InstructionCombining.cpp revision 9381dd1ac9ac8a4020cd0dd03323a26f1ae5587f
1//===- InstructionCombining.cpp - Combine multiple instructions -----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// InstructionCombining - Combine instructions to form fewer, simple
11// instructions.  This pass does not modify the CFG.  This pass is where
12// algebraic simplification happens.
13//
14// This pass combines things like:
15//    %Y = add i32 %X, 1
16//    %Z = add i32 %Y, 1
17// into:
18//    %Z = add i32 %X, 2
19//
20// This is a simple worklist driven algorithm.
21//
22// This pass guarantees that the following canonicalizations are performed on
23// the program:
24//    1. If a binary operator has a constant operand, it is moved to the RHS
25//    2. Bitwise operators with constant operands are always grouped so that
26//       shifts are performed first, then or's, then and's, then xor's.
27//    3. Compare instructions are converted from <,>,<=,>= to ==,!= if possible
28//    4. All cmp instructions on boolean values are replaced with logical ops
29//    5. add X, X is represented as (X*2) => (X << 1)
30//    6. Multiplies with a power-of-two constant argument are transformed into
31//       shifts.
32//   ... etc.
33//
34//===----------------------------------------------------------------------===//
35
36#define DEBUG_TYPE "instcombine"
37#include "llvm/Transforms/Scalar.h"
38#include "InstCombine.h"
39#include "llvm-c/Initialization.h"
40#include "llvm/ADT/SmallPtrSet.h"
41#include "llvm/ADT/Statistic.h"
42#include "llvm/ADT/StringSwitch.h"
43#include "llvm/Analysis/ConstantFolding.h"
44#include "llvm/Analysis/InstructionSimplify.h"
45#include "llvm/Analysis/MemoryBuiltins.h"
46#include "llvm/IR/DataLayout.h"
47#include "llvm/IR/IntrinsicInst.h"
48#include "llvm/Support/CFG.h"
49#include "llvm/Support/CommandLine.h"
50#include "llvm/Support/Debug.h"
51#include "llvm/Support/GetElementPtrTypeIterator.h"
52#include "llvm/Support/PatternMatch.h"
53#include "llvm/Support/ValueHandle.h"
54#include "llvm/Target/TargetLibraryInfo.h"
55#include "llvm/Transforms/Utils/Local.h"
56#include <algorithm>
57#include <climits>
58using namespace llvm;
59using namespace llvm::PatternMatch;
60
61STATISTIC(NumCombined , "Number of insts combined");
62STATISTIC(NumConstProp, "Number of constant folds");
63STATISTIC(NumDeadInst , "Number of dead inst eliminated");
64STATISTIC(NumSunkInst , "Number of instructions sunk");
65STATISTIC(NumExpand,    "Number of expansions");
66STATISTIC(NumFactor   , "Number of factorizations");
67STATISTIC(NumReassoc  , "Number of reassociations");
68
69static cl::opt<bool> UnsafeFPShrink("enable-double-float-shrink", cl::Hidden,
70                                   cl::init(false),
71                                   cl::desc("Enable unsafe double to float "
72                                            "shrinking for math lib calls"));
73
74// Initialization Routines
75void llvm::initializeInstCombine(PassRegistry &Registry) {
76  initializeInstCombinerPass(Registry);
77}
78
79void LLVMInitializeInstCombine(LLVMPassRegistryRef R) {
80  initializeInstCombine(*unwrap(R));
81}
82
83char InstCombiner::ID = 0;
84INITIALIZE_PASS_BEGIN(InstCombiner, "instcombine",
85                "Combine redundant instructions", false, false)
86INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo)
87INITIALIZE_PASS_END(InstCombiner, "instcombine",
88                "Combine redundant instructions", false, false)
89
90void InstCombiner::getAnalysisUsage(AnalysisUsage &AU) const {
91  AU.setPreservesCFG();
92  AU.addRequired<TargetLibraryInfo>();
93}
94
95
96Value *InstCombiner::EmitGEPOffset(User *GEP) {
97  return llvm::EmitGEPOffset(Builder, *getDataLayout(), GEP);
98}
99
100/// ShouldChangeType - Return true if it is desirable to convert a computation
101/// from 'From' to 'To'.  We don't want to convert from a legal to an illegal
102/// type for example, or from a smaller to a larger illegal type.
103bool InstCombiner::ShouldChangeType(Type *From, Type *To) const {
104  assert(From->isIntegerTy() && To->isIntegerTy());
105
106  // If we don't have TD, we don't know if the source/dest are legal.
