835  if (NewSRLAmt.getNode()->getNodeId() == -1 ||
836      NewSRLAmt.getNode()->getNodeId() > N.getNode()->getNodeId()) {
837    DAG.RepositionNode(N.getNode(), NewSRLAmt.getNode());
838    NewSRLAmt.getNode()->setNodeId(N.getNode()->getNodeId());
839  }
840  if (NewSRL.getNode()->getNodeId() == -1 ||
841      NewSRL.getNode()->getNodeId() > N.getNode()->getNodeId()) {
842    DAG.RepositionNode(N.getNode(), NewSRL.getNode());
843    NewSRL.getNode()->setNodeId(N.getNode()->getNodeId());
844  }
845  if (NewSHLAmt.getNode()->getNodeId() == -1 ||
846      NewSHLAmt.getNode()->getNodeId() > N.getNode()->getNodeId()) {
847    DAG.RepositionNode(N.getNode(), NewSHLAmt.getNode());
848    NewSHLAmt.getNode()->setNodeId(N.getNode()->getNodeId());
849  }
850  if (NewSHL.getNode()->getNodeId() == -1 ||
851      NewSHL.getNode()->getNodeId() > N.getNode()->getNodeId()) {
852    DAG.RepositionNode(N.getNode(), NewSHL.getNode());
853    NewSHL.getNode()->setNodeId(N.getNode()->getNodeId());
854  }
855  DAG.ReplaceAllUsesWith(N, NewSHL);
856
857  AM.Scale = 1 << AMShiftAmt;
858  AM.IndexReg = NewSRL;
859  return false;
860}
861
862bool X86DAGToDAGISel::MatchAddressRecursively(SDValue N, X86ISelAddressMode &AM,
863                                              unsigned Depth) {
864  DebugLoc dl = N.getDebugLoc();
865  DEBUG({
866      dbgs() << "MatchAddress: ";
867      AM.dump();
868    });
869  // Limit recursion.
870  if (Depth > 5)
871    return MatchAddressBase(N, AM);
872
873  // If this is already a %rip relative address, we can only merge immediates
874  // into it.  Instead of handling this in every case, we handle it here.
875  // RIP relative addressing: %rip + 32-bit displacement!
876  if (AM.isRIPRelative()) {
877    // FIXME: JumpTable and ExternalSymbol address currently don't like
878    // displacements.  It isn't very important, but this should be fixed for
879    // consistency.
880    if (!AM.ES && AM.JT != -1) return true;
881
882    if (ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(N))
883      if (!FoldOffsetIntoAddress(Cst->getSExtValue(), AM))
884        return false;
885    return true;
886  }
887
888  switch (N.getOpcode()) {
889  default: break;
890  case ISD::Constant: {
891    uint64_t Val = cast<ConstantSDNode>(N)->getSExtValue();
892    if (!FoldOffsetIntoAddress(Val, AM))
893      return false;
894    break;
895  }
896
897  case X86ISD::Wrapper:
898  case X86ISD::WrapperRIP:
899    if (!MatchWrapper(N, AM))
900      return false;
901    break;
902
903  case ISD::LOAD:
904    if (!MatchLoadInAddress(cast<LoadSDNode>(N), AM))
905      return false;
906    break;
907
908  case ISD::FrameIndex:
909    if (AM.BaseType == X86ISelAddressMode::RegBase &&
910        AM.Base_Reg.getNode() == 0 &&
911        (!Subtarget->is64Bit() || isDispSafeForFrameIndex(AM.Disp))) {
912      AM.BaseType = X86ISelAddressMode::FrameIndexBase;
913      AM.Base_FrameIndex = cast<FrameIndexSDNode>(N)->getIndex();
914      return false;
915    }
916    break;
917
918  case ISD::SHL:
919    if (AM.IndexReg.getNode() != 0 || AM.Scale != 1)
920      break;
921
922    if (ConstantSDNode
923          *CN = dyn_cast<ConstantSDNode>(N.getNode()->getOperand(1))) {
924      unsigned Val = CN->getZExtValue();
925      // Note that we handle x<<1 as (,x,2) rather than (x,x) here so
926      // that the base operand remains free for further matching. If
927      // the base doesn't end up getting used, a post-processing step
928      // in MatchAddress turns (,x,2) into (x,x), which is cheaper.
929      if (Val == 1 || Val == 2 || Val == 3) {
930        AM.Scale = 1 << Val;
931        SDValue ShVal = N.getNode()->getOperand(0);
932
933        // Okay, we know that we have a scale by now.  However, if the scaled
934        // value is an add of something and a constant, we can fold the
935        // constant into the disp field here.
936        if (CurDAG->isBaseWithConstantOffset(ShVal)) {
937          AM.IndexReg = ShVal.getNode()->getOperand(0);
938          ConstantSDNode *AddVal =
939            cast<ConstantSDNode>(ShVal.getNode()->getOperand(1));
940          uint64_t Disp = AddVal->getSExtValue() << Val;
941          if (!FoldOffsetIntoAddress(Disp, AM))
942            return false;
943        }
944
945        AM.IndexReg = ShVal;
946        return false;
947      }
948    break;
949    }
950
951  case ISD::SRL:
952    // Try to fold the mask and shift into the scale, and return false if we
953    // succeed.
954    if (!FoldMaskAndShiftToScale(*CurDAG, N, AM))
955      return false;
956    break;
957
958  case ISD::SMUL_LOHI:
959  case ISD::UMUL_LOHI:
960    // A mul_lohi where we need the low part can be folded as a plain multiply.
961    if (N.getResNo() != 0) break;
962    // FALL THROUGH
963  case ISD::MUL:
964  case X86ISD::MUL_IMM:
965    // X*[3,5,9] -> X+X*[2,4,8]
966    if (AM.BaseType == X86ISelAddressMode::RegBase &&
967        AM.Base_Reg.getNode() == 0 &&
968        AM.IndexReg.getNode() == 0) {
969      if (ConstantSDNode
970            *CN = dyn_cast<ConstantSDNode>(N.getNode()->getOperand(1)))
971        if (CN->getZExtValue() == 3 || CN->getZExtValue() == 5 ||
972            CN->getZExtValue() == 9) {
973          AM.Scale = unsigned(CN->getZExtValue())-1;
974
975          SDValue MulVal = N.getNode()->getOperand(0);
976          SDValue Reg;
977
978          // Okay, we know that we have a scale by now.  However, if the scaled
979          // value is an add of something and a constant, we can fold the
980          // constant into the disp field here.
981          if (MulVal.getNode()->getOpcode() == ISD::ADD && MulVal.hasOneUse() &&
982              isa<ConstantSDNode>(MulVal.getNode()->getOperand(1))) {
983            Reg = MulVal.getNode()->getOperand(0);
984            ConstantSDNode *AddVal =
985              cast<ConstantSDNode>(MulVal.getNode()->getOperand(1));
986            uint64_t Disp = AddVal->getSExtValue() * CN->getZExtValue();
987            if (FoldOffsetIntoAddress(Disp, AM))
988              Reg = N.getNode()->getOperand(0);
989          } else {
990            Reg = N.getNode()->getOperand(0);
991          }
992
993          AM.IndexReg = AM.Base_Reg = Reg;
994          return false;
995        }
996    }
997    break;
998
999  case ISD::SUB: {
1000    // Given A-B, if A can be completely folded into the address and
1001    // the index field with the index field unused, use -B as the index.
1002    // This is a win if a has multiple parts that can be folded into
1003    // the address. Also, this saves a mov if the base register has
1004    // other uses, since it avoids a two-address sub instruction, however
1005    // it costs an additional mov if the index register has other uses.
1006
1007    // Add an artificial use to this node so that we can keep track of
1008    // it if it gets CSE'd with a different node.
1009    HandleSDNode Handle(N);
1010
1011    // Test if the LHS of the sub can be folded.
1012    X86ISelAddressMode Backup = AM;
1013    if (MatchAddressRecursively(N.getNode()->getOperand(0), AM, Depth+1)) {
1014      AM = Backup;
1015      break;
1016    }
1017    // Test if the index field is free for use.
1018    if (AM.IndexReg.getNode() || AM.isRIPRelative()) {
1019      AM = Backup;
1020      break;
1021    }
1022
1023    int Cost = 0;
1024    SDValue RHS = Handle.getValue().getNode()->getOperand(1);
1025    // If the RHS involves a register with multiple uses, this
1026    // transformation incurs an extra mov, due to the neg instruction
1027    // clobbering its operand.
1028    if (!RHS.getNode()->hasOneUse() ||
1029        RHS.getNode()->getOpcode() == ISD::CopyFromReg ||
1030        RHS.getNode()->getOpcode() == ISD::TRUNCATE ||
1031        RHS.getNode()->getOpcode() == ISD::ANY_EXTEND ||
1032        (RHS.getNode()->getOpcode() == ISD::ZERO_EXTEND &&
1033         RHS.getNode()->getOperand(0).getValueType() == MVT::i32))
1034      ++Cost;
1035    // If the base is a register with multiple uses, this
1036    // transformation may save a mov.
1037    if ((AM.BaseType == X86ISelAddressMode::RegBase &&
1038         AM.Base_Reg.getNode() &&
1039         !AM.Base_Reg.getNode()->hasOneUse()) ||
1040        AM.BaseType == X86ISelAddressMode::FrameIndexBase)
1041      --Cost;
1042    // If the folded LHS was interesting, this transformation saves
1043    // address arithmetic.
1044    if ((AM.hasSymbolicDisplacement() && !Backup.hasSymbolicDisplacement()) +
1045        ((AM.Disp != 0) && (Backup.Disp == 0)) +
1046        (AM.Segment.getNode() && !Backup.Segment.getNode()) >= 2)
1047      --Cost;
1048    // If it doesn't look like it may be an overall win, don't do it.
