InstructionCombining.cpp revision 596aa123f46158639c836f1d53b89a9d7898c4b7
1//===- InstructionCombining.cpp - Combine multiple instructions -----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// InstructionCombining - Combine instructions to form fewer, simple
11// instructions.  This pass does not modify the CFG.  This pass is where
12// algebraic simplification happens.
13//
14// This pass combines things like:
15//    %Y = add i32 %X, 1
16//    %Z = add i32 %Y, 1
17// into:
18//    %Z = add i32 %X, 2
19//
20// This is a simple worklist driven algorithm.
21//
22// This pass guarantees that the following canonicalizations are performed on
23// the program:
24//    1. If a binary operator has a constant operand, it is moved to the RHS
25//    2. Bitwise operators with constant operands are always grouped so that
26//       shifts are performed first, then or's, then and's, then xor's.
27//    3. Compare instructions are converted from <,>,<=,>= to ==,!= if possible
28//    4. All cmp instructions on boolean values are replaced with logical ops
29//    5. add X, X is represented as (X*2) => (X << 1)
30//    6. Multiplies with a power-of-two constant argument are transformed into
31//       shifts.
32//   ... etc.
33//
34//===----------------------------------------------------------------------===//
35
36#define DEBUG_TYPE "instcombine"
37#include "llvm/Transforms/Scalar.h"
38#include "InstCombine.h"
39#include "llvm-c/Initialization.h"
40#include "llvm/ADT/SmallPtrSet.h"
41#include "llvm/ADT/Statistic.h"
42#include "llvm/ADT/StringSwitch.h"
43#include "llvm/Analysis/ConstantFolding.h"
44#include "llvm/Analysis/InstructionSimplify.h"
45#include "llvm/Analysis/MemoryBuiltins.h"
46#include "llvm/IR/DataLayout.h"
47#include "llvm/IR/IntrinsicInst.h"
48#include "llvm/Support/CFG.h"
49#include "llvm/Support/CommandLine.h"
50#include "llvm/Support/Debug.h"
51#include "llvm/Support/GetElementPtrTypeIterator.h"
52#include "llvm/Support/PatternMatch.h"
53#include "llvm/Support/ValueHandle.h"
54#include "llvm/Target/TargetLibraryInfo.h"
55#include "llvm/Transforms/Utils/Local.h"
56#include <algorithm>
57#include <climits>
58using namespace llvm;
59using namespace llvm::PatternMatch;
60
61STATISTIC(NumCombined , "Number of insts combined");
62STATISTIC(NumConstProp, "Number of constant folds");
63STATISTIC(NumDeadInst , "Number of dead inst eliminated");
64STATISTIC(NumSunkInst , "Number of instructions sunk");
65STATISTIC(NumExpand,    "Number of expansions");
66STATISTIC(NumFactor   , "Number of factorizations");
67STATISTIC(NumReassoc  , "Number of reassociations");
68
69static cl::opt<bool> UnsafeFPShrink("enable-double-float-shrink", cl::Hidden,
70                                   cl::init(false),
71                                   cl::desc("Enable unsafe double to float "
72                                            "shrinking for math lib calls"));
73
74// Initialization Routines
75void llvm::initializeInstCombine(PassRegistry &Registry) {
76  initializeInstCombinerPass(Registry);
77}
78
79void LLVMInitializeInstCombine(LLVMPassRegistryRef R) {
80  initializeInstCombine(*unwrap(R));
81}
82
83char InstCombiner::ID = 0;
84INITIALIZE_PASS_BEGIN(InstCombiner, "instcombine",
85                "Combine redundant instructions", false, false)
86INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo)
87INITIALIZE_PASS_END(InstCombiner, "instcombine",
88                "Combine redundant instructions", false, false)
89
90void InstCombiner::getAnalysisUsage(AnalysisUsage &AU) const {
91  AU.setPreservesCFG();
92  AU.addRequired<TargetLibraryInfo>();
93}
94
95
96Value *InstCombiner::EmitGEPOffset(User *GEP) {
97  return llvm::EmitGEPOffset(Builder, *getDataLayout(), GEP);
98}
99
100/// ShouldChangeType - Return true if it is desirable to convert a computation
101/// from 'From' to 'To'.  We don't want to convert from a legal to an illegal
102/// type for example, or from a smaller to a larger illegal type.
103bool InstCombiner::ShouldChangeType(Type *From, Type *To) const {
104  assert(From->isIntegerTy() && To->isIntegerTy());
105
106  // If we don't have TD, we don't know if the source/dest are legal.
107  if (!TD) return false;
108
109  unsigned FromWidth = From->getPrimitiveSizeInBits();
110  unsigned ToWidth = To->getPrimitiveSizeInBits();
111  bool FromLegal = TD->isLegalInteger(FromWidth);
112  bool ToLegal = TD->isLegalInteger(ToWidth);
113
114  // If this is a legal integer from type, and the result would be an illegal
115  // type, don't do the transformation.
116  if (FromLegal && !ToLegal)
117    return false;
118
119  // Otherwise, if both are illegal, do not increase the size of the result. We
120  // do allow things like i160 -> i64, but not i64 -> i160.
121  if (!FromLegal && !ToLegal && ToWidth > FromWidth)
122    return false;
123
124  return true;
125}
126
127// Return true, if No Signed Wrap should be maintained for I.
128// The No Signed Wrap flag can be kept if the operation "B (I.getOpcode) C",
129// where both B and C should be ConstantInts, results in a constant that does
130// not overflow. This function only handles the Add and Sub opcodes. For
131// all other opcodes, the function conservatively returns false.
132static bool MaintainNoSignedWrap(BinaryOperator &I, Value *B, Value *C) {
133  OverflowingBinaryOperator *OBO = dyn_cast<OverflowingBinaryOperator>(&I);
134  if (!OBO || !OBO->hasNoSignedWrap()) {
135    return false;
136  }
137
138  // We reason about Add and Sub Only.
139  Instruction::BinaryOps Opcode = I.getOpcode();
140  if (Opcode != Instruction::Add &&
141      Opcode != Instruction::Sub) {
142    return false;
143  }
144
145  ConstantInt *CB = dyn_cast<ConstantInt>(B);
146  ConstantInt *CC = dyn_cast<ConstantInt>(C);
147
148  if (!CB || !CC) {
149    return false;
150  }
151
152  const APInt &BVal = CB->getValue();
153  const APInt &CVal = CC->getValue();
154  bool Overflow = false;
155
156  if (Opcode == Instruction::Add) {
157    BVal.sadd_ov(CVal, Overflow);
158  } else {
159    BVal.ssub_ov(CVal, Overflow);
160  }
161
162  return !Overflow;
163}
164
165/// Conservatively clears subclassOptionalData after a reassociation or
166/// commutation. We preserve fast-math flags when applicable as they can be
167/// preserved.
168static void ClearSubclassDataAfterReassociation(BinaryOperator &I) {
169  FPMathOperator *FPMO = dyn_cast<FPMathOperator>(&I);
170  if (!FPMO) {
171    I.clearSubclassOptionalData();
172    return;
173  }
174
175  FastMathFlags FMF = I.getFastMathFlags();
176  I.clearSubclassOptionalData();
177  I.setFastMathFlags(FMF);
178}
179
180/// SimplifyAssociativeOrCommutative - This performs a few simplifications for
181/// operators which are associative or commutative:
182//
183//  Commutative operators:
184//
185//  1. Order operands such that they are listed from right (least complex) to
186//     left (most complex).  This puts constants before unary operators before
187//     binary operators.
188//
189//  Associative operators:
190//
191//  2. Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies.
192//  3. Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies.
193//
194//  Associative and commutative operators:
195//
196//  4. Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies.
197//  5. Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies.
198//  6. Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)"
199//     if C1 and C2 are constants.
200//
201bool InstCombiner::SimplifyAssociativeOrCommutative(BinaryOperator &I) {
202  Instruction::BinaryOps Opcode = I.getOpcode();
203  bool Changed = false;
204
205  do {
206    // Order operands such that they are listed from right (least complex) to
207    // left (most complex).  This puts constants before unary operators before
208    // binary operators.
209    if (I.isCommutative() && getComplexity(I.getOperand(0)) <
210        getComplexity(I.getOperand(1)))
211      Changed = !I.swapOperands();
212
213    BinaryOperator *Op0 = dyn_cast<BinaryOperator>(I.getOperand(0));
214    BinaryOperator *Op1 = dyn_cast<BinaryOperator>(I.getOperand(1));
215
216    if (I.isAssociative()) {
217      // Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies.
218      if (Op0 && Op0->getOpcode() == Opcode) {
219        Value *A = Op0->getOperand(0);
220        Value *B = Op0->getOperand(1);
221        Value *C = I.getOperand(1);
222
223        // Does "B op C" simplify?
224        if (Value *V = SimplifyBinOp(Opcode, B, C, TD)) {
225          // It simplifies to V.  Form "A op V".
226          I.setOperand(0, A);
227          I.setOperand(1, V);
228          // Conservatively clear the optional flags, since they may not be
229          // preserved by the reassociation.
230          if (MaintainNoSignedWrap(I, B, C) &&
231              (!Op0 || (isa<BinaryOperator>(Op0) && Op0->hasNoSignedWrap()))) {
232            // Note: this is only valid because SimplifyBinOp doesn't look at
233            // the operands to Op0.
234            I.clearSubclassOptionalData();
235            I.setHasNoSignedWrap(true);
236          } else {
237            ClearSubclassDataAfterReassociation(I);
238          }
239
240          Changed = true;
241          ++NumReassoc;
242          continue;
243        }
244      }
245
246      // Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies.
247      if (Op1 && Op1->getOpcode() == Opcode) {
248        Value *A = I.getOperand(0);
249        Value *B = Op1->getOperand(0);
250        Value *C = Op1->getOperand(1);
251
252        // Does "A op B" simplify?
253        if (Value *V = SimplifyBinOp(Opcode, A, B, TD)) {
254          // It simplifies to V.  Form "V op C".
255          I.setOperand(0, V);
256          I.setOperand(1, C);
257          // Conservatively clear the optional flags, since they may not be
258          // preserved by the reassociation.
259          ClearSubclassDataAfterReassociation(I);
260          Changed = true;
261          ++NumReassoc;
262          continue;
263        }
264      }
265    }
266
267    if (I.isAssociative() && I.isCommutative()) {
268      // Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies.
269      if (Op0 && Op0->getOpcode() == Opcode) {
270        Value *A = Op0->getOperand(0);
271        Value *B = Op0->getOperand(1);
272        Value *C = I.getOperand(1);
273
274        // Does "C op A" simplify?
275        if (Value *V = SimplifyBinOp(Opcode, C, A, TD)) {
276          // It simplifies to V.  Form "V op B".
277          I.setOperand(0, V);
278          I.setOperand(1, B);
279          // Conservatively clear the optional flags, since they may not be
280          // preserved by the reassociation.
281          ClearSubclassDataAfterReassociation(I);
282          Changed = true;
283          ++NumReassoc;
284          continue;
285        }
286      }
287
288      // Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies.
289      if (Op1 && Op1->getOpcode() == Opcode) {
290        Value *A = I.getOperand(0);
291        Value *B = Op1->getOperand(0);
292        Value *C = Op1->getOperand(1);
293
294        // Does "C op A" simplify?
295        if (Value *V = SimplifyBinOp(Opcode, C, A, TD)) {
296          // It simplifies to V.  Form "B op V".
297          I.setOperand(0, B);
298          I.setOperand(1, V);
299          // Conservatively clear the optional flags, since they may not be
300          // preserved by the reassociation.
301          ClearSubclassDataAfterReassociation(I);
302          Changed = true;
303          ++NumReassoc;
304          continue;
305        }
306      }
307
308      // Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)"
309      // if C1 and C2 are constants.
310      if (Op0 && Op1 &&
311          Op0->getOpcode() == Opcode && Op1->getOpcode() == Opcode &&
312          isa<Constant>(Op0->getOperand(1)) &&
313          isa<Constant>(Op1->getOperand(1)) &&
314          Op0->hasOneUse() && Op1->hasOneUse()) {
315        Value *A = Op0->getOperand(0);
316        Constant *C1 = cast<Constant>(Op0->getOperand(1));
317        Value *B = Op1->getOperand(0);
318        Constant *C2 = cast<Constant>(Op1->getOperand(1));
319
320        Constant *Folded = ConstantExpr::get(Opcode, C1, C2);
321        BinaryOperator *New = BinaryOperator::Create(Opcode, A, B);
322        InsertNewInstWith(New, I);
323        New->takeName(Op1);
324        I.setOperand(0, New);
325        I.setOperand(1, Folded);
326        // Conservatively clear the optional flags, since they may not be
327        // preserved by the reassociation.
328        ClearSubclassDataAfterReassociation(I);
329
330        Changed = true;
331        continue;
332      }
333    }
334
335    // No further simplifications.
336    return Changed;
337  } while (1);
338}
339
340/// LeftDistributesOverRight - Whether "X LOp (Y ROp Z)" is always equal to
341/// "(X LOp Y) ROp (X LOp Z)".
342static bool LeftDistributesOverRight(Instruction::BinaryOps LOp,
343                                     Instruction::BinaryOps ROp) {
344  switch (LOp) {
345  default:
346    return false;
347
348  case Instruction::And:
349    // And distributes over Or and Xor.
350    switch (ROp) {
351    default:
352      return false;
353    case Instruction::Or:
354    case Instruction::Xor:
355      return true;
356    }
357
358  case Instruction::Mul:
359    // Multiplication distributes over addition and subtraction.
360    switch (ROp) {
361    default:
362      return false;
363    case Instruction::Add:
364    case Instruction::Sub:
365      return true;
366    }
367
368  case Instruction::Or:
369    // Or distributes over And.
