X86ISelDAGToDAG.cpp revision f1c6428164f6f5e07cbc88c1c1440efbf29c0d5f
1//===- X86ISelDAGToDAG.cpp - A DAG pattern matching inst selector for X86 -===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines a DAG pattern matching instruction selector for X86,
11// converting from a legalized dag to a X86 dag.
12//
13//===----------------------------------------------------------------------===//
14
15// Force NDEBUG on in any optimized build on Darwin.
16//
17// FIXME: This is a huge hack, to work around ridiculously awful compile times
18// on this file with gcc-4.2 on Darwin, in Release mode.
19#if (!defined(__llvm__) && defined(__APPLE__) && \
20     defined(__OPTIMIZE__) && !defined(NDEBUG))
21#define NDEBUG
22#endif
23
24#define DEBUG_TYPE "x86-isel"
25#include "X86.h"
26#include "X86InstrBuilder.h"
27#include "X86ISelLowering.h"
28#include "X86MachineFunctionInfo.h"
29#include "X86RegisterInfo.h"
30#include "X86Subtarget.h"
31#include "X86TargetMachine.h"
32#include "llvm/GlobalValue.h"
33#include "llvm/Instructions.h"
34#include "llvm/Intrinsics.h"
35#include "llvm/Support/CFG.h"
36#include "llvm/Type.h"
37#include "llvm/CodeGen/MachineConstantPool.h"
38#include "llvm/CodeGen/MachineFunction.h"
39#include "llvm/CodeGen/MachineFrameInfo.h"
40#include "llvm/CodeGen/MachineInstrBuilder.h"
41#include "llvm/CodeGen/MachineRegisterInfo.h"
42#include "llvm/CodeGen/SelectionDAGISel.h"
43#include "llvm/Target/TargetMachine.h"
44#include "llvm/Target/TargetOptions.h"
45#include "llvm/Support/Debug.h"
46#include "llvm/Support/ErrorHandling.h"
47#include "llvm/Support/MathExtras.h"
48#include "llvm/Support/raw_ostream.h"
49#include "llvm/ADT/SmallPtrSet.h"
50#include "llvm/ADT/Statistic.h"
51using namespace llvm;
52
53STATISTIC(NumLoadMoved, "Number of loads moved below TokenFactor");
54
55//===----------------------------------------------------------------------===//
56//                      Pattern Matcher Implementation
57//===----------------------------------------------------------------------===//
58
59namespace {
60  /// X86ISelAddressMode - This corresponds to X86AddressMode, but uses
61  /// SDValue's instead of register numbers for the leaves of the matched
62  /// tree.
63  struct X86ISelAddressMode {
64    enum {
65      RegBase,
66      FrameIndexBase
67    } BaseType;
68
69    struct {            // This is really a union, discriminated by BaseType!
70      SDValue Reg;
71      int FrameIndex;
72    } Base;
73
74    unsigned Scale;
75    SDValue IndexReg;
76    int32_t Disp;
77    SDValue Segment;
78    GlobalValue *GV;
79    Constant *CP;
80    BlockAddress *BlockAddr;
81    const char *ES;
82    int JT;
83    unsigned Align;    // CP alignment.
84    unsigned char SymbolFlags;  // X86II::MO_*
85
86    X86ISelAddressMode()
87      : BaseType(RegBase), Scale(1), IndexReg(), Disp(0),
88        Segment(), GV(0), CP(0), BlockAddr(0), ES(0), JT(-1), Align(0),
89        SymbolFlags(X86II::MO_NO_FLAG) {
90    }
91
92    bool hasSymbolicDisplacement() const {
93      return GV != 0 || CP != 0 || ES != 0 || JT != -1 || BlockAddr != 0;
94    }
95
96    bool hasBaseOrIndexReg() const {
97      return IndexReg.getNode() != 0 || Base.Reg.getNode() != 0;
98    }
99
100    /// isRIPRelative - Return true if this addressing mode is already RIP
101    /// relative.
102    bool isRIPRelative() const {
103      if (BaseType != RegBase) return false;
104      if (RegisterSDNode *RegNode =
105            dyn_cast_or_null<RegisterSDNode>(Base.Reg.getNode()))
106        return RegNode->getReg() == X86::RIP;
107      return false;
108    }
109
110    void setBaseReg(SDValue Reg) {
111      BaseType = RegBase;
112      Base.Reg = Reg;
113    }
114
115    void dump() {
116      dbgs() << "X86ISelAddressMode " << this << '\n';
117      dbgs() << "Base.Reg ";
118      if (Base.Reg.getNode() != 0)
119        Base.Reg.getNode()->dump();
120      else
121        dbgs() << "nul";
122      dbgs() << " Base.FrameIndex " << Base.FrameIndex << '\n'
123             << " Scale" << Scale << '\n'
124             << "IndexReg ";
125      if (IndexReg.getNode() != 0)
126        IndexReg.getNode()->dump();
127      else
128        dbgs() << "nul";
129      dbgs() << " Disp " << Disp << '\n'
130             << "GV ";
131      if (GV)
132        GV->dump();
133      else
134        dbgs() << "nul";
135      dbgs() << " CP ";
136      if (CP)
137        CP->dump();
138      else
139        dbgs() << "nul";
140      dbgs() << '\n'
141             << "ES ";
142      if (ES)
143        dbgs() << ES;
144      else
145        dbgs() << "nul";
146      dbgs() << " JT" << JT << " Align" << Align << '\n';
147    }
148  };
149}
150
151namespace {
152  //===--------------------------------------------------------------------===//
153  /// ISel - X86 specific code to select X86 machine instructions for
154  /// SelectionDAG operations.
155  ///
156  class X86DAGToDAGISel : public SelectionDAGISel {
157    /// X86Lowering - This object fully describes how to lower LLVM code to an
158    /// X86-specific SelectionDAG.
159    X86TargetLowering &X86Lowering;
160
161    /// Subtarget - Keep a pointer to the X86Subtarget around so that we can
162    /// make the right decision when generating code for different targets.
163    const X86Subtarget *Subtarget;
164
165    /// OptForSize - If true, selector should try to optimize for code size
166    /// instead of performance.
167    bool OptForSize;
168
169  public:
170    explicit X86DAGToDAGISel(X86TargetMachine &tm, CodeGenOpt::Level OptLevel)
171      : SelectionDAGISel(tm, OptLevel),
172        X86Lowering(*tm.getTargetLowering()),
173        Subtarget(&tm.getSubtarget<X86Subtarget>()),
174        OptForSize(false) {}
175
176    virtual const char *getPassName() const {
177      return "X86 DAG->DAG Instruction Selection";
178    }
179
180    /// InstructionSelect - This callback is invoked by
181    /// SelectionDAGISel when it has created a SelectionDAG for us to codegen.
182    virtual void InstructionSelect();
183
184    virtual void EmitFunctionEntryCode(Function &Fn, MachineFunction &MF);
185
186    virtual bool IsProfitableToFold(SDValue N, SDNode *U, SDNode *Root) const;
187
188    virtual bool IsLegalToFold(SDValue N, SDNode *U, SDNode *Root) const;
189
190// Include the pieces autogenerated from the target description.
191#include "X86GenDAGISel.inc"
192
193  private:
194    SDNode *Select(SDNode *N);
195    SDNode *SelectAtomic64(SDNode *Node, unsigned Opc);
196    SDNode *SelectAtomicLoadAdd(SDNode *Node, EVT NVT);
197
198    bool MatchSegmentBaseAddress(SDValue N, X86ISelAddressMode &AM);
199    bool MatchLoad(SDValue N, X86ISelAddressMode &AM);
200    bool MatchWrapper(SDValue N, X86ISelAddressMode &AM);
201    bool MatchAddress(SDValue N, X86ISelAddressMode &AM);
202    bool MatchAddressRecursively(SDValue N, X86ISelAddressMode &AM,
203                                 unsigned Depth);
204    bool MatchAddressBase(SDValue N, X86ISelAddressMode &AM);
205    bool SelectAddr(SDNode *Op, SDValue N, SDValue &Base,
206                    SDValue &Scale, SDValue &Index, SDValue &Disp,
207                    SDValue &Segment);
208    bool SelectLEAAddr(SDNode *Op, SDValue N, SDValue &Base,
209                       SDValue &Scale, SDValue &Index, SDValue &Disp);
210    bool SelectTLSADDRAddr(SDNode *Op, SDValue N, SDValue &Base,
211                       SDValue &Scale, SDValue &Index, SDValue &Disp);
212    bool SelectScalarSSELoadXXX(SDNode *Root, SDValue N,
213                             SDValue &Base, SDValue &Scale,
214                             SDValue &Index, SDValue &Disp,
215                             SDValue &Segment,
216                             SDValue &NodeWithChain);
217
218    // FIXME: Remove this hacky wrapper.
219    bool SelectScalarSSELoad(SDNode *Root, SDValue N, SDValue &Base,
220                             SDValue &Scale, SDValue &Index,
221                             SDValue &Disp, SDValue &Segment,
222                             SDValue &PatternChainResult,
223                             SDValue &PatternInputChain) {
224      SDValue Tmp;
225      if (!SelectScalarSSELoadXXX(Root, N, Base, Scale, Index, Disp, Segment,
226                                  Tmp))
227        return false;
228      PatternInputChain = Tmp.getOperand(0);
229      PatternChainResult = Tmp.getValue(1);
230      return true;
231    }
232    bool TryFoldLoad(SDNode *P, SDValue N,
233                     SDValue &Base, SDValue &Scale,
234                     SDValue &Index, SDValue &Disp,
235                     SDValue &Segment);
236    void PreprocessForRMW();
237    void PreprocessForFPConvert();
238
239    /// SelectInlineAsmMemoryOperand - Implement addressing mode selection for
240    /// inline asm expressions.
241    virtual bool SelectInlineAsmMemoryOperand(const SDValue &Op,
242                                              char ConstraintCode,
243                                              std::vector<SDValue> &OutOps);
244
245    void EmitSpecialCodeForMain(MachineBasicBlock *BB, MachineFrameInfo *MFI);
246
247    inline void getAddressOperands(X86ISelAddressMode &AM, SDValue &Base,
248                                   SDValue &Scale, SDValue &Index,
249                                   SDValue &Disp, SDValue &Segment) {
250      Base  = (AM.BaseType == X86ISelAddressMode::FrameIndexBase) ?
251        CurDAG->getTargetFrameIndex(AM.Base.FrameIndex, TLI.getPointerTy()) :
252        AM.Base.Reg;
253      Scale = getI8Imm(AM.Scale);
254      Index = AM.IndexReg;
255      // These are 32-bit even in 64-bit mode since RIP relative offset
256      // is 32-bit.
257      if (AM.GV)
258        Disp = CurDAG->getTargetGlobalAddress(AM.GV, MVT::i32, AM.Disp,
259                                              AM.SymbolFlags);
260      else if (AM.CP)
261        Disp = CurDAG->getTargetConstantPool(AM.CP, MVT::i32,
262                                             AM.Align, AM.Disp, AM.SymbolFlags);
263      else if (AM.ES)
264        Disp = CurDAG->getTargetExternalSymbol(AM.ES, MVT::i32, AM.SymbolFlags);
265      else if (AM.JT != -1)
266        Disp = CurDAG->getTargetJumpTable(AM.JT, MVT::i32, AM.SymbolFlags);
267      else if (AM.BlockAddr)
268        Disp = CurDAG->getBlockAddress(AM.BlockAddr, MVT::i32,
269                                       true, AM.SymbolFlags);
270      else
271        Disp = CurDAG->getTargetConstant(AM.Disp, MVT::i32);
272
273      if (AM.Segment.getNode())
274        Segment = AM.Segment;
275      else
276        Segment = CurDAG->getRegister(0, MVT::i32);
277    }
278
279    /// getI8Imm - Return a target constant with the specified value, of type
280    /// i8.
281    inline SDValue getI8Imm(unsigned Imm) {
282      return CurDAG->getTargetConstant(Imm, MVT::i8);
283    }
284
285    /// getI16Imm - Return a target constant with the specified value, of type
286    /// i16.
287    inline SDValue getI16Imm(unsigned Imm) {
288      return CurDAG->getTargetConstant(Imm, MVT::i16);
289    }
290
291    /// getI32Imm - Return a target constant with the specified value, of type
292    /// i32.