1049    if (Cost >= 0) {
1050      AM = Backup;
1051      break;
1052    }
1053
1054    // Ok, the transformation is legal and appears profitable. Go for it.
1055    SDValue Zero = CurDAG->getConstant(0, N.getValueType());
1056    SDValue Neg = CurDAG->getNode(ISD::SUB, dl, N.getValueType(), Zero, RHS);
1057    AM.IndexReg = Neg;
1058    AM.Scale = 1;
1059
1060    // Insert the new nodes into the topological ordering.
1061    if (Zero.getNode()->getNodeId() == -1 ||
1062        Zero.getNode()->getNodeId() > N.getNode()->getNodeId()) {
1063      CurDAG->RepositionNode(N.getNode(), Zero.getNode());
1064      Zero.getNode()->setNodeId(N.getNode()->getNodeId());
1065    }
1066    if (Neg.getNode()->getNodeId() == -1 ||
1067        Neg.getNode()->getNodeId() > N.getNode()->getNodeId()) {
1068      CurDAG->RepositionNode(N.getNode(), Neg.getNode());
1069      Neg.getNode()->setNodeId(N.getNode()->getNodeId());
1070    }
1071    return false;
1072  }
1073
1074  case ISD::ADD: {
1075    // Add an artificial use to this node so that we can keep track of
1076    // it if it gets CSE'd with a different node.
1077    HandleSDNode Handle(N);
1078
1079    X86ISelAddressMode Backup = AM;
1080    if (!MatchAddressRecursively(N.getOperand(0), AM, Depth+1) &&
1081        !MatchAddressRecursively(Handle.getValue().getOperand(1), AM, Depth+1))
1082      return false;
1083    AM = Backup;
1084
1085    // Try again after commuting the operands.
1086    if (!MatchAddressRecursively(Handle.getValue().getOperand(1), AM, Depth+1)&&
1087        !MatchAddressRecursively(Handle.getValue().getOperand(0), AM, Depth+1))
1088      return false;
1089    AM = Backup;
1090
1091    // If we couldn't fold both operands into the address at the same time,
1092    // see if we can just put each operand into a register and fold at least
1093    // the add.
1094    if (AM.BaseType == X86ISelAddressMode::RegBase &&
1095        !AM.Base_Reg.getNode() &&
1096        !AM.IndexReg.getNode()) {
1097      N = Handle.getValue();
1098      AM.Base_Reg = N.getOperand(0);
1099      AM.IndexReg = N.getOperand(1);
1100      AM.Scale = 1;
1101      return false;
1102    }
1103    N = Handle.getValue();
1104    break;
1105  }
1106
1107  case ISD::OR:
1108    // Handle "X | C" as "X + C" iff X is known to have C bits clear.
1109    if (CurDAG->isBaseWithConstantOffset(N)) {
1110      X86ISelAddressMode Backup = AM;
1111      ConstantSDNode *CN = cast<ConstantSDNode>(N.getOperand(1));
1112
1113      // Start with the LHS as an addr mode.
1114      if (!MatchAddressRecursively(N.getOperand(0), AM, Depth+1) &&
1115          !FoldOffsetIntoAddress(CN->getSExtValue(), AM))
1116        return false;
1117      AM = Backup;
1118    }
1119    break;
1120
1121  case ISD::AND: {
1122    // Perform some heroic transforms on an and of a constant-count shift
1123    // with a constant to enable use of the scaled offset field.
1124
1125    SDValue Shift = N.getOperand(0);
1126    if (Shift.getNumOperands() != 2) break;
1127
1128    // Scale must not be used already.
1129    if (AM.IndexReg.getNode() != 0 || AM.Scale != 1) break;
1130
1131    SDValue X = Shift.getOperand(0);
1132    ConstantSDNode *C2 = dyn_cast<ConstantSDNode>(N.getOperand(1));
1133    ConstantSDNode *C1 = dyn_cast<ConstantSDNode>(Shift.getOperand(1));
1134    if (!C1 || !C2) break;
1135
1136    // Handle "(X >> (8-C1)) & C2" as "(X >> 8) & 0xff)" if safe. This
1137    // allows us to convert the shift and and into an h-register extract and
1138    // a scaled index.
1139    if (Shift.getOpcode() == ISD::SRL && Shift.hasOneUse()) {
1140      int ScaleLog = 8 - C1->getZExtValue();
1141      if (ScaleLog > 0 && ScaleLog < 4 &&
1142          C2->getZExtValue() == (UINT64_C(0xff) << ScaleLog)) {
1143        SDValue Eight = CurDAG->getConstant(8, MVT::i8);
1144        SDValue Mask = CurDAG->getConstant(0xff, N.getValueType());
1145        SDValue Srl = CurDAG->getNode(ISD::SRL, dl, N.getValueType(),
1146                                      X, Eight);
1147        SDValue And = CurDAG->getNode(ISD::AND, dl, N.getValueType(),
1148                                      Srl, Mask);
1149        SDValue ShlCount = CurDAG->getConstant(ScaleLog, MVT::i8);
1150        SDValue Shl = CurDAG->getNode(ISD::SHL, dl, N.getValueType(),
1151                                      And, ShlCount);
1152
1153        // Insert the new nodes into the topological ordering.
1154        if (Eight.getNode()->getNodeId() == -1 ||
1155            Eight.getNode()->getNodeId() > X.getNode()->getNodeId()) {
1156          CurDAG->RepositionNode(X.getNode(), Eight.getNode());
1157          Eight.getNode()->setNodeId(X.getNode()->getNodeId());
1158        }
1159        if (Mask.getNode()->getNodeId() == -1 ||
1160            Mask.getNode()->getNodeId() > X.getNode()->getNodeId()) {
1161          CurDAG->RepositionNode(X.getNode(), Mask.getNode());
1162          Mask.getNode()->setNodeId(X.getNode()->getNodeId());
1163        }
1164        if (Srl.getNode()->getNodeId() == -1 ||
1165            Srl.getNode()->getNodeId() > Shift.getNode()->getNodeId()) {
1166          CurDAG->RepositionNode(Shift.getNode(), Srl.getNode());
1167          Srl.getNode()->setNodeId(Shift.getNode()->getNodeId());
1168        }
1169        if (And.getNode()->getNodeId() == -1 ||
1170            And.getNode()->getNodeId() > N.getNode()->getNodeId()) {
1171          CurDAG->RepositionNode(N.getNode(), And.getNode());
1172          And.getNode()->setNodeId(N.getNode()->getNodeId());
1173        }
1174        if (ShlCount.getNode()->getNodeId() == -1 ||
1175            ShlCount.getNode()->getNodeId() > X.getNode()->getNodeId()) {
1176          CurDAG->RepositionNode(X.getNode(), ShlCount.getNode());
1177          ShlCount.getNode()->setNodeId(N.getNode()->getNodeId());
1178        }
1179        if (Shl.getNode()->getNodeId() == -1 ||
1180            Shl.getNode()->getNodeId() > N.getNode()->getNodeId()) {
1181          CurDAG->RepositionNode(N.getNode(), Shl.getNode());
1182          Shl.getNode()->setNodeId(N.getNode()->getNodeId());
1183        }
1184        CurDAG->ReplaceAllUsesWith(N, Shl);
1185        AM.IndexReg = And;
1186        AM.Scale = (1 << ScaleLog);
1187        return false;
1188      }
1189    }
1190
1191    // Try to fold the mask and shift into the scale, and return false if we
1192    // succeed.
1193    if (!FoldMaskAndShiftToScale(*CurDAG, N, AM))
1194      return false;
1195
1196    // Handle "(X << C1) & C2" as "(X & (C2>>C1)) << C1" if safe and if this
1197    // allows us to fold the shift into this addressing mode.
1198    if (Shift.getOpcode() != ISD::SHL) break;
1199
1200    // Not likely to be profitable if either the AND or SHIFT node has more
1201    // than one use (unless all uses are for address computation). Besides,
1202    // isel mechanism requires their node ids to be reused.
1203    if (!N.hasOneUse() || !Shift.hasOneUse())
1204      break;
1205
1206    // Verify that the shift amount is something we can fold.
1207    unsigned ShiftCst = C1->getZExtValue();
1208    if (ShiftCst != 1 && ShiftCst != 2 && ShiftCst != 3)
1209      break;
1210
1211    // Get the new AND mask, this folds to a constant.
1212    SDValue NewANDMask = CurDAG->getNode(ISD::SRL, dl, N.getValueType(),
1213                                         SDValue(C2, 0), SDValue(C1, 0));
1214    SDValue NewAND = CurDAG->getNode(ISD::AND, dl, N.getValueType(), X,
1215                                     NewANDMask);
1216    SDValue NewSHIFT = CurDAG->getNode(ISD::SHL, dl, N.getValueType(),
1217                                       NewAND, SDValue(C1, 0));
1218
1219    // Insert the new nodes into the topological ordering.
1220    if (C1->getNodeId() > X.getNode()->getNodeId()) {
1221      CurDAG->RepositionNode(X.getNode(), C1);
1222      C1->setNodeId(X.getNode()->getNodeId());
1223    }
1224    if (NewANDMask.getNode()->getNodeId() == -1 ||
1225        NewANDMask.getNode()->getNodeId() > X.getNode()->getNodeId()) {
1226      CurDAG->RepositionNode(X.getNode(), NewANDMask.getNode());
1227      NewANDMask.getNode()->setNodeId(X.getNode()->getNodeId());
1228    }
1229    if (NewAND.getNode()->getNodeId() == -1 ||
1230        NewAND.getNode()->getNodeId() > Shift.getNode()->getNodeId()) {
1231      CurDAG->RepositionNode(Shift.getNode(), NewAND.getNode());
1232      NewAND.getNode()->setNodeId(Shift.getNode()->getNodeId());
1233    }
1234    if (NewSHIFT.getNode()->getNodeId() == -1 ||
1235        NewSHIFT.getNode()->getNodeId() > N.getNode()->getNodeId()) {
1236      CurDAG->RepositionNode(N.getNode(), NewSHIFT.getNode());
1237      NewSHIFT.getNode()->setNodeId(N.getNode()->getNodeId());
1238    }
1239
1240    CurDAG->ReplaceAllUsesWith(N, NewSHIFT);
1241
1242    AM.Scale = 1 << ShiftCst;
1243    AM.IndexReg = NewAND;
1244    return false;
1245  }
1246  }
1247
1248  return MatchAddressBase(N, AM);
1249}
1250
1251/// MatchAddressBase - Helper for MatchAddress. Add the specified node to the
1252/// specified addressing mode without any further recursion.