370    switch (ROp) {
371    default:
372      return false;
373    case Instruction::And:
374      return true;
375    }
376  }
377}
378
379/// RightDistributesOverLeft - Whether "(X LOp Y) ROp Z" is always equal to
380/// "(X ROp Z) LOp (Y ROp Z)".
381static bool RightDistributesOverLeft(Instruction::BinaryOps LOp,
382                                     Instruction::BinaryOps ROp) {
383  if (Instruction::isCommutative(ROp))
384    return LeftDistributesOverRight(ROp, LOp);
385  // TODO: It would be nice to handle division, aka "(X + Y)/Z = X/Z + Y/Z",
386  // but this requires knowing that the addition does not overflow and other
387  // such subtleties.
388  return false;
389}
390
391/// SimplifyUsingDistributiveLaws - This tries to simplify binary operations
392/// which some other binary operation distributes over either by factorizing
393/// out common terms (eg "(A*B)+(A*C)" -> "A*(B+C)") or expanding out if this
394/// results in simplifications (eg: "A & (B | C) -> (A&B) | (A&C)" if this is
395/// a win).  Returns the simplified value, or null if it didn't simplify.
396Value *InstCombiner::SimplifyUsingDistributiveLaws(BinaryOperator &I) {
397  Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
398  BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS);
399  BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS);
400  Instruction::BinaryOps TopLevelOpcode = I.getOpcode(); // op
401
402  // Factorization.
403  if (Op0 && Op1 && Op0->getOpcode() == Op1->getOpcode()) {
404    // The instruction has the form "(A op' B) op (C op' D)".  Try to factorize
405    // a common term.
406    Value *A = Op0->getOperand(0), *B = Op0->getOperand(1);
407    Value *C = Op1->getOperand(0), *D = Op1->getOperand(1);
408    Instruction::BinaryOps InnerOpcode = Op0->getOpcode(); // op'
409
410    // Does "X op' Y" always equal "Y op' X"?
411    bool InnerCommutative = Instruction::isCommutative(InnerOpcode);
412
413    // Does "X op' (Y op Z)" always equal "(X op' Y) op (X op' Z)"?
414    if (LeftDistributesOverRight(InnerOpcode, TopLevelOpcode))
415      // Does the instruction have the form "(A op' B) op (A op' D)" or, in the
416      // commutative case, "(A op' B) op (C op' A)"?
417      if (A == C || (InnerCommutative && A == D)) {
418        if (A != C)
419          std::swap(C, D);
420        // Consider forming "A op' (B op D)".
421        // If "B op D" simplifies then it can be formed with no cost.
422        Value *V = SimplifyBinOp(TopLevelOpcode, B, D, TD);
423        // If "B op D" doesn't simplify then only go on if both of the existing
424        // operations "A op' B" and "C op' D" will be zapped as no longer used.
425        if (!V && Op0->hasOneUse() && Op1->hasOneUse())
426          V = Builder->CreateBinOp(TopLevelOpcode, B, D, Op1->getName());
427        if (V) {
428          ++NumFactor;
429          V = Builder->CreateBinOp(InnerOpcode, A, V);
430          V->takeName(&I);
431          return V;
432        }
433      }
434
435    // Does "(X op Y) op' Z" always equal "(X op' Z) op (Y op' Z)"?
436    if (RightDistributesOverLeft(TopLevelOpcode, InnerOpcode))
437      // Does the instruction have the form "(A op' B) op (C op' B)" or, in the
438      // commutative case, "(A op' B) op (B op' D)"?
439      if (B == D || (InnerCommutative && B == C)) {
440        if (B != D)
441          std::swap(C, D);
442        // Consider forming "(A op C) op' B".
443        // If "A op C" simplifies then it can be formed with no cost.
444        Value *V = SimplifyBinOp(TopLevelOpcode, A, C, TD);
445        // If "A op C" doesn't simplify then only go on if both of the existing
446        // operations "A op' B" and "C op' D" will be zapped as no longer used.
447        if (!V && Op0->hasOneUse() && Op1->hasOneUse())
448          V = Builder->CreateBinOp(TopLevelOpcode, A, C, Op0->getName());
449        if (V) {
450          ++NumFactor;
451          V = Builder->CreateBinOp(InnerOpcode, V, B);
452          V->takeName(&I);
453          return V;
454        }
455      }
456  }
457
458  // Expansion.
459  if (Op0 && RightDistributesOverLeft(Op0->getOpcode(), TopLevelOpcode)) {
460    // The instruction has the form "(A op' B) op C".  See if expanding it out
461    // to "(A op C) op' (B op C)" results in simplifications.
462    Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS;
463    Instruction::BinaryOps InnerOpcode = Op0->getOpcode(); // op'
464
465    // Do "A op C" and "B op C" both simplify?
466    if (Value *L = SimplifyBinOp(TopLevelOpcode, A, C, TD))
467      if (Value *R = SimplifyBinOp(TopLevelOpcode, B, C, TD)) {
468        // They do! Return "L op' R".
469        ++NumExpand;
470        // If "L op' R" equals "A op' B" then "L op' R" is just the LHS.
471        if ((L == A && R == B) ||
472            (Instruction::isCommutative(InnerOpcode) && L == B && R == A))
473          return Op0;
474        // Otherwise return "L op' R" if it simplifies.
475        if (Value *V = SimplifyBinOp(InnerOpcode, L, R, TD))
476          return V;
477        // Otherwise, create a new instruction.
478        C = Builder->CreateBinOp(InnerOpcode, L, R);
479        C->takeName(&I);
480        return C;
481      }
482  }
483
484  if (Op1 && LeftDistributesOverRight(TopLevelOpcode, Op1->getOpcode())) {
485    // The instruction has the form "A op (B op' C)".  See if expanding it out
486    // to "(A op B) op' (A op C)" results in simplifications.
487    Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1);
488    Instruction::BinaryOps InnerOpcode = Op1->getOpcode(); // op'
489
490    // Do "A op B" and "A op C" both simplify?
491    if (Value *L = SimplifyBinOp(TopLevelOpcode, A, B, TD))
492      if (Value *R = SimplifyBinOp(TopLevelOpcode, A, C, TD)) {
493        // They do! Return "L op' R".
494        ++NumExpand;
495        // If "L op' R" equals "B op' C" then "L op' R" is just the RHS.
496        if ((L == B && R == C) ||
497            (Instruction::isCommutative(InnerOpcode) && L == C && R == B))
498          return Op1;
499        // Otherwise return "L op' R" if it simplifies.
500        if (Value *V = SimplifyBinOp(InnerOpcode, L, R, TD))
501          return V;
502        // Otherwise, create a new instruction.
503        A = Builder->CreateBinOp(InnerOpcode, L, R);
504        A->takeName(&I);
505        return A;
506      }
507  }
508
509  return 0;
510}
511
512// dyn_castNegVal - Given a 'sub' instruction, return the RHS of the instruction
513// if the LHS is a constant zero (which is the 'negate' form).
514//
515Value *InstCombiner::dyn_castNegVal(Value *V) const {
516  if (BinaryOperator::isNeg(V))
517    return BinaryOperator::getNegArgument(V);
518
519  // Constants can be considered to be negated values if they can be folded.
520  if (ConstantInt *C = dyn_cast<ConstantInt>(V))
521    return ConstantExpr::getNeg(C);
522
523  if (ConstantDataVector *C = dyn_cast<ConstantDataVector>(V))
524    if (C->getType()->getElementType()->isIntegerTy())
525      return ConstantExpr::getNeg(C);
526
527  return 0;
528}
529
530// dyn_castFNegVal - Given a 'fsub' instruction, return the RHS of the
531// instruction if the LHS is a constant negative zero (which is the 'negate'
532// form).
533//
534Value *InstCombiner::dyn_castFNegVal(Value *V, bool IgnoreZeroSign) const {
535  if (BinaryOperator::isFNeg(V, IgnoreZeroSign))
536    return BinaryOperator::getFNegArgument(V);
537
538  // Constants can be considered to be negated values if they can be folded.
539  if (ConstantFP *C = dyn_cast<ConstantFP>(V))
540    return ConstantExpr::getFNeg(C);
541
542  if (ConstantDataVector *C = dyn_cast<ConstantDataVector>(V))
543    if (C->getType()->getElementType()->isFloatingPointTy())
544      return ConstantExpr::getFNeg(C);
545
546  return 0;
547}
548
549static Value *FoldOperationIntoSelectOperand(Instruction &I, Value *SO,
550                                             InstCombiner *IC) {
551  if (CastInst *CI = dyn_cast<CastInst>(&I)) {
552    return IC->Builder->CreateCast(CI->getOpcode(), SO, I.getType());
553  }
554
555  // Figure out if the constant is the left or the right argument.
556  bool ConstIsRHS = isa<Constant>(I.getOperand(1));
557  Constant *ConstOperand = cast<Constant>(I.getOperand(ConstIsRHS));
558
559  if (Constant *SOC = dyn_cast<Constant>(SO)) {
560    if (ConstIsRHS)
561      return ConstantExpr::get(I.getOpcode(), SOC, ConstOperand);
562    return ConstantExpr::get(I.getOpcode(), ConstOperand, SOC);
563  }
564
565  Value *Op0 = SO, *Op1 = ConstOperand;
566  if (!ConstIsRHS)
567    std::swap(Op0, Op1);
568
569  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(&I))
570    return IC->Builder->CreateBinOp(BO->getOpcode(), Op0, Op1,
571                                    SO->getName()+".op");
572  if (ICmpInst *CI = dyn_cast<ICmpInst>(&I))
573    return IC->Builder->CreateICmp(CI->getPredicate(), Op0, Op1,
574                                   SO->getName()+".cmp");
575  if (FCmpInst *CI = dyn_cast<FCmpInst>(&I))
576    return IC->Builder->CreateICmp(CI->getPredicate(), Op0, Op1,
577                                   SO->getName()+".cmp");
578  llvm_unreachable("Unknown binary instruction type!");
579}
580
581// FoldOpIntoSelect - Given an instruction with a select as one operand and a
582// constant as the other operand, try to fold the binary operator into the
583// select arguments.  This also works for Cast instructions, which obviously do
584// not have a second operand.
585Instruction *InstCombiner::FoldOpIntoSelect(Instruction &Op, SelectInst *SI) {
586  // Don't modify shared select instructions
587  if (!SI->hasOneUse()) return 0;
588  Value *TV = SI->getOperand(1);
589  Value *FV = SI->getOperand(2);
590
591  if (isa<Constant>(TV) || isa<Constant>(FV)) {
592    // Bool selects with constant operands can be folded to logical ops.
593    if (SI->getType()->isIntegerTy(1)) return 0;
594
595    // If it's a bitcast involving vectors, make sure it has the same number of
596    // elements on both sides.
597    if (BitCastInst *BC = dyn_cast<BitCastInst>(&Op)) {
598      VectorType *DestTy = dyn_cast<VectorType>(BC->getDestTy());
599      VectorType *SrcTy = dyn_cast<VectorType>(BC->getSrcTy());
600
601      // Verify that either both or neither are vectors.
602      if ((SrcTy == NULL) != (DestTy == NULL)) return 0;
603      // If vectors, verify that they have the same number of elements.
604      if (SrcTy && SrcTy->getNumElements() != DestTy->getNumElements())
605        return 0;
606    }
607
608    Value *SelectTrueVal = FoldOperationIntoSelectOperand(Op, TV, this);
609    Value *SelectFalseVal = FoldOperationIntoSelectOperand(Op, FV, this);
610
611    return SelectInst::Create(SI->getCondition(),
612                              SelectTrueVal, SelectFalseVal);
613  }
614  return 0;
615}
616
617
618/// FoldOpIntoPhi - Given a binary operator, cast instruction, or select which
619/// has a PHI node as operand #0, see if we can fold the instruction into the
620/// PHI (which is only possible if all operands to the PHI are constants).
621///
622Instruction *InstCombiner::FoldOpIntoPhi(Instruction &I) {
623  PHINode *PN = cast<PHINode>(I.getOperand(0));
624  unsigned NumPHIValues = PN->getNumIncomingValues();
625  if (NumPHIValues == 0)
626    return 0;
627
628  // We normally only transform phis with a single use.  However, if a PHI has
629  // multiple uses and they are all the same operation, we can fold *all* of the
630  // uses into the PHI.
631  if (!PN->hasOneUse()) {
632    // Walk the use list for the instruction, comparing them to I.
633    for (Value::use_iterator UI = PN->use_begin(), E = PN->use_end();
634         UI != E; ++UI) {
635      Instruction *User = cast<Instruction>(*UI);
636      if (User != &I && !I.isIdenticalTo(User))
637        return 0;
638    }
639    // Otherwise, we can replace *all* users with the new PHI we form.
640  }
641
642  // Check to see if all of the operands of the PHI are simple constants
643  // (constantint/constantfp/undef).  If there is one non-constant value,
644  // remember the BB it is in.  If there is more than one or if *it* is a PHI,
645  // bail out.  We don't do arbitrary constant expressions here because moving
646  // their computation can be expensive without a cost model.
647  BasicBlock *NonConstBB = 0;
648  for (unsigned i = 0; i != NumPHIValues; ++i) {
649    Value *InVal = PN->getIncomingValue(i);
650    if (isa<Constant>(InVal) && !isa<ConstantExpr>(InVal))
651      continue;
652
653    if (isa<PHINode>(InVal)) return 0;  // Itself a phi.
654    if (NonConstBB) return 0;  // More than one non-const value.
655
656    NonConstBB = PN->getIncomingBlock(i);
657
658    // If the InVal is an invoke at the end of the pred block, then we can't
659    // insert a computation after it without breaking the edge.
660    if (InvokeInst *II = dyn_cast<InvokeInst>(InVal))
661      if (II->getParent() == NonConstBB)
662        return 0;
663
664    // If the incoming non-constant value is in I's block, we will remove one
665    // instruction, but insert another equivalent one, leading to infinite
666    // instcombine.