293    inline SDValue getI32Imm(unsigned Imm) {
294      return CurDAG->getTargetConstant(Imm, MVT::i32);
295    }
296
297    /// getGlobalBaseReg - Return an SDNode that returns the value of
298    /// the global base register. Output instructions required to
299    /// initialize the global base register, if necessary.
300    ///
301    SDNode *getGlobalBaseReg();
302
303    /// getTargetMachine - Return a reference to the TargetMachine, casted
304    /// to the target-specific type.
305    const X86TargetMachine &getTargetMachine() {
306      return static_cast<const X86TargetMachine &>(TM);
307    }
308
309    /// getInstrInfo - Return a reference to the TargetInstrInfo, casted
310    /// to the target-specific type.
311    const X86InstrInfo *getInstrInfo() {
312      return getTargetMachine().getInstrInfo();
313    }
314
315#ifndef NDEBUG
316    unsigned Indent;
317#endif
318  };
319}
320
321
322bool
323X86DAGToDAGISel::IsProfitableToFold(SDValue N, SDNode *U, SDNode *Root) const {
324  if (OptLevel == CodeGenOpt::None) return false;
325
326  if (!N.hasOneUse())
327    return false;
328
329  if (N.getOpcode() != ISD::LOAD)
330    return true;
331
332  // If N is a load, do additional profitability checks.
333  if (U == Root) {
334    switch (U->getOpcode()) {
335    default: break;
336    case X86ISD::ADD:
337    case X86ISD::SUB:
338    case X86ISD::AND:
339    case X86ISD::XOR:
340    case X86ISD::OR:
341    case ISD::ADD:
342    case ISD::ADDC:
343    case ISD::ADDE:
344    case ISD::AND:
345    case ISD::OR:
346    case ISD::XOR: {
347      SDValue Op1 = U->getOperand(1);
348
349      // If the other operand is a 8-bit immediate we should fold the immediate
350      // instead. This reduces code size.
351      // e.g.
352      // movl 4(%esp), %eax
353      // addl $4, %eax
354      // vs.
355      // movl $4, %eax
356      // addl 4(%esp), %eax
357      // The former is 2 bytes shorter. In case where the increment is 1, then
358      // the saving can be 4 bytes (by using incl %eax).
359      if (ConstantSDNode *Imm = dyn_cast<ConstantSDNode>(Op1))
360        if (Imm->getAPIntValue().isSignedIntN(8))
361          return false;
362
363      // If the other operand is a TLS address, we should fold it instead.
364      // This produces
365      // movl    %gs:0, %eax
366      // leal    i@NTPOFF(%eax), %eax
367      // instead of
368      // movl    $i@NTPOFF, %eax
369      // addl    %gs:0, %eax
370      // if the block also has an access to a second TLS address this will save
371      // a load.
372      // FIXME: This is probably also true for non TLS addresses.
373      if (Op1.getOpcode() == X86ISD::Wrapper) {
374        SDValue Val = Op1.getOperand(0);
375        if (Val.getOpcode() == ISD::TargetGlobalTLSAddress)
376          return false;
377      }
378    }
379    }
380  }
381
382  return true;
383}
384
385
386bool X86DAGToDAGISel::IsLegalToFold(SDValue N, SDNode *U, SDNode *Root) const {
387  if (OptLevel == CodeGenOpt::None) return false;
388
389  // Proceed to 'generic' cycle finder code
390  return SelectionDAGISel::IsLegalToFold(N, U, Root);
391}
392
393/// MoveBelowTokenFactor - Replace TokenFactor operand with load's chain operand
394/// and move load below the TokenFactor. Replace store's chain operand with
395/// load's chain result.
396static void MoveBelowTokenFactor(SelectionDAG *CurDAG, SDValue Load,
397                                 SDValue Store, SDValue TF) {
398  SmallVector<SDValue, 4> Ops;
399  for (unsigned i = 0, e = TF.getNode()->getNumOperands(); i != e; ++i)
400    if (Load.getNode() == TF.getOperand(i).getNode())
401      Ops.push_back(Load.getOperand(0));
402    else
403      Ops.push_back(TF.getOperand(i));
404  SDValue NewTF = CurDAG->UpdateNodeOperands(TF, &Ops[0], Ops.size());
405  SDValue NewLoad = CurDAG->UpdateNodeOperands(Load, NewTF,
406                                               Load.getOperand(1),
407                                               Load.getOperand(2));
408  CurDAG->UpdateNodeOperands(Store, NewLoad.getValue(1), Store.getOperand(1),
409                             Store.getOperand(2), Store.getOperand(3));
410}
411
412/// isRMWLoad - Return true if N is a load that's part of RMW sub-DAG.  The
413/// chain produced by the load must only be used by the store's chain operand,
414/// otherwise this may produce a cycle in the DAG.
415///
416static bool isRMWLoad(SDValue N, SDValue Chain, SDValue Address,
417                      SDValue &Load) {
418  if (N.getOpcode() == ISD::BIT_CONVERT) {
419    if (!N.hasOneUse())
420      return false;
421    N = N.getOperand(0);
422  }
423
424  LoadSDNode *LD = dyn_cast<LoadSDNode>(N);
425  if (!LD || LD->isVolatile())
426    return false;
427  if (LD->getAddressingMode() != ISD::UNINDEXED)
428    return false;
429
430  ISD::LoadExtType ExtType = LD->getExtensionType();
431  if (ExtType != ISD::NON_EXTLOAD && ExtType != ISD::EXTLOAD)
432    return false;
433
434  if (N.hasOneUse() &&
435      LD->hasNUsesOfValue(1, 1) &&
436      N.getOperand(1) == Address &&
437      LD->isOperandOf(Chain.getNode())) {
438    Load = N;
439    return true;
440  }
441  return false;
442}
443
444/// MoveBelowCallSeqStart - Replace CALLSEQ_START operand with load's chain
445/// operand and move load below the call's chain operand.
446static void MoveBelowCallSeqStart(SelectionDAG *CurDAG, SDValue Load,
447                                  SDValue Call, SDValue CallSeqStart) {
448  SmallVector<SDValue, 8> Ops;
449  SDValue Chain = CallSeqStart.getOperand(0);
450  if (Chain.getNode() == Load.getNode())
451    Ops.push_back(Load.getOperand(0));
452  else {
453    assert(Chain.getOpcode() == ISD::TokenFactor &&
454           "Unexpected CallSeqStart chain operand");
455    for (unsigned i = 0, e = Chain.getNumOperands(); i != e; ++i)
456      if (Chain.getOperand(i).getNode() == Load.getNode())
457        Ops.push_back(Load.getOperand(0));
458      else
459        Ops.push_back(Chain.getOperand(i));
460    SDValue NewChain =
461      CurDAG->getNode(ISD::TokenFactor, Load.getDebugLoc(),
462                      MVT::Other, &Ops[0], Ops.size());
463    Ops.clear();
464    Ops.push_back(NewChain);
465  }
466  for (unsigned i = 1, e = CallSeqStart.getNumOperands(); i != e; ++i)
467    Ops.push_back(CallSeqStart.getOperand(i));
468  CurDAG->UpdateNodeOperands(CallSeqStart, &Ops[0], Ops.size());
469  CurDAG->UpdateNodeOperands(Load, Call.getOperand(0),
470                             Load.getOperand(1), Load.getOperand(2));
471  Ops.clear();
472  Ops.push_back(SDValue(Load.getNode(), 1));
473  for (unsigned i = 1, e = Call.getNode()->getNumOperands(); i != e; ++i)
474    Ops.push_back(Call.getOperand(i));
475  CurDAG->UpdateNodeOperands(Call, &Ops[0], Ops.size());
476}
477
478/// isCalleeLoad - Return true if call address is a load and it can be
479/// moved below CALLSEQ_START and the chains leading up to the call.
480/// Return the CALLSEQ_START by reference as a second output.
481static bool isCalleeLoad(SDValue Callee, SDValue &Chain) {
482  if (Callee.getNode() == Chain.getNode() || !Callee.hasOneUse())
483    return false;
484  LoadSDNode *LD = dyn_cast<LoadSDNode>(Callee.getNode());
485  if (!LD ||
486      LD->isVolatile() ||
487      LD->getAddressingMode() != ISD::UNINDEXED ||
488      LD->getExtensionType() != ISD::NON_EXTLOAD)
489    return false;
490
491  // Now let's find the callseq_start.
492  while (Chain.getOpcode() != ISD::CALLSEQ_START) {
493    if (!Chain.hasOneUse())
494      return false;
495    Chain = Chain.getOperand(0);
496  }
497
498  if (Chain.getOperand(0).getNode() == Callee.getNode())
499    return true;
500  if (Chain.getOperand(0).getOpcode() == ISD::TokenFactor &&
501      Callee.getValue(1).isOperandOf(Chain.getOperand(0).getNode()) &&
502      Callee.getValue(1).hasOneUse())
503    return true;
504  return false;
505}
506
507
508/// PreprocessForRMW - Preprocess the DAG to make instruction selection better.
509/// This is only run if not in -O0 mode.
510/// This allows the instruction selector to pick more read-modify-write
511/// instructions. This is a common case:
512///
513///     [Load chain]
514///         ^
515///         |
516///       [Load]
517///       ^    ^
518///       |    |
519///      /      \-
520///     /         |
521/// [TokenFactor] [Op]
522///     ^          ^
523///     |          |
524///      \        /
525///       \      /
526///       [Store]
527///
528/// The fact the store's chain operand != load's chain will prevent the
529/// (store (op (load))) instruction from being selected. We can transform it to:
530///
531///     [Load chain]
532///         ^
533///         |
534///    [TokenFactor]
535///         ^
536///         |
537///       [Load]
538///       ^    ^
539///       |    |
540///       |     \-
541///       |       |
542///       |     [Op]
543///       |       ^
544///       |       |
545///       \      /
546///        \    /
547///       [Store]
548void X86DAGToDAGISel::PreprocessForRMW() {
549  for (SelectionDAG::allnodes_iterator I = CurDAG->allnodes_begin(),
550         E = CurDAG->allnodes_end(); I != E; ++I) {
551    if (I->getOpcode() == X86ISD::CALL) {
552      /// Also try moving call address load from outside callseq_start to just
553      /// before the call to allow it to be folded.
554      ///
555      ///     [Load chain]
556      ///         ^
557      ///         |
558      ///       [Load]
559      ///       ^    ^
560      ///       |    |
561      ///      /      \--
562      ///     /          |
563      ///[CALLSEQ_START] |
564      ///     ^          |
565      ///     |          |
566      /// [LOAD/C2Reg]   |
567      ///     |          |
568      ///      \        /
569      ///       \      /
570      ///       [CALL]
571      SDValue Chain = I->getOperand(0);
572      SDValue Load  = I->getOperand(1);
573      if (!isCalleeLoad(Load, Chain))
574        continue;
575      MoveBelowCallSeqStart(CurDAG, Load, SDValue(I, 0), Chain);
576      ++NumLoadMoved;
577      continue;
578    }
579
580    if (!ISD::isNON_TRUNCStore(I))
581      continue;
582    SDValue Chain = I->getOperand(0);
583
584    if (Chain.getNode()->getOpcode() != ISD::TokenFactor)
585      continue;
586
587    SDValue N1 = I->getOperand(1);
588    SDValue N2 = I->getOperand(2);
589    if ((N1.getValueType().isFloatingPoint() &&
590         !N1.getValueType().isVector()) ||
591        !N1.hasOneUse())
592      continue;
593
594    bool RModW = false;
595    SDValue Load;
596    unsigned Opcode = N1.getNode()->getOpcode();
597    switch (Opcode) {
598    case ISD::ADD:
599    case ISD::MUL:
600    case ISD::AND:
601    case ISD::OR:
602    case ISD::XOR:
603    case ISD::ADDC:
604    case ISD::ADDE:
605    case ISD::VECTOR_SHUFFLE: {
606      SDValue N10 = N1.getOperand(0);
607      SDValue N11 = N1.getOperand(1);
608      RModW = isRMWLoad(N10, Chain, N2, Load);
609      if (!RModW)
610        RModW = isRMWLoad(N11, Chain, N2, Load);
611      break;
612    }
613    case ISD::SUB:
614    case ISD::SHL:
615    case ISD::SRA:
616    case ISD::SRL:
617    case ISD::ROTL:
618    case ISD::ROTR:
619    case ISD::SUBC:
620    case ISD::SUBE:
621    case X86ISD::SHLD:
622    case X86ISD::SHRD: {
623      SDValue N10 = N1.getOperand(0);
624      RModW = isRMWLoad(N10, Chain, N2, Load);
625      break;
626    }
627    }
628
629    if (RModW) {
630      MoveBelowTokenFactor(CurDAG, Load, SDValue(I, 0), Chain);
631      ++NumLoadMoved;
632      checkForCycles(I);
633    }
634  }
635}
636
637
638/// PreprocessForFPConvert - Walk over the dag lowering fpround and fpextend
639/// nodes that target the FP stack to be store and load to the stack.  This is a
640/// gross hack.  We would like to simply mark these as being illegal, but when
641/// we do that, legalize produces these when it expands calls, then expands
642/// these in the same legalize pass.  We would like dag combine to be able to
643/// hack on these between the call expansion and the node legalization.  As such
644/// this pass basically does "really late" legalization of these inline with the
645/// X86 isel pass.