1253bool X86DAGToDAGISel::MatchAddressBase(SDValue N, X86ISelAddressMode &AM) {
1254  // Is the base register already occupied?
1255  if (AM.BaseType != X86ISelAddressMode::RegBase || AM.Base_Reg.getNode()) {
1256    // If so, check to see if the scale index register is set.
1257    if (AM.IndexReg.getNode() == 0) {
1258      AM.IndexReg = N;
1259      AM.Scale = 1;
1260      return false;
1261    }
1262
1263    // Otherwise, we cannot select it.
1264    return true;
1265  }
1266
1267  // Default, generate it as a register.
1268  AM.BaseType = X86ISelAddressMode::RegBase;
1269  AM.Base_Reg = N;
1270  return false;
1271}
1272
1273/// SelectAddr - returns true if it is able pattern match an addressing mode.
1274/// It returns the operands which make up the maximal addressing mode it can
1275/// match by reference.
1276///
1277/// Parent is the parent node of the addr operand that is being matched.  It
1278/// is always a load, store, atomic node, or null.  It is only null when
1279/// checking memory operands for inline asm nodes.
1280bool X86DAGToDAGISel::SelectAddr(SDNode *Parent, SDValue N, SDValue &Base,
1281                                 SDValue &Scale, SDValue &Index,
1282                                 SDValue &Disp, SDValue &Segment) {
1283  X86ISelAddressMode AM;
1284
1285  if (Parent &&
1286      // This list of opcodes are all the nodes that have an "addr:$ptr" operand
1287      // that are not a MemSDNode, and thus don't have proper addrspace info.
1288      Parent->getOpcode() != ISD::INTRINSIC_W_CHAIN && // unaligned loads, fixme
1289      Parent->getOpcode() != ISD::INTRINSIC_VOID && // nontemporal stores
1290      Parent->getOpcode() != X86ISD::TLSCALL) { // Fixme
1291    unsigned AddrSpace =
1292      cast<MemSDNode>(Parent)->getPointerInfo().getAddrSpace();
1293    // AddrSpace 256 -> GS, 257 -> FS.
1294    if (AddrSpace == 256)
1295      AM.Segment = CurDAG->getRegister(X86::GS, MVT::i16);
1296    if (AddrSpace == 257)
1297      AM.Segment = CurDAG->getRegister(X86::FS, MVT::i16);
1298  }
1299
1300  if (MatchAddress(N, AM))
1301    return false;
1302
1303  EVT VT = N.getValueType();
1304  if (AM.BaseType == X86ISelAddressMode::RegBase) {
1305    if (!AM.Base_Reg.getNode())
1306      AM.Base_Reg = CurDAG->getRegister(0, VT);
1307  }
1308
1309  if (!AM.IndexReg.getNode())
1310    AM.IndexReg = CurDAG->getRegister(0, VT);
1311
1312  getAddressOperands(AM, Base, Scale, Index, Disp, Segment);
1313  return true;
1314}
1315
1316/// SelectScalarSSELoad - Match a scalar SSE load.  In particular, we want to
1317/// match a load whose top elements are either undef or zeros.  The load flavor
1318/// is derived from the type of N, which is either v4f32 or v2f64.
1319///
1320/// We also return:
1321///   PatternChainNode: this is the matched node that has a chain input and
1322///   output.
1323bool X86DAGToDAGISel::SelectScalarSSELoad(SDNode *Root,
1324                                          SDValue N, SDValue &Base,
1325                                          SDValue &Scale, SDValue &Index,
1326                                          SDValue &Disp, SDValue &Segment,
1327                                          SDValue &PatternNodeWithChain) {
1328  if (N.getOpcode() == ISD::SCALAR_TO_VECTOR) {
1329    PatternNodeWithChain = N.getOperand(0);
1330    if (ISD::isNON_EXTLoad(PatternNodeWithChain.getNode()) &&
1331        PatternNodeWithChain.hasOneUse() &&
1332        IsProfitableToFold(N.getOperand(0), N.getNode(), Root) &&
1333        IsLegalToFold(N.getOperand(0), N.getNode(), Root, OptLevel)) {
1334      LoadSDNode *LD = cast<LoadSDNode>(PatternNodeWithChain);
1335      if (!SelectAddr(LD, LD->getBasePtr(), Base, Scale, Index, Disp, Segment))
1336        return false;
1337      return true;
1338    }
1339  }
1340
1341  // Also handle the case where we explicitly require zeros in the top
1342  // elements.  This is a vector shuffle from the zero vector.
1343  if (N.getOpcode() == X86ISD::VZEXT_MOVL && N.getNode()->hasOneUse() &&
1344      // Check to see if the top elements are all zeros (or bitcast of zeros).
1345      N.getOperand(0).getOpcode() == ISD::SCALAR_TO_VECTOR &&
1346      N.getOperand(0).getNode()->hasOneUse() &&
1347      ISD::isNON_EXTLoad(N.getOperand(0).getOperand(0).getNode()) &&
1348      N.getOperand(0).getOperand(0).hasOneUse() &&
1349      IsProfitableToFold(N.getOperand(0), N.getNode(), Root) &&
1350      IsLegalToFold(N.getOperand(0), N.getNode(), Root, OptLevel)) {
1351    // Okay, this is a zero extending load.  Fold it.
1352    LoadSDNode *LD = cast<LoadSDNode>(N.getOperand(0).getOperand(0));
1353    if (!SelectAddr(LD, LD->getBasePtr(), Base, Scale, Index, Disp, Segment))
1354      return false;
1355    PatternNodeWithChain = SDValue(LD, 0);
1356    return true;
1357  }
1358  return false;
1359}
1360
1361
1362/// SelectLEAAddr - it calls SelectAddr and determines if the maximal addressing
1363/// mode it matches can be cost effectively emitted as an LEA instruction.
1364bool X86DAGToDAGISel::SelectLEAAddr(SDValue N,
1365                                    SDValue &Base, SDValue &Scale,
1366                                    SDValue &Index, SDValue &Disp,
1367                                    SDValue &Segment) {
1368  X86ISelAddressMode AM;
1369
1370  // Set AM.Segment to prevent MatchAddress from using one. LEA doesn't support
1371  // segments.
1372  SDValue Copy = AM.Segment;
1373  SDValue T = CurDAG->getRegister(0, MVT::i32);
1374  AM.Segment = T;
1375  if (MatchAddress(N, AM))
1376    return false;
1377  assert (T == AM.Segment);
1378  AM.Segment = Copy;
1379
1380  EVT VT = N.getValueType();
1381  unsigned Complexity = 0;
1382  if (AM.BaseType == X86ISelAddressMode::RegBase)
1383    if (AM.Base_Reg.getNode())
1384      Complexity = 1;
1385    else
1386      AM.Base_Reg = CurDAG->getRegister(0, VT);
1387  else if (AM.BaseType == X86ISelAddressMode::FrameIndexBase)
1388    Complexity = 4;
1389
1390  if (AM.IndexReg.getNode())
1391    Complexity++;
1392  else
1393    AM.IndexReg = CurDAG->getRegister(0, VT);
1394
1395  // Don't match just leal(,%reg,2). It's cheaper to do addl %reg, %reg, or with
1396  // a simple shift.
1397  if (AM.Scale > 1)
1398    Complexity++;
1399
1400  // FIXME: We are artificially lowering the criteria to turn ADD %reg, $GA
1401  // to a LEA. This is determined with some expermentation but is by no means
1402  // optimal (especially for code size consideration). LEA is nice because of
1403  // its three-address nature. Tweak the cost function again when we can run
1404  // convertToThreeAddress() at register allocation time.
1405  if (AM.hasSymbolicDisplacement()) {
1406    // For X86-64, we should always use lea to materialize RIP relative
1407    // addresses.
1408    if (Subtarget->is64Bit())
1409      Complexity = 4;
1410    else
1411      Complexity += 2;
1412  }
1413
1414  if (AM.Disp && (AM.Base_Reg.getNode() || AM.IndexReg.getNode()))
1415    Complexity++;
1416
1417  // If it isn't worth using an LEA, reject it.
1418  if (Complexity <= 2)
1419    return false;
1420
1421  getAddressOperands(AM, Base, Scale, Index, Disp, Segment);
1422  return true;
1423}
1424
1425/// SelectTLSADDRAddr - This is only run on TargetGlobalTLSAddress nodes.