667    if (NonConstBB == I.getParent())
668      return 0;
669  }
670
671  // If there is exactly one non-constant value, we can insert a copy of the
672  // operation in that block.  However, if this is a critical edge, we would be
673  // inserting the computation one some other paths (e.g. inside a loop).  Only
674  // do this if the pred block is unconditionally branching into the phi block.
675  if (NonConstBB != 0) {
676    BranchInst *BI = dyn_cast<BranchInst>(NonConstBB->getTerminator());
677    if (!BI || !BI->isUnconditional()) return 0;
678  }
679
680  // Okay, we can do the transformation: create the new PHI node.
681  PHINode *NewPN = PHINode::Create(I.getType(), PN->getNumIncomingValues());
682  InsertNewInstBefore(NewPN, *PN);
683  NewPN->takeName(PN);
684
685  // If we are going to have to insert a new computation, do so right before the
686  // predecessors terminator.
687  if (NonConstBB)
688    Builder->SetInsertPoint(NonConstBB->getTerminator());
689
690  // Next, add all of the operands to the PHI.
691  if (SelectInst *SI = dyn_cast<SelectInst>(&I)) {
692    // We only currently try to fold the condition of a select when it is a phi,
693    // not the true/false values.
694    Value *TrueV = SI->getTrueValue();
695    Value *FalseV = SI->getFalseValue();
696    BasicBlock *PhiTransBB = PN->getParent();
697    for (unsigned i = 0; i != NumPHIValues; ++i) {
698      BasicBlock *ThisBB = PN->getIncomingBlock(i);
699      Value *TrueVInPred = TrueV->DoPHITranslation(PhiTransBB, ThisBB);
700      Value *FalseVInPred = FalseV->DoPHITranslation(PhiTransBB, ThisBB);
701      Value *InV = 0;
702      if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)))
703        InV = InC->isNullValue() ? FalseVInPred : TrueVInPred;
704      else
705        InV = Builder->CreateSelect(PN->getIncomingValue(i),
706                                    TrueVInPred, FalseVInPred, "phitmp");
707      NewPN->addIncoming(InV, ThisBB);
708    }
709  } else if (CmpInst *CI = dyn_cast<CmpInst>(&I)) {
710    Constant *C = cast<Constant>(I.getOperand(1));
711    for (unsigned i = 0; i != NumPHIValues; ++i) {
712      Value *InV = 0;
713      if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)))
714        InV = ConstantExpr::getCompare(CI->getPredicate(), InC, C);
715      else if (isa<ICmpInst>(CI))
716        InV = Builder->CreateICmp(CI->getPredicate(), PN->getIncomingValue(i),
717                                  C, "phitmp");
718      else
719        InV = Builder->CreateFCmp(CI->getPredicate(), PN->getIncomingValue(i),
720                                  C, "phitmp");
721      NewPN->addIncoming(InV, PN->getIncomingBlock(i));
722    }
723  } else if (I.getNumOperands() == 2) {
724    Constant *C = cast<Constant>(I.getOperand(1));
725    for (unsigned i = 0; i != NumPHIValues; ++i) {
726      Value *InV = 0;
727      if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)))
728        InV = ConstantExpr::get(I.getOpcode(), InC, C);
729      else
730        InV = Builder->CreateBinOp(cast<BinaryOperator>(I).getOpcode(),
731                                   PN->getIncomingValue(i), C, "phitmp");
732      NewPN->addIncoming(InV, PN->getIncomingBlock(i));
733    }
734  } else {
735    CastInst *CI = cast<CastInst>(&I);
736    Type *RetTy = CI->getType();
737    for (unsigned i = 0; i != NumPHIValues; ++i) {
738      Value *InV;
739      if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)))
740        InV = ConstantExpr::getCast(CI->getOpcode(), InC, RetTy);
741      else
742        InV = Builder->CreateCast(CI->getOpcode(),
743                                PN->getIncomingValue(i), I.getType(), "phitmp");
744      NewPN->addIncoming(InV, PN->getIncomingBlock(i));
745    }
746  }
747
748  for (Value::use_iterator UI = PN->use_begin(), E = PN->use_end();
749       UI != E; ) {
750    Instruction *User = cast<Instruction>(*UI++);
751    if (User == &I) continue;
752    ReplaceInstUsesWith(*User, NewPN);
753    EraseInstFromFunction(*User);
754  }
755  return ReplaceInstUsesWith(I, NewPN);
756}
757
758/// FindElementAtOffset - Given a pointer type and a constant offset, determine
759/// whether or not there is a sequence of GEP indices into the pointed type that
760/// will land us at the specified offset.  If so, fill them into NewIndices and
761/// return the resultant element type, otherwise return null.
762Type *InstCombiner::FindElementAtOffset(Type *PtrTy, int64_t Offset,
763                                        SmallVectorImpl<Value*> &NewIndices) {
764  assert(PtrTy->isPtrOrPtrVectorTy());
765
766  if (!TD)
767    return 0;
768
769  Type *Ty = PtrTy->getPointerElementType();
770  if (!Ty->isSized())
771    return 0;
772
773  // Start with the index over the outer type.  Note that the type size
774  // might be zero (even if the offset isn't zero) if the indexed type
775  // is something like [0 x {int, int}]
776  Type *IntPtrTy = TD->getIntPtrType(PtrTy);
777  int64_t FirstIdx = 0;
778  if (int64_t TySize = TD->getTypeAllocSize(Ty)) {
779    FirstIdx = Offset/TySize;
780    Offset -= FirstIdx*TySize;
781
782    // Handle hosts where % returns negative instead of values [0..TySize).
783    if (Offset < 0) {
784      --FirstIdx;
785      Offset += TySize;
786      assert(Offset >= 0);
787    }
788    assert((uint64_t)Offset < (uint64_t)TySize && "Out of range offset");
789  }
790
791  NewIndices.push_back(ConstantInt::get(IntPtrTy, FirstIdx));
792
793  // Index into the types.  If we fail, set OrigBase to null.
794  while (Offset) {
795    // Indexing into tail padding between struct/array elements.
796    if (uint64_t(Offset*8) >= TD->getTypeSizeInBits(Ty))
797      return 0;
798
799    if (StructType *STy = dyn_cast<StructType>(Ty)) {
800      const StructLayout *SL = TD->getStructLayout(STy);
801      assert(Offset < (int64_t)SL->getSizeInBytes() &&
802             "Offset must stay within the indexed type");
803
804      unsigned Elt = SL->getElementContainingOffset(Offset);
805      NewIndices.push_back(ConstantInt::get(Type::getInt32Ty(Ty->getContext()),
806                                            Elt));
807
808      Offset -= SL->getElementOffset(Elt);
809      Ty = STy->getElementType(Elt);
810    } else if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) {
811      uint64_t EltSize = TD->getTypeAllocSize(AT->getElementType());
812      assert(EltSize && "Cannot index into a zero-sized array");
813      NewIndices.push_back(ConstantInt::get(IntPtrTy,Offset/EltSize));
814      Offset %= EltSize;
815      Ty = AT->getElementType();
816    } else {
817      // Otherwise, we can't index into the middle of this atomic type, bail.
818      return 0;
819    }
820  }
821
822  return Ty;
823}
824
825static bool shouldMergeGEPs(GEPOperator &GEP, GEPOperator &Src) {
826  // If this GEP has only 0 indices, it is the same pointer as
827  // Src. If Src is not a trivial GEP too, don't combine
828  // the indices.
829  if (GEP.hasAllZeroIndices() && !Src.hasAllZeroIndices() &&
830      !Src.hasOneUse())
831    return false;
832  return true;
833}
834
835/// Descale - Return a value X such that Val = X * Scale, or null if none.  If
836/// the multiplication is known not to overflow then NoSignedWrap is set.
837Value *InstCombiner::Descale(Value *Val, APInt Scale, bool &NoSignedWrap) {
838  assert(isa<IntegerType>(Val->getType()) && "Can only descale integers!");
839  assert(cast<IntegerType>(Val->getType())->getBitWidth() ==
840         Scale.getBitWidth() && "Scale not compatible with value!");
841
842  // If Val is zero or Scale is one then Val = Val * Scale.
843  if (match(Val, m_Zero()) || Scale == 1) {
844    NoSignedWrap = true;
845    return Val;
846  }
847
848  // If Scale is zero then it does not divide Val.
849  if (Scale.isMinValue())
850    return 0;
851
852  // Look through chains of multiplications, searching for a constant that is
853  // divisible by Scale.  For example, descaling X*(Y*(Z*4)) by a factor of 4
854  // will find the constant factor 4 and produce X*(Y*Z).  Descaling X*(Y*8) by
855  // a factor of 4 will produce X*(Y*2).  The principle of operation is to bore
856  // down from Val:
857  //
858  //     Val = M1 * X          ||   Analysis starts here and works down
859  //      M1 = M2 * Y          ||   Doesn't descend into terms with more
860  //      M2 =  Z * 4          \/   than one use
861  //
862  // Then to modify a term at the bottom:
863  //
864  //     Val = M1 * X
865  //      M1 =  Z * Y          ||   Replaced M2 with Z
866  //
867  // Then to work back up correcting nsw flags.
868
869  // Op - the term we are currently analyzing.  Starts at Val then drills down.
870  // Replaced with its descaled value before exiting from the drill down loop.
871  Value *Op = Val;
872
873  // Parent - initially null, but after drilling down notes where Op came from.
874  // In the example above, Parent is (Val, 0) when Op is M1, because M1 is the
875  // 0'th operand of Val.
876  std::pair<Instruction*, unsigned> Parent;
877
878  // RequireNoSignedWrap - Set if the transform requires a descaling at deeper
879  // levels that doesn't overflow.
880  bool RequireNoSignedWrap = false;
881
882  // logScale - log base 2 of the scale.  Negative if not a power of 2.
883  int32_t logScale = Scale.exactLogBase2();
884
885  for (;; Op = Parent.first->getOperand(Parent.second)) { // Drill down
886
887    if (ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
888      // If Op is a constant divisible by Scale then descale to the quotient.
889      APInt Quotient(Scale), Remainder(Scale); // Init ensures right bitwidth.
890      APInt::sdivrem(CI->getValue(), Scale, Quotient, Remainder);
891      if (!Remainder.isMinValue())
892        // Not divisible by Scale.
893        return 0;
894      // Replace with the quotient in the parent.
895      Op = ConstantInt::get(CI->getType(), Quotient);
896      NoSignedWrap = true;
897      break;
898    }
899
900    if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op)) {
901
902      if (BO->getOpcode() == Instruction::Mul) {
903        // Multiplication.
904        NoSignedWrap = BO->hasNoSignedWrap();
905        if (RequireNoSignedWrap && !NoSignedWrap)
906          return 0;
907
908        // There are three cases for multiplication: multiplication by exactly
909        // the scale, multiplication by a constant different to the scale, and
910        // multiplication by something else.
911        Value *LHS = BO->getOperand(0);
912        Value *RHS = BO->getOperand(1);
913
914        if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
915          // Multiplication by a constant.
916          if (CI->getValue() == Scale) {
917            // Multiplication by exactly the scale, replace the multiplication
918            // by its left-hand side in the parent.
919            Op = LHS;
920            break;
921          }
922
923          // Otherwise drill down into the constant.
924          if (!Op->hasOneUse())
925            return 0;
926
927          Parent = std::make_pair(BO, 1);
928          continue;
929        }
930
931        // Multiplication by something else. Drill down into the left-hand side
932        // since that's where the reassociate pass puts the good stuff.
933        if (!Op->hasOneUse())
934          return 0;
935
936        Parent = std::make_pair(BO, 0);
937        continue;
938      }
939
940      if (logScale > 0 && BO->getOpcode() == Instruction::Shl &&
941          isa<ConstantInt>(BO->getOperand(1))) {
942        // Multiplication by a power of 2.
943        NoSignedWrap = BO->hasNoSignedWrap();
944        if (RequireNoSignedWrap && !NoSignedWrap)
945          return 0;
946
947        Value *LHS = BO->getOperand(0);
948        int32_t Amt = cast<ConstantInt>(BO->getOperand(1))->
949          getLimitedValue(Scale.getBitWidth());
950        // Op = LHS << Amt.
951
952        if (Amt == logScale) {
953          // Multiplication by exactly the scale, replace the multiplication
954          // by its left-hand side in the parent.
955          Op = LHS;
956          break;
957        }
958        if (Amt < logScale || !Op->hasOneUse())
959          return 0;
960
961        // Multiplication by more than the scale.  Reduce the multiplying amount
962        // by the scale in the parent.
963        Parent = std::make_pair(BO, 1);
964        Op = ConstantInt::get(BO->getType(), Amt - logScale);
965        break;
966      }
967    }
968
969    if (!Op->hasOneUse())
970      return 0;
971
972    if (CastInst *Cast = dyn_cast<CastInst>(Op)) {
973      if (Cast->getOpcode() == Instruction::SExt) {
974        // Op is sign-extended from a smaller type, descale in the smaller type.
975        unsigned SmallSize = Cast->getSrcTy()->getPrimitiveSizeInBits();
976        APInt SmallScale = Scale.trunc(SmallSize);
977        // Suppose Op = sext X, and we descale X as Y * SmallScale.  We want to
978        // descale Op as (sext Y) * Scale.  In order to have
979        //   sext (Y * SmallScale) = (sext Y) * Scale
980        // some conditions need to hold however: SmallScale must sign-extend to
981        // Scale and the multiplication Y * SmallScale should not overflow.
982        if (SmallScale.sext(Scale.getBitWidth()) != Scale)
983          // SmallScale does not sign-extend to Scale.
984          return 0;
985        assert(SmallScale.exactLogBase2() == logScale);
986        // Require that Y * SmallScale must not overflow.