646void X86DAGToDAGISel::PreprocessForFPConvert() {
647  for (SelectionDAG::allnodes_iterator I = CurDAG->allnodes_begin(),
648       E = CurDAG->allnodes_end(); I != E; ) {
649    SDNode *N = I++;  // Preincrement iterator to avoid invalidation issues.
650    if (N->getOpcode() != ISD::FP_ROUND && N->getOpcode() != ISD::FP_EXTEND)
651      continue;
652
653    // If the source and destination are SSE registers, then this is a legal
654    // conversion that should not be lowered.
655    EVT SrcVT = N->getOperand(0).getValueType();
656    EVT DstVT = N->getValueType(0);
657    bool SrcIsSSE = X86Lowering.isScalarFPTypeInSSEReg(SrcVT);
658    bool DstIsSSE = X86Lowering.isScalarFPTypeInSSEReg(DstVT);
659    if (SrcIsSSE && DstIsSSE)
660      continue;
661
662    if (!SrcIsSSE && !DstIsSSE) {
663      // If this is an FPStack extension, it is a noop.
664      if (N->getOpcode() == ISD::FP_EXTEND)
665        continue;
666      // If this is a value-preserving FPStack truncation, it is a noop.
667      if (N->getConstantOperandVal(1))
668        continue;
669    }
670
671    // Here we could have an FP stack truncation or an FPStack <-> SSE convert.
672    // FPStack has extload and truncstore.  SSE can fold direct loads into other
673    // operations.  Based on this, decide what we want to do.
674    EVT MemVT;
675    if (N->getOpcode() == ISD::FP_ROUND)
676      MemVT = DstVT;  // FP_ROUND must use DstVT, we can't do a 'trunc load'.
677    else
678      MemVT = SrcIsSSE ? SrcVT : DstVT;
679
680    SDValue MemTmp = CurDAG->CreateStackTemporary(MemVT);
681    DebugLoc dl = N->getDebugLoc();
682
683    // FIXME: optimize the case where the src/dest is a load or store?
684    SDValue Store = CurDAG->getTruncStore(CurDAG->getEntryNode(), dl,
685                                          N->getOperand(0),
686                                          MemTmp, NULL, 0, MemVT,
687                                          false, false, 0);
688    SDValue Result = CurDAG->getExtLoad(ISD::EXTLOAD, dl, DstVT, Store, MemTmp,
689                                        NULL, 0, MemVT, false, false, 0);
690
691    // We're about to replace all uses of the FP_ROUND/FP_EXTEND with the
692    // extload we created.  This will cause general havok on the dag because
693    // anything below the conversion could be folded into other existing nodes.
694    // To avoid invalidating 'I', back it up to the convert node.
695    --I;
696    CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Result);
697
698    // Now that we did that, the node is dead.  Increment the iterator to the
699    // next node to process, then delete N.
700    ++I;
701    CurDAG->DeleteNode(N);
702  }
703}
704
705/// InstructionSelectBasicBlock - This callback is invoked by SelectionDAGISel
706/// when it has created a SelectionDAG for us to codegen.
707void X86DAGToDAGISel::InstructionSelect() {
708  const Function *F = MF->getFunction();
709  OptForSize = F->hasFnAttr(Attribute::OptimizeForSize);
710
711  if (OptLevel != CodeGenOpt::None)
712    PreprocessForRMW();
713
714  // FIXME: This should only happen when not compiled with -O0.
715  PreprocessForFPConvert();
716
717  // Codegen the basic block.
718#ifndef NDEBUG
719  DEBUG(dbgs() << "===== Instruction selection begins:\n");
720  Indent = 0;
721#endif
722  SelectRoot(*CurDAG);
723#ifndef NDEBUG
724  DEBUG(dbgs() << "===== Instruction selection ends:\n");
725#endif
726
727  CurDAG->RemoveDeadNodes();
728}
729
730/// EmitSpecialCodeForMain - Emit any code that needs to be executed only in
731/// the main function.
732void X86DAGToDAGISel::EmitSpecialCodeForMain(MachineBasicBlock *BB,
733                                             MachineFrameInfo *MFI) {
734  const TargetInstrInfo *TII = TM.getInstrInfo();
735  if (Subtarget->isTargetCygMing())
736    BuildMI(BB, DebugLoc::getUnknownLoc(),
737            TII->get(X86::CALLpcrel32)).addExternalSymbol("__main");
738}
739
740void X86DAGToDAGISel::EmitFunctionEntryCode(Function &Fn, MachineFunction &MF) {
741  // If this is main, emit special code for main.
742  MachineBasicBlock *BB = MF.begin();
743  if (Fn.hasExternalLinkage() && Fn.getName() == "main")
744    EmitSpecialCodeForMain(BB, MF.getFrameInfo());
745}
746
747
748bool X86DAGToDAGISel::MatchSegmentBaseAddress(SDValue N,
749                                              X86ISelAddressMode &AM) {
750  assert(N.getOpcode() == X86ISD::SegmentBaseAddress);
751  SDValue Segment = N.getOperand(0);
752
753  if (AM.Segment.getNode() == 0) {
754    AM.Segment = Segment;
755    return false;
756  }
757
758  return true;
759}
760
761bool X86DAGToDAGISel::MatchLoad(SDValue N, X86ISelAddressMode &AM) {
762  // This optimization is valid because the GNU TLS model defines that
763  // gs:0 (or fs:0 on X86-64) contains its own address.
764  // For more information see http://people.redhat.com/drepper/tls.pdf
765
766  SDValue Address = N.getOperand(1);
767  if (Address.getOpcode() == X86ISD::SegmentBaseAddress &&
768      !MatchSegmentBaseAddress (Address, AM))
769    return false;
770
771  return true;
772}
773
774/// MatchWrapper - Try to match X86ISD::Wrapper and X86ISD::WrapperRIP nodes
775/// into an addressing mode.  These wrap things that will resolve down into a
776/// symbol reference.  If no match is possible, this returns true, otherwise it
777/// returns false.
778bool X86DAGToDAGISel::MatchWrapper(SDValue N, X86ISelAddressMode &AM) {
779  // If the addressing mode already has a symbol as the displacement, we can
780  // never match another symbol.
781  if (AM.hasSymbolicDisplacement())
782    return true;
783
784  SDValue N0 = N.getOperand(0);
785  CodeModel::Model M = TM.getCodeModel();
786
787  // Handle X86-64 rip-relative addresses.  We check this before checking direct
788  // folding because RIP is preferable to non-RIP accesses.
789  if (Subtarget->is64Bit() &&
790      // Under X86-64 non-small code model, GV (and friends) are 64-bits, so
791      // they cannot be folded into immediate fields.
792      // FIXME: This can be improved for kernel and other models?
793      (M == CodeModel::Small || M == CodeModel::Kernel) &&
794      // Base and index reg must be 0 in order to use %rip as base and lowering
795      // must allow RIP.
796      !AM.hasBaseOrIndexReg() && N.getOpcode() == X86ISD::WrapperRIP) {
797    if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(N0)) {
798      int64_t Offset = AM.Disp + G->getOffset();
799      if (!X86::isOffsetSuitableForCodeModel(Offset, M)) return true;
800      AM.GV = G->getGlobal();
801      AM.Disp = Offset;
802      AM.SymbolFlags = G->getTargetFlags();
803    } else if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(N0)) {
804      int64_t Offset = AM.Disp + CP->getOffset();
805      if (!X86::isOffsetSuitableForCodeModel(Offset, M)) return true;
806      AM.CP = CP->getConstVal();
807      AM.Align = CP->getAlignment();
808      AM.Disp = Offset;
809      AM.SymbolFlags = CP->getTargetFlags();
810    } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(N0)) {
811      AM.ES = S->getSymbol();
812      AM.SymbolFlags = S->getTargetFlags();
813    } else if (JumpTableSDNode *J = dyn_cast<JumpTableSDNode>(N0)) {
814      AM.JT = J->getIndex();
815      AM.SymbolFlags = J->getTargetFlags();
816    } else {
817      AM.BlockAddr = cast<BlockAddressSDNode>(N0)->getBlockAddress();
818      AM.SymbolFlags = cast<BlockAddressSDNode>(N0)->getTargetFlags();
819    }
820
821    if (N.getOpcode() == X86ISD::WrapperRIP)
822      AM.setBaseReg(CurDAG->getRegister(X86::RIP, MVT::i64));
823    return false;
824  }
825
826  // Handle the case when globals fit in our immediate field: This is true for
827  // X86-32 always and X86-64 when in -static -mcmodel=small mode.  In 64-bit
828  // mode, this results in a non-RIP-relative computation.
829  if (!Subtarget->is64Bit() ||
830      ((M == CodeModel::Small || M == CodeModel::Kernel) &&
831       TM.getRelocationModel() == Reloc::Static)) {
832    if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(N0)) {
833      AM.GV = G->getGlobal();
834      AM.Disp += G->getOffset();
835      AM.SymbolFlags = G->getTargetFlags();
836    } else if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(N0)) {
837      AM.CP = CP->getConstVal();
838      AM.Align = CP->getAlignment();
839      AM.Disp += CP->getOffset();
840      AM.SymbolFlags = CP->getTargetFlags();
841    } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(N0)) {
842      AM.ES = S->getSymbol();
843      AM.SymbolFlags = S->getTargetFlags();
844    } else if (JumpTableSDNode *J = dyn_cast<JumpTableSDNode>(N0)) {
845      AM.JT = J->getIndex();
846      AM.SymbolFlags = J->getTargetFlags();
847    } else {
848      AM.BlockAddr = cast<BlockAddressSDNode>(N0)->getBlockAddress();
849      AM.SymbolFlags = cast<BlockAddressSDNode>(N0)->getTargetFlags();
850    }
851    return false;
852  }
853
854  return true;
855}
856
857/// MatchAddress - Add the specified node to the specified addressing mode,
858/// returning true if it cannot be done.  This just pattern matches for the
859/// addressing mode.
860bool X86DAGToDAGISel::MatchAddress(SDValue N, X86ISelAddressMode &AM) {
861  if (MatchAddressRecursively(N, AM, 0))
862    return true;
863
864  // Post-processing: Convert lea(,%reg,2) to lea(%reg,%reg), which has
865  // a smaller encoding and avoids a scaled-index.
866  if (AM.Scale == 2 &&
867      AM.BaseType == X86ISelAddressMode::RegBase &&
868      AM.Base.Reg.getNode() == 0) {
869    AM.Base.Reg = AM.IndexReg;
870    AM.Scale = 1;
871  }
872
873  // Post-processing: Convert foo to foo(%rip), even in non-PIC mode,
874  // because it has a smaller encoding.
875  // TODO: Which other code models can use this?
876  if (TM.getCodeModel() == CodeModel::Small &&
877      Subtarget->is64Bit() &&
878      AM.Scale == 1 &&
879      AM.BaseType == X86ISelAddressMode::RegBase &&
880      AM.Base.Reg.getNode() == 0 &&
881      AM.IndexReg.getNode() == 0 &&
882      AM.SymbolFlags == X86II::MO_NO_FLAG &&
883      AM.hasSymbolicDisplacement())
884    AM.Base.Reg = CurDAG->getRegister(X86::RIP, MVT::i64);
885
886  return false;
887}
888
889bool X86DAGToDAGISel::MatchAddressRecursively(SDValue N, X86ISelAddressMode &AM,
890                                              unsigned Depth) {
891  bool is64Bit = Subtarget->is64Bit();
892  DebugLoc dl = N.getDebugLoc();
893  DEBUG({
894      dbgs() << "MatchAddress: ";
895      AM.dump();
896    });
897  // Limit recursion.