107  if (!TD) return false;
108
109  unsigned FromWidth = From->getPrimitiveSizeInBits();
110  unsigned ToWidth = To->getPrimitiveSizeInBits();
111  bool FromLegal = TD->isLegalInteger(FromWidth);
112  bool ToLegal = TD->isLegalInteger(ToWidth);
113
114  // If this is a legal integer from type, and the result would be an illegal
115  // type, don't do the transformation.
116  if (FromLegal && !ToLegal)
117    return false;
118
119  // Otherwise, if both are illegal, do not increase the size of the result. We
120  // do allow things like i160 -> i64, but not i64 -> i160.
121  if (!FromLegal && !ToLegal && ToWidth > FromWidth)
122    return false;
123
124  return true;
125}
126
127// Return true, if No Signed Wrap should be maintained for I.
128// The No Signed Wrap flag can be kept if the operation "B (I.getOpcode) C",
129// where both B and C should be ConstantInts, results in a constant that does
130// not overflow. This function only handles the Add and Sub opcodes. For
131// all other opcodes, the function conservatively returns false.
132static bool MaintainNoSignedWrap(BinaryOperator &I, Value *B, Value *C) {
133  OverflowingBinaryOperator *OBO = dyn_cast<OverflowingBinaryOperator>(&I);
134  if (!OBO || !OBO->hasNoSignedWrap()) {
135    return false;
136  }
137
138  // We reason about Add and Sub Only.
139  Instruction::BinaryOps Opcode = I.getOpcode();
140  if (Opcode != Instruction::Add &&
141      Opcode != Instruction::Sub) {
142    return false;
143  }
144
145  ConstantInt *CB = dyn_cast<ConstantInt>(B);
146  ConstantInt *CC = dyn_cast<ConstantInt>(C);
147
148  if (!CB || !CC) {
149    return false;
150  }
151
152  const APInt &BVal = CB->getValue();
153  const APInt &CVal = CC->getValue();
154  bool Overflow = false;
155
156  if (Opcode == Instruction::Add) {
157    BVal.sadd_ov(CVal, Overflow);
158  } else {
159    BVal.ssub_ov(CVal, Overflow);
160  }
161
162  return !Overflow;
163}
164
165/// SimplifyAssociativeOrCommutative - This performs a few simplifications for
166/// operators which are associative or commutative:
167//
168//  Commutative operators:
169//
170//  1. Order operands such that they are listed from right (least complex) to
171//     left (most complex).  This puts constants before unary operators before
172//     binary operators.
173//
174//  Associative operators:
175//
176//  2. Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies.
177//  3. Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies.
178//
179//  Associative and commutative operators:
180//
181//  4. Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies.
182//  5. Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies.
183//  6. Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)"
184//     if C1 and C2 are constants.
185//
186bool InstCombiner::SimplifyAssociativeOrCommutative(BinaryOperator &I) {
187  Instruction::BinaryOps Opcode = I.getOpcode();
188  bool Changed = false;
189
190  do {
191    // Order operands such that they are listed from right (least complex) to
192    // left (most complex).  This puts constants before unary operators before
193    // binary operators.
194    if (I.isCommutative() && getComplexity(I.getOperand(0)) <
195        getComplexity(I.getOperand(1)))
196      Changed = !I.swapOperands();
197
198    BinaryOperator *Op0 = dyn_cast<BinaryOperator>(I.getOperand(0));
199    BinaryOperator *Op1 = dyn_cast<BinaryOperator>(I.getOperand(1));
200
201    if (I.isAssociative()) {
202      // Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies.
203      if (Op0 && Op0->getOpcode() == Opcode) {
204        Value *A = Op0->getOperand(0);
205        Value *B = Op0->getOperand(1);
206        Value *C = I.getOperand(1);
207
208        // Does "B op C" simplify?
209        if (Value *V = SimplifyBinOp(Opcode, B, C, TD)) {
210          // It simplifies to V.  Form "A op V".
211          I.setOperand(0, A);
212          I.setOperand(1, V);
213          // Conservatively clear the optional flags, since they may not be
214          // preserved by the reassociation.
215          if (MaintainNoSignedWrap(I, B, C) &&
216              (!Op0 || (isa<BinaryOperator>(Op0) && Op0->hasNoSignedWrap()))) {
217            // Note: this is only valid because SimplifyBinOp doesn't look at
218            // the operands to Op0.