987        RequireNoSignedWrap = true;
988
989        // Drill down through the cast.
990        Parent = std::make_pair(Cast, 0);
991        Scale = SmallScale;
992        continue;
993      }
994
995      if (Cast->getOpcode() == Instruction::Trunc) {
996        // Op is truncated from a larger type, descale in the larger type.
997        // Suppose Op = trunc X, and we descale X as Y * sext Scale.  Then
998        //   trunc (Y * sext Scale) = (trunc Y) * Scale
999        // always holds.  However (trunc Y) * Scale may overflow even if
1000        // trunc (Y * sext Scale) does not, so nsw flags need to be cleared
1001        // from this point up in the expression (see later).
1002        if (RequireNoSignedWrap)
1003          return 0;
1004
1005        // Drill down through the cast.
1006        unsigned LargeSize = Cast->getSrcTy()->getPrimitiveSizeInBits();
1007        Parent = std::make_pair(Cast, 0);
1008        Scale = Scale.sext(LargeSize);
1009        if (logScale + 1 == (int32_t)Cast->getType()->getPrimitiveSizeInBits())
1010          logScale = -1;
1011        assert(Scale.exactLogBase2() == logScale);
1012        continue;
1013      }
1014    }
1015
1016    // Unsupported expression, bail out.
1017    return 0;
1018  }
1019
1020  // We know that we can successfully descale, so from here on we can safely
1021  // modify the IR.  Op holds the descaled version of the deepest term in the
1022  // expression.  NoSignedWrap is 'true' if multiplying Op by Scale is known
1023  // not to overflow.
1024
1025  if (!Parent.first)
1026    // The expression only had one term.
1027    return Op;
1028
1029  // Rewrite the parent using the descaled version of its operand.
1030  assert(Parent.first->hasOneUse() && "Drilled down when more than one use!");
1031  assert(Op != Parent.first->getOperand(Parent.second) &&
1032         "Descaling was a no-op?");
1033  Parent.first->setOperand(Parent.second, Op);
1034  Worklist.Add(Parent.first);
1035
1036  // Now work back up the expression correcting nsw flags.  The logic is based
1037  // on the following observation: if X * Y is known not to overflow as a signed
1038  // multiplication, and Y is replaced by a value Z with smaller absolute value,
1039  // then X * Z will not overflow as a signed multiplication either.  As we work
1040  // our way up, having NoSignedWrap 'true' means that the descaled value at the
1041  // current level has strictly smaller absolute value than the original.
1042  Instruction *Ancestor = Parent.first;
1043  do {
1044    if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Ancestor)) {
1045      // If the multiplication wasn't nsw then we can't say anything about the
1046      // value of the descaled multiplication, and we have to clear nsw flags
1047      // from this point on up.
1048      bool OpNoSignedWrap = BO->hasNoSignedWrap();
1049      NoSignedWrap &= OpNoSignedWrap;
1050      if (NoSignedWrap != OpNoSignedWrap) {
1051        BO->setHasNoSignedWrap(NoSignedWrap);
1052        Worklist.Add(Ancestor);
1053      }
1054    } else if (Ancestor->getOpcode() == Instruction::Trunc) {
1055      // The fact that the descaled input to the trunc has smaller absolute
1056      // value than the original input doesn't tell us anything useful about
1057      // the absolute values of the truncations.
1058      NoSignedWrap = false;
1059    }
1060    assert((Ancestor->getOpcode() != Instruction::SExt || NoSignedWrap) &&
1061           "Failed to keep proper track of nsw flags while drilling down?");
1062
1063    if (Ancestor == Val)
1064      // Got to the top, all done!
1065      return Val;
1066
1067    // Move up one level in the expression.
1068    assert(Ancestor->hasOneUse() && "Drilled down when more than one use!");
1069    Ancestor = Ancestor->use_back();
1070  } while (1);
1071}
1072
1073Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) {
1074  SmallVector<Value*, 8> Ops(GEP.op_begin(), GEP.op_end());
1075
1076  if (Value *V = SimplifyGEPInst(Ops, TD))
1077    return ReplaceInstUsesWith(GEP, V);
1078
1079  Value *PtrOp = GEP.getOperand(0);
1080
1081  // Eliminate unneeded casts for indices, and replace indices which displace
1082  // by multiples of a zero size type with zero.
1083  if (TD) {
1084    bool MadeChange = false;
1085    Type *IntPtrTy = TD->getIntPtrType(GEP.getPointerOperandType());
1086
1087    gep_type_iterator GTI = gep_type_begin(GEP);
1088    for (User::op_iterator I = GEP.op_begin() + 1, E = GEP.op_end();
1089         I != E; ++I, ++GTI) {
1090      // Skip indices into struct types.
1091      SequentialType *SeqTy = dyn_cast<SequentialType>(*GTI);
1092      if (!SeqTy) continue;
1093
1094      // If the element type has zero size then any index over it is equivalent
1095      // to an index of zero, so replace it with zero if it is not zero already.
1096      if (SeqTy->getElementType()->isSized() &&
1097          TD->getTypeAllocSize(SeqTy->getElementType()) == 0)
1098        if (!isa<Constant>(*I) || !cast<Constant>(*I)->isNullValue()) {
1099          *I = Constant::getNullValue(IntPtrTy);
1100          MadeChange = true;
1101        }
1102
1103      Type *IndexTy = (*I)->getType();
1104      if (IndexTy != IntPtrTy) {
1105        // If we are using a wider index than needed for this platform, shrink
1106        // it to what we need.  If narrower, sign-extend it to what we need.
1107        // This explicit cast can make subsequent optimizations more obvious.
1108        *I = Builder->CreateIntCast(*I, IntPtrTy, true);
1109        MadeChange = true;
1110      }
1111    }
1112    if (MadeChange) return &GEP;
1113  }
1114
1115  // Combine Indices - If the source pointer to this getelementptr instruction
1116  // is a getelementptr instruction, combine the indices of the two
1117  // getelementptr instructions into a single instruction.
1118  //
1119  if (GEPOperator *Src = dyn_cast<GEPOperator>(PtrOp)) {
1120    if (!shouldMergeGEPs(*cast<GEPOperator>(&GEP), *Src))
1121      return 0;
1122
1123    // Note that if our source is a gep chain itself then we wait for that
1124    // chain to be resolved before we perform this transformation.  This
1125    // avoids us creating a TON of code in some cases.
1126    if (GEPOperator *SrcGEP =
1127          dyn_cast<GEPOperator>(Src->getOperand(0)))
1128      if (SrcGEP->getNumOperands() == 2 && shouldMergeGEPs(*Src, *SrcGEP))
1129        return 0;   // Wait until our source is folded to completion.
1130
1131    SmallVector<Value*, 8> Indices;
1132
1133    // Find out whether the last index in the source GEP is a sequential idx.
1134    bool EndsWithSequential = false;
1135    for (gep_type_iterator I = gep_type_begin(*Src), E = gep_type_end(*Src);
1136         I != E; ++I)
1137      EndsWithSequential = !(*I)->isStructTy();
1138
1139    // Can we combine the two pointer arithmetics offsets?
1140    if (EndsWithSequential) {
1141      // Replace: gep (gep %P, long B), long A, ...
1142      // With:    T = long A+B; gep %P, T, ...
1143      //
1144      Value *Sum;
1145      Value *SO1 = Src->getOperand(Src->getNumOperands()-1);
1146      Value *GO1 = GEP.getOperand(1);
1147      if (SO1 == Constant::getNullValue(SO1->getType())) {
1148        Sum = GO1;
1149      } else if (GO1 == Constant::getNullValue(GO1->getType())) {
1150        Sum = SO1;
1151      } else {
1152        // If they aren't the same type, then the input hasn't been processed
1153        // by the loop above yet (which canonicalizes sequential index types to
1154        // intptr_t).  Just avoid transforming this until the input has been
1155        // normalized.
1156        if (SO1->getType() != GO1->getType())
1157          return 0;
1158        Sum = Builder->CreateAdd(SO1, GO1, PtrOp->getName()+".sum");
1159      }
1160
1161      // Update the GEP in place if possible.
1162      if (Src->getNumOperands() == 2) {
1163        GEP.setOperand(0, Src->getOperand(0));
1164        GEP.setOperand(1, Sum);
1165        return &GEP;
1166      }
1167      Indices.append(Src->op_begin()+1, Src->op_end()-1);
1168      Indices.push_back(Sum);
1169      Indices.append(GEP.op_begin()+2, GEP.op_end());
1170    } else if (isa<Constant>(*GEP.idx_begin()) &&
1171               cast<Constant>(*GEP.idx_begin())->isNullValue() &&
1172               Src->getNumOperands() != 1) {
1173      // Otherwise we can do the fold if the first index of the GEP is a zero
1174      Indices.append(Src->op_begin()+1, Src->op_end());
1175      Indices.append(GEP.idx_begin()+1, GEP.idx_end());
1176    }
1177
1178    if (!Indices.empty())
1179      return (GEP.isInBounds() && Src->isInBounds()) ?
1180        GetElementPtrInst::CreateInBounds(Src->getOperand(0), Indices,
1181                                          GEP.getName()) :
1182        GetElementPtrInst::Create(Src->getOperand(0), Indices, GEP.getName());
1183  }
1184
1185  // Handle gep(bitcast x) and gep(gep x, 0, 0, 0).
1186  Value *StrippedPtr = PtrOp->stripPointerCasts();
1187  PointerType *StrippedPtrTy = dyn_cast<PointerType>(StrippedPtr->getType());
1188
1189  // We do not handle pointer-vector geps here.
1190  if (!StrippedPtrTy)
1191    return 0;
1192
1193  if (StrippedPtr != PtrOp &&
1194    StrippedPtrTy->getAddressSpace() == GEP.getPointerAddressSpace()) {
1195
1196    bool HasZeroPointerIndex = false;
1197    if (ConstantInt *C = dyn_cast<ConstantInt>(GEP.getOperand(1)))
1198      HasZeroPointerIndex = C->isZero();
1199
1200    // Transform: GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ...
1201    // into     : GEP [10 x i8]* X, i32 0, ...
1202    //
1203    // Likewise, transform: GEP (bitcast i8* X to [0 x i8]*), i32 0, ...
1204    //           into     : GEP i8* X, ...
1205    //
1206    // This occurs when the program declares an array extern like "int X[];"
1207    if (HasZeroPointerIndex) {
1208      PointerType *CPTy = cast<PointerType>(PtrOp->getType());
1209      if (ArrayType *CATy =
1210          dyn_cast<ArrayType>(CPTy->getElementType())) {
1211        // GEP (bitcast i8* X to [0 x i8]*), i32 0, ... ?
1212        if (CATy->getElementType() == StrippedPtrTy->getElementType()) {
1213          // -> GEP i8* X, ...
1214          SmallVector<Value*, 8> Idx(GEP.idx_begin()+1, GEP.idx_end());
1215          GetElementPtrInst *Res =
1216            GetElementPtrInst::Create(StrippedPtr, Idx, GEP.getName());
1217          Res->setIsInBounds(GEP.isInBounds());
1218          return Res;
1219        }
1220
1221        if (ArrayType *XATy =
1222              dyn_cast<ArrayType>(StrippedPtrTy->getElementType())){
1223          // GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ... ?
1224          if (CATy->getElementType() == XATy->getElementType()) {
1225            // -> GEP [10 x i8]* X, i32 0, ...
1226            // At this point, we know that the cast source type is a pointer
1227            // to an array of the same type as the destination pointer
1228            // array.  Because the array type is never stepped over (there
1229            // is a leading zero) we can fold the cast into this GEP.
1230            GEP.setOperand(0, StrippedPtr);
1231            return &GEP;
1232          }
1233        }
1234      }
1235    } else if (GEP.getNumOperands() == 2) {
1236      // Transform things like:
1237      // %t = getelementptr i32* bitcast ([2 x i32]* %str to i32*), i32 %V
1238      // into:  %t1 = getelementptr [2 x i32]* %str, i32 0, i32 %V; bitcast
1239      Type *SrcElTy = StrippedPtrTy->getElementType();
1240      Type *ResElTy = PtrOp->getType()->getPointerElementType();
1241      if (TD && SrcElTy->isArrayTy() &&
1242          TD->getTypeAllocSize(SrcElTy->getArrayElementType()) ==
1243          TD->getTypeAllocSize(ResElTy)) {
1244        Type *IdxType = TD->getIntPtrType(GEP.getType());
1245        Value *Idx[2] = { Constant::getNullValue(IdxType), GEP.getOperand(1) };
1246        Value *NewGEP = GEP.isInBounds() ?
1247          Builder->CreateInBoundsGEP(StrippedPtr, Idx, GEP.getName()) :
1248          Builder->CreateGEP(StrippedPtr, Idx, GEP.getName());
1249        // V and GEP are both pointer types --> BitCast
1250        return new BitCastInst(NewGEP, GEP.getType());
1251      }
1252
1253      // Transform things like:
1254      // %V = mul i64 %N, 4
1255      // %t = getelementptr i8* bitcast (i32* %arr to i8*), i32 %V
1256      // into:  %t1 = getelementptr i32* %arr, i32 %N; bitcast
1257      if (TD && ResElTy->isSized() && SrcElTy->isSized()) {
1258        // Check that changing the type amounts to dividing the index by a scale
1259        // factor.
1260        uint64_t ResSize = TD->getTypeAllocSize(ResElTy);
1261        uint64_t SrcSize = TD->getTypeAllocSize(SrcElTy);
1262        if (ResSize && SrcSize % ResSize == 0) {
1263          Value *Idx = GEP.getOperand(1);
1264          unsigned BitWidth = Idx->getType()->getPrimitiveSizeInBits();
1265          uint64_t Scale = SrcSize / ResSize;
1266
1267          // Earlier transforms ensure that the index has type IntPtrType, which
1268          // considerably simplifies the logic by eliminating implicit casts.