898  if (Depth > 5)
899    return MatchAddressBase(N, AM);
900
901  CodeModel::Model M = TM.getCodeModel();
902
903  // If this is already a %rip relative address, we can only merge immediates
904  // into it.  Instead of handling this in every case, we handle it here.
905  // RIP relative addressing: %rip + 32-bit displacement!
906  if (AM.isRIPRelative()) {
907    // FIXME: JumpTable and ExternalSymbol address currently don't like
908    // displacements.  It isn't very important, but this should be fixed for
909    // consistency.
910    if (!AM.ES && AM.JT != -1) return true;
911
912    if (ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(N)) {
913      int64_t Val = AM.Disp + Cst->getSExtValue();
914      if (X86::isOffsetSuitableForCodeModel(Val, M,
915                                            AM.hasSymbolicDisplacement())) {
916        AM.Disp = Val;
917        return false;
918      }
919    }
920    return true;
921  }
922
923  switch (N.getOpcode()) {
924  default: break;
925  case ISD::Constant: {
926    uint64_t Val = cast<ConstantSDNode>(N)->getSExtValue();
927    if (!is64Bit ||
928        X86::isOffsetSuitableForCodeModel(AM.Disp + Val, M,
929                                          AM.hasSymbolicDisplacement())) {
930      AM.Disp += Val;
931      return false;
932    }
933    break;
934  }
935
936  case X86ISD::SegmentBaseAddress:
937    if (!MatchSegmentBaseAddress(N, AM))
938      return false;
939    break;
940
941  case X86ISD::Wrapper:
942  case X86ISD::WrapperRIP:
943    if (!MatchWrapper(N, AM))
944      return false;
945    break;
946
947  case ISD::LOAD:
948    if (!MatchLoad(N, AM))
949      return false;
950    break;
951
952  case ISD::FrameIndex:
953    if (AM.BaseType == X86ISelAddressMode::RegBase
954        && AM.Base.Reg.getNode() == 0) {
955      AM.BaseType = X86ISelAddressMode::FrameIndexBase;
956      AM.Base.FrameIndex = cast<FrameIndexSDNode>(N)->getIndex();
957      return false;
958    }
959    break;
960
961  case ISD::SHL:
962    if (AM.IndexReg.getNode() != 0 || AM.Scale != 1)
963      break;
964
965    if (ConstantSDNode
966          *CN = dyn_cast<ConstantSDNode>(N.getNode()->getOperand(1))) {
967      unsigned Val = CN->getZExtValue();
968      // Note that we handle x<<1 as (,x,2) rather than (x,x) here so
969      // that the base operand remains free for further matching. If
970      // the base doesn't end up getting used, a post-processing step
971      // in MatchAddress turns (,x,2) into (x,x), which is cheaper.
972      if (Val == 1 || Val == 2 || Val == 3) {
973        AM.Scale = 1 << Val;
974        SDValue ShVal = N.getNode()->getOperand(0);
975
976        // Okay, we know that we have a scale by now.  However, if the scaled
977        // value is an add of something and a constant, we can fold the
978        // constant into the disp field here.
979        if (ShVal.getNode()->getOpcode() == ISD::ADD &&
980            isa<ConstantSDNode>(ShVal.getNode()->getOperand(1))) {
981          AM.IndexReg = ShVal.getNode()->getOperand(0);
982          ConstantSDNode *AddVal =
983            cast<ConstantSDNode>(ShVal.getNode()->getOperand(1));
984          uint64_t Disp = AM.Disp + (AddVal->getSExtValue() << Val);
985          if (!is64Bit ||
986              X86::isOffsetSuitableForCodeModel(Disp, M,
987                                                AM.hasSymbolicDisplacement()))
988            AM.Disp = Disp;
989          else
990            AM.IndexReg = ShVal;
991        } else {
992          AM.IndexReg = ShVal;
993        }
994        return false;
995      }
996    break;
997    }
998
999  case ISD::SMUL_LOHI:
1000  case ISD::UMUL_LOHI:
1001    // A mul_lohi where we need the low part can be folded as a plain multiply.
1002    if (N.getResNo() != 0) break;
1003    // FALL THROUGH
1004  case ISD::MUL:
1005  case X86ISD::MUL_IMM:
1006    // X*[3,5,9] -> X+X*[2,4,8]
1007    if (AM.BaseType == X86ISelAddressMode::RegBase &&
1008        AM.Base.Reg.getNode() == 0 &&
1009        AM.IndexReg.getNode() == 0) {
1010      if (ConstantSDNode
1011            *CN = dyn_cast<ConstantSDNode>(N.getNode()->getOperand(1)))
1012        if (CN->getZExtValue() == 3 || CN->getZExtValue() == 5 ||
1013            CN->getZExtValue() == 9) {
1014          AM.Scale = unsigned(CN->getZExtValue())-1;
1015
1016          SDValue MulVal = N.getNode()->getOperand(0);
1017          SDValue Reg;
1018
1019          // Okay, we know that we have a scale by now.  However, if the scaled
1020          // value is an add of something and a constant, we can fold the
1021          // constant into the disp field here.
1022          if (MulVal.getNode()->getOpcode() == ISD::ADD && MulVal.hasOneUse() &&
1023              isa<ConstantSDNode>(MulVal.getNode()->getOperand(1))) {
1024            Reg = MulVal.getNode()->getOperand(0);
1025            ConstantSDNode *AddVal =
1026              cast<ConstantSDNode>(MulVal.getNode()->getOperand(1));
1027            uint64_t Disp = AM.Disp + AddVal->getSExtValue() *
1028                                      CN->getZExtValue();
1029            if (!is64Bit ||
1030                X86::isOffsetSuitableForCodeModel(Disp, M,
1031                                                  AM.hasSymbolicDisplacement()))
1032              AM.Disp = Disp;
1033            else
1034              Reg = N.getNode()->getOperand(0);
1035          } else {
1036            Reg = N.getNode()->getOperand(0);
1037          }
1038
1039          AM.IndexReg = AM.Base.Reg = Reg;
1040          return false;
1041        }
1042    }
1043    break;
1044
1045  case ISD::SUB: {
1046    // Given A-B, if A can be completely folded into the address and
1047    // the index field with the index field unused, use -B as the index.
1048    // This is a win if a has multiple parts that can be folded into
1049    // the address. Also, this saves a mov if the base register has
1050    // other uses, since it avoids a two-address sub instruction, however
1051    // it costs an additional mov if the index register has other uses.
1052
1053    // Test if the LHS of the sub can be folded.
1054    X86ISelAddressMode Backup = AM;
1055    if (MatchAddressRecursively(N.getNode()->getOperand(0), AM, Depth+1)) {
1056      AM = Backup;
1057      break;
1058    }
1059    // Test if the index field is free for use.
1060    if (AM.IndexReg.getNode() || AM.isRIPRelative()) {
1061      AM = Backup;
1062      break;
1063    }
1064    int Cost = 0;
1065    SDValue RHS = N.getNode()->getOperand(1);
1066    // If the RHS involves a register with multiple uses, this
1067    // transformation incurs an extra mov, due to the neg instruction
1068    // clobbering its operand.
1069    if (!RHS.getNode()->hasOneUse() ||
1070        RHS.getNode()->getOpcode() == ISD::CopyFromReg ||
1071        RHS.getNode()->getOpcode() == ISD::TRUNCATE ||
1072        RHS.getNode()->getOpcode() == ISD::ANY_EXTEND ||
1073        (RHS.getNode()->getOpcode() == ISD::ZERO_EXTEND &&
1074         RHS.getNode()->getOperand(0).getValueType() == MVT::i32))
1075      ++Cost;
1076    // If the base is a register with multiple uses, this
1077    // transformation may save a mov.
1078    if ((AM.BaseType == X86ISelAddressMode::RegBase &&
1079         AM.Base.Reg.getNode() &&
1080         !AM.Base.Reg.getNode()->hasOneUse()) ||
1081        AM.BaseType == X86ISelAddressMode::FrameIndexBase)
1082      --Cost;
1083    // If the folded LHS was interesting, this transformation saves
1084    // address arithmetic.
1085    if ((AM.hasSymbolicDisplacement() && !Backup.hasSymbolicDisplacement()) +
1086        ((AM.Disp != 0) && (Backup.Disp == 0)) +
1087        (AM.Segment.getNode() && !Backup.Segment.getNode()) >= 2)
1088      --Cost;
1089    // If it doesn't look like it may be an overall win, don't do it.
1090    if (Cost >= 0) {
1091      AM = Backup;
1092      break;
1093    }
1094
1095    // Ok, the transformation is legal and appears profitable. Go for it.
1096    SDValue Zero = CurDAG->getConstant(0, N.getValueType());
1097    SDValue Neg = CurDAG->getNode(ISD::SUB, dl, N.getValueType(), Zero, RHS);
1098    AM.IndexReg = Neg;
1099    AM.Scale = 1;
1100
1101    // Insert the new nodes into the topological ordering.
1102    if (Zero.getNode()->getNodeId() == -1 ||
1103        Zero.getNode()->getNodeId() > N.getNode()->getNodeId()) {
1104      CurDAG->RepositionNode(N.getNode(), Zero.getNode());
1105      Zero.getNode()->setNodeId(N.getNode()->getNodeId());
1106    }
1107    if (Neg.getNode()->getNodeId() == -1 ||
1108        Neg.getNode()->getNodeId() > N.getNode()->getNodeId()) {
1109      CurDAG->RepositionNode(N.getNode(), Neg.getNode());
1110      Neg.getNode()->setNodeId(N.getNode()->getNodeId());
1111    }
1112    return false;
1113  }
1114
1115  case ISD::ADD: {
1116    X86ISelAddressMode Backup = AM;
1117    if (!MatchAddressRecursively(N.getNode()->getOperand(0), AM, Depth+1) &&
1118        !MatchAddressRecursively(N.getNode()->getOperand(1), AM, Depth+1))
1119      return false;
1120    AM = Backup;
1121    if (!MatchAddressRecursively(N.getNode()->getOperand(1), AM, Depth+1) &&
1122        !MatchAddressRecursively(N.getNode()->getOperand(0), AM, Depth+1))
1123      return false;
1124    AM = Backup;
1125
1126    // If we couldn't fold both operands into the address at the same time,
1127    // see if we can just put each operand into a register and fold at least
1128    // the add.
1129    if (AM.BaseType == X86ISelAddressMode::RegBase &&
1130        !AM.Base.Reg.getNode() &&
1131        !AM.IndexReg.getNode()) {
1132      AM.Base.Reg = N.getNode()->getOperand(0);
1133      AM.IndexReg = N.getNode()->getOperand(1);
1134      AM.Scale = 1;
1135      return false;
1136    }
1137    break;
1138  }
1139
1140  case ISD::OR:
1141    // Handle "X | C" as "X + C" iff X is known to have C bits clear.
1142    if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
1143      X86ISelAddressMode Backup = AM;
1144      uint64_t Offset = CN->getSExtValue();
1145      // Start with the LHS as an addr mode.
1146      if (!MatchAddressRecursively(N.getOperand(0), AM, Depth+1) &&
1147          // Address could not have picked a GV address for the displacement.
1148          AM.GV == NULL &&
1149          // On x86-64, the resultant disp must fit in 32-bits.
1150          (!is64Bit ||
1151           X86::isOffsetSuitableForCodeModel(AM.Disp + Offset, M,
1152                                             AM.hasSymbolicDisplacement())) &&
1153          // Check to see if the LHS & C is zero.
1154          CurDAG->MaskedValueIsZero(N.getOperand(0), CN->getAPIntValue())) {
1155        AM.Disp += Offset;
1156        return false;
1157      }
1158      AM = Backup;
1159    }
1160    break;
1161
1162  case ISD::AND: {
1163    // Perform some heroic transforms on an and of a constant-count shift
1164    // with a constant to enable use of the scaled offset field.
1165
1166    SDValue Shift = N.getOperand(0);
1167    if (Shift.getNumOperands() != 2) break;
1168
1169    // Scale must not be used already.