219            I.clearSubclassOptionalData();
220            I.setHasNoSignedWrap(true);
221          } else {
222            I.clearSubclassOptionalData();
223          }
224
225          Changed = true;
226          ++NumReassoc;
227          continue;
228        }
229      }
230
231      // Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies.
232      if (Op1 && Op1->getOpcode() == Opcode) {
233        Value *A = I.getOperand(0);
234        Value *B = Op1->getOperand(0);
235        Value *C = Op1->getOperand(1);
236
237        // Does "A op B" simplify?
238        if (Value *V = SimplifyBinOp(Opcode, A, B, TD)) {
239          // It simplifies to V.  Form "V op C".
240          I.setOperand(0, V);
241          I.setOperand(1, C);
242          // Conservatively clear the optional flags, since they may not be
243          // preserved by the reassociation.
244          I.clearSubclassOptionalData();
245          Changed = true;
246          ++NumReassoc;
247          continue;
248        }
249      }
250    }
251
252    if (I.isAssociative() && I.isCommutative()) {
253      // Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies.
254      if (Op0 && Op0->getOpcode() == Opcode) {
255        Value *A = Op0->getOperand(0);
256        Value *B = Op0->getOperand(1);
257        Value *C = I.getOperand(1);
258
259        // Does "C op A" simplify?
260        if (Value *V = SimplifyBinOp(Opcode, C, A, TD)) {
261          // It simplifies to V.  Form "V op B".
262          I.setOperand(0, V);
263          I.setOperand(1, B);
264          // Conservatively clear the optional flags, since they may not be
265          // preserved by the reassociation.
266          I.clearSubclassOptionalData();
267          Changed = true;
268          ++NumReassoc;
269          continue;
270        }
271      }
272
273      // Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies.
274      if (Op1 && Op1->getOpcode() == Opcode) {
275        Value *A = I.getOperand(0);
276        Value *B = Op1->getOperand(0);
277        Value *C = Op1->getOperand(1);
278
279        // Does "C op A" simplify?
280        if (Value *V = SimplifyBinOp(Opcode, C, A, TD)) {
281          // It simplifies to V.  Form "B op V".
282          I.setOperand(0, B);
283          I.setOperand(1, V);
284          // Conservatively clear the optional flags, since they may not be
285          // preserved by the reassociation.
286          I.clearSubclassOptionalData();
287          Changed = true;
288          ++NumReassoc;
289          continue;
290        }
291      }
292
293      // Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)"
294      // if C1 and C2 are constants.
295      if (Op0 && Op1 &&
296          Op0->getOpcode() == Opcode && Op1->getOpcode() == Opcode &&
297          isa<Constant>(Op0->getOperand(1)) &&
298          isa<Constant>(Op1->getOperand(1)) &&
299          Op0->hasOneUse() && Op1->hasOneUse()) {
300        Value *A = Op0->getOperand(0);
301        Constant *C1 = cast<Constant>(Op0->getOperand(1));
302        Value *B = Op1->getOperand(0);
303        Constant *C2 = cast<Constant>(Op1->getOperand(1));
304
305        Constant *Folded = ConstantExpr::get(Opcode, C1, C2);
306        BinaryOperator *New = BinaryOperator::Create(Opcode, A, B);
307        InsertNewInstWith(New, I);
308        New->takeName(Op1);
309        I.setOperand(0, New);
310        I.setOperand(1, Folded);
311        // Conservatively clear the optional flags, since they may not be
312        // preserved by the reassociation.
313        I.clearSubclassOptionalData();
314
315        Changed = true;
316        continue;
317      }
318    }
319
320    // No further simplifications.
321    return Changed;
322  } while (1);
323}
324
325/// LeftDistributesOverRight - Whether "X LOp (Y ROp Z)" is always equal to
326/// "(X LOp Y) ROp (X LOp Z)".
327static bool LeftDistributesOverRight(Instruction::BinaryOps LOp,
328                                     Instruction::BinaryOps ROp) {
329  switch (LOp) {
330  default:
331    return false;
332
333  case Instruction::And:
334    // And distributes over Or and Xor.
335    switch (ROp) {
336    default:
337      return false;
338    case Instruction::Or:
339    case Instruction::Xor:
340      return true;
341    }
342
343  case Instruction::Mul:
344    // Multiplication distributes over addition and subtraction.
345    switch (ROp) {
346    default:
347      return false;
348    case Instruction::Add:
349    case Instruction::Sub:
350      return true;
351    }
352
353  case Instruction::Or:
354    // Or distributes over And.