1269          assert(Idx->getType() == TD->getIntPtrType(GEP.getType()) &&
1270                 "Index not cast to pointer width?");
1271
1272          bool NSW;
1273          if (Value *NewIdx = Descale(Idx, APInt(BitWidth, Scale), NSW)) {
1274            // Successfully decomposed Idx as NewIdx * Scale, form a new GEP.
1275            // If the multiplication NewIdx * Scale may overflow then the new
1276            // GEP may not be "inbounds".
1277            Value *NewGEP = GEP.isInBounds() && NSW ?
1278              Builder->CreateInBoundsGEP(StrippedPtr, NewIdx, GEP.getName()) :
1279              Builder->CreateGEP(StrippedPtr, NewIdx, GEP.getName());
1280            // The NewGEP must be pointer typed, so must the old one -> BitCast
1281            return new BitCastInst(NewGEP, GEP.getType());
1282          }
1283        }
1284      }
1285
1286      // Similarly, transform things like:
1287      // getelementptr i8* bitcast ([100 x double]* X to i8*), i32 %tmp
1288      //   (where tmp = 8*tmp2) into:
1289      // getelementptr [100 x double]* %arr, i32 0, i32 %tmp2; bitcast
1290      if (TD && ResElTy->isSized() && SrcElTy->isSized() &&
1291          SrcElTy->isArrayTy()) {
1292        // Check that changing to the array element type amounts to dividing the
1293        // index by a scale factor.
1294        uint64_t ResSize = TD->getTypeAllocSize(ResElTy);
1295        uint64_t ArrayEltSize
1296          = TD->getTypeAllocSize(SrcElTy->getArrayElementType());
1297        if (ResSize && ArrayEltSize % ResSize == 0) {
1298          Value *Idx = GEP.getOperand(1);
1299          unsigned BitWidth = Idx->getType()->getPrimitiveSizeInBits();
1300          uint64_t Scale = ArrayEltSize / ResSize;
1301
1302          // Earlier transforms ensure that the index has type IntPtrType, which
1303          // considerably simplifies the logic by eliminating implicit casts.
1304          assert(Idx->getType() == TD->getIntPtrType(GEP.getType()) &&
1305                 "Index not cast to pointer width?");
1306
1307          bool NSW;
1308          if (Value *NewIdx = Descale(Idx, APInt(BitWidth, Scale), NSW)) {
1309            // Successfully decomposed Idx as NewIdx * Scale, form a new GEP.
1310            // If the multiplication NewIdx * Scale may overflow then the new
1311            // GEP may not be "inbounds".
1312            Value *Off[2] = {
1313              Constant::getNullValue(TD->getIntPtrType(GEP.getType())),
1314              NewIdx
1315            };
1316
1317            Value *NewGEP = GEP.isInBounds() && NSW ?
1318              Builder->CreateInBoundsGEP(StrippedPtr, Off, GEP.getName()) :
1319              Builder->CreateGEP(StrippedPtr, Off, GEP.getName());
1320            // The NewGEP must be pointer typed, so must the old one -> BitCast
1321            return new BitCastInst(NewGEP, GEP.getType());
1322          }
1323        }
1324      }
1325    }
1326  }
1327
1328  if (!TD)
1329    return 0;
1330
1331  /// See if we can simplify:
1332  ///   X = bitcast A* to B*
1333  ///   Y = gep X, <...constant indices...>
1334  /// into a gep of the original struct.  This is important for SROA and alias
1335  /// analysis of unions.  If "A" is also a bitcast, wait for A/X to be merged.
1336  if (BitCastInst *BCI = dyn_cast<BitCastInst>(PtrOp)) {
1337    Value *Operand = BCI->getOperand(0);
1338    PointerType *OpType = cast<PointerType>(Operand->getType());
1339    unsigned OffsetBits = TD->getPointerTypeSizeInBits(OpType);
1340    APInt Offset(OffsetBits, 0);
1341    if (!isa<BitCastInst>(Operand) &&
1342        GEP.accumulateConstantOffset(*TD, Offset) &&
1343        StrippedPtrTy->getAddressSpace() == GEP.getPointerAddressSpace()) {
1344
1345      // If this GEP instruction doesn't move the pointer, just replace the GEP
1346      // with a bitcast of the real input to the dest type.
1347      if (!Offset) {
1348        // If the bitcast is of an allocation, and the allocation will be
1349        // converted to match the type of the cast, don't touch this.
1350        if (isa<AllocaInst>(Operand) || isAllocationFn(Operand, TLI)) {
1351          // See if the bitcast simplifies, if so, don't nuke this GEP yet.
1352          if (Instruction *I = visitBitCast(*BCI)) {
1353            if (I != BCI) {
1354              I->takeName(BCI);
1355              BCI->getParent()->getInstList().insert(BCI, I);
1356              ReplaceInstUsesWith(*BCI, I);
1357            }
1358            return &GEP;
1359          }
1360        }
1361        return new BitCastInst(Operand, GEP.getType());
1362      }
1363
1364      // Otherwise, if the offset is non-zero, we need to find out if there is a
1365      // field at Offset in 'A's type.  If so, we can pull the cast through the
1366      // GEP.
1367      SmallVector<Value*, 8> NewIndices;
1368      if (FindElementAtOffset(OpType, Offset.getSExtValue(), NewIndices)) {
1369        Value *NGEP = GEP.isInBounds() ?
1370          Builder->CreateInBoundsGEP(Operand, NewIndices) :
1371          Builder->CreateGEP(Operand, NewIndices);
1372
1373        if (NGEP->getType() == GEP.getType())
1374          return ReplaceInstUsesWith(GEP, NGEP);
1375        NGEP->takeName(&GEP);
1376        return new BitCastInst(NGEP, GEP.getType());
1377      }
1378    }
1379  }
1380
1381  return 0;
1382}
1383
1384static bool
1385isAllocSiteRemovable(Instruction *AI, SmallVectorImpl<WeakVH> &Users,
1386                     const TargetLibraryInfo *TLI) {
1387  SmallVector<Instruction*, 4> Worklist;
1388  Worklist.push_back(AI);
1389
1390  do {
1391    Instruction *PI = Worklist.pop_back_val();
1392    for (Value::use_iterator UI = PI->use_begin(), UE = PI->use_end(); UI != UE;
1393         ++UI) {
1394      Instruction *I = cast<Instruction>(*UI);
1395      switch (I->getOpcode()) {
1396      default:
1397        // Give up the moment we see something we can't handle.
1398        return false;
1399
1400      case Instruction::BitCast:
1401      case Instruction::GetElementPtr:
1402        Users.push_back(I);
1403        Worklist.push_back(I);
1404        continue;
1405
1406      case Instruction::ICmp: {
1407        ICmpInst *ICI = cast<ICmpInst>(I);
1408        // We can fold eq/ne comparisons with null to false/true, respectively.
1409        if (!ICI->isEquality() || !isa<ConstantPointerNull>(ICI->getOperand(1)))
1410          return false;
1411        Users.push_back(I);
1412        continue;
1413      }
1414
1415      case Instruction::Call:
1416        // Ignore no-op and store intrinsics.
1417        if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
1418          switch (II->getIntrinsicID()) {
1419          default:
1420            return false;
1421
1422          case Intrinsic::memmove:
1423          case Intrinsic::memcpy:
1424          case Intrinsic::memset: {
1425            MemIntrinsic *MI = cast<MemIntrinsic>(II);
1426            if (MI->isVolatile() || MI->getRawDest() != PI)
1427              return false;
1428          }
1429          // fall through
1430          case Intrinsic::dbg_declare:
1431          case Intrinsic::dbg_value:
1432          case Intrinsic::invariant_start:
1433          case Intrinsic::invariant_end:
1434          case Intrinsic::lifetime_start:
1435          case Intrinsic::lifetime_end:
1436          case Intrinsic::objectsize:
1437            Users.push_back(I);
1438            continue;
1439          }
1440        }
1441
1442        if (isFreeCall(I, TLI)) {
1443          Users.push_back(I);
1444          continue;
1445        }
1446        return false;
1447
1448      case Instruction::Store: {
1449        StoreInst *SI = cast<StoreInst>(I);
1450        if (SI->isVolatile() || SI->getPointerOperand() != PI)
1451          return false;
1452        Users.push_back(I);
1453        continue;
1454      }
1455      }
1456      llvm_unreachable("missing a return?");
1457    }
1458  } while (!Worklist.empty());
1459  return true;
1460}
1461
1462Instruction *InstCombiner::visitAllocSite(Instruction &MI) {
1463  // If we have a malloc call which is only used in any amount of comparisons
1464  // to null and free calls, delete the calls and replace the comparisons with
1465  // true or false as appropriate.
1466  SmallVector<WeakVH, 64> Users;
1467  if (isAllocSiteRemovable(&MI, Users, TLI)) {
1468    for (unsigned i = 0, e = Users.size(); i != e; ++i) {
1469      Instruction *I = cast_or_null<Instruction>(&*Users[i]);
1470      if (!I) continue;
1471
1472      if (ICmpInst *C = dyn_cast<ICmpInst>(I)) {
1473        ReplaceInstUsesWith(*C,
1474                            ConstantInt::get(Type::getInt1Ty(C->getContext()),
1475                                             C->isFalseWhenEqual()));
1476      } else if (isa<BitCastInst>(I) || isa<GetElementPtrInst>(I)) {
1477        ReplaceInstUsesWith(*I, UndefValue::get(I->getType()));
1478      } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
1479        if (II->getIntrinsicID() == Intrinsic::objectsize) {
1480          ConstantInt *CI = cast<ConstantInt>(II->getArgOperand(1));
1481          uint64_t DontKnow = CI->isZero() ? -1ULL : 0;
1482          ReplaceInstUsesWith(*I, ConstantInt::get(I->getType(), DontKnow));
1483        }
1484      }
1485      EraseInstFromFunction(*I);
1486    }
1487
1488    if (InvokeInst *II = dyn_cast<InvokeInst>(&MI)) {
1489      // Replace invoke with a NOP intrinsic to maintain the original CFG
1490      Module *M = II->getParent()->getParent()->getParent();
1491      Function *F = Intrinsic::getDeclaration(M, Intrinsic::donothing);
1492      InvokeInst::Create(F, II->getNormalDest(), II->getUnwindDest(),
1493                         None, "", II->getParent());
1494    }
1495    return EraseInstFromFunction(MI);
1496  }
1497  return 0;
1498}
1499
1500/// \brief Move the call to free before a NULL test.
1501///
1502/// Check if this free is accessed after its argument has been test
1503/// against NULL (property 0).
1504/// If yes, it is legal to move this call in its predecessor block.
1505///
1506/// The move is performed only if the block containing the call to free
1507/// will be removed, i.e.:
1508/// 1. it has only one predecessor P, and P has two successors
1509/// 2. it contains the call and an unconditional branch
1510/// 3. its successor is the same as its predecessor's successor
1511///
1512/// The profitability is out-of concern here and this function should
1513/// be called only if the caller knows this transformation would be
1514/// profitable (e.g., for code size).
1515static Instruction *
1516tryToMoveFreeBeforeNullTest(CallInst &FI) {
1517  Value *Op = FI.getArgOperand(0);
1518  BasicBlock *FreeInstrBB = FI.getParent();
1519  BasicBlock *PredBB = FreeInstrBB->getSinglePredecessor();
1520
1521  // Validate part of constraint #1: Only one predecessor
1522  // FIXME: We can extend the number of predecessor, but in that case, we
1523  //        would duplicate the call to free in each predecessor and it may
1524  //        not be profitable even for code size.
1525  if (!PredBB)
1526    return 0;
1527
1528  // Validate constraint #2: Does this block contains only the call to
1529  //                         free and an unconditional branch?
1530  // FIXME: We could check if we can speculate everything in the
1531  //        predecessor block
1532  if (FreeInstrBB->size() != 2)
1533    return 0;
1534  BasicBlock *SuccBB;
1535  if (!match(FreeInstrBB->getTerminator(), m_UnconditionalBr(SuccBB)))
1536    return 0;
1537
1538  // Validate the rest of constraint #1 by matching on the pred branch.
1539  TerminatorInst *TI = PredBB->getTerminator();
1540  BasicBlock *TrueBB, *FalseBB;
1541  ICmpInst::Predicate Pred;
1542  if (!match(TI, m_Br(m_ICmp(Pred, m_Specific(Op), m_Zero()), TrueBB, FalseBB)))
1543    return 0;
1544  if (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE)
1545    return 0;
1546
1547  // Validate constraint #3: Ensure the null case just falls through.
1548  if (SuccBB != (Pred == ICmpInst::ICMP_EQ ? TrueBB : FalseBB))
1549    return 0;
1550  assert(FreeInstrBB == (Pred == ICmpInst::ICMP_EQ ? FalseBB : TrueBB) &&
1551         "Broken CFG: missing edge from predecessor to successor");
1552
1553  FI.moveBefore(TI);
1554  return &FI;
1555}
1556
1557
1558Instruction *InstCombiner::visitFree(CallInst &FI) {
1559  Value *Op = FI.getArgOperand(0);
1560
1561  // free undef -> unreachable.
1562  if (isa<UndefValue>(Op)) {
1563    // Insert a new store to null because we cannot modify the CFG here.
1564    Builder->CreateStore(ConstantInt::getTrue(FI.getContext()),
1565                         UndefValue::get(Type::getInt1PtrTy(FI.getContext())));
1566    return EraseInstFromFunction(FI);
1567  }
1568
1569  // If we have 'free null' delete the instruction.  This can happen in stl code
1570  // when lots of inlining happens.