1170    if (AM.IndexReg.getNode() != 0 || AM.Scale != 1) break;
1171
1172    SDValue X = Shift.getOperand(0);
1173    ConstantSDNode *C2 = dyn_cast<ConstantSDNode>(N.getOperand(1));
1174    ConstantSDNode *C1 = dyn_cast<ConstantSDNode>(Shift.getOperand(1));
1175    if (!C1 || !C2) break;
1176
1177    // Handle "(X >> (8-C1)) & C2" as "(X >> 8) & 0xff)" if safe. This
1178    // allows us to convert the shift and and into an h-register extract and
1179    // a scaled index.
1180    if (Shift.getOpcode() == ISD::SRL && Shift.hasOneUse()) {
1181      unsigned ScaleLog = 8 - C1->getZExtValue();
1182      if (ScaleLog > 0 && ScaleLog < 4 &&
1183          C2->getZExtValue() == (UINT64_C(0xff) << ScaleLog)) {
1184        SDValue Eight = CurDAG->getConstant(8, MVT::i8);
1185        SDValue Mask = CurDAG->getConstant(0xff, N.getValueType());
1186        SDValue Srl = CurDAG->getNode(ISD::SRL, dl, N.getValueType(),
1187                                      X, Eight);
1188        SDValue And = CurDAG->getNode(ISD::AND, dl, N.getValueType(),
1189                                      Srl, Mask);
1190        SDValue ShlCount = CurDAG->getConstant(ScaleLog, MVT::i8);
1191        SDValue Shl = CurDAG->getNode(ISD::SHL, dl, N.getValueType(),
1192                                      And, ShlCount);
1193
1194        // Insert the new nodes into the topological ordering.
1195        if (Eight.getNode()->getNodeId() == -1 ||
1196            Eight.getNode()->getNodeId() > X.getNode()->getNodeId()) {
1197          CurDAG->RepositionNode(X.getNode(), Eight.getNode());
1198          Eight.getNode()->setNodeId(X.getNode()->getNodeId());
1199        }
1200        if (Mask.getNode()->getNodeId() == -1 ||
1201            Mask.getNode()->getNodeId() > X.getNode()->getNodeId()) {
1202          CurDAG->RepositionNode(X.getNode(), Mask.getNode());
1203          Mask.getNode()->setNodeId(X.getNode()->getNodeId());
1204        }
1205        if (Srl.getNode()->getNodeId() == -1 ||
1206            Srl.getNode()->getNodeId() > Shift.getNode()->getNodeId()) {
1207          CurDAG->RepositionNode(Shift.getNode(), Srl.getNode());
1208          Srl.getNode()->setNodeId(Shift.getNode()->getNodeId());
1209        }
1210        if (And.getNode()->getNodeId() == -1 ||
1211            And.getNode()->getNodeId() > N.getNode()->getNodeId()) {
1212          CurDAG->RepositionNode(N.getNode(), And.getNode());
1213          And.getNode()->setNodeId(N.getNode()->getNodeId());
1214        }
1215        if (ShlCount.getNode()->getNodeId() == -1 ||
1216            ShlCount.getNode()->getNodeId() > X.getNode()->getNodeId()) {
1217          CurDAG->RepositionNode(X.getNode(), ShlCount.getNode());
1218          ShlCount.getNode()->setNodeId(N.getNode()->getNodeId());
1219        }
1220        if (Shl.getNode()->getNodeId() == -1 ||
1221            Shl.getNode()->getNodeId() > N.getNode()->getNodeId()) {
1222          CurDAG->RepositionNode(N.getNode(), Shl.getNode());
1223          Shl.getNode()->setNodeId(N.getNode()->getNodeId());
1224        }
1225        CurDAG->ReplaceAllUsesWith(N, Shl);
1226        AM.IndexReg = And;
1227        AM.Scale = (1 << ScaleLog);
1228        return false;
1229      }
1230    }
1231
1232    // Handle "(X << C1) & C2" as "(X & (C2>>C1)) << C1" if safe and if this
1233    // allows us to fold the shift into this addressing mode.
1234    if (Shift.getOpcode() != ISD::SHL) break;
1235
1236    // Not likely to be profitable if either the AND or SHIFT node has more
1237    // than one use (unless all uses are for address computation). Besides,
1238    // isel mechanism requires their node ids to be reused.
1239    if (!N.hasOneUse() || !Shift.hasOneUse())
1240      break;
1241
1242    // Verify that the shift amount is something we can fold.
1243    unsigned ShiftCst = C1->getZExtValue();
1244    if (ShiftCst != 1 && ShiftCst != 2 && ShiftCst != 3)
1245      break;
1246
1247    // Get the new AND mask, this folds to a constant.
1248    SDValue NewANDMask = CurDAG->getNode(ISD::SRL, dl, N.getValueType(),
1249                                         SDValue(C2, 0), SDValue(C1, 0));
1250    SDValue NewAND = CurDAG->getNode(ISD::AND, dl, N.getValueType(), X,
1251                                     NewANDMask);
1252    SDValue NewSHIFT = CurDAG->getNode(ISD::SHL, dl, N.getValueType(),
1253                                       NewAND, SDValue(C1, 0));
1254
1255    // Insert the new nodes into the topological ordering.
1256    if (C1->getNodeId() > X.getNode()->getNodeId()) {
1257      CurDAG->RepositionNode(X.getNode(), C1);
1258      C1->setNodeId(X.getNode()->getNodeId());
1259    }
1260    if (NewANDMask.getNode()->getNodeId() == -1 ||
1261        NewANDMask.getNode()->getNodeId() > X.getNode()->getNodeId()) {
1262      CurDAG->RepositionNode(X.getNode(), NewANDMask.getNode());
1263      NewANDMask.getNode()->setNodeId(X.getNode()->getNodeId());
1264    }
1265    if (NewAND.getNode()->getNodeId() == -1 ||
1266        NewAND.getNode()->getNodeId() > Shift.getNode()->getNodeId()) {
1267      CurDAG->RepositionNode(Shift.getNode(), NewAND.getNode());
1268      NewAND.getNode()->setNodeId(Shift.getNode()->getNodeId());
1269    }
1270    if (NewSHIFT.getNode()->getNodeId() == -1 ||
1271        NewSHIFT.getNode()->getNodeId() > N.getNode()->getNodeId()) {
1272      CurDAG->RepositionNode(N.getNode(), NewSHIFT.getNode());
1273      NewSHIFT.getNode()->setNodeId(N.getNode()->getNodeId());
1274    }
1275
1276    CurDAG->ReplaceAllUsesWith(N, NewSHIFT);
1277
1278    AM.Scale = 1 << ShiftCst;
1279    AM.IndexReg = NewAND;
1280    return false;
1281  }
1282  }
1283
1284  return MatchAddressBase(N, AM);
1285}
1286
1287/// MatchAddressBase - Helper for MatchAddress. Add the specified node to the
1288/// specified addressing mode without any further recursion.
1289bool X86DAGToDAGISel::MatchAddressBase(SDValue N, X86ISelAddressMode &AM) {
1290  // Is the base register already occupied?
1291  if (AM.BaseType != X86ISelAddressMode::RegBase || AM.Base.Reg.getNode()) {
1292    // If so, check to see if the scale index register is set.
1293    if (AM.IndexReg.getNode() == 0) {
1294      AM.IndexReg = N;
1295      AM.Scale = 1;
1296      return false;
1297    }
1298
1299    // Otherwise, we cannot select it.
1300    return true;
1301  }
1302
1303  // Default, generate it as a register.
1304  AM.BaseType = X86ISelAddressMode::RegBase;
1305  AM.Base.Reg = N;
1306  return false;
1307}
1308
1309/// SelectAddr - returns true if it is able pattern match an addressing mode.
1310/// It returns the operands which make up the maximal addressing mode it can
1311/// match by reference.
1312bool X86DAGToDAGISel::SelectAddr(SDNode *Op, SDValue N, SDValue &Base,
1313                                 SDValue &Scale, SDValue &Index,
1314                                 SDValue &Disp, SDValue &Segment) {
1315  X86ISelAddressMode AM;
1316  if (MatchAddress(N, AM))
1317    return false;
1318
1319  EVT VT = N.getValueType();
1320  if (AM.BaseType == X86ISelAddressMode::RegBase) {
1321    if (!AM.Base.Reg.getNode())
1322      AM.Base.Reg = CurDAG->getRegister(0, VT);
1323  }
1324
1325  if (!AM.IndexReg.getNode())
1326    AM.IndexReg = CurDAG->getRegister(0, VT);
1327
1328  getAddressOperands(AM, Base, Scale, Index, Disp, Segment);
1329  return true;
1330}
1331
1332/// SelectScalarSSELoad - Match a scalar SSE load.  In particular, we want to
1333/// match a load whose top elements are either undef or zeros.  The load flavor
1334/// is derived from the type of N, which is either v4f32 or v2f64.
1335///
1336/// We also return:
1337///   PatternChainNode: this is the matched node that has a chain input and
1338///   output.
1339bool X86DAGToDAGISel::SelectScalarSSELoadXXX(SDNode *Root,
1340                                          SDValue N, SDValue &Base,
1341                                          SDValue &Scale, SDValue &Index,
1342                                          SDValue &Disp, SDValue &Segment,
1343                                          SDValue &PatternNodeWithChain) {
1344  if (N.getOpcode() == ISD::SCALAR_TO_VECTOR) {
1345    PatternNodeWithChain = N.getOperand(0);
1346    if (ISD::isNON_EXTLoad(PatternNodeWithChain.getNode()) &&
1347        PatternNodeWithChain.hasOneUse() &&
1348        IsProfitableToFold(N.getOperand(0), N.getNode(), Root) &&
1349        IsLegalToFold(N.getOperand(0), N.getNode(), Root)) {
1350      LoadSDNode *LD = cast<LoadSDNode>(PatternNodeWithChain);
1351      if (!SelectAddr(Root, LD->getBasePtr(), Base, Scale, Index, Disp,Segment))
1352        return false;
1353      return true;
1354    }
1355  }
1356
1357  // Also handle the case where we explicitly require zeros in the top
1358  // elements.  This is a vector shuffle from the zero vector.
1359  if (N.getOpcode() == X86ISD::VZEXT_MOVL && N.getNode()->hasOneUse() &&
1360      // Check to see if the top elements are all zeros (or bitcast of zeros).
1361      N.getOperand(0).getOpcode() == ISD::SCALAR_TO_VECTOR &&
1362      N.getOperand(0).getNode()->hasOneUse() &&
1363      ISD::isNON_EXTLoad(N.getOperand(0).getOperand(0).getNode()) &&
1364      N.getOperand(0).getOperand(0).hasOneUse() &&
1365      IsProfitableToFold(N.getOperand(0), N.getNode(), Root) &&
1366      IsLegalToFold(N.getOperand(0), N.getNode(), Root)) {
1367    // Okay, this is a zero extending load.  Fold it.
1368    LoadSDNode *LD = cast<LoadSDNode>(N.getOperand(0).getOperand(0));
1369    if (!SelectAddr(Root, LD->getBasePtr(), Base, Scale, Index, Disp, Segment))
1370      return false;
1371    PatternNodeWithChain = SDValue(LD, 0);
1372    return true;
1373  }
1374  return false;
1375}
1376
1377
1378/// SelectLEAAddr - it calls SelectAddr and determines if the maximal addressing
1379/// mode it matches can be cost effectively emitted as an LEA instruction.
1380bool X86DAGToDAGISel::SelectLEAAddr(SDNode *Op, SDValue N,
1381                                    SDValue &Base, SDValue &Scale,
1382                                    SDValue &Index, SDValue &Disp) {
1383  X86ISelAddressMode AM;
1384
1385  // Set AM.Segment to prevent MatchAddress from using one. LEA doesn't support
1386  // segments.
1387  SDValue Copy = AM.Segment;
1388  SDValue T = CurDAG->getRegister(0, MVT::i32);
1389  AM.Segment = T;
1390  if (MatchAddress(N, AM))
1391    return false;
1392  assert (T == AM.Segment);
1393  AM.Segment = Copy;
1394
1395  EVT VT = N.getValueType();
1396  unsigned Complexity = 0;
1397  if (AM.BaseType == X86ISelAddressMode::RegBase)
1398    if (AM.Base.Reg.getNode())
1399      Complexity = 1;
1400    else
1401      AM.Base.Reg = CurDAG->getRegister(0, VT);
1402  else if (AM.BaseType == X86ISelAddressMode::FrameIndexBase)
1403    Complexity = 4;
1404
1405  if (AM.IndexReg.getNode())
1406    Complexity++;
1407  else
1408    AM.IndexReg = CurDAG->getRegister(0, VT);
1409
1410  // Don't match just leal(,%reg,2). It's cheaper to do addl %reg, %reg, or with
1411  // a simple shift.