355    switch (ROp) {
356    default:
357      return false;
358    case Instruction::And:
359      return true;
360    }
361  }
362}
363
364/// RightDistributesOverLeft - Whether "(X LOp Y) ROp Z" is always equal to
365/// "(X ROp Z) LOp (Y ROp Z)".
366static bool RightDistributesOverLeft(Instruction::BinaryOps LOp,
367                                     Instruction::BinaryOps ROp) {
368  if (Instruction::isCommutative(ROp))
369    return LeftDistributesOverRight(ROp, LOp);
370  // TODO: It would be nice to handle division, aka "(X + Y)/Z = X/Z + Y/Z",
371  // but this requires knowing that the addition does not overflow and other
372  // such subtleties.
373  return false;
374}
375
376/// SimplifyUsingDistributiveLaws - This tries to simplify binary operations
377/// which some other binary operation distributes over either by factorizing
378/// out common terms (eg "(A*B)+(A*C)" -> "A*(B+C)") or expanding out if this
379/// results in simplifications (eg: "A & (B | C) -> (A&B) | (A&C)" if this is
380/// a win).  Returns the simplified value, or null if it didn't simplify.
381Value *InstCombiner::SimplifyUsingDistributiveLaws(BinaryOperator &I) {
382  Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
383  BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS);
384  BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS);
385  Instruction::BinaryOps TopLevelOpcode = I.getOpcode(); // op
386
387  // Factorization.
388  if (Op0 && Op1 && Op0->getOpcode() == Op1->getOpcode()) {
389    // The instruction has the form "(A op' B) op (C op' D)".  Try to factorize
390    // a common term.
391    Value *A = Op0->getOperand(0), *B = Op0->getOperand(1);
392    Value *C = Op1->getOperand(0), *D = Op1->getOperand(1);
393    Instruction::BinaryOps InnerOpcode = Op0->getOpcode(); // op'
394
395    // Does "X op' Y" always equal "Y op' X"?
396    bool InnerCommutative = Instruction::isCommutative(InnerOpcode);
397
398    // Does "X op' (Y op Z)" always equal "(X op' Y) op (X op' Z)"?
399    if (LeftDistributesOverRight(InnerOpcode, TopLevelOpcode))
400      // Does the instruction have the form "(A op' B) op (A op' D)" or, in the
401      // commutative case, "(A op' B) op (C op' A)"?
402      if (A == C || (InnerCommutative && A == D)) {
403        if (A != C)
404          std::swap(C, D);
405        // Consider forming "A op' (B op D)".
406        // If "B op D" simplifies then it can be formed with no cost.
407        Value *V = SimplifyBinOp(TopLevelOpcode, B, D, TD);
408        // If "B op D" doesn't simplify then only go on if both of the existing
409        // operations "A op' B" and "C op' D" will be zapped as no longer used.
410        if (!V && Op0->hasOneUse() && Op1->hasOneUse())
411          V = Builder->CreateBinOp(TopLevelOpcode, B, D, Op1->getName());
412        if (V) {
413          ++NumFactor;
414          V = Builder->CreateBinOp(InnerOpcode, A, V);
415          V->takeName(&I);
416          return V;
417        }
418      }
419
420    // Does "(X op Y) op' Z" always equal "(X op' Z) op (Y op' Z)"?
421    if (RightDistributesOverLeft(TopLevelOpcode, InnerOpcode))
422      // Does the instruction have the form "(A op' B) op (C op' B)" or, in the
423      // commutative case, "(A op' B) op (B op' D)"?
424      if (B == D || (InnerCommutative && B == C)) {
425        if (B != D)
426          std::swap(C, D);
427        // Consider forming "(A op C) op' B".
428        // If "A op C" simplifies then it can be formed with no cost.
429        Value *V = SimplifyBinOp(TopLevelOpcode, A, C, TD);
430        // If "A op C" doesn't simplify then only go on if both of the existing
431        // operations "A op' B" and "C op' D" will be zapped as no longer used.
432        if (!V && Op0->hasOneUse() && Op1->hasOneUse())
433          V = Builder->CreateBinOp(TopLevelOpcode, A, C, Op0->getName());
434        if (V) {
435          ++NumFactor;
436          V = Builder->CreateBinOp(InnerOpcode, V, B);
437          V->takeName(&I);
438          return V;
439        }
440      }
441  }
442
443  // Expansion.
444  if (Op0 && RightDistributesOverLeft(Op0->getOpcode(), TopLevelOpcode)) {
445    // The instruction has the form "(A op' B) op C".  See if expanding it out
446    // to "(A op C) op' (B op C)" results in simplifications.