1571  if (isa<ConstantPointerNull>(Op))
1572    return EraseInstFromFunction(FI);
1573
1574  // If we optimize for code size, try to move the call to free before the null
1575  // test so that simplify cfg can remove the empty block and dead code
1576  // elimination the branch. I.e., helps to turn something like:
1577  // if (foo) free(foo);
1578  // into
1579  // free(foo);
1580  if (MinimizeSize)
1581    if (Instruction *I = tryToMoveFreeBeforeNullTest(FI))
1582      return I;
1583
1584  return 0;
1585}
1586
1587
1588
1589Instruction *InstCombiner::visitBranchInst(BranchInst &BI) {
1590  // Change br (not X), label True, label False to: br X, label False, True
1591  Value *X = 0;
1592  BasicBlock *TrueDest;
1593  BasicBlock *FalseDest;
1594  if (match(&BI, m_Br(m_Not(m_Value(X)), TrueDest, FalseDest)) &&
1595      !isa<Constant>(X)) {
1596    // Swap Destinations and condition...
1597    BI.setCondition(X);
1598    BI.swapSuccessors();
1599    return &BI;
1600  }
1601
1602  // Cannonicalize fcmp_one -> fcmp_oeq
1603  FCmpInst::Predicate FPred; Value *Y;
1604  if (match(&BI, m_Br(m_FCmp(FPred, m_Value(X), m_Value(Y)),
1605                             TrueDest, FalseDest)) &&
1606      BI.getCondition()->hasOneUse())
1607    if (FPred == FCmpInst::FCMP_ONE || FPred == FCmpInst::FCMP_OLE ||
1608        FPred == FCmpInst::FCMP_OGE) {
1609      FCmpInst *Cond = cast<FCmpInst>(BI.getCondition());
1610      Cond->setPredicate(FCmpInst::getInversePredicate(FPred));
1611
1612      // Swap Destinations and condition.
1613      BI.swapSuccessors();
1614      Worklist.Add(Cond);
1615      return &BI;
1616    }
1617
1618  // Cannonicalize icmp_ne -> icmp_eq
1619  ICmpInst::Predicate IPred;
1620  if (match(&BI, m_Br(m_ICmp(IPred, m_Value(X), m_Value(Y)),
1621                      TrueDest, FalseDest)) &&
1622      BI.getCondition()->hasOneUse())
1623    if (IPred == ICmpInst::ICMP_NE  || IPred == ICmpInst::ICMP_ULE ||
1624        IPred == ICmpInst::ICMP_SLE || IPred == ICmpInst::ICMP_UGE ||
1625        IPred == ICmpInst::ICMP_SGE) {
1626      ICmpInst *Cond = cast<ICmpInst>(BI.getCondition());
1627      Cond->setPredicate(ICmpInst::getInversePredicate(IPred));
1628      // Swap Destinations and condition.
1629      BI.swapSuccessors();
1630      Worklist.Add(Cond);
1631      return &BI;
1632    }
1633
1634  return 0;
1635}
1636
1637Instruction *InstCombiner::visitSwitchInst(SwitchInst &SI) {
1638  Value *Cond = SI.getCondition();
1639  if (Instruction *I = dyn_cast<Instruction>(Cond)) {
1640    if (I->getOpcode() == Instruction::Add)
1641      if (ConstantInt *AddRHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
1642        // change 'switch (X+4) case 1:' into 'switch (X) case -3'
1643        // Skip the first item since that's the default case.
1644        for (SwitchInst::CaseIt i = SI.case_begin(), e = SI.case_end();
1645             i != e; ++i) {
1646          ConstantInt* CaseVal = i.getCaseValue();
1647          Constant* NewCaseVal = ConstantExpr::getSub(cast<Constant>(CaseVal),
1648                                                      AddRHS);
1649          assert(isa<ConstantInt>(NewCaseVal) &&
1650                 "Result of expression should be constant");
1651          i.setValue(cast<ConstantInt>(NewCaseVal));
1652        }
1653        SI.setCondition(I->getOperand(0));
1654        Worklist.Add(I);
1655        return &SI;
1656      }
1657  }
1658  return 0;
1659}
1660
1661Instruction *InstCombiner::visitExtractValueInst(ExtractValueInst &EV) {
1662  Value *Agg = EV.getAggregateOperand();
1663
1664  if (!EV.hasIndices())
1665    return ReplaceInstUsesWith(EV, Agg);
1666
1667  if (Constant *C = dyn_cast<Constant>(Agg)) {
1668    if (Constant *C2 = C->getAggregateElement(*EV.idx_begin())) {
1669      if (EV.getNumIndices() == 0)
1670        return ReplaceInstUsesWith(EV, C2);
1671      // Extract the remaining indices out of the constant indexed by the
1672      // first index
1673      return ExtractValueInst::Create(C2, EV.getIndices().slice(1));
1674    }
1675    return 0; // Can't handle other constants
1676  }
1677
1678  if (InsertValueInst *IV = dyn_cast<InsertValueInst>(Agg)) {
1679    // We're extracting from an insertvalue instruction, compare the indices
1680    const unsigned *exti, *exte, *insi, *inse;
1681    for (exti = EV.idx_begin(), insi = IV->idx_begin(),
1682         exte = EV.idx_end(), inse = IV->idx_end();
1683         exti != exte && insi != inse;
1684         ++exti, ++insi) {
1685      if (*insi != *exti)
1686        // The insert and extract both reference distinctly different elements.
1687        // This means the extract is not influenced by the insert, and we can
1688        // replace the aggregate operand of the extract with the aggregate
1689        // operand of the insert. i.e., replace
1690        // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
1691        // %E = extractvalue { i32, { i32 } } %I, 0
1692        // with
1693        // %E = extractvalue { i32, { i32 } } %A, 0
1694        return ExtractValueInst::Create(IV->getAggregateOperand(),
1695                                        EV.getIndices());
1696    }
1697    if (exti == exte && insi == inse)
1698      // Both iterators are at the end: Index lists are identical. Replace
1699      // %B = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
1700      // %C = extractvalue { i32, { i32 } } %B, 1, 0
1701      // with "i32 42"
1702      return ReplaceInstUsesWith(EV, IV->getInsertedValueOperand());
1703    if (exti == exte) {
1704      // The extract list is a prefix of the insert list. i.e. replace
1705      // %I = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
1706      // %E = extractvalue { i32, { i32 } } %I, 1
1707      // with
1708      // %X = extractvalue { i32, { i32 } } %A, 1
1709      // %E = insertvalue { i32 } %X, i32 42, 0
1710      // by switching the order of the insert and extract (though the
1711      // insertvalue should be left in, since it may have other uses).
1712      Value *NewEV = Builder->CreateExtractValue(IV->getAggregateOperand(),
1713                                                 EV.getIndices());
1714      return InsertValueInst::Create(NewEV, IV->getInsertedValueOperand(),
1715                                     makeArrayRef(insi, inse));
1716    }
1717    if (insi == inse)
1718      // The insert list is a prefix of the extract list
1719      // We can simply remove the common indices from the extract and make it
1720      // operate on the inserted value instead of the insertvalue result.
1721      // i.e., replace
1722      // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
1723      // %E = extractvalue { i32, { i32 } } %I, 1, 0
1724      // with
1725      // %E extractvalue { i32 } { i32 42 }, 0
1726      return ExtractValueInst::Create(IV->getInsertedValueOperand(),
1727                                      makeArrayRef(exti, exte));
1728  }
1729  if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Agg)) {
1730    // We're extracting from an intrinsic, see if we're the only user, which
1731    // allows us to simplify multiple result intrinsics to simpler things that
1732    // just get one value.
1733    if (II->hasOneUse()) {
1734      // Check if we're grabbing the overflow bit or the result of a 'with
1735      // overflow' intrinsic.  If it's the latter we can remove the intrinsic
1736      // and replace it with a traditional binary instruction.
1737      switch (II->getIntrinsicID()) {
1738      case Intrinsic::uadd_with_overflow:
1739      case Intrinsic::sadd_with_overflow:
1740        if (*EV.idx_begin() == 0) {  // Normal result.
1741          Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1);
1742          ReplaceInstUsesWith(*II, UndefValue::get(II->getType()));
1743          EraseInstFromFunction(*II);
1744          return BinaryOperator::CreateAdd(LHS, RHS);
1745        }
1746
1747        // If the normal result of the add is dead, and the RHS is a constant,
1748        // we can transform this into a range comparison.
1749        // overflow = uadd a, -4  -->  overflow = icmp ugt a, 3
1750        if (II->getIntrinsicID() == Intrinsic::uadd_with_overflow)
1751          if (ConstantInt *CI = dyn_cast<ConstantInt>(II->getArgOperand(1)))
1752            return new ICmpInst(ICmpInst::ICMP_UGT, II->getArgOperand(0),
1753                                ConstantExpr::getNot(CI));
1754        break;
1755      case Intrinsic::usub_with_overflow:
1756      case Intrinsic::ssub_with_overflow:
1757        if (*EV.idx_begin() == 0) {  // Normal result.
1758          Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1);
1759          ReplaceInstUsesWith(*II, UndefValue::get(II->getType()));
1760          EraseInstFromFunction(*II);
1761          return BinaryOperator::CreateSub(LHS, RHS);
1762        }
1763        break;
1764      case Intrinsic::umul_with_overflow:
1765      case Intrinsic::smul_with_overflow:
1766        if (*EV.idx_begin() == 0) {  // Normal result.
1767          Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1);
1768          ReplaceInstUsesWith(*II, UndefValue::get(II->getType()));
1769          EraseInstFromFunction(*II);
1770          return BinaryOperator::CreateMul(LHS, RHS);
1771        }
1772        break;
1773      default:
1774        break;
1775      }
1776    }
1777  }
1778  if (LoadInst *L = dyn_cast<LoadInst>(Agg))
1779    // If the (non-volatile) load only has one use, we can rewrite this to a
1780    // load from a GEP. This reduces the size of the load.
1781    // FIXME: If a load is used only by extractvalue instructions then this
1782    //        could be done regardless of having multiple uses.
1783    if (L->isSimple() && L->hasOneUse()) {
1784      // extractvalue has integer indices, getelementptr has Value*s. Convert.
1785      SmallVector<Value*, 4> Indices;
1786      // Prefix an i32 0 since we need the first element.
1787      Indices.push_back(Builder->getInt32(0));
1788      for (ExtractValueInst::idx_iterator I = EV.idx_begin(), E = EV.idx_end();
1789            I != E; ++I)
1790        Indices.push_back(Builder->getInt32(*I));
1791
1792      // We need to insert these at the location of the old load, not at that of
1793      // the extractvalue.
1794      Builder->SetInsertPoint(L->getParent(), L);
1795      Value *GEP = Builder->CreateInBoundsGEP(L->getPointerOperand(), Indices);
1796      // Returning the load directly will cause the main loop to insert it in
1797      // the wrong spot, so use ReplaceInstUsesWith().
1798      return ReplaceInstUsesWith(EV, Builder->CreateLoad(GEP));
1799    }
1800  // We could simplify extracts from other values. Note that nested extracts may
1801  // already be simplified implicitly by the above: extract (extract (insert) )
1802  // will be translated into extract ( insert ( extract ) ) first and then just
1803  // the value inserted, if appropriate. Similarly for extracts from single-use
1804  // loads: extract (extract (load)) will be translated to extract (load (gep))
1805  // and if again single-use then via load (gep (gep)) to load (gep).
1806  // However, double extracts from e.g. function arguments or return values
1807  // aren't handled yet.
1808  return 0;
1809}
1810
1811enum Personality_Type {
1812  Unknown_Personality,
1813  GNU_Ada_Personality,
1814  GNU_CXX_Personality,
1815  GNU_ObjC_Personality
1816};
1817
1818/// RecognizePersonality - See if the given exception handling personality
1819/// function is one that we understand.  If so, return a description of it;
1820/// otherwise return Unknown_Personality.
1821static Personality_Type RecognizePersonality(Value *Pers) {
1822  Function *F = dyn_cast<Function>(Pers->stripPointerCasts());
1823  if (!F)
1824    return Unknown_Personality;
1825  return StringSwitch<Personality_Type>(F->getName())
1826    .Case("__gnat_eh_personality", GNU_Ada_Personality)
1827    .Case("__gxx_personality_v0",  GNU_CXX_Personality)
1828    .Case("__objc_personality_v0", GNU_ObjC_Personality)
1829    .Default(Unknown_Personality);
1830}
1831
1832/// isCatchAll - Return 'true' if the given typeinfo will match anything.
1833static bool isCatchAll(Personality_Type Personality, Constant *TypeInfo) {
1834  switch (Personality) {
1835  case Unknown_Personality:
1836    return false;
1837  case GNU_Ada_Personality:
1838    // While __gnat_all_others_value will match any Ada exception, it doesn't
1839    // match foreign exceptions (or didn't, before gcc-4.7).
1840    return false;
1841  case GNU_CXX_Personality:
1842  case GNU_ObjC_Personality:
1843    return TypeInfo->isNullValue();
1844  }
1845  llvm_unreachable("Unknown personality!");
1846}
1847
1848static bool shorter_filter(const Value *LHS, const Value *RHS) {
1849  return
1850    cast<ArrayType>(LHS->getType())->getNumElements()
1851  <
1852    cast<ArrayType>(RHS->getType())->getNumElements();
1853}
1854
1855Instruction *InstCombiner::visitLandingPadInst(LandingPadInst &LI) {
1856  // The logic here should be correct for any real-world personality function.
1857  // However if that turns out not to be true, the offending logic can always
1858  // be conditioned on the personality function, like the catch-all logic is.
1859  Personality_Type Personality = RecognizePersonality(LI.getPersonalityFn());
1860
1861  // Simplify the list of clauses, eg by removing repeated catch clauses
1862  // (these are often created by inlining).
1863  bool MakeNewInstruction = false; // If true, recreate using the following:
1864  SmallVector<Value *, 16> NewClauses; // - Clauses for the new instruction;
1865  bool CleanupFlag = LI.isCleanup();   // - The new instruction is a cleanup.