1426bool X86DAGToDAGISel::SelectTLSADDRAddr(SDValue N, SDValue &Base,
1427                                        SDValue &Scale, SDValue &Index,
1428                                        SDValue &Disp, SDValue &Segment) {
1429  assert(N.getOpcode() == ISD::TargetGlobalTLSAddress);
1430  const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
1431
1432  X86ISelAddressMode AM;
1433  AM.GV = GA->getGlobal();
1434  AM.Disp += GA->getOffset();
1435  AM.Base_Reg = CurDAG->getRegister(0, N.getValueType());
1436  AM.SymbolFlags = GA->getTargetFlags();
1437
1438  if (N.getValueType() == MVT::i32) {
1439    AM.Scale = 1;
1440    AM.IndexReg = CurDAG->getRegister(X86::EBX, MVT::i32);
1441  } else {
1442    AM.IndexReg = CurDAG->getRegister(0, MVT::i64);
1443  }
1444
1445  getAddressOperands(AM, Base, Scale, Index, Disp, Segment);
1446  return true;
1447}
1448
1449
1450bool X86DAGToDAGISel::TryFoldLoad(SDNode *P, SDValue N,
1451                                  SDValue &Base, SDValue &Scale,
1452                                  SDValue &Index, SDValue &Disp,
1453                                  SDValue &Segment) {
1454  if (!ISD::isNON_EXTLoad(N.getNode()) ||
1455      !IsProfitableToFold(N, P, P) ||
1456      !IsLegalToFold(N, P, P, OptLevel))
1457    return false;
1458
1459  return SelectAddr(N.getNode(),
1460                    N.getOperand(1), Base, Scale, Index, Disp, Segment);
1461}
1462
1463/// getGlobalBaseReg - Return an SDNode that returns the value of
1464/// the global base register. Output instructions required to
1465/// initialize the global base register, if necessary.
1466///
1467SDNode *X86DAGToDAGISel::getGlobalBaseReg() {
1468  unsigned GlobalBaseReg = getInstrInfo()->getGlobalBaseReg(MF);
1469  return CurDAG->getRegister(GlobalBaseReg, TLI.getPointerTy()).getNode();
1470}
1471
1472SDNode *X86DAGToDAGISel::SelectAtomic64(SDNode *Node, unsigned Opc) {
1473  SDValue Chain = Node->getOperand(0);
1474  SDValue In1 = Node->getOperand(1);
1475  SDValue In2L = Node->getOperand(2);
1476  SDValue In2H = Node->getOperand(3);
1477  SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
1478  if (!SelectAddr(Node, In1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4))
1479    return NULL;
1480  MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
1481  MemOp[0] = cast<MemSDNode>(Node)->getMemOperand();
1482  const SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, In2L, In2H, Chain};
1483  SDNode *ResNode = CurDAG->getMachineNode(Opc, Node->getDebugLoc(),
1484                                           MVT::i32, MVT::i32, MVT::Other, Ops,
1485                                           array_lengthof(Ops));
1486  cast<MachineSDNode>(ResNode)->setMemRefs(MemOp, MemOp + 1);
1487  return ResNode;
1488}
1489
1490// FIXME: Figure out some way to unify this with the 'or' and other code
1491// below.
1492SDNode *X86DAGToDAGISel::SelectAtomicLoadAdd(SDNode *Node, EVT NVT) {
1493  if (Node->hasAnyUseOfValue(0))
1494    return 0;
1495
1496  // Optimize common patterns for __sync_add_and_fetch and
1497  // __sync_sub_and_fetch where the result is not used. This allows us
1498  // to use "lock" version of add, sub, inc, dec instructions.
1499  // FIXME: Do not use special instructions but instead add the "lock"
1500  // prefix to the target node somehow. The extra information will then be
1501  // transferred to machine instruction and it denotes the prefix.
1502  SDValue Chain = Node->getOperand(0);
1503  SDValue Ptr = Node->getOperand(1);
1504  SDValue Val = Node->getOperand(2);
1505  SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
1506  if (!SelectAddr(Node, Ptr, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4))
1507    return 0;
1508
1509  bool isInc = false, isDec = false, isSub = false, isCN = false;
1510  ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Val);
1511  if (CN && CN->getSExtValue() == (int32_t)CN->getSExtValue()) {
1512    isCN = true;
1513    int64_t CNVal = CN->getSExtValue();
1514    if (CNVal == 1)
1515      isInc = true;
1516    else if (CNVal == -1)
1517      isDec = true;
1518    else if (CNVal >= 0)
1519      Val = CurDAG->getTargetConstant(CNVal, NVT);
1520    else {
1521      isSub = true;
1522      Val = CurDAG->getTargetConstant(-CNVal, NVT);
1523    }
1524  } else if (Val.hasOneUse() &&
1525             Val.getOpcode() == ISD::SUB &&
1526             X86::isZeroNode(Val.getOperand(0))) {
1527    isSub = true;
1528    Val = Val.getOperand(1);
1529  }
1530
1531  DebugLoc dl = Node->getDebugLoc();
1532  unsigned Opc = 0;
1533  switch (NVT.getSimpleVT().SimpleTy) {
1534  default: return 0;
1535  case MVT::i8:
1536    if (isInc)
1537      Opc = X86::LOCK_INC8m;
1538    else if (isDec)
1539      Opc = X86::LOCK_DEC8m;
1540    else if (isSub) {
1541      if (isCN)
1542        Opc = X86::LOCK_SUB8mi;
1543      else
1544        Opc = X86::LOCK_SUB8mr;
1545    } else {
1546      if (isCN)
1547        Opc = X86::LOCK_ADD8mi;
1548      else
1549        Opc = X86::LOCK_ADD8mr;
1550    }
1551    break;
1552  case MVT::i16:
1553    if (isInc)
1554      Opc = X86::LOCK_INC16m;
1555    else if (isDec)
1556      Opc = X86::LOCK_DEC16m;
1557    else if (isSub) {
1558      if (isCN) {
1559        if (immSext8(Val.getNode()))
1560          Opc = X86::LOCK_SUB16mi8;
1561        else
1562          Opc = X86::LOCK_SUB16mi;
1563      } else
1564        Opc = X86::LOCK_SUB16mr;
1565    } else {
1566      if (isCN) {
1567        if (immSext8(Val.getNode()))
1568          Opc = X86::LOCK_ADD16mi8;
1569        else
1570          Opc = X86::LOCK_ADD16mi;
1571      } else
1572        Opc = X86::LOCK_ADD16mr;
1573    }
1574    break;
1575  case MVT::i32:
1576    if (isInc)
1577      Opc = X86::LOCK_INC32m;
1578    else if (isDec)
1579      Opc = X86::LOCK_DEC32m;
1580    else if (isSub) {
1581      if (isCN) {
1582        if (immSext8(Val.getNode()))
1583          Opc = X86::LOCK_SUB32mi8;
1584        else
1585          Opc = X86::LOCK_SUB32mi;
1586      } else
1587        Opc = X86::LOCK_SUB32mr;
1588    } else {
1589      if (isCN) {
1590        if (immSext8(Val.getNode()))
1591          Opc = X86::LOCK_ADD32mi8;
1592        else
1593          Opc = X86::LOCK_ADD32mi;
1594      } else
1595        Opc = X86::LOCK_ADD32mr;
1596    }
1597    break;
1598  case MVT::i64:
1599    if (isInc)
1600      Opc = X86::LOCK_INC64m;
1601    else if (isDec)
1602      Opc = X86::LOCK_DEC64m;
1603    else if (isSub) {
1604      Opc = X86::LOCK_SUB64mr;
1605      if (isCN) {
1606        if (immSext8(Val.getNode()))
1607          Opc = X86::LOCK_SUB64mi8;
1608        else if (i64immSExt32(Val.getNode()))
1609          Opc = X86::LOCK_SUB64mi32;
1610      }
1611    } else {
1612      Opc = X86::LOCK_ADD64mr;
1613      if (isCN) {
1614        if (immSext8(Val.getNode()))
1615          Opc = X86::LOCK_ADD64mi8;
1616        else if (i64immSExt32(Val.getNode()))
1617          Opc = X86::LOCK_ADD64mi32;
1618      }
1619    }
1620    break;
1621  }
1622
1623  SDValue Undef = SDValue(CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF,
1624                                                 dl, NVT), 0);
1625  MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
1626  MemOp[0] = cast<MemSDNode>(Node)->getMemOperand();
1627  if (isInc || isDec) {
1628    SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Chain };
1629    SDValue Ret = SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Other, Ops, 6), 0);
1630    cast<MachineSDNode>(Ret)->setMemRefs(MemOp, MemOp + 1);
1631    SDValue RetVals[] = { Undef, Ret };
1632    return CurDAG->getMergeValues(RetVals, 2, dl).getNode();
1633  } else {
1634    SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Val, Chain };
1635    SDValue Ret = SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Other, Ops, 7), 0);
1636    cast<MachineSDNode>(Ret)->setMemRefs(MemOp, MemOp + 1);
1637    SDValue RetVals[] = { Undef, Ret };
1638    return CurDAG->getMergeValues(RetVals, 2, dl).getNode();
1639  }
1640}
1641
1642enum AtomicOpc {
1643  OR,
1644  AND,
1645  XOR,
1646  AtomicOpcEnd
1647};
1648
1649enum AtomicSz {
1650  ConstantI8,
1651  I8,
1652  SextConstantI16,
1653  ConstantI16,
1654  I16,
1655  SextConstantI32,
1656  ConstantI32,
1657  I32,
1658  SextConstantI64,
1659  ConstantI64,
1660  I64,
1661  AtomicSzEnd
1662};
1663
1664static const unsigned int AtomicOpcTbl[AtomicOpcEnd][AtomicSzEnd] = {
1665  {
1666    X86::LOCK_OR8mi,
1667    X86::LOCK_OR8mr,
1668    X86::LOCK_OR16mi8,
1669    X86::LOCK_OR16mi,
1670    X86::LOCK_OR16mr,
1671    X86::LOCK_OR32mi8,
1672    X86::LOCK_OR32mi,
1673    X86::LOCK_OR32mr,
1674    X86::LOCK_OR64mi8,
1675    X86::LOCK_OR64mi32,
1676    X86::LOCK_OR64mr
1677  },
1678  {
1679    X86::LOCK_AND8mi,
1680    X86::LOCK_AND8mr,
1681    X86::LOCK_AND16mi8,
1682    X86::LOCK_AND16mi,
1683    X86::LOCK_AND16mr,
1684    X86::LOCK_AND32mi8,
1685    X86::LOCK_AND32mi,
1686    X86::LOCK_AND32mr,
1687    X86::LOCK_AND64mi8,
1688    X86::LOCK_AND64mi32,
1689    X86::LOCK_AND64mr
1690  },
1691  {
1692    X86::LOCK_XOR8mi,
1693    X86::LOCK_XOR8mr,
1694    X86::LOCK_XOR16mi8,
1695    X86::LOCK_XOR16mi,
1696    X86::LOCK_XOR16mr,
1697    X86::LOCK_XOR32mi8,
1698    X86::LOCK_XOR32mi,
1699    X86::LOCK_XOR32mr,
1700    X86::LOCK_XOR64mi8,
1701    X86::LOCK_XOR64mi32,
1702    X86::LOCK_XOR64mr
1703  }
1704};
1705
1706SDNode *X86DAGToDAGISel::SelectAtomicLoadArith(SDNode *Node, EVT NVT) {
1707  if (Node->hasAnyUseOfValue(0))
1708    return 0;
1709
1710  // Optimize common patterns for __sync_or_and_fetch and similar arith
1711  // operations where the result is not used. This allows us to use the "lock"
1712  // version of the arithmetic instruction.