1412  if (AM.Scale > 1)
1413    Complexity++;
1414
1415  // FIXME: We are artificially lowering the criteria to turn ADD %reg, $GA
1416  // to a LEA. This is determined with some expermentation but is by no means
1417  // optimal (especially for code size consideration). LEA is nice because of
1418  // its three-address nature. Tweak the cost function again when we can run
1419  // convertToThreeAddress() at register allocation time.
1420  if (AM.hasSymbolicDisplacement()) {
1421    // For X86-64, we should always use lea to materialize RIP relative
1422    // addresses.
1423    if (Subtarget->is64Bit())
1424      Complexity = 4;
1425    else
1426      Complexity += 2;
1427  }
1428
1429  if (AM.Disp && (AM.Base.Reg.getNode() || AM.IndexReg.getNode()))
1430    Complexity++;
1431
1432  // If it isn't worth using an LEA, reject it.
1433  if (Complexity <= 2)
1434    return false;
1435
1436  SDValue Segment;
1437  getAddressOperands(AM, Base, Scale, Index, Disp, Segment);
1438  return true;
1439}
1440
1441/// SelectTLSADDRAddr - This is only run on TargetGlobalTLSAddress nodes.
1442bool X86DAGToDAGISel::SelectTLSADDRAddr(SDNode *Op, SDValue N, SDValue &Base,
1443                                        SDValue &Scale, SDValue &Index,
1444                                        SDValue &Disp) {
1445  assert(N.getOpcode() == ISD::TargetGlobalTLSAddress);
1446  const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
1447
1448  X86ISelAddressMode AM;
1449  AM.GV = GA->getGlobal();
1450  AM.Disp += GA->getOffset();
1451  AM.Base.Reg = CurDAG->getRegister(0, N.getValueType());
1452  AM.SymbolFlags = GA->getTargetFlags();
1453
1454  if (N.getValueType() == MVT::i32) {
1455    AM.Scale = 1;
1456    AM.IndexReg = CurDAG->getRegister(X86::EBX, MVT::i32);
1457  } else {
1458    AM.IndexReg = CurDAG->getRegister(0, MVT::i64);
1459  }
1460
1461  SDValue Segment;
1462  getAddressOperands(AM, Base, Scale, Index, Disp, Segment);
1463  return true;
1464}
1465
1466
1467bool X86DAGToDAGISel::TryFoldLoad(SDNode *P, SDValue N,
1468                                  SDValue &Base, SDValue &Scale,
1469                                  SDValue &Index, SDValue &Disp,
1470                                  SDValue &Segment) {
1471  if (ISD::isNON_EXTLoad(N.getNode()) &&
1472      IsProfitableToFold(N, P, P) &&
1473      IsLegalToFold(N, P, P))
1474    return SelectAddr(P, N.getOperand(1), Base, Scale, Index, Disp, Segment);
1475  return false;
1476}
1477
1478/// getGlobalBaseReg - Return an SDNode that returns the value of
1479/// the global base register. Output instructions required to
1480/// initialize the global base register, if necessary.
1481///
1482SDNode *X86DAGToDAGISel::getGlobalBaseReg() {
1483  unsigned GlobalBaseReg = getInstrInfo()->getGlobalBaseReg(MF);
1484  return CurDAG->getRegister(GlobalBaseReg, TLI.getPointerTy()).getNode();
1485}
1486
1487static SDNode *FindCallStartFromCall(SDNode *Node) {
1488  if (Node->getOpcode() == ISD::CALLSEQ_START) return Node;
1489    assert(Node->getOperand(0).getValueType() == MVT::Other &&
1490         "Node doesn't have a token chain argument!");
1491  return FindCallStartFromCall(Node->getOperand(0).getNode());
1492}
1493
1494SDNode *X86DAGToDAGISel::SelectAtomic64(SDNode *Node, unsigned Opc) {
1495  SDValue Chain = Node->getOperand(0);
1496  SDValue In1 = Node->getOperand(1);
1497  SDValue In2L = Node->getOperand(2);
1498  SDValue In2H = Node->getOperand(3);
1499  SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
1500  if (!SelectAddr(In1.getNode(), In1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4))
1501    return NULL;
1502  MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
1503  MemOp[0] = cast<MemSDNode>(Node)->getMemOperand();
1504  const SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, In2L, In2H, Chain};
1505  SDNode *ResNode = CurDAG->getMachineNode(Opc, Node->getDebugLoc(),
1506                                           MVT::i32, MVT::i32, MVT::Other, Ops,
1507                                           array_lengthof(Ops));
1508  cast<MachineSDNode>(ResNode)->setMemRefs(MemOp, MemOp + 1);
1509  return ResNode;
1510}
1511
1512SDNode *X86DAGToDAGISel::SelectAtomicLoadAdd(SDNode *Node, EVT NVT) {
1513  if (Node->hasAnyUseOfValue(0))
1514    return 0;
1515
1516  // Optimize common patterns for __sync_add_and_fetch and
1517  // __sync_sub_and_fetch where the result is not used. This allows us
1518  // to use "lock" version of add, sub, inc, dec instructions.
1519  // FIXME: Do not use special instructions but instead add the "lock"
1520  // prefix to the target node somehow. The extra information will then be
1521  // transferred to machine instruction and it denotes the prefix.
1522  SDValue Chain = Node->getOperand(0);
1523  SDValue Ptr = Node->getOperand(1);
1524  SDValue Val = Node->getOperand(2);
1525  SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
1526  if (!SelectAddr(Ptr.getNode(), Ptr, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4))
1527    return 0;
1528
1529  bool isInc = false, isDec = false, isSub = false, isCN = false;
1530  ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Val);
1531  if (CN) {
1532    isCN = true;
1533    int64_t CNVal = CN->getSExtValue();
1534    if (CNVal == 1)
1535      isInc = true;
1536    else if (CNVal == -1)
1537      isDec = true;
1538    else if (CNVal >= 0)
1539      Val = CurDAG->getTargetConstant(CNVal, NVT);
1540    else {
1541      isSub = true;
1542      Val = CurDAG->getTargetConstant(-CNVal, NVT);
1543    }
1544  } else if (Val.hasOneUse() &&
1545             Val.getOpcode() == ISD::SUB &&
1546             X86::isZeroNode(Val.getOperand(0))) {
1547    isSub = true;
1548    Val = Val.getOperand(1);
1549  }
1550
1551  unsigned Opc = 0;
1552  switch (NVT.getSimpleVT().SimpleTy) {
1553  default: return 0;
1554  case MVT::i8:
1555    if (isInc)
1556      Opc = X86::LOCK_INC8m;
1557    else if (isDec)
1558      Opc = X86::LOCK_DEC8m;
1559    else if (isSub) {
1560      if (isCN)
1561        Opc = X86::LOCK_SUB8mi;
1562      else
1563        Opc = X86::LOCK_SUB8mr;
1564    } else {
1565      if (isCN)
1566        Opc = X86::LOCK_ADD8mi;
1567      else
1568        Opc = X86::LOCK_ADD8mr;
1569    }
1570    break;
1571  case MVT::i16:
1572    if (isInc)
1573      Opc = X86::LOCK_INC16m;
1574    else if (isDec)
1575      Opc = X86::LOCK_DEC16m;
1576    else if (isSub) {
1577      if (isCN) {
1578        if (Predicate_i16immSExt8(Val.getNode()))
1579          Opc = X86::LOCK_SUB16mi8;
1580        else
1581          Opc = X86::LOCK_SUB16mi;
1582      } else
1583        Opc = X86::LOCK_SUB16mr;
1584    } else {
1585      if (isCN) {
1586        if (Predicate_i16immSExt8(Val.getNode()))
1587          Opc = X86::LOCK_ADD16mi8;
1588        else
1589          Opc = X86::LOCK_ADD16mi;
1590      } else
1591        Opc = X86::LOCK_ADD16mr;
1592    }
1593    break;
1594  case MVT::i32:
1595    if (isInc)
1596      Opc = X86::LOCK_INC32m;
1597    else if (isDec)
1598      Opc = X86::LOCK_DEC32m;
1599    else if (isSub) {
1600      if (isCN) {
1601        if (Predicate_i32immSExt8(Val.getNode()))
1602          Opc = X86::LOCK_SUB32mi8;
1603        else
1604          Opc = X86::LOCK_SUB32mi;
1605      } else
1606        Opc = X86::LOCK_SUB32mr;
1607    } else {
1608      if (isCN) {
1609        if (Predicate_i32immSExt8(Val.getNode()))
1610          Opc = X86::LOCK_ADD32mi8;
1611        else
1612          Opc = X86::LOCK_ADD32mi;
1613      } else
1614        Opc = X86::LOCK_ADD32mr;
1615    }
1616    break;
1617  case MVT::i64:
1618    if (isInc)
1619      Opc = X86::LOCK_INC64m;
1620    else if (isDec)
1621      Opc = X86::LOCK_DEC64m;
1622    else if (isSub) {
1623      Opc = X86::LOCK_SUB64mr;
1624      if (isCN) {
1625        if (Predicate_i64immSExt8(Val.getNode()))
1626          Opc = X86::LOCK_SUB64mi8;
1627        else if (Predicate_i64immSExt32(Val.getNode()))
1628          Opc = X86::LOCK_SUB64mi32;
1629      }
1630    } else {
1631      Opc = X86::LOCK_ADD64mr;
1632      if (isCN) {
1633        if (Predicate_i64immSExt8(Val.getNode()))
1634          Opc = X86::LOCK_ADD64mi8;
1635        else if (Predicate_i64immSExt32(Val.getNode()))
1636          Opc = X86::LOCK_ADD64mi32;
1637      }
1638    }
1639    break;
1640  }
1641
1642  DebugLoc dl = Node->getDebugLoc();
1643  SDValue Undef = SDValue(CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF,
1644                                                 dl, NVT), 0);
1645  MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
1646  MemOp[0] = cast<MemSDNode>(Node)->getMemOperand();
1647  if (isInc || isDec) {
1648    SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Chain };
1649    SDValue Ret = SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Other, Ops, 6), 0);
1650    cast<MachineSDNode>(Ret)->setMemRefs(MemOp, MemOp + 1);
1651    SDValue RetVals[] = { Undef, Ret };
1652    return CurDAG->getMergeValues(RetVals, 2, dl).getNode();
1653  } else {
1654    SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Val, Chain };
1655    SDValue Ret = SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Other, Ops, 7), 0);
1656    cast<MachineSDNode>(Ret)->setMemRefs(MemOp, MemOp + 1);
1657    SDValue RetVals[] = { Undef, Ret };
1658    return CurDAG->getMergeValues(RetVals, 2, dl).getNode();
1659  }
1660}
1661
1662/// HasNoSignedComparisonUses - Test whether the given X86ISD::CMP node has
1663/// any uses which require the SF or OF bits to be accurate.
1664static bool HasNoSignedComparisonUses(SDNode *N) {
1665  // Examine each user of the node.
1666  for (SDNode::use_iterator UI = N->use_begin(),
1667         UE = N->use_end(); UI != UE; ++UI) {
1668    // Only examine CopyToReg uses.
1669    if (UI->getOpcode() != ISD::CopyToReg)
1670      return false;
1671    // Only examine CopyToReg uses that copy to EFLAGS.
1672    if (cast<RegisterSDNode>(UI->getOperand(1))->getReg() !=
1673          X86::EFLAGS)
1674      return false;
1675    // Examine each user of the CopyToReg use.
1676    for (SDNode::use_iterator FlagUI = UI->use_begin(),
1677           FlagUE = UI->use_end(); FlagUI != FlagUE; ++FlagUI) {
1678      // Only examine the Flag result.
1679      if (FlagUI.getUse().getResNo() != 1) continue;
1680      // Anything unusual: assume conservatively.
1681      if (!FlagUI->isMachineOpcode()) return false;
1682      // Examine the opcode of the user.