447    Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS;
448    Instruction::BinaryOps InnerOpcode = Op0->getOpcode(); // op'
449
450    // Do "A op C" and "B op C" both simplify?
451    if (Value *L = SimplifyBinOp(TopLevelOpcode, A, C, TD))
452      if (Value *R = SimplifyBinOp(TopLevelOpcode, B, C, TD)) {
453        // They do! Return "L op' R".
454        ++NumExpand;
455        // If "L op' R" equals "A op' B" then "L op' R" is just the LHS.
456        if ((L == A && R == B) ||
457            (Instruction::isCommutative(InnerOpcode) && L == B && R == A))
458          return Op0;
459        // Otherwise return "L op' R" if it simplifies.
460        if (Value *V = SimplifyBinOp(InnerOpcode, L, R, TD))
461          return V;
462        // Otherwise, create a new instruction.
463        C = Builder->CreateBinOp(InnerOpcode, L, R);
464        C->takeName(&I);
465        return C;
466      }
467  }
468
469  if (Op1 && LeftDistributesOverRight(TopLevelOpcode, Op1->getOpcode())) {
470    // The instruction has the form "A op (B op' C)".  See if expanding it out
471    // to "(A op B) op' (A op C)" results in simplifications.
472    Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1);
473    Instruction::BinaryOps InnerOpcode = Op1->getOpcode(); // op'
474
475    // Do "A op B" and "A op C" both simplify?
476    if (Value *L = SimplifyBinOp(TopLevelOpcode, A, B, TD))
477      if (Value *R = SimplifyBinOp(TopLevelOpcode, A, C, TD)) {
478        // They do! Return "L op' R".
479        ++NumExpand;
480        // If "L op' R" equals "B op' C" then "L op' R" is just the RHS.
481        if ((L == B && R == C) ||
482            (Instruction::isCommutative(InnerOpcode) && L == C && R == B))
483          return Op1;
484        // Otherwise return "L op' R" if it simplifies.
485        if (Value *V = SimplifyBinOp(InnerOpcode, L, R, TD))
486          return V;
487        // Otherwise, create a new instruction.
488        A = Builder->CreateBinOp(InnerOpcode, L, R);
489        A->takeName(&I);
490        return A;
491      }
492  }
493
494  return 0;
495}
496
497// dyn_castNegVal - Given a 'sub' instruction, return the RHS of the instruction
498// if the LHS is a constant zero (which is the 'negate' form).
499//
500Value *InstCombiner::dyn_castNegVal(Value *V) const {
501  if (BinaryOperator::isNeg(V))
502    return BinaryOperator::getNegArgument(V);
503
504  // Constants can be considered to be negated values if they can be folded.
505  if (ConstantInt *C = dyn_cast<ConstantInt>(V))
506    return ConstantExpr::getNeg(C);
507
508  if (ConstantDataVector *C = dyn_cast<ConstantDataVector>(V))
509    if (C->getType()->getElementType()->isIntegerTy())
510      return ConstantExpr::getNeg(C);
511
512  return 0;
513}
514
515// dyn_castFNegVal - Given a 'fsub' instruction, return the RHS of the
516// instruction if the LHS is a constant negative zero (which is the 'negate'
517// form).
518//
519Value *InstCombiner::dyn_castFNegVal(Value *V, bool IgnoreZeroSign) const {
520  if (BinaryOperator::isFNeg(V, IgnoreZeroSign))
521    return BinaryOperator::getFNegArgument(V);
522
523  // Constants can be considered to be negated values if they can be folded.
524  if (ConstantFP *C = dyn_cast<ConstantFP>(V))
525    return ConstantExpr::getFNeg(C);
526
527  if (ConstantDataVector *C = dyn_cast<ConstantDataVector>(V))
528    if (C->getType()->getElementType()->isFloatingPointTy())
529      return ConstantExpr::getFNeg(C);
530
531  return 0;
532}
533
534static Value *FoldOperationIntoSelectOperand(Instruction &I, Value *SO,
535                                             InstCombiner *IC) {
536  if (CastInst *CI = dyn_cast<CastInst>(&I)) {
537    return IC->Builder->CreateCast(CI->getOpcode(), SO, I.getType());
538  }
539
540  // Figure out if the constant is the left or the right argument.