1713  // FIXME: Same as for 'add' and 'sub', try to merge those down here.
1714  SDValue Chain = Node->getOperand(0);
1715  SDValue Ptr = Node->getOperand(1);
1716  SDValue Val = Node->getOperand(2);
1717  SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
1718  if (!SelectAddr(Node, Ptr, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4))
1719    return 0;
1720
1721  // Which index into the table.
1722  enum AtomicOpc Op;
1723  switch (Node->getOpcode()) {
1724    case ISD::ATOMIC_LOAD_OR:
1725      Op = OR;
1726      break;
1727    case ISD::ATOMIC_LOAD_AND:
1728      Op = AND;
1729      break;
1730    case ISD::ATOMIC_LOAD_XOR:
1731      Op = XOR;
1732      break;
1733    default:
1734      return 0;
1735  }
1736
1737  bool isCN = false;
1738  ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Val);
1739  if (CN && (int32_t)CN->getSExtValue() == CN->getSExtValue()) {
1740    isCN = true;
1741    Val = CurDAG->getTargetConstant(CN->getSExtValue(), NVT);
1742  }
1743
1744  unsigned Opc = 0;
1745  switch (NVT.getSimpleVT().SimpleTy) {
1746    default: return 0;
1747    case MVT::i8:
1748      if (isCN)
1749        Opc = AtomicOpcTbl[Op][ConstantI8];
1750      else
1751        Opc = AtomicOpcTbl[Op][I8];
1752      break;
1753    case MVT::i16:
1754      if (isCN) {
1755        if (immSext8(Val.getNode()))
1756          Opc = AtomicOpcTbl[Op][SextConstantI16];
1757        else
1758          Opc = AtomicOpcTbl[Op][ConstantI16];
1759      } else
1760        Opc = AtomicOpcTbl[Op][I16];
1761      break;
1762    case MVT::i32:
1763      if (isCN) {
1764        if (immSext8(Val.getNode()))
1765          Opc = AtomicOpcTbl[Op][SextConstantI32];
1766        else
1767          Opc = AtomicOpcTbl[Op][ConstantI32];
1768      } else
1769        Opc = AtomicOpcTbl[Op][I32];
1770      break;
1771    case MVT::i64:
1772      Opc = AtomicOpcTbl[Op][I64];
1773      if (isCN) {
1774        if (immSext8(Val.getNode()))
1775          Opc = AtomicOpcTbl[Op][SextConstantI64];
1776        else if (i64immSExt32(Val.getNode()))
1777          Opc = AtomicOpcTbl[Op][ConstantI64];
1778      }
1779      break;
1780  }
1781
1782  assert(Opc != 0 && "Invalid arith lock transform!");
1783
1784  DebugLoc dl = Node->getDebugLoc();
1785  SDValue Undef = SDValue(CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF,
1786                                                 dl, NVT), 0);
1787  MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
1788  MemOp[0] = cast<MemSDNode>(Node)->getMemOperand();
1789  SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Val, Chain };
1790  SDValue Ret = SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Other, Ops, 7), 0);
1791  cast<MachineSDNode>(Ret)->setMemRefs(MemOp, MemOp + 1);
1792  SDValue RetVals[] = { Undef, Ret };
1793  return CurDAG->getMergeValues(RetVals, 2, dl).getNode();
1794}
1795
1796/// HasNoSignedComparisonUses - Test whether the given X86ISD::CMP node has
1797/// any uses which require the SF or OF bits to be accurate.
1798static bool HasNoSignedComparisonUses(SDNode *N) {
1799  // Examine each user of the node.
1800  for (SDNode::use_iterator UI = N->use_begin(),
1801         UE = N->use_end(); UI != UE; ++UI) {
1802    // Only examine CopyToReg uses.
1803    if (UI->getOpcode() != ISD::CopyToReg)
1804      return false;
1805    // Only examine CopyToReg uses that copy to EFLAGS.
1806    if (cast<RegisterSDNode>(UI->getOperand(1))->getReg() !=
1807          X86::EFLAGS)
1808      return false;
1809    // Examine each user of the CopyToReg use.
1810    for (SDNode::use_iterator FlagUI = UI->use_begin(),
1811           FlagUE = UI->use_end(); FlagUI != FlagUE; ++FlagUI) {
1812      // Only examine the Flag result.
1813      if (FlagUI.getUse().getResNo() != 1) continue;
1814      // Anything unusual: assume conservatively.
1815      if (!FlagUI->isMachineOpcode()) return false;
1816      // Examine the opcode of the user.
1817      switch (FlagUI->getMachineOpcode()) {
1818      // These comparisons don't treat the most significant bit specially.
1819      case X86::SETAr: case X86::SETAEr: case X86::SETBr: case X86::SETBEr:
1820      case X86::SETEr: case X86::SETNEr: case X86::SETPr: case X86::SETNPr:
1821      case X86::SETAm: case X86::SETAEm: case X86::SETBm: case X86::SETBEm:
1822      case X86::SETEm: case X86::SETNEm: case X86::SETPm: case X86::SETNPm:
1823      case X86::JA_4: case X86::JAE_4: case X86::JB_4: case X86::JBE_4:
1824      case X86::JE_4: case X86::JNE_4: case X86::JP_4: case X86::JNP_4:
1825      case X86::CMOVA16rr: case X86::CMOVA16rm:
1826      case X86::CMOVA32rr: case X86::CMOVA32rm:
1827      case X86::CMOVA64rr: case X86::CMOVA64rm:
1828      case X86::CMOVAE16rr: case X86::CMOVAE16rm:
1829      case X86::CMOVAE32rr: case X86::CMOVAE32rm:
1830      case X86::CMOVAE64rr: case X86::CMOVAE64rm:
1831      case X86::CMOVB16rr: case X86::CMOVB16rm:
1832      case X86::CMOVB32rr: case X86::CMOVB32rm:
1833      case X86::CMOVB64rr: case X86::CMOVB64rm:
1834      case X86::CMOVBE16rr: case X86::CMOVBE16rm:
1835      case X86::CMOVBE32rr: case X86::CMOVBE32rm:
1836      case X86::CMOVBE64rr: case X86::CMOVBE64rm:
1837      case X86::CMOVE16rr: case X86::CMOVE16rm:
1838      case X86::CMOVE32rr: case X86::CMOVE32rm:
1839      case X86::CMOVE64rr: case X86::CMOVE64rm:
1840      case X86::CMOVNE16rr: case X86::CMOVNE16rm:
1841      case X86::CMOVNE32rr: case X86::CMOVNE32rm:
1842      case X86::CMOVNE64rr: case X86::CMOVNE64rm:
1843      case X86::CMOVNP16rr: case X86::CMOVNP16rm:
1844      case X86::CMOVNP32rr: case X86::CMOVNP32rm:
1845      case X86::CMOVNP64rr: case X86::CMOVNP64rm:
1846      case X86::CMOVP16rr: case X86::CMOVP16rm:
1847      case X86::CMOVP32rr: case X86::CMOVP32rm:
1848      case X86::CMOVP64rr: case X86::CMOVP64rm:
1849        continue;
1850      // Anything else: assume conservatively.
1851      default: return false;
1852      }
1853    }
1854  }
1855  return true;
1856}
1857
1858SDNode *X86DAGToDAGISel::Select(SDNode *Node) {
1859  EVT NVT = Node->getValueType(0);
1860  unsigned Opc, MOpc;
1861  unsigned Opcode = Node->getOpcode();
1862  DebugLoc dl = Node->getDebugLoc();
1863
1864  DEBUG(dbgs() << "Selecting: "; Node->dump(CurDAG); dbgs() << '\n');
1865
1866  if (Node->isMachineOpcode()) {
1867    DEBUG(dbgs() << "== ";  Node->dump(CurDAG); dbgs() << '\n');
1868    return NULL;   // Already selected.