1683      switch (FlagUI->getMachineOpcode()) {
1684      // These comparisons don't treat the most significant bit specially.
1685      case X86::SETAr: case X86::SETAEr: case X86::SETBr: case X86::SETBEr:
1686      case X86::SETEr: case X86::SETNEr: case X86::SETPr: case X86::SETNPr:
1687      case X86::SETAm: case X86::SETAEm: case X86::SETBm: case X86::SETBEm:
1688      case X86::SETEm: case X86::SETNEm: case X86::SETPm: case X86::SETNPm:
1689      case X86::JA_4: case X86::JAE_4: case X86::JB_4: case X86::JBE_4:
1690      case X86::JE_4: case X86::JNE_4: case X86::JP_4: case X86::JNP_4:
1691      case X86::CMOVA16rr: case X86::CMOVA16rm:
1692      case X86::CMOVA32rr: case X86::CMOVA32rm:
1693      case X86::CMOVA64rr: case X86::CMOVA64rm:
1694      case X86::CMOVAE16rr: case X86::CMOVAE16rm:
1695      case X86::CMOVAE32rr: case X86::CMOVAE32rm:
1696      case X86::CMOVAE64rr: case X86::CMOVAE64rm:
1697      case X86::CMOVB16rr: case X86::CMOVB16rm:
1698      case X86::CMOVB32rr: case X86::CMOVB32rm:
1699      case X86::CMOVB64rr: case X86::CMOVB64rm:
1700      case X86::CMOVBE16rr: case X86::CMOVBE16rm:
1701      case X86::CMOVBE32rr: case X86::CMOVBE32rm:
1702      case X86::CMOVBE64rr: case X86::CMOVBE64rm:
1703      case X86::CMOVE16rr: case X86::CMOVE16rm:
1704      case X86::CMOVE32rr: case X86::CMOVE32rm:
1705      case X86::CMOVE64rr: case X86::CMOVE64rm:
1706      case X86::CMOVNE16rr: case X86::CMOVNE16rm:
1707      case X86::CMOVNE32rr: case X86::CMOVNE32rm:
1708      case X86::CMOVNE64rr: case X86::CMOVNE64rm:
1709      case X86::CMOVNP16rr: case X86::CMOVNP16rm:
1710      case X86::CMOVNP32rr: case X86::CMOVNP32rm:
1711      case X86::CMOVNP64rr: case X86::CMOVNP64rm:
1712      case X86::CMOVP16rr: case X86::CMOVP16rm:
1713      case X86::CMOVP32rr: case X86::CMOVP32rm:
1714      case X86::CMOVP64rr: case X86::CMOVP64rm:
1715        continue;
1716      // Anything else: assume conservatively.
1717      default: return false;
1718      }
1719    }
1720  }
1721  return true;
1722}
1723
1724SDNode *X86DAGToDAGISel::Select(SDNode *Node) {
1725  EVT NVT = Node->getValueType(0);
1726  unsigned Opc, MOpc;
1727  unsigned Opcode = Node->getOpcode();
1728  DebugLoc dl = Node->getDebugLoc();
1729
1730#ifndef NDEBUG
1731  DEBUG({
1732      dbgs() << std::string(Indent, ' ') << "Selecting: ";
1733      Node->dump(CurDAG);
1734      dbgs() << '\n';
1735    });
1736  Indent += 2;
1737#endif
1738
1739  if (Node->isMachineOpcode()) {
1740#ifndef NDEBUG
1741    DEBUG({
1742        dbgs() << std::string(Indent-2, ' ') << "== ";
1743        Node->dump(CurDAG);
1744        dbgs() << '\n';
1745      });
1746    Indent -= 2;
1747#endif
1748    return NULL;   // Already selected.
1749  }
1750
1751  switch (Opcode) {
1752  default: break;
1753  case X86ISD::GlobalBaseReg:
1754    return getGlobalBaseReg();
1755
1756  case X86ISD::ATOMOR64_DAG:
1757    return SelectAtomic64(Node, X86::ATOMOR6432);
1758  case X86ISD::ATOMXOR64_DAG:
1759    return SelectAtomic64(Node, X86::ATOMXOR6432);
1760  case X86ISD::ATOMADD64_DAG:
1761    return SelectAtomic64(Node, X86::ATOMADD6432);
1762  case X86ISD::ATOMSUB64_DAG:
1763    return SelectAtomic64(Node, X86::ATOMSUB6432);
1764  case X86ISD::ATOMNAND64_DAG:
1765    return SelectAtomic64(Node, X86::ATOMNAND6432);
1766  case X86ISD::ATOMAND64_DAG:
1767    return SelectAtomic64(Node, X86::ATOMAND6432);
1768  case X86ISD::ATOMSWAP64_DAG:
1769    return SelectAtomic64(Node, X86::ATOMSWAP6432);
1770
1771  case ISD::ATOMIC_LOAD_ADD: {
1772    SDNode *RetVal = SelectAtomicLoadAdd(Node, NVT);
1773    if (RetVal)
1774      return RetVal;
1775    break;
1776  }
1777
1778  case ISD::SMUL_LOHI:
1779  case ISD::UMUL_LOHI: {
1780    SDValue N0 = Node->getOperand(0);
1781    SDValue N1 = Node->getOperand(1);
1782
1783    bool isSigned = Opcode == ISD::SMUL_LOHI;
1784    if (!isSigned) {
1785      switch (NVT.getSimpleVT().SimpleTy) {
1786      default: llvm_unreachable("Unsupported VT!");
1787      case MVT::i8:  Opc = X86::MUL8r;  MOpc = X86::MUL8m;  break;
1788      case MVT::i16: Opc = X86::MUL16r; MOpc = X86::MUL16m; break;
1789      case MVT::i32: Opc = X86::MUL32r; MOpc = X86::MUL32m; break;
1790      case MVT::i64: Opc = X86::MUL64r; MOpc = X86::MUL64m; break;
1791      }
1792    } else {
1793      switch (NVT.getSimpleVT().SimpleTy) {
1794      default: llvm_unreachable("Unsupported VT!");
1795      case MVT::i8:  Opc = X86::IMUL8r;  MOpc = X86::IMUL8m;  break;
1796      case MVT::i16: Opc = X86::IMUL16r; MOpc = X86::IMUL16m; break;
1797      case MVT::i32: Opc = X86::IMUL32r; MOpc = X86::IMUL32m; break;
1798      case MVT::i64: Opc = X86::IMUL64r; MOpc = X86::IMUL64m; break;
1799      }
1800    }
1801
1802    unsigned LoReg, HiReg;
1803    switch (NVT.getSimpleVT().SimpleTy) {
1804    default: llvm_unreachable("Unsupported VT!");
1805    case MVT::i8:  LoReg = X86::AL;  HiReg = X86::AH;  break;
1806    case MVT::i16: LoReg = X86::AX;  HiReg = X86::DX;  break;
1807    case MVT::i32: LoReg = X86::EAX; HiReg = X86::EDX; break;
1808    case MVT::i64: LoReg = X86::RAX; HiReg = X86::RDX; break;
1809    }
1810
1811    SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
1812    bool foldedLoad = TryFoldLoad(Node, N1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4);
1813    // Multiply is commmutative.
1814    if (!foldedLoad) {
1815      foldedLoad = TryFoldLoad(Node, N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4);
1816      if (foldedLoad)
1817        std::swap(N0, N1);
1818    }
1819
1820    SDValue InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, LoReg,
1821                                            N0, SDValue()).getValue(1);
1822
1823    if (foldedLoad) {
1824      SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N1.getOperand(0),
1825                        InFlag };
1826      SDNode *CNode =
1827        CurDAG->getMachineNode(MOpc, dl, MVT::Other, MVT::Flag, Ops,
1828                               array_lengthof(Ops));
1829      InFlag = SDValue(CNode, 1);
1830      // Update the chain.
1831      ReplaceUses(N1.getValue(1), SDValue(CNode, 0));
1832    } else {
1833      InFlag =
1834        SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Flag, N1, InFlag), 0);
1835    }
1836
1837    // Copy the low half of the result, if it is needed.
1838    if (!SDValue(Node, 0).use_empty()) {
1839      SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
1840                                                LoReg, NVT, InFlag);
1841      InFlag = Result.getValue(2);
1842      ReplaceUses(SDValue(Node, 0), Result);
1843#ifndef NDEBUG
1844      DEBUG({
1845          dbgs() << std::string(Indent-2, ' ') << "=> ";
1846          Result.getNode()->dump(CurDAG);
1847          dbgs() << '\n';
1848        });
1849#endif
1850    }
1851    // Copy the high half of the result, if it is needed.
1852    if (!SDValue(Node, 1).use_empty()) {
1853      SDValue Result;
1854      if (HiReg == X86::AH && Subtarget->is64Bit()) {
1855        // Prevent use of AH in a REX instruction by referencing AX instead.
1856        // Shift it down 8 bits.
1857        Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
1858                                        X86::AX, MVT::i16, InFlag);
1859        InFlag = Result.getValue(2);
1860        Result = SDValue(CurDAG->getMachineNode(X86::SHR16ri, dl, MVT::i16,
1861                                                Result,
1862                                   CurDAG->getTargetConstant(8, MVT::i8)), 0);
1863        // Then truncate it down to i8.
1864        Result = CurDAG->getTargetExtractSubreg(X86::SUBREG_8BIT, dl,
1865                                                MVT::i8, Result);
1866      } else {
1867        Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
1868                                        HiReg, NVT, InFlag);
1869        InFlag = Result.getValue(2);
1870      }
1871      ReplaceUses(SDValue(Node, 1), Result);
1872#ifndef NDEBUG
1873      DEBUG({
1874          dbgs() << std::string(Indent-2, ' ') << "=> ";
1875          Result.getNode()->dump(CurDAG);
1876          dbgs() << '\n';
1877        });
1878#endif
1879    }
1880
1881#ifndef NDEBUG
1882    Indent -= 2;
1883#endif
1884
1885    return NULL;
1886  }
1887
1888  case ISD::SDIVREM:
1889  case ISD::UDIVREM: {
1890    SDValue N0 = Node->getOperand(0);
1891    SDValue N1 = Node->getOperand(1);
1892
1893    bool isSigned = Opcode == ISD::SDIVREM;
1894    if (!isSigned) {
1895      switch (NVT.getSimpleVT().SimpleTy) {
1896      default: llvm_unreachable("Unsupported VT!");
1897      case MVT::i8:  Opc = X86::DIV8r;  MOpc = X86::DIV8m;  break;
1898      case MVT::i16: Opc = X86::DIV16r; MOpc = X86::DIV16m; break;
1899      case MVT::i32: Opc = X86::DIV32r; MOpc = X86::DIV32m; break;
1900      case MVT::i64: Opc = X86::DIV64r; MOpc = X86::DIV64m; break;
1901      }
1902    } else {
1903      switch (NVT.getSimpleVT().SimpleTy) {
1904      default: llvm_unreachable("Unsupported VT!");
1905      case MVT::i8:  Opc = X86::IDIV8r;  MOpc = X86::IDIV8m;  break;
1906      case MVT::i16: Opc = X86::IDIV16r; MOpc = X86::IDIV16m; break;
1907      case MVT::i32: Opc = X86::IDIV32r; MOpc = X86::IDIV32m; break;
1908      case MVT::i64: Opc = X86::IDIV64r; MOpc = X86::IDIV64m; break;
1909      }
1910    }
1911
1912    unsigned LoReg, HiReg, ClrReg;
1913    unsigned ClrOpcode, SExtOpcode;
1914    switch (NVT.getSimpleVT().SimpleTy) {
1915    default: llvm_unreachable("Unsupported VT!");
1916    case MVT::i8:
1917      LoReg = X86::AL;  ClrReg = HiReg = X86::AH;
1918      ClrOpcode  = 0;
1919      SExtOpcode = X86::CBW;
1920      break;
1921    case MVT::i16:
1922      LoReg = X86::AX;  HiReg = X86::DX;
1923      ClrOpcode  = X86::MOV16r0; ClrReg = X86::DX;
1924      SExtOpcode = X86::CWD;
1925      break;
1926    case MVT::i32:
1927      LoReg = X86::EAX; ClrReg = HiReg = X86::EDX;
1928      ClrOpcode  = X86::MOV32r0;
1929      SExtOpcode = X86::CDQ;
1930      break;
1931    case MVT::i64:
1932      LoReg = X86::RAX; ClrReg = HiReg = X86::RDX;
1933      ClrOpcode  = X86::MOV64r0;
1934      SExtOpcode = X86::CQO;
1935      break;
1936    }
1937
1938    SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
1939    bool foldedLoad = TryFoldLoad(Node, N1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4);
1940    bool signBitIsZero = CurDAG->SignBitIsZero(N0);
1941
1942    SDValue InFlag;
1943    if (NVT == MVT::i8 && (!isSigned || signBitIsZero)) {
1944      // Special case for div8, just use a move with zero extension to AX to
1945      // clear the upper 8 bits (AH).