541  bool ConstIsRHS = isa<Constant>(I.getOperand(1));
542  Constant *ConstOperand = cast<Constant>(I.getOperand(ConstIsRHS));
543
544  if (Constant *SOC = dyn_cast<Constant>(SO)) {
545    if (ConstIsRHS)
546      return ConstantExpr::get(I.getOpcode(), SOC, ConstOperand);
547    return ConstantExpr::get(I.getOpcode(), ConstOperand, SOC);
548  }
549
550  Value *Op0 = SO, *Op1 = ConstOperand;
551  if (!ConstIsRHS)
552    std::swap(Op0, Op1);
553
554  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(&I))
555    return IC->Builder->CreateBinOp(BO->getOpcode(), Op0, Op1,
556                                    SO->getName()+".op");
557  if (ICmpInst *CI = dyn_cast<ICmpInst>(&I))
558    return IC->Builder->CreateICmp(CI->getPredicate(), Op0, Op1,
559                                   SO->getName()+".cmp");
560  if (FCmpInst *CI = dyn_cast<FCmpInst>(&I))
561    return IC->Builder->CreateICmp(CI->getPredicate(), Op0, Op1,
562                                   SO->getName()+".cmp");
563  llvm_unreachable("Unknown binary instruction type!");
564}
565
566// FoldOpIntoSelect - Given an instruction with a select as one operand and a
567// constant as the other operand, try to fold the binary operator into the
568// select arguments.  This also works for Cast instructions, which obviously do
569// not have a second operand.
570Instruction *InstCombiner::FoldOpIntoSelect(Instruction &Op, SelectInst *SI) {
571  // Don't modify shared select instructions
572  if (!SI->hasOneUse()) return 0;
573  Value *TV = SI->getOperand(1);
574  Value *FV = SI->getOperand(2);
575
576  if (isa<Constant>(TV) || isa<Constant>(FV)) {
577    // Bool selects with constant operands can be folded to logical ops.
578    if (SI->getType()->isIntegerTy(1)) return 0;
579
580    // If it's a bitcast involving vectors, make sure it has the same number of
581    // elements on both sides.
582    if (BitCastInst *BC = dyn_cast<BitCastInst>(&Op)) {
583      VectorType *DestTy = dyn_cast<VectorType>(BC->getDestTy());
584      VectorType *SrcTy = dyn_cast<VectorType>(BC->getSrcTy());
585
586      // Verify that either both or neither are vectors.
587      if ((SrcTy == NULL) != (DestTy == NULL)) return 0;
588      // If vectors, verify that they have the same number of elements.
589      if (SrcTy && SrcTy->getNumElements() != DestTy->getNumElements())
590        return 0;
591    }
592
593    Value *SelectTrueVal = FoldOperationIntoSelectOperand(Op, TV, this);
594    Value *SelectFalseVal = FoldOperationIntoSelectOperand(Op, FV, this);
595
596    return SelectInst::Create(SI->getCondition(),
597                              SelectTrueVal, SelectFalseVal);
598  }
599  return 0;
600}
601
602
603/// FoldOpIntoPhi - Given a binary operator, cast instruction, or select which
604/// has a PHI node as operand #0, see if we can fold the instruction into the
605/// PHI (which is only possible if all operands to the PHI are constants).
606///
607Instruction *InstCombiner::FoldOpIntoPhi(Instruction &I) {
608  PHINode *PN = cast<PHINode>(I.getOperand(0));
609  unsigned NumPHIValues = PN->getNumIncomingValues();
610  if (NumPHIValues == 0)
611    return 0;
612
613  // We normally only transform phis with a single use.  However, if a PHI has
614  // multiple uses and they are all the same operation, we can fold *all* of the
615  // uses into the PHI.
616  if (!PN->hasOneUse()) {
617    // Walk the use list for the instruction, comparing them to I.
618    for (Value::use_iterator UI = PN->use_begin(), E = PN->use_end();
619         UI != E; ++UI) {
620      Instruction *User = cast<Instruction>(*UI);
621      if (User != &I && !I.isIdenticalTo(User))
622        return 0;
623    }
624    // Otherwise, we can replace *all* users with the new PHI we form.
625  }
626
627  // Check to see if all of the operands of the PHI are simple constants
628  // (constantint/constantfp/undef).  If there is one non-constant value,
629  // remember the BB it is in.  If there is more than one or if *it* is a PHI,
630  // bail out.  We don't do arbitrary constant expressions here because moving
631  // their computation can be expensive without a cost model.
632  BasicBlock *NonConstBB = 0;
633  for (unsigned i = 0; i != NumPHIValues; ++i) {
634    Value *InVal = PN->getIncomingValue(i);
635    if (isa<Constant>(InVal) && !isa<ConstantExpr>(InVal))
636      continue;
637
638    if (isa<PHINode>(InVal)) return 0;  // Itself a phi.