1869  }
1870
1871  switch (Opcode) {
1872  default: break;
1873  case X86ISD::GlobalBaseReg:
1874    return getGlobalBaseReg();
1875
1876  case X86ISD::ATOMOR64_DAG:
1877    return SelectAtomic64(Node, X86::ATOMOR6432);
1878  case X86ISD::ATOMXOR64_DAG:
1879    return SelectAtomic64(Node, X86::ATOMXOR6432);
1880  case X86ISD::ATOMADD64_DAG:
1881    return SelectAtomic64(Node, X86::ATOMADD6432);
1882  case X86ISD::ATOMSUB64_DAG:
1883    return SelectAtomic64(Node, X86::ATOMSUB6432);
1884  case X86ISD::ATOMNAND64_DAG:
1885    return SelectAtomic64(Node, X86::ATOMNAND6432);
1886  case X86ISD::ATOMAND64_DAG:
1887    return SelectAtomic64(Node, X86::ATOMAND6432);
1888  case X86ISD::ATOMSWAP64_DAG:
1889    return SelectAtomic64(Node, X86::ATOMSWAP6432);
1890
1891  case ISD::ATOMIC_LOAD_ADD: {
1892    SDNode *RetVal = SelectAtomicLoadAdd(Node, NVT);
1893    if (RetVal)
1894      return RetVal;
1895    break;
1896  }
1897  case ISD::ATOMIC_LOAD_XOR:
1898  case ISD::ATOMIC_LOAD_AND:
1899  case ISD::ATOMIC_LOAD_OR: {
1900    SDNode *RetVal = SelectAtomicLoadArith(Node, NVT);
1901    if (RetVal)
1902      return RetVal;
1903    break;
1904  }
1905  case ISD::AND:
1906  case ISD::OR:
1907  case ISD::XOR: {
1908    // For operations of the form (x << C1) op C2, check if we can use a smaller
1909    // encoding for C2 by transforming it into (x op (C2>>C1)) << C1.
1910    SDValue N0 = Node->getOperand(0);
1911    SDValue N1 = Node->getOperand(1);
1912
1913    if (N0->getOpcode() != ISD::SHL || !N0->hasOneUse())
1914      break;
1915
1916    // i8 is unshrinkable, i16 should be promoted to i32.
1917    if (NVT != MVT::i32 && NVT != MVT::i64)
1918      break;
1919
1920    ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(N1);
1921    ConstantSDNode *ShlCst = dyn_cast<ConstantSDNode>(N0->getOperand(1));
1922    if (!Cst || !ShlCst)
1923      break;
1924
1925    int64_t Val = Cst->getSExtValue();
1926    uint64_t ShlVal = ShlCst->getZExtValue();
1927
1928    // Make sure that we don't change the operation by removing bits.
1929    // This only matters for OR and XOR, AND is unaffected.
1930    if (Opcode != ISD::AND && ((Val >> ShlVal) << ShlVal) != Val)
1931      break;
1932
1933    unsigned ShlOp, Op = 0;
1934    EVT CstVT = NVT;
1935
1936    // Check the minimum bitwidth for the new constant.
1937    // TODO: AND32ri is the same as AND64ri32 with zext imm.
1938    // TODO: MOV32ri+OR64r is cheaper than MOV64ri64+OR64rr
1939    // TODO: Using 16 and 8 bit operations is also possible for or32 & xor32.
1940    if (!isInt<8>(Val) && isInt<8>(Val >> ShlVal))
1941      CstVT = MVT::i8;
1942    else if (!isInt<32>(Val) && isInt<32>(Val >> ShlVal))
1943      CstVT = MVT::i32;
1944
1945    // Bail if there is no smaller encoding.
1946    if (NVT == CstVT)
1947      break;
1948
1949    switch (NVT.getSimpleVT().SimpleTy) {
1950    default: llvm_unreachable("Unsupported VT!");
1951    case MVT::i32:
1952      assert(CstVT == MVT::i8);
1953      ShlOp = X86::SHL32ri;
1954
1955      switch (Opcode) {
1956      case ISD::AND: Op = X86::AND32ri8; break;
1957      case ISD::OR:  Op =  X86::OR32ri8; break;
1958      case ISD::XOR: Op = X86::XOR32ri8; break;
1959      }
1960      break;
1961    case MVT::i64:
1962      assert(CstVT == MVT::i8 || CstVT == MVT::i32);
1963      ShlOp = X86::SHL64ri;
1964
1965      switch (Opcode) {
1966      case ISD::AND: Op = CstVT==MVT::i8? X86::AND64ri8 : X86::AND64ri32; break;
1967      case ISD::OR:  Op = CstVT==MVT::i8?  X86::OR64ri8 :  X86::OR64ri32; break;
1968      case ISD::XOR: Op = CstVT==MVT::i8? X86::XOR64ri8 : X86::XOR64ri32; break;
1969      }
1970      break;
1971    }
1972
1973    // Emit the smaller op and the shift.
1974    SDValue NewCst = CurDAG->getTargetConstant(Val >> ShlVal, CstVT);
1975    SDNode *New = CurDAG->getMachineNode(Op, dl, NVT, N0->getOperand(0),NewCst);
1976    return CurDAG->SelectNodeTo(Node, ShlOp, NVT, SDValue(New, 0),
1977                                getI8Imm(ShlVal));
1978    break;
1979  }
1980  case X86ISD::UMUL: {
1981    SDValue N0 = Node->getOperand(0);
1982    SDValue N1 = Node->getOperand(1);
1983
1984    unsigned LoReg;
1985    switch (NVT.getSimpleVT().SimpleTy) {
1986    default: llvm_unreachable("Unsupported VT!");
1987    case MVT::i8:  LoReg = X86::AL;  Opc = X86::MUL8r; break;
1988    case MVT::i16: LoReg = X86::AX;  Opc = X86::MUL16r; break;
1989    case MVT::i32: LoReg = X86::EAX; Opc = X86::MUL32r; break;
1990    case MVT::i64: LoReg = X86::RAX; Opc = X86::MUL64r; break;
1991    }
1992
1993    SDValue InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, LoReg,
1994                                          N0, SDValue()).getValue(1);
1995
1996    SDVTList VTs = CurDAG->getVTList(NVT, NVT, MVT::i32);
1997    SDValue Ops[] = {N1, InFlag};
1998    SDNode *CNode = CurDAG->getMachineNode(Opc, dl, VTs, Ops, 2);
1999
2000    ReplaceUses(SDValue(Node, 0), SDValue(CNode, 0));
2001    ReplaceUses(SDValue(Node, 1), SDValue(CNode, 1));
2002    ReplaceUses(SDValue(Node, 2), SDValue(CNode, 2));
2003    return NULL;
2004  }
2005
2006  case ISD::SMUL_LOHI:
2007  case ISD::UMUL_LOHI: {
2008    SDValue N0 = Node->getOperand(0);
2009    SDValue N1 = Node->getOperand(1);
2010
2011    bool isSigned = Opcode == ISD::SMUL_LOHI;
2012    if (!isSigned) {
2013      switch (NVT.getSimpleVT().SimpleTy) {
2014      default: llvm_unreachable("Unsupported VT!");
2015      case MVT::i8:  Opc = X86::MUL8r;  MOpc = X86::MUL8m;  break;
2016      case MVT::i16: Opc = X86::MUL16r; MOpc = X86::MUL16m; break;
2017      case MVT::i32: Opc = X86::MUL32r; MOpc = X86::MUL32m; break;
2018      case MVT::i64: Opc = X86::MUL64r; MOpc = X86::MUL64m; break;
2019      }
2020    } else {
2021      switch (NVT.getSimpleVT().SimpleTy) {
2022      default: llvm_unreachable("Unsupported VT!");
2023      case MVT::i8:  Opc = X86::IMUL8r;  MOpc = X86::IMUL8m;  break;
2024      case MVT::i16: Opc = X86::IMUL16r; MOpc = X86::IMUL16m; break;
2025      case MVT::i32: Opc = X86::IMUL32r; MOpc = X86::IMUL32m; break;
2026      case MVT::i64: Opc = X86::IMUL64r; MOpc = X86::IMUL64m; break;
2027      }
2028    }
2029
2030    unsigned LoReg, HiReg;
2031    switch (NVT.getSimpleVT().SimpleTy) {
2032    default: llvm_unreachable("Unsupported VT!");
2033    case MVT::i8:  LoReg = X86::AL;  HiReg = X86::AH;  break;
2034    case MVT::i16: LoReg = X86::AX;  HiReg = X86::DX;  break;
2035    case MVT::i32: LoReg = X86::EAX; HiReg = X86::EDX; break;
2036    case MVT::i64: LoReg = X86::RAX; HiReg = X86::RDX; break;
2037    }
2038
2039    SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
2040    bool foldedLoad = TryFoldLoad(Node, N1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4);
2041    // Multiply is commmutative.
2042    if (!foldedLoad) {
2043      foldedLoad = TryFoldLoad(Node, N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4);
2044      if (foldedLoad)
2045        std::swap(N0, N1);
2046    }
2047
2048    SDValue InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, LoReg,
2049                                            N0, SDValue()).getValue(1);
2050
2051    if (foldedLoad) {
2052      SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N1.getOperand(0),
2053                        InFlag };
2054      SDNode *CNode =
2055        CurDAG->getMachineNode(MOpc, dl, MVT::Other, MVT::Glue, Ops,
2056                               array_lengthof(Ops));
2057      InFlag = SDValue(CNode, 1);
2058
2059      // Update the chain.
2060      ReplaceUses(N1.getValue(1), SDValue(CNode, 0));
2061    } else {
2062      SDNode *CNode = CurDAG->getMachineNode(Opc, dl, MVT::Glue, N1, InFlag);
2063      InFlag = SDValue(CNode, 0);
2064    }
2065
2066    // Prevent use of AH in a REX instruction by referencing AX instead.
2067    if (HiReg == X86::AH && Subtarget->is64Bit() &&
2068        !SDValue(Node, 1).use_empty()) {
2069      SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
2070                                              X86::AX, MVT::i16, InFlag);
2071      InFlag = Result.getValue(2);
2072      // Get the low part if needed. Don't use getCopyFromReg for aliasing
2073      // registers.
2074      if (!SDValue(Node, 0).use_empty())
2075        ReplaceUses(SDValue(Node, 1),
2076          CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl, MVT::i8, Result));
2077
2078      // Shift AX down 8 bits.