1866
1867  SmallPtrSet<Value *, 16> AlreadyCaught; // Typeinfos known caught already.
1868  for (unsigned i = 0, e = LI.getNumClauses(); i != e; ++i) {
1869    bool isLastClause = i + 1 == e;
1870    if (LI.isCatch(i)) {
1871      // A catch clause.
1872      Value *CatchClause = LI.getClause(i);
1873      Constant *TypeInfo = cast<Constant>(CatchClause->stripPointerCasts());
1874
1875      // If we already saw this clause, there is no point in having a second
1876      // copy of it.
1877      if (AlreadyCaught.insert(TypeInfo)) {
1878        // This catch clause was not already seen.
1879        NewClauses.push_back(CatchClause);
1880      } else {
1881        // Repeated catch clause - drop the redundant copy.
1882        MakeNewInstruction = true;
1883      }
1884
1885      // If this is a catch-all then there is no point in keeping any following
1886      // clauses or marking the landingpad as having a cleanup.
1887      if (isCatchAll(Personality, TypeInfo)) {
1888        if (!isLastClause)
1889          MakeNewInstruction = true;
1890        CleanupFlag = false;
1891        break;
1892      }
1893    } else {
1894      // A filter clause.  If any of the filter elements were already caught
1895      // then they can be dropped from the filter.  It is tempting to try to
1896      // exploit the filter further by saying that any typeinfo that does not
1897      // occur in the filter can't be caught later (and thus can be dropped).
1898      // However this would be wrong, since typeinfos can match without being
1899      // equal (for example if one represents a C++ class, and the other some
1900      // class derived from it).
1901      assert(LI.isFilter(i) && "Unsupported landingpad clause!");
1902      Value *FilterClause = LI.getClause(i);
1903      ArrayType *FilterType = cast<ArrayType>(FilterClause->getType());
1904      unsigned NumTypeInfos = FilterType->getNumElements();
1905
1906      // An empty filter catches everything, so there is no point in keeping any
1907      // following clauses or marking the landingpad as having a cleanup.  By
1908      // dealing with this case here the following code is made a bit simpler.
1909      if (!NumTypeInfos) {
1910        NewClauses.push_back(FilterClause);
1911        if (!isLastClause)
1912          MakeNewInstruction = true;
1913        CleanupFlag = false;
1914        break;
1915      }
1916
1917      bool MakeNewFilter = false; // If true, make a new filter.
1918      SmallVector<Constant *, 16> NewFilterElts; // New elements.
1919      if (isa<ConstantAggregateZero>(FilterClause)) {
1920        // Not an empty filter - it contains at least one null typeinfo.
1921        assert(NumTypeInfos > 0 && "Should have handled empty filter already!");
1922        Constant *TypeInfo =
1923          Constant::getNullValue(FilterType->getElementType());
1924        // If this typeinfo is a catch-all then the filter can never match.
1925        if (isCatchAll(Personality, TypeInfo)) {
1926          // Throw the filter away.
1927          MakeNewInstruction = true;
1928          continue;
1929        }
1930
1931        // There is no point in having multiple copies of this typeinfo, so
1932        // discard all but the first copy if there is more than one.
1933        NewFilterElts.push_back(TypeInfo);
1934        if (NumTypeInfos > 1)
1935          MakeNewFilter = true;
1936      } else {
1937        ConstantArray *Filter = cast<ConstantArray>(FilterClause);
1938        SmallPtrSet<Value *, 16> SeenInFilter; // For uniquing the elements.
1939        NewFilterElts.reserve(NumTypeInfos);
1940
1941        // Remove any filter elements that were already caught or that already
1942        // occurred in the filter.  While there, see if any of the elements are
1943        // catch-alls.  If so, the filter can be discarded.
1944        bool SawCatchAll = false;
1945        for (unsigned j = 0; j != NumTypeInfos; ++j) {
1946          Value *Elt = Filter->getOperand(j);
1947          Constant *TypeInfo = cast<Constant>(Elt->stripPointerCasts());
1948          if (isCatchAll(Personality, TypeInfo)) {
1949            // This element is a catch-all.  Bail out, noting this fact.
1950            SawCatchAll = true;
1951            break;
1952          }
1953          if (AlreadyCaught.count(TypeInfo))
1954            // Already caught by an earlier clause, so having it in the filter
1955            // is pointless.
1956            continue;
1957          // There is no point in having multiple copies of the same typeinfo in
1958          // a filter, so only add it if we didn't already.
1959          if (SeenInFilter.insert(TypeInfo))
1960            NewFilterElts.push_back(cast<Constant>(Elt));
1961        }
1962        // A filter containing a catch-all cannot match anything by definition.
1963        if (SawCatchAll) {
1964          // Throw the filter away.
1965          MakeNewInstruction = true;
1966          continue;
1967        }
1968
1969        // If we dropped something from the filter, make a new one.
1970        if (NewFilterElts.size() < NumTypeInfos)
1971          MakeNewFilter = true;
1972      }
1973      if (MakeNewFilter) {
1974        FilterType = ArrayType::get(FilterType->getElementType(),
1975                                    NewFilterElts.size());
1976        FilterClause = ConstantArray::get(FilterType, NewFilterElts);
1977        MakeNewInstruction = true;
1978      }
1979
1980      NewClauses.push_back(FilterClause);
1981
1982      // If the new filter is empty then it will catch everything so there is
1983      // no point in keeping any following clauses or marking the landingpad
1984      // as having a cleanup.  The case of the original filter being empty was
1985      // already handled above.
1986      if (MakeNewFilter && !NewFilterElts.size()) {
1987        assert(MakeNewInstruction && "New filter but not a new instruction!");
1988        CleanupFlag = false;
1989        break;
1990      }
1991    }
1992  }
1993
1994  // If several filters occur in a row then reorder them so that the shortest
1995  // filters come first (those with the smallest number of elements).  This is
1996  // advantageous because shorter filters are more likely to match, speeding up
1997  // unwinding, but mostly because it increases the effectiveness of the other
1998  // filter optimizations below.
1999  for (unsigned i = 0, e = NewClauses.size(); i + 1 < e; ) {
2000    unsigned j;
2001    // Find the maximal 'j' s.t. the range [i, j) consists entirely of filters.
2002    for (j = i; j != e; ++j)
2003      if (!isa<ArrayType>(NewClauses[j]->getType()))
2004        break;
2005
2006    // Check whether the filters are already sorted by length.  We need to know
2007    // if sorting them is actually going to do anything so that we only make a
2008    // new landingpad instruction if it does.
2009    for (unsigned k = i; k + 1 < j; ++k)
2010      if (shorter_filter(NewClauses[k+1], NewClauses[k])) {
2011        // Not sorted, so sort the filters now.  Doing an unstable sort would be
2012        // correct too but reordering filters pointlessly might confuse users.
2013        std::stable_sort(NewClauses.begin() + i, NewClauses.begin() + j,
2014                         shorter_filter);
2015        MakeNewInstruction = true;
2016        break;
2017      }
2018
2019    // Look for the next batch of filters.
2020    i = j + 1;
2021  }
2022
2023  // If typeinfos matched if and only if equal, then the elements of a filter L
2024  // that occurs later than a filter F could be replaced by the intersection of
2025  // the elements of F and L.  In reality two typeinfos can match without being
2026  // equal (for example if one represents a C++ class, and the other some class
2027  // derived from it) so it would be wrong to perform this transform in general.
2028  // However the transform is correct and useful if F is a subset of L.  In that
2029  // case L can be replaced by F, and thus removed altogether since repeating a
2030  // filter is pointless.  So here we look at all pairs of filters F and L where
2031  // L follows F in the list of clauses, and remove L if every element of F is
2032  // an element of L.  This can occur when inlining C++ functions with exception
2033  // specifications.
2034  for (unsigned i = 0; i + 1 < NewClauses.size(); ++i) {
2035    // Examine each filter in turn.
2036    Value *Filter = NewClauses[i];
2037    ArrayType *FTy = dyn_cast<ArrayType>(Filter->getType());
2038    if (!FTy)
2039      // Not a filter - skip it.
2040      continue;
2041    unsigned FElts = FTy->getNumElements();
2042    // Examine each filter following this one.  Doing this backwards means that
2043    // we don't have to worry about filters disappearing under us when removed.
2044    for (unsigned j = NewClauses.size() - 1; j != i; --j) {
2045      Value *LFilter = NewClauses[j];
2046      ArrayType *LTy = dyn_cast<ArrayType>(LFilter->getType());
2047      if (!LTy)
2048        // Not a filter - skip it.
2049        continue;
2050      // If Filter is a subset of LFilter, i.e. every element of Filter is also
2051      // an element of LFilter, then discard LFilter.
2052      SmallVectorImpl<Value *>::iterator J = NewClauses.begin() + j;
2053      // If Filter is empty then it is a subset of LFilter.
2054      if (!FElts) {
2055        // Discard LFilter.
2056        NewClauses.erase(J);
2057        MakeNewInstruction = true;
2058        // Move on to the next filter.
2059        continue;
2060      }
2061      unsigned LElts = LTy->getNumElements();
2062      // If Filter is longer than LFilter then it cannot be a subset of it.
2063      if (FElts > LElts)
2064        // Move on to the next filter.
2065        continue;
2066      // At this point we know that LFilter has at least one element.
2067      if (isa<ConstantAggregateZero>(LFilter)) { // LFilter only contains zeros.
2068        // Filter is a subset of LFilter iff Filter contains only zeros (as we
2069        // already know that Filter is not longer than LFilter).
2070        if (isa<ConstantAggregateZero>(Filter)) {
2071          assert(FElts <= LElts && "Should have handled this case earlier!");
2072          // Discard LFilter.
2073          NewClauses.erase(J);
2074          MakeNewInstruction = true;
2075        }
2076        // Move on to the next filter.
2077        continue;
2078      }
2079      ConstantArray *LArray = cast<ConstantArray>(LFilter);
2080      if (isa<ConstantAggregateZero>(Filter)) { // Filter only contains zeros.
2081        // Since Filter is non-empty and contains only zeros, it is a subset of
2082        // LFilter iff LFilter contains a zero.
2083        assert(FElts > 0 && "Should have eliminated the empty filter earlier!");
2084        for (unsigned l = 0; l != LElts; ++l)
2085          if (LArray->getOperand(l)->isNullValue()) {
2086            // LFilter contains a zero - discard it.
2087            NewClauses.erase(J);
2088            MakeNewInstruction = true;
2089            break;
2090          }
2091        // Move on to the next filter.
2092        continue;
2093      }
2094      // At this point we know that both filters are ConstantArrays.  Loop over
2095      // operands to see whether every element of Filter is also an element of
2096      // LFilter.  Since filters tend to be short this is probably faster than
2097      // using a method that scales nicely.
2098      ConstantArray *FArray = cast<ConstantArray>(Filter);
2099      bool AllFound = true;
2100      for (unsigned f = 0; f != FElts; ++f) {
2101        Value *FTypeInfo = FArray->getOperand(f)->stripPointerCasts();
2102        AllFound = false;
2103        for (unsigned l = 0; l != LElts; ++l) {
2104          Value *LTypeInfo = LArray->getOperand(l)->stripPointerCasts();
2105          if (LTypeInfo == FTypeInfo) {
2106            AllFound = true;
2107            break;
2108          }
2109        }
2110        if (!AllFound)
2111          break;
2112      }
2113      if (AllFound) {
2114        // Discard LFilter.
2115        NewClauses.erase(J);
2116        MakeNewInstruction = true;
2117      }
2118      // Move on to the next filter.
2119    }
2120  }
2121
2122  // If we changed any of the clauses, replace the old landingpad instruction
2123  // with a new one.
2124  if (MakeNewInstruction) {
2125    LandingPadInst *NLI = LandingPadInst::Create(LI.getType(),
2126                                                 LI.getPersonalityFn(),
2127                                                 NewClauses.size());
2128    for (unsigned i = 0, e = NewClauses.size(); i != e; ++i)
2129      NLI->addClause(NewClauses[i]);
2130    // A landing pad with no clauses must have the cleanup flag set.  It is
2131    // theoretically possible, though highly unlikely, that we eliminated all
2132    // clauses.  If so, force the cleanup flag to true.
2133    if (NewClauses.empty())
2134      CleanupFlag = true;
2135    NLI->setCleanup(CleanupFlag);
2136    return NLI;
2137  }
2138
2139  // Even if none of the clauses changed, we may nonetheless have understood
2140  // that the cleanup flag is pointless.  Clear it if so.
2141  if (LI.isCleanup() != CleanupFlag) {
2142    assert(!CleanupFlag && "Adding a cleanup, not removing one?!");
2143    LI.setCleanup(CleanupFlag);
2144    return &LI;
2145  }
2146
2147  return 0;
2148}
2149
2150
2151
2152
2153/// TryToSinkInstruction - Try to move the specified instruction from its
2154/// current block into the beginning of DestBlock, which can only happen if it's
2155/// safe to move the instruction past all of the instructions between it and the
2156/// end of its block.
2157static bool TryToSinkInstruction(Instruction *I, BasicBlock *DestBlock) {
2158  assert(I->hasOneUse() && "Invariants didn't hold!");
2159
2160  // Cannot move control-flow-involving, volatile loads, vaarg, etc.
2161  if (isa<PHINode>(I) || isa<LandingPadInst>(I) || I->mayHaveSideEffects() ||
2162      isa<TerminatorInst>(I))
2163    return false;
2164
2165  // Do not sink alloca instructions out of the entry block.
2166  if (isa<AllocaInst>(I) && I->getParent() ==
2167        &DestBlock->getParent()->getEntryBlock())
2168    return false;
2169
2170  // We can only sink load instructions if there is nothing between the load and
2171  // the end of block that could change the value.