639    if (NonConstBB) return 0;  // More than one non-const value.
640
641    NonConstBB = PN->getIncomingBlock(i);
642
643    // If the InVal is an invoke at the end of the pred block, then we can't
644    // insert a computation after it without breaking the edge.
645    if (InvokeInst *II = dyn_cast<InvokeInst>(InVal))
646      if (II->getParent() == NonConstBB)
647        return 0;
648
649    // If the incoming non-constant value is in I's block, we will remove one
650    // instruction, but insert another equivalent one, leading to infinite
651    // instcombine.
652    if (NonConstBB == I.getParent())
653      return 0;
654  }
655
656  // If there is exactly one non-constant value, we can insert a copy of the
657  // operation in that block.  However, if this is a critical edge, we would be
658  // inserting the computation one some other paths (e.g. inside a loop).  Only
659  // do this if the pred block is unconditionally branching into the phi block.
660  if (NonConstBB != 0) {
661    BranchInst *BI = dyn_cast<BranchInst>(NonConstBB->getTerminator());
662    if (!BI || !BI->isUnconditional()) return 0;
663  }
664
665  // Okay, we can do the transformation: create the new PHI node.
666  PHINode *NewPN = PHINode::Create(I.getType(), PN->getNumIncomingValues());
667  InsertNewInstBefore(NewPN, *PN);
668  NewPN->takeName(PN);
669
670  // If we are going to have to insert a new computation, do so right before the
671  // predecessors terminator.
672  if (NonConstBB)
673    Builder->SetInsertPoint(NonConstBB->getTerminator());
674
675  // Next, add all of the operands to the PHI.
676  if (SelectInst *SI = dyn_cast<SelectInst>(&I)) {
677    // We only currently try to fold the condition of a select when it is a phi,
678    // not the true/false values.
679    Value *TrueV = SI->getTrueValue();
680    Value *FalseV = SI->getFalseValue();
681    BasicBlock *PhiTransBB = PN->getParent();
682    for (unsigned i = 0; i != NumPHIValues; ++i) {
683      BasicBlock *ThisBB = PN->getIncomingBlock(i);
684      Value *TrueVInPred = TrueV->DoPHITranslation(PhiTransBB, ThisBB);
685      Value *FalseVInPred = FalseV->DoPHITranslation(PhiTransBB, ThisBB);
686      Value *InV = 0;
687      if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)))
688        InV = InC->isNullValue() ? FalseVInPred : TrueVInPred;
689      else
690        InV = Builder->CreateSelect(PN->getIncomingValue(i),
691                                    TrueVInPred, FalseVInPred, "phitmp");
692      NewPN->addIncoming(InV, ThisBB);
693    }
694  } else if (CmpInst *CI = dyn_cast<CmpInst>(&I)) {
695    Constant *C = cast<Constant>(I.getOperand(1));
696    for (unsigned i = 0; i != NumPHIValues; ++i) {
697      Value *InV = 0;
698      if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)))
699        InV = ConstantExpr::getCompare(CI->getPredicate(), InC, C);
700      else if (isa<ICmpInst>(CI))
701        InV = Builder->CreateICmp(CI->getPredicate(), PN->getIncomingValue(i),
702                                  C, "phitmp");
703      else
704        InV = Builder->CreateFCmp(CI->getPredicate(), PN->getIncomingValue(i),
705                                  C, "phitmp");
706      NewPN->addIncoming(InV, PN->getIncomingBlock(i));
707    }
708  } else if (I.getNumOperands() == 2) {
709    Constant *C = cast<Constant>(I.getOperand(1));
710    for (unsigned i = 0; i != NumPHIValues; ++i) {
711      Value *InV = 0;
712      if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)))
713        InV = ConstantExpr::get(I.getOpcode(), InC, C);
714      else
715        InV = Builder->CreateBinOp(cast<BinaryOperator>(I).getOpcode(),
716                                   PN->getIncomingValue(i), C, "phitmp");
717      NewPN->addIncoming(InV, PN->getIncomingBlock(i));
718    }
719  } else {
720    CastInst *CI = cast<CastInst>(&I);
721    Type *RetTy = CI->getType();
722    for (unsigned i = 0; i != NumPHIValues; ++i) {
723      Value *InV;
724      if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)))
725        InV = ConstantExpr::getCast(CI->getOpcode(), InC, RetTy);
726      else
727        InV = Builder->CreateCast(CI->getOpcode(),
728                                PN->getIncomingValue(i), I.getType(), "phitmp");
729      NewPN->addIncoming(InV, PN->getIncomingBlock(i));
730    }
731  }
732
733  for (Value::use_iterator UI = PN->use_begin(), E = PN->use_end();
734       UI != E; ) {
735    Instruction *User = cast<Instruction>(*UI++);
736    if (User == &I) continue;
737    ReplaceInstUsesWith(*User, NewPN);
738    EraseInstFromFunction(*User);
739  }
740  return ReplaceInstUsesWith(I, NewPN);
741}
742
743/// FindElementAtOffset - Given a type and a constant offset, determine whether
744/// or not there is a sequence of GEP indices into the type that will land us at
745/// the specified offset.  If so, fill them into NewIndices and return the
746/// resultant element type, otherwise return null.