2079      Result = SDValue(CurDAG->getMachineNode(X86::SHR16ri, dl, MVT::i16,
2080                                              Result,
2081                                     CurDAG->getTargetConstant(8, MVT::i8)), 0);
2082      // Then truncate it down to i8.
2083      ReplaceUses(SDValue(Node, 1),
2084        CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl, MVT::i8, Result));
2085    }
2086    // Copy the low half of the result, if it is needed.
2087    if (!SDValue(Node, 0).use_empty()) {
2088      SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
2089                                                LoReg, NVT, InFlag);
2090      InFlag = Result.getValue(2);
2091      ReplaceUses(SDValue(Node, 0), Result);
2092      DEBUG(dbgs() << "=> "; Result.getNode()->dump(CurDAG); dbgs() << '\n');
2093    }
2094    // Copy the high half of the result, if it is needed.
2095    if (!SDValue(Node, 1).use_empty()) {
2096      SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
2097                                              HiReg, NVT, InFlag);
2098      InFlag = Result.getValue(2);
2099      ReplaceUses(SDValue(Node, 1), Result);
2100      DEBUG(dbgs() << "=> "; Result.getNode()->dump(CurDAG); dbgs() << '\n');
2101    }
2102
2103    return NULL;
2104  }
2105
2106  case ISD::SDIVREM:
2107  case ISD::UDIVREM: {
2108    SDValue N0 = Node->getOperand(0);
2109    SDValue N1 = Node->getOperand(1);
2110
2111    bool isSigned = Opcode == ISD::SDIVREM;
2112    if (!isSigned) {
2113      switch (NVT.getSimpleVT().SimpleTy) {
2114      default: llvm_unreachable("Unsupported VT!");
2115      case MVT::i8:  Opc = X86::DIV8r;  MOpc = X86::DIV8m;  break;
2116      case MVT::i16: Opc = X86::DIV16r; MOpc = X86::DIV16m; break;
2117      case MVT::i32: Opc = X86::DIV32r; MOpc = X86::DIV32m; break;
2118      case MVT::i64: Opc = X86::DIV64r; MOpc = X86::DIV64m; break;
2119      }
2120    } else {
2121      switch (NVT.getSimpleVT().SimpleTy) {
2122      default: llvm_unreachable("Unsupported VT!");
2123      case MVT::i8:  Opc = X86::IDIV8r;  MOpc = X86::IDIV8m;  break;
2124      case MVT::i16: Opc = X86::IDIV16r; MOpc = X86::IDIV16m; break;
2125      case MVT::i32: Opc = X86::IDIV32r; MOpc = X86::IDIV32m; break;
2126      case MVT::i64: Opc = X86::IDIV64r; MOpc = X86::IDIV64m; break;
2127      }
2128    }
2129
2130    unsigned LoReg, HiReg, ClrReg;
2131    unsigned ClrOpcode, SExtOpcode;
2132    switch (NVT.getSimpleVT().SimpleTy) {
2133    default: llvm_unreachable("Unsupported VT!");
2134    case MVT::i8:
2135      LoReg = X86::AL;  ClrReg = HiReg = X86::AH;
2136      ClrOpcode  = 0;
2137      SExtOpcode = X86::CBW;
2138      break;
2139    case MVT::i16:
2140      LoReg = X86::AX;  HiReg = X86::DX;
2141      ClrOpcode  = X86::MOV16r0; ClrReg = X86::DX;
2142      SExtOpcode = X86::CWD;
2143      break;
2144    case MVT::i32:
2145      LoReg = X86::EAX; ClrReg = HiReg = X86::EDX;
2146      ClrOpcode  = X86::MOV32r0;
2147      SExtOpcode = X86::CDQ;
2148      break;
2149    case MVT::i64:
2150      LoReg = X86::RAX; ClrReg = HiReg = X86::RDX;
2151      ClrOpcode  = X86::MOV64r0;
2152      SExtOpcode = X86::CQO;
2153      break;
2154    }
2155
2156    SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
2157    bool foldedLoad = TryFoldLoad(Node, N1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4);
2158    bool signBitIsZero = CurDAG->SignBitIsZero(N0);
2159
2160    SDValue InFlag;
2161    if (NVT == MVT::i8 && (!isSigned || signBitIsZero)) {
2162      // Special case for div8, just use a move with zero extension to AX to
2163      // clear the upper 8 bits (AH).
2164      SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Move, Chain;
2165      if (TryFoldLoad(Node, N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4)) {
2166        SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N0.getOperand(0) };
2167        Move =
2168          SDValue(CurDAG->getMachineNode(X86::MOVZX32rm8, dl, MVT::i32,
2169                                         MVT::Other, Ops,
2170                                         array_lengthof(Ops)), 0);
2171        Chain = Move.getValue(1);
2172        ReplaceUses(N0.getValue(1), Chain);
2173      } else {
2174        Move =
2175          SDValue(CurDAG->getMachineNode(X86::MOVZX32rr8, dl, MVT::i32, N0),0);
2176        Chain = CurDAG->getEntryNode();
2177      }
2178      Chain  = CurDAG->getCopyToReg(Chain, dl, X86::EAX, Move, SDValue());
2179      InFlag = Chain.getValue(1);
2180    } else {
2181      InFlag =
2182        CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl,
2183                             LoReg, N0, SDValue()).getValue(1);
2184      if (isSigned && !signBitIsZero) {
2185        // Sign extend the low part into the high part.
2186        InFlag =
2187          SDValue(CurDAG->getMachineNode(SExtOpcode, dl, MVT::Glue, InFlag),0);
2188      } else {
2189        // Zero out the high part, effectively zero extending the input.
2190        SDValue ClrNode =
2191          SDValue(CurDAG->getMachineNode(ClrOpcode, dl, NVT), 0);
2192        InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, ClrReg,
2193                                      ClrNode, InFlag).getValue(1);
2194      }
2195    }
2196
2197    if (foldedLoad) {
2198      SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N1.getOperand(0),
2199                        InFlag };
2200      SDNode *CNode =
2201        CurDAG->getMachineNode(MOpc, dl, MVT::Other, MVT::Glue, Ops,
2202                               array_lengthof(Ops));
2203      InFlag = SDValue(CNode, 1);
2204      // Update the chain.
2205      ReplaceUses(N1.getValue(1), SDValue(CNode, 0));
2206    } else {
2207      InFlag =
2208        SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Glue, N1, InFlag), 0);
2209    }
2210
2211    // Prevent use of AH in a REX instruction by referencing AX instead.
2212    // Shift it down 8 bits.
2213    if (HiReg == X86::AH && Subtarget->is64Bit() &&
2214        !SDValue(Node, 1).use_empty()) {
2215      SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
2216                                              X86::AX, MVT::i16, InFlag);
2217      InFlag = Result.getValue(2);
2218
2219      // If we also need AL (the quotient), get it by extracting a subreg from
2220      // Result. The fast register allocator does not like multiple CopyFromReg
2221      // nodes using aliasing registers.
2222      if (!SDValue(Node, 0).use_empty())
2223        ReplaceUses(SDValue(Node, 0),
2224          CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl, MVT::i8, Result));
2225
2226      // Shift AX right by 8 bits instead of using AH.
2227      Result = SDValue(CurDAG->getMachineNode(X86::SHR16ri, dl, MVT::i16,
2228                                         Result,
2229                                         CurDAG->getTargetConstant(8, MVT::i8)),
2230                       0);
2231      ReplaceUses(SDValue(Node, 1),
2232        CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl, MVT::i8, Result));
2233    }
2234    // Copy the division (low) result, if it is needed.
2235    if (!SDValue(Node, 0).use_empty()) {
2236      SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
2237                                                LoReg, NVT, InFlag);
2238      InFlag = Result.getValue(2);
2239      ReplaceUses(SDValue(Node, 0), Result);
2240      DEBUG(dbgs() << "=> "; Result.getNode()->dump(CurDAG); dbgs() << '\n');
2241    }
2242    // Copy the remainder (high) result, if it is needed.
2243    if (!SDValue(Node, 1).use_empty()) {
2244      SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
2245                                              HiReg, NVT, InFlag);
2246      InFlag = Result.getValue(2);
2247      ReplaceUses(SDValue(Node, 1), Result);
2248      DEBUG(dbgs() << "=> "; Result.getNode()->dump(CurDAG); dbgs() << '\n');
2249    }
2250    return NULL;
2251  }
2252
2253  case X86ISD::CMP: {
2254    SDValue N0 = Node->getOperand(0);
2255    SDValue N1 = Node->getOperand(1);
2256
2257    // Look for (X86cmp (and $op, $imm), 0) and see if we can convert it to
2258    // use a smaller encoding.
2259    if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse() &&
2260        HasNoSignedComparisonUses(Node))
2261      // Look past the truncate if CMP is the only use of it.
2262      N0 = N0.getOperand(0);
2263    if ((N0.getNode()->getOpcode() == ISD::AND ||
2264         (N0.getResNo() == 0 && N0.getNode()->getOpcode() == X86ISD::AND)) &&
2265        N0.getNode()->hasOneUse() &&
2266        N0.getValueType() != MVT::i8 &&
2267        X86::isZeroNode(N1)) {
2268      ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getNode()->getOperand(1));
2269      if (!C) break;
2270
2271      // For example, convert "testl %eax, $8" to "testb %al, $8"
2272      if ((C->getZExtValue() & ~UINT64_C(0xff)) == 0 &&
2273          (!(C->getZExtValue() & 0x80) ||
2274           HasNoSignedComparisonUses(Node))) {
2275        SDValue Imm = CurDAG->getTargetConstant(C->getZExtValue(), MVT::i8);
2276        SDValue Reg = N0.getNode()->getOperand(0);
2277
2278        // On x86-32, only the ABCD registers have 8-bit subregisters.