2172  if (I->mayReadFromMemory()) {
2173    for (BasicBlock::iterator Scan = I, E = I->getParent()->end();
2174         Scan != E; ++Scan)
2175      if (Scan->mayWriteToMemory())
2176        return false;
2177  }
2178
2179  BasicBlock::iterator InsertPos = DestBlock->getFirstInsertionPt();
2180  I->moveBefore(InsertPos);
2181  ++NumSunkInst;
2182  return true;
2183}
2184
2185
2186/// AddReachableCodeToWorklist - Walk the function in depth-first order, adding
2187/// all reachable code to the worklist.
2188///
2189/// This has a couple of tricks to make the code faster and more powerful.  In
2190/// particular, we constant fold and DCE instructions as we go, to avoid adding
2191/// them to the worklist (this significantly speeds up instcombine on code where
2192/// many instructions are dead or constant).  Additionally, if we find a branch
2193/// whose condition is a known constant, we only visit the reachable successors.
2194///
2195static bool AddReachableCodeToWorklist(BasicBlock *BB,
2196                                       SmallPtrSet<BasicBlock*, 64> &Visited,
2197                                       InstCombiner &IC,
2198                                       const DataLayout *TD,
2199                                       const TargetLibraryInfo *TLI) {
2200  bool MadeIRChange = false;
2201  SmallVector<BasicBlock*, 256> Worklist;
2202  Worklist.push_back(BB);
2203
2204  SmallVector<Instruction*, 128> InstrsForInstCombineWorklist;
2205  DenseMap<ConstantExpr*, Constant*> FoldedConstants;
2206
2207  do {
2208    BB = Worklist.pop_back_val();
2209
2210    // We have now visited this block!  If we've already been here, ignore it.
2211    if (!Visited.insert(BB)) continue;
2212
2213    for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) {
2214      Instruction *Inst = BBI++;
2215
2216      // DCE instruction if trivially dead.
2217      if (isInstructionTriviallyDead(Inst, TLI)) {
2218        ++NumDeadInst;
2219        DEBUG(dbgs() << "IC: DCE: " << *Inst << '\n');
2220        Inst->eraseFromParent();
2221        continue;
2222      }
2223
2224      // ConstantProp instruction if trivially constant.
2225      if (!Inst->use_empty() && isa<Constant>(Inst->getOperand(0)))
2226        if (Constant *C = ConstantFoldInstruction(Inst, TD, TLI)) {
2227          DEBUG(dbgs() << "IC: ConstFold to: " << *C << " from: "
2228                       << *Inst << '\n');
2229          Inst->replaceAllUsesWith(C);
2230          ++NumConstProp;
2231          Inst->eraseFromParent();
2232          continue;
2233        }
2234
2235      if (TD) {
2236        // See if we can constant fold its operands.
2237        for (User::op_iterator i = Inst->op_begin(), e = Inst->op_end();
2238             i != e; ++i) {
2239          ConstantExpr *CE = dyn_cast<ConstantExpr>(i);
2240          if (CE == 0) continue;
2241
2242          Constant*& FoldRes = FoldedConstants[CE];
2243          if (!FoldRes)
2244            FoldRes = ConstantFoldConstantExpression(CE, TD, TLI);
2245          if (!FoldRes)
2246            FoldRes = CE;
2247
2248          if (FoldRes != CE) {
2249            *i = FoldRes;
2250            MadeIRChange = true;
2251          }
2252        }
2253      }
2254
2255      InstrsForInstCombineWorklist.push_back(Inst);
2256    }
2257
2258    // Recursively visit successors.  If this is a branch or switch on a
2259    // constant, only visit the reachable successor.
2260    TerminatorInst *TI = BB->getTerminator();
2261    if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
2262      if (BI->isConditional() && isa<ConstantInt>(BI->getCondition())) {
2263        bool CondVal = cast<ConstantInt>(BI->getCondition())->getZExtValue();
2264        BasicBlock *ReachableBB = BI->getSuccessor(!CondVal);
2265        Worklist.push_back(ReachableBB);
2266        continue;
2267      }
2268    } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
2269      if (ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition())) {
2270        // See if this is an explicit destination.
2271        for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end();
2272             i != e; ++i)
2273          if (i.getCaseValue() == Cond) {
2274            BasicBlock *ReachableBB = i.getCaseSuccessor();
2275            Worklist.push_back(ReachableBB);
2276            continue;
2277          }
2278
2279        // Otherwise it is the default destination.
2280        Worklist.push_back(SI->getDefaultDest());
2281        continue;
2282      }
2283    }
2284
2285    for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
2286      Worklist.push_back(TI->getSuccessor(i));
2287  } while (!Worklist.empty());
2288
2289  // Once we've found all of the instructions to add to instcombine's worklist,
2290  // add them in reverse order.  This way instcombine will visit from the top
2291  // of the function down.  This jives well with the way that it adds all uses
2292  // of instructions to the worklist after doing a transformation, thus avoiding
2293  // some N^2 behavior in pathological cases.
2294  IC.Worklist.AddInitialGroup(&InstrsForInstCombineWorklist[0],
2295                              InstrsForInstCombineWorklist.size());
2296
2297  return MadeIRChange;
2298}
2299
2300bool InstCombiner::DoOneIteration(Function &F, unsigned Iteration) {
2301  MadeIRChange = false;
2302
2303  DEBUG(dbgs() << "\n\nINSTCOMBINE ITERATION #" << Iteration << " on "
2304               << F.getName() << "\n");
2305
2306  {
2307    // Do a depth-first traversal of the function, populate the worklist with
2308    // the reachable instructions.  Ignore blocks that are not reachable.  Keep
2309    // track of which blocks we visit.
2310    SmallPtrSet<BasicBlock*, 64> Visited;
2311    MadeIRChange |= AddReachableCodeToWorklist(F.begin(), Visited, *this, TD,
2312                                               TLI);
2313
2314    // Do a quick scan over the function.  If we find any blocks that are
2315    // unreachable, remove any instructions inside of them.  This prevents
2316    // the instcombine code from having to deal with some bad special cases.
2317    for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
2318      if (Visited.count(BB)) continue;
2319
2320      // Delete the instructions backwards, as it has a reduced likelihood of
2321      // having to update as many def-use and use-def chains.
2322      Instruction *EndInst = BB->getTerminator(); // Last not to be deleted.
2323      while (EndInst != BB->begin()) {
2324        // Delete the next to last instruction.
2325        BasicBlock::iterator I = EndInst;
2326        Instruction *Inst = --I;
2327        if (!Inst->use_empty())
2328          Inst->replaceAllUsesWith(UndefValue::get(Inst->getType()));
2329        if (isa<LandingPadInst>(Inst)) {
2330          EndInst = Inst;
2331          continue;
2332        }
2333        if (!isa<DbgInfoIntrinsic>(Inst)) {
2334          ++NumDeadInst;
2335          MadeIRChange = true;
2336        }
2337        Inst->eraseFromParent();
2338      }
2339    }
2340  }
2341
2342  while (!Worklist.isEmpty()) {
2343    Instruction *I = Worklist.RemoveOne();
2344    if (I == 0) continue;  // skip null values.
2345
2346    // Check to see if we can DCE the instruction.
2347    if (isInstructionTriviallyDead(I, TLI)) {
2348      DEBUG(dbgs() << "IC: DCE: " << *I << '\n');
2349      EraseInstFromFunction(*I);
2350      ++NumDeadInst;
2351      MadeIRChange = true;
2352      continue;
2353    }
2354
2355    // Instruction isn't dead, see if we can constant propagate it.
2356    if (!I->use_empty() && isa<Constant>(I->getOperand(0)))
2357      if (Constant *C = ConstantFoldInstruction(I, TD, TLI)) {
2358        DEBUG(dbgs() << "IC: ConstFold to: " << *C << " from: " << *I << '\n');
2359
2360        // Add operands to the worklist.
2361        ReplaceInstUsesWith(*I, C);
2362        ++NumConstProp;
2363        EraseInstFromFunction(*I);
2364        MadeIRChange = true;
2365        continue;
2366      }
2367
2368    // See if we can trivially sink this instruction to a successor basic block.
2369    if (I->hasOneUse()) {
2370      BasicBlock *BB = I->getParent();
2371      Instruction *UserInst = cast<Instruction>(I->use_back());
2372      BasicBlock *UserParent;
2373
2374      // Get the block the use occurs in.
2375      if (PHINode *PN = dyn_cast<PHINode>(UserInst))
2376        UserParent = PN->getIncomingBlock(I->use_begin().getUse());
2377      else
2378        UserParent = UserInst->getParent();
2379
2380      if (UserParent != BB) {
2381        bool UserIsSuccessor = false;
2382        // See if the user is one of our successors.
2383        for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI)
2384          if (*SI == UserParent) {
2385            UserIsSuccessor = true;
2386            break;
2387          }
2388
2389        // If the user is one of our immediate successors, and if that successor
2390        // only has us as a predecessors (we'd have to split the critical edge
2391        // otherwise), we can keep going.
2392        if (UserIsSuccessor && UserParent->getSinglePredecessor())
2393          // Okay, the CFG is simple enough, try to sink this instruction.
2394          MadeIRChange |= TryToSinkInstruction(I, UserParent);
2395      }
2396    }
2397
2398    // Now that we have an instruction, try combining it to simplify it.
2399    Builder->SetInsertPoint(I->getParent(), I);
2400    Builder->SetCurrentDebugLocation(I->getDebugLoc());
2401
2402#ifndef NDEBUG
2403    std::string OrigI;
2404#endif
2405    DEBUG(raw_string_ostream SS(OrigI); I->print(SS); OrigI = SS.str(););
2406    DEBUG(dbgs() << "IC: Visiting: " << OrigI << '\n');
2407
2408    if (Instruction *Result = visit(*I)) {
2409      ++NumCombined;
2410      // Should we replace the old instruction with a new one?
2411      if (Result != I) {
2412        DEBUG(dbgs() << "IC: Old = " << *I << '\n'
2413                     << "    New = " << *Result << '\n');
2414
2415        if (!I->getDebugLoc().isUnknown())
2416          Result->setDebugLoc(I->getDebugLoc());
2417        // Everything uses the new instruction now.
2418        I->replaceAllUsesWith(Result);
2419
2420        // Move the name to the new instruction first.
2421        Result->takeName(I);
2422
2423        // Push the new instruction and any users onto the worklist.
2424        Worklist.Add(Result);
2425        Worklist.AddUsersToWorkList(*Result);
2426
2427        // Insert the new instruction into the basic block...
2428        BasicBlock *InstParent = I->getParent();
2429        BasicBlock::iterator InsertPos = I;
2430
2431        // If we replace a PHI with something that isn't a PHI, fix up the
2432        // insertion point.
2433        if (!isa<PHINode>(Result) && isa<PHINode>(InsertPos))
2434          InsertPos = InstParent->getFirstInsertionPt();
2435
2436        InstParent->getInstList().insert(InsertPos, Result);
2437
2438        EraseInstFromFunction(*I);
2439      } else {
2440#ifndef NDEBUG
2441        DEBUG(dbgs() << "IC: Mod = " << OrigI << '\n'
2442                     << "    New = " << *I << '\n');
2443#endif
2444
2445        // If the instruction was modified, it's possible that it is now dead.
2446        // if so, remove it.
2447        if (isInstructionTriviallyDead(I, TLI)) {
2448          EraseInstFromFunction(*I);
2449        } else {
2450          Worklist.Add(I);
2451          Worklist.AddUsersToWorkList(*I);
2452        }
2453      }
2454      MadeIRChange = true;
2455    }
2456  }
2457
2458  Worklist.Zap();
2459  return MadeIRChange;
2460}
2461
2462namespace {
2463class InstCombinerLibCallSimplifier : public LibCallSimplifier {
2464  InstCombiner *IC;
2465public:
2466  InstCombinerLibCallSimplifier(const DataLayout *TD,
2467                                const TargetLibraryInfo *TLI,
2468                                InstCombiner *IC)
2469    : LibCallSimplifier(TD, TLI, UnsafeFPShrink) {
2470    this->IC = IC;
2471  }
2472
2473  /// replaceAllUsesWith - override so that instruction replacement
2474  /// can be defined in terms of the instruction combiner framework.
2475  virtual void replaceAllUsesWith(Instruction *I, Value *With) const {
2476    IC->ReplaceInstUsesWith(*I, With);
2477  }
2478};
2479}
2480
2481bool InstCombiner::runOnFunction(Function &F) {
2482  TD = getAnalysisIfAvailable<DataLayout>();
2483  TLI = &getAnalysis<TargetLibraryInfo>();
2484  // Minimizing size?
2485  MinimizeSize = F.getAttributes().hasAttribute(AttributeSet::FunctionIndex,
2486                                                Attribute::MinSize);
2487
2488  /// Builder - This is an IRBuilder that automatically inserts new
2489  /// instructions into the worklist when they are created.
2490  IRBuilder<true, TargetFolder, InstCombineIRInserter>
2491    TheBuilder(F.getContext(), TargetFolder(TD),
2492               InstCombineIRInserter(Worklist));
2493  Builder = &TheBuilder;
2494
2495  InstCombinerLibCallSimplifier TheSimplifier(TD, TLI, this);
2496  Simplifier = &TheSimplifier;
2497
2498  bool EverMadeChange = false;
2499
2500  // Lower dbg.declare intrinsics otherwise their value may be clobbered
2501  // by instcombiner.
2502  EverMadeChange = LowerDbgDeclare(F);
2503
2504  // Iterate while there is work to do.
2505  unsigned Iteration = 0;
2506  while (DoOneIteration(F, Iteration++))
2507    EverMadeChange = true;
2508
2509  Builder = 0;
2510  return EverMadeChange;
2511}
2512
2513FunctionPass *llvm::createInstructionCombiningPass() {
2514  return new InstCombiner();
2515}
2516