1946      SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Move, Chain;
1947      if (TryFoldLoad(Node, N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4)) {
1948        SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N0.getOperand(0) };
1949        Move =
1950          SDValue(CurDAG->getMachineNode(X86::MOVZX16rm8, dl, MVT::i16,
1951                                         MVT::Other, Ops,
1952                                         array_lengthof(Ops)), 0);
1953        Chain = Move.getValue(1);
1954        ReplaceUses(N0.getValue(1), Chain);
1955      } else {
1956        Move =
1957          SDValue(CurDAG->getMachineNode(X86::MOVZX16rr8, dl, MVT::i16, N0),0);
1958        Chain = CurDAG->getEntryNode();
1959      }
1960      Chain  = CurDAG->getCopyToReg(Chain, dl, X86::AX, Move, SDValue());
1961      InFlag = Chain.getValue(1);
1962    } else {
1963      InFlag =
1964        CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl,
1965                             LoReg, N0, SDValue()).getValue(1);
1966      if (isSigned && !signBitIsZero) {
1967        // Sign extend the low part into the high part.
1968        InFlag =
1969          SDValue(CurDAG->getMachineNode(SExtOpcode, dl, MVT::Flag, InFlag),0);
1970      } else {
1971        // Zero out the high part, effectively zero extending the input.
1972        SDValue ClrNode =
1973          SDValue(CurDAG->getMachineNode(ClrOpcode, dl, NVT), 0);
1974        InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, ClrReg,
1975                                      ClrNode, InFlag).getValue(1);
1976      }
1977    }
1978
1979    if (foldedLoad) {
1980      SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N1.getOperand(0),
1981                        InFlag };
1982      SDNode *CNode =
1983        CurDAG->getMachineNode(MOpc, dl, MVT::Other, MVT::Flag, Ops,
1984                               array_lengthof(Ops));
1985      InFlag = SDValue(CNode, 1);
1986      // Update the chain.
1987      ReplaceUses(N1.getValue(1), SDValue(CNode, 0));
1988    } else {
1989      InFlag =
1990        SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Flag, N1, InFlag), 0);
1991    }
1992
1993    // Copy the division (low) result, if it is needed.
1994    if (!SDValue(Node, 0).use_empty()) {
1995      SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
1996                                                LoReg, NVT, InFlag);
1997      InFlag = Result.getValue(2);
1998      ReplaceUses(SDValue(Node, 0), Result);
1999#ifndef NDEBUG
2000      DEBUG({
2001          dbgs() << std::string(Indent-2, ' ') << "=> ";
2002          Result.getNode()->dump(CurDAG);
2003          dbgs() << '\n';
2004        });
2005#endif
2006    }
2007    // Copy the remainder (high) result, if it is needed.
2008    if (!SDValue(Node, 1).use_empty()) {
2009      SDValue Result;
2010      if (HiReg == X86::AH && Subtarget->is64Bit()) {
2011        // Prevent use of AH in a REX instruction by referencing AX instead.
2012        // Shift it down 8 bits.
2013        Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
2014                                        X86::AX, MVT::i16, InFlag);
2015        InFlag = Result.getValue(2);
2016        Result = SDValue(CurDAG->getMachineNode(X86::SHR16ri, dl, MVT::i16,
2017                                      Result,
2018                                      CurDAG->getTargetConstant(8, MVT::i8)),
2019                         0);
2020        // Then truncate it down to i8.
2021        Result = CurDAG->getTargetExtractSubreg(X86::SUBREG_8BIT, dl,
2022                                                MVT::i8, Result);
2023      } else {
2024        Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
2025                                        HiReg, NVT, InFlag);
2026        InFlag = Result.getValue(2);
2027      }
2028      ReplaceUses(SDValue(Node, 1), Result);
2029#ifndef NDEBUG
2030      DEBUG({
2031          dbgs() << std::string(Indent-2, ' ') << "=> ";
2032          Result.getNode()->dump(CurDAG);
2033          dbgs() << '\n';
2034        });
2035#endif
2036    }
2037
2038#ifndef NDEBUG
2039    Indent -= 2;
2040#endif
2041
2042    return NULL;
2043  }
2044
2045  case X86ISD::CMP: {
2046    SDValue N0 = Node->getOperand(0);
2047    SDValue N1 = Node->getOperand(1);
2048
2049    // Look for (X86cmp (and $op, $imm), 0) and see if we can convert it to
2050    // use a smaller encoding.
2051    if (N0.getNode()->getOpcode() == ISD::AND && N0.getNode()->hasOneUse() &&
2052        N0.getValueType() != MVT::i8 &&
2053        X86::isZeroNode(N1)) {
2054      ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getNode()->getOperand(1));
2055      if (!C) break;
2056
2057      // For example, convert "testl %eax, $8" to "testb %al, $8"
2058      if ((C->getZExtValue() & ~UINT64_C(0xff)) == 0 &&
2059          (!(C->getZExtValue() & 0x80) ||
2060           HasNoSignedComparisonUses(Node))) {
2061        SDValue Imm = CurDAG->getTargetConstant(C->getZExtValue(), MVT::i8);
2062        SDValue Reg = N0.getNode()->getOperand(0);
2063
2064        // On x86-32, only the ABCD registers have 8-bit subregisters.
2065        if (!Subtarget->is64Bit()) {
2066          TargetRegisterClass *TRC = 0;
2067          switch (N0.getValueType().getSimpleVT().SimpleTy) {
2068          case MVT::i32: TRC = &X86::GR32_ABCDRegClass; break;
2069          case MVT::i16: TRC = &X86::GR16_ABCDRegClass; break;
2070          default: llvm_unreachable("Unsupported TEST operand type!");
2071          }
2072          SDValue RC = CurDAG->getTargetConstant(TRC->getID(), MVT::i32);
2073          Reg = SDValue(CurDAG->getMachineNode(X86::COPY_TO_REGCLASS, dl,
2074                                               Reg.getValueType(), Reg, RC), 0);
2075        }
2076
2077        // Extract the l-register.
2078        SDValue Subreg = CurDAG->getTargetExtractSubreg(X86::SUBREG_8BIT, dl,
2079                                                        MVT::i8, Reg);
2080
2081        // Emit a testb.
2082        return CurDAG->getMachineNode(X86::TEST8ri, dl, MVT::i32, Subreg, Imm);
2083      }
2084
2085      // For example, "testl %eax, $2048" to "testb %ah, $8".
2086      if ((C->getZExtValue() & ~UINT64_C(0xff00)) == 0 &&
2087          (!(C->getZExtValue() & 0x8000) ||
2088           HasNoSignedComparisonUses(Node))) {
2089        // Shift the immediate right by 8 bits.
2090        SDValue ShiftedImm = CurDAG->getTargetConstant(C->getZExtValue() >> 8,
2091                                                       MVT::i8);
2092        SDValue Reg = N0.getNode()->getOperand(0);
2093
2094        // Put the value in an ABCD register.
2095        TargetRegisterClass *TRC = 0;
2096        switch (N0.getValueType().getSimpleVT().SimpleTy) {
2097        case MVT::i64: TRC = &X86::GR64_ABCDRegClass; break;
2098        case MVT::i32: TRC = &X86::GR32_ABCDRegClass; break;
2099        case MVT::i16: TRC = &X86::GR16_ABCDRegClass; break;
2100        default: llvm_unreachable("Unsupported TEST operand type!");
2101        }
2102        SDValue RC = CurDAG->getTargetConstant(TRC->getID(), MVT::i32);
2103        Reg = SDValue(CurDAG->getMachineNode(X86::COPY_TO_REGCLASS, dl,
2104                                             Reg.getValueType(), Reg, RC), 0);
2105
2106        // Extract the h-register.
2107        SDValue Subreg = CurDAG->getTargetExtractSubreg(X86::SUBREG_8BIT_HI, dl,
2108                                                        MVT::i8, Reg);
2109
2110        // Emit a testb. No special NOREX tricks are needed since there's
2111        // only one GPR operand!
2112        return CurDAG->getMachineNode(X86::TEST8ri, dl, MVT::i32,
2113                                      Subreg, ShiftedImm);
2114      }
2115
2116      // For example, "testl %eax, $32776" to "testw %ax, $32776".
2117      if ((C->getZExtValue() & ~UINT64_C(0xffff)) == 0 &&
2118          N0.getValueType() != MVT::i16 &&
2119          (!(C->getZExtValue() & 0x8000) ||
2120           HasNoSignedComparisonUses(Node))) {
2121        SDValue Imm = CurDAG->getTargetConstant(C->getZExtValue(), MVT::i16);
2122        SDValue Reg = N0.getNode()->getOperand(0);
2123
2124        // Extract the 16-bit subregister.
2125        SDValue Subreg = CurDAG->getTargetExtractSubreg(X86::SUBREG_16BIT, dl,
2126                                                        MVT::i16, Reg);
2127
2128        // Emit a testw.
2129        return CurDAG->getMachineNode(X86::TEST16ri, dl, MVT::i32, Subreg, Imm);
2130      }
2131
2132      // For example, "testq %rax, $268468232" to "testl %eax, $268468232".
2133      if ((C->getZExtValue() & ~UINT64_C(0xffffffff)) == 0 &&
2134          N0.getValueType() == MVT::i64 &&
2135          (!(C->getZExtValue() & 0x80000000) ||
2136           HasNoSignedComparisonUses(Node))) {
2137        SDValue Imm = CurDAG->getTargetConstant(C->getZExtValue(), MVT::i32);
2138        SDValue Reg = N0.getNode()->getOperand(0);
2139
2140        // Extract the 32-bit subregister.
2141        SDValue Subreg = CurDAG->getTargetExtractSubreg(X86::SUBREG_32BIT, dl,
2142                                                        MVT::i32, Reg);
2143
2144        // Emit a testl.
2145        return CurDAG->getMachineNode(X86::TEST32ri, dl, MVT::i32, Subreg, Imm);
2146      }
2147    }
2148    break;
2149  }
2150  }
2151
2152  SDNode *ResNode = SelectCode(Node);
2153
2154#ifndef NDEBUG
2155  DEBUG({
2156      dbgs() << std::string(Indent-2, ' ') << "=> ";
2157      if (ResNode == NULL || ResNode == Node)
2158        Node->dump(CurDAG);
2159      else
2160        ResNode->dump(CurDAG);
2161      dbgs() << '\n';
2162    });
2163  Indent -= 2;
2164#endif
2165
2166  return ResNode;
2167}
2168
2169bool X86DAGToDAGISel::
2170SelectInlineAsmMemoryOperand(const SDValue &Op, char ConstraintCode,
2171                             std::vector<SDValue> &OutOps) {
2172  SDValue Op0, Op1, Op2, Op3, Op4;
2173  switch (ConstraintCode) {
2174  case 'o':   // offsetable        ??
2175  case 'v':   // not offsetable    ??
2176  default: return true;
2177  case 'm':   // memory
2178    if (!SelectAddr(Op.getNode(), Op, Op0, Op1, Op2, Op3, Op4))
2179      return true;
2180    break;
2181  }
2182
2183  OutOps.push_back(Op0);
2184  OutOps.push_back(Op1);
2185  OutOps.push_back(Op2);
2186  OutOps.push_back(Op3);
2187  OutOps.push_back(Op4);
2188  return false;
2189}
2190
2191/// createX86ISelDag - This pass converts a legalized DAG into a
2192/// X86-specific DAG, ready for instruction scheduling.
2193///
2194FunctionPass *llvm::createX86ISelDag(X86TargetMachine &TM,
2195                                     llvm::CodeGenOpt::Level OptLevel) {
2196  return new X86DAGToDAGISel(TM, OptLevel);
2197}
2198