747Type *InstCombiner::FindElementAtOffset(Type *Ty, int64_t Offset,
748                                          SmallVectorImpl<Value*> &NewIndices) {
749  if (!TD) return 0;
750  if (!Ty->isSized()) return 0;
751
752  // Start with the index over the outer type.  Note that the type size
753  // might be zero (even if the offset isn't zero) if the indexed type
754  // is something like [0 x {int, int}]
755  Type *IntPtrTy = TD->getIntPtrType(Ty->getContext());
756  int64_t FirstIdx = 0;
757  if (int64_t TySize = TD->getTypeAllocSize(Ty)) {
758    FirstIdx = Offset/TySize;
759    Offset -= FirstIdx*TySize;
760
761    assert(Offset >= 0 && "Offset should never be negative!");
762    assert((uint64_t)Offset < (uint64_t)TySize && "Out of range offset");
763  }
764
765  NewIndices.push_back(ConstantInt::get(IntPtrTy, FirstIdx));
766
767  // Index into the types.  If we fail, set OrigBase to null.
768  while (Offset) {
769    // Indexing into tail padding between struct/array elements.
770    if (uint64_t(Offset*8) >= TD->getTypeSizeInBits(Ty))
771      return 0;
772
773    if (StructType *STy = dyn_cast<StructType>(Ty)) {
774      const StructLayout *SL = TD->getStructLayout(STy);
775      assert(Offset < (int64_t)SL->getSizeInBytes() &&
776             "Offset must stay within the indexed type");
777
778      unsigned Elt = SL->getElementContainingOffset(Offset);
779      NewIndices.push_back(ConstantInt::get(Type::getInt32Ty(Ty->getContext()),
780                                            Elt));
781
782      Offset -= SL->getElementOffset(Elt);
783      Ty = STy->getElementType(Elt);
784    } else if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) {
785      uint64_t EltSize = TD->getTypeAllocSize(AT->getElementType());
786      assert(EltSize && "Cannot index into a zero-sized array");
787      NewIndices.push_back(ConstantInt::get(IntPtrTy,Offset/EltSize));
788      Offset %= EltSize;
789      Ty = AT->getElementType();
790    } else {
791      // Otherwise, we can't index into the middle of this atomic type, bail.
792      return 0;
793    }
794  }
795
796  return Ty;
797}
798
799static bool shouldMergeGEPs(GEPOperator &GEP, GEPOperator &Src) {
800  // If this GEP has only 0 indices, it is the same pointer as
801  // Src. If Src is not a trivial GEP too, don't combine
802  // the indices.
803  if (GEP.hasAllZeroIndices() && !Src.hasAllZeroIndices() &&
804      !Src.hasOneUse())
805    return false;
806  return true;
807}
808
809/// Descale - Return a value X such that Val = X * Scale, or null if none.  If
810/// the multiplication is known not to overflow then NoSignedWrap is set.
811Value *InstCombiner::Descale(Value *Val, APInt Scale, bool &NoSignedWrap) {
812  assert(isa<IntegerType>(Val->getType()) && "Can only descale integers!");
813  assert(cast<IntegerType>(Val->getType())->getBitWidth() ==
814         Scale.getBitWidth() && "Scale not compatible with value!");
815
816  // If Val is zero or Scale is one then Val = Val * Scale.
817  if (match(Val, m_Zero()) || Scale == 1) {
818    NoSignedWrap = true;
819    return Val;
820  }
821
822  // If Scale is zero then it does not divide Val.
823  if (Scale.isMinValue())
824    return 0;
825
826  // Look through chains of multiplications, searching for a constant that is
827  // divisible by Scale.  For example, descaling X