2279        if (!Subtarget->is64Bit()) {
2280          TargetRegisterClass *TRC = 0;
2281          switch (N0.getValueType().getSimpleVT().SimpleTy) {
2282          case MVT::i32: TRC = &X86::GR32_ABCDRegClass; break;
2283          case MVT::i16: TRC = &X86::GR16_ABCDRegClass; break;
2284          default: llvm_unreachable("Unsupported TEST operand type!");
2285          }
2286          SDValue RC = CurDAG->getTargetConstant(TRC->getID(), MVT::i32);
2287          Reg = SDValue(CurDAG->getMachineNode(X86::COPY_TO_REGCLASS, dl,
2288                                               Reg.getValueType(), Reg, RC), 0);
2289        }
2290
2291        // Extract the l-register.
2292        SDValue Subreg = CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl,
2293                                                        MVT::i8, Reg);
2294
2295        // Emit a testb.
2296        return CurDAG->getMachineNode(X86::TEST8ri, dl, MVT::i32, Subreg, Imm);
2297      }
2298
2299      // For example, "testl %eax, $2048" to "testb %ah, $8".
2300      if ((C->getZExtValue() & ~UINT64_C(0xff00)) == 0 &&
2301          (!(C->getZExtValue() & 0x8000) ||
2302           HasNoSignedComparisonUses(Node))) {
2303        // Shift the immediate right by 8 bits.
2304        SDValue ShiftedImm = CurDAG->getTargetConstant(C->getZExtValue() >> 8,
2305                                                       MVT::i8);
2306        SDValue Reg = N0.getNode()->getOperand(0);
2307
2308        // Put the value in an ABCD register.
2309        TargetRegisterClass *TRC = 0;
2310        switch (N0.getValueType().getSimpleVT().SimpleTy) {
2311        case MVT::i64: TRC = &X86::GR64_ABCDRegClass; break;
2312        case MVT::i32: TRC = &X86::GR32_ABCDRegClass; break;
2313        case MVT::i16: TRC = &X86::GR16_ABCDRegClass; break;
2314        default: llvm_unreachable("Unsupported TEST operand type!");
2315        }
2316        SDValue RC = CurDAG->getTargetConstant(TRC->getID(), MVT::i32);
2317        Reg = SDValue(CurDAG->getMachineNode(X86::COPY_TO_REGCLASS, dl,
2318                                             Reg.getValueType(), Reg, RC), 0);
2319
2320        // Extract the h-register.
2321        SDValue Subreg = CurDAG->getTargetExtractSubreg(X86::sub_8bit_hi, dl,
2322                                                        MVT::i8, Reg);
2323
2324        // Emit a testb.  The EXTRACT_SUBREG becomes a COPY that can only
2325        // target GR8_NOREX registers, so make sure the register class is
2326        // forced.
2327        return CurDAG->getMachineNode(X86::TEST8ri_NOREX, dl, MVT::i32,
2328                                      Subreg, ShiftedImm);
2329      }
2330
2331      // For example, "testl %eax, $32776" to "testw %ax, $32776".
2332      if ((C->getZExtValue() & ~UINT64_C(0xffff)) == 0 &&
2333          N0.getValueType() != MVT::i16 &&
2334          (!(C->getZExtValue() & 0x8000) ||
2335           HasNoSignedComparisonUses(Node))) {
2336        SDValue Imm = CurDAG->getTargetConstant(C->getZExtValue(), MVT::i16);
2337        SDValue Reg = N0.getNode()->getOperand(0);
2338
2339        // Extract the 16-bit subregister.
2340        SDValue Subreg = CurDAG->getTargetExtractSubreg(X86::sub_16bit, dl,
2341                                                        MVT::i16, Reg);
2342
2343        // Emit a testw.
2344        return CurDAG->getMachineNode(X86::TEST16ri, dl, MVT::i32, Subreg, Imm);
2345      }
2346
2347      // For example, "testq %rax, $268468232" to "testl %eax, $268468232".
2348      if ((C->getZExtValue() & ~UINT64_C(0xffffffff)) == 0 &&
2349          N0.getValueType() == MVT::i64 &&
2350          (!(C->getZExtValue() & 0x80000000) ||
2351           HasNoSignedComparisonUses(Node))) {
2352        SDValue Imm = CurDAG->getTargetConstant(C->getZExtValue(), MVT::i32);
2353        SDValue Reg = N0.getNode()->getOperand(0);
2354
2355        // Extract the 32-bit subregister.
2356        SDValue Subreg = CurDAG->getTargetExtractSubreg(X86::sub_32bit, dl,
2357                                                        MVT::i32, Reg);
2358
2359        // Emit a testl.
2360        return CurDAG->getMachineNode(X86::TEST32ri, dl, MVT::i32, Subreg, Imm);
2361      }
2362    }
2363    break;
2364  }
2365  case ISD::STORE: {
2366    // The DEC64m tablegen pattern is currently not able to match the case where
2367    // the EFLAGS on the original DEC are used.
2368    // we'll need to improve tablegen to allow flags to be transferred from a
2369    // node in the pattern to the result node.  probably with a new keyword
2370    // for example, we have this
2371    // def DEC64m : RI<0xFF, MRM1m, (outs), (ins i64mem:$dst), "dec{q}\t$dst",
2372    //  [(store (add (loadi64 addr:$dst), -1), addr:$dst),
2373    //   (implicit EFLAGS)]>;
2374    // but maybe need something like this
2375    // def DEC64m : RI<0xFF, MRM1m, (outs), (ins i64mem:$dst), "dec{q}\t$dst",
2376    //  [(store (add (loadi64 addr:$dst), -1), addr:$dst),
2377    //   (transferrable EFLAGS)]>;
2378    StoreSDNode *StoreNode = cast<StoreSDNode>(Node);
2379    SDValue Chain = StoreNode->getOperand(0);
2380    SDValue StoredVal = StoreNode->getOperand(1);
2381    SDValue Address = StoreNode->getOperand(2);
2382    SDValue Undef = StoreNode->getOperand(3);
2383
2384    if (StoreNode->getMemOperand()->getSize() != 8 ||
2385        Undef->getOpcode() != ISD::UNDEF ||
2386        Chain->getOpcode() != ISD::LOAD ||
2387        StoredVal->getOpcode() != X86ISD::DEC ||
2388        StoredVal.getResNo() != 0 ||
2389        StoredVal->getOperand(0).getNode() != Chain.getNode())
2390      break;
2391
2392    //OPC_CheckPredicate, 1, // Predicate_nontemporalstore
2393    if (StoreNode->isNonTemporal())
2394      break;
2395
2396    LoadSDNode *LoadNode = cast<LoadSDNode>(Chain.getNode());
2397    if (LoadNode->getOperand(1) != Address ||
2398        LoadNode->getOperand(2) != Undef)
2399      break;
2400
2401    if (!ISD::isNormalLoad(LoadNode))
2402      break;
2403
2404    if (!ISD::isNormalStore(StoreNode))
2405      break;
2406
2407    // check load chain has only one use (from the store)
2408    if (!Chain.hasOneUse())
2409      break;
2410
2411    // Merge the input chains if they are not intra-pattern references.
2412    SDValue InputChain = LoadNode->getOperand(0);
2413
2414    SDValue Base, Scale, Index, Disp, Segment;
2415    if (!SelectAddr(LoadNode, LoadNode->getBasePtr(),
2416                    Base, Scale, Index, Disp, Segment))
2417      break;
2418
2419    MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(2);
2420    MemOp[0] = StoreNode->getMemOperand();
2421    MemOp[1] = LoadNode->getMemOperand();
2422    const SDValue Ops[] = { Base, Scale, Index, Disp, Segment, InputChain };
2423    MachineSDNode *Result = CurDAG->getMachineNode(X86::DEC64m,
2424                                                   Node->getDebugLoc(),
2425                                                   MVT::i32, MVT::Other, Ops,
2426                                                   array_lengthof(Ops));
2427    Result->setMemRefs(MemOp, MemOp + 2);
2428
2429    ReplaceUses(SDValue(StoreNode, 0), SDValue(Result, 1));
2430    ReplaceUses(SDValue(StoredVal.getNode(), 1), SDValue(Result, 0));
2431
2432    return Result;
2433  }
2434  }
2435
2436  SDNode *ResNode = SelectCode(Node);
2437
2438  DEBUG(dbgs() << "=> ";
2439        if (ResNode == NULL || ResNode == Node)
2440          Node->dump(CurDAG);
2441        else
2442          ResNode->dump(CurDAG);
2443        dbgs() << '\n');
2444
2445  return ResNode;
2446}
2447
2448bool X86DAGToDAGISel::
2449SelectInlineAsmMemoryOperand(const SDValue &Op, char ConstraintCode,
2450                             std::vector<SDValue> &OutOps) {
2451  SDValue Op0, Op1, Op2, Op3, Op4;
2452  switch (ConstraintCode) {
2453  case 'o':   // offsetable        ??
2454  case 'v':   // not offsetable    ??
2455  default: return true;
2456  case 'm':   // memory
2457    if (!SelectAddr(0, Op, Op0, Op1, Op2, Op3, Op4))
2458      return true;
2459    break;
2460  }
2461
2462  OutOps.push_back(Op0);
2463  OutOps.push_back(Op1);
2464  OutOps.push_back(Op2);
2465  OutOps.push_back(Op3);
2466  OutOps.push_back(Op4);
2467  return false;
2468}
2469
2470/// createX86ISelDag - This pass converts a legalized DAG into a
2471/// X86-specific DAG, ready for instruction scheduling.
2472///
2473FunctionPass *llvm::createX86ISelDag(X86TargetMachine &TM,
2474                                     llvm::CodeGenOpt::Level OptLevel) {
2475  return new X86DAGToDAGISel(TM, OptLevel);
2476}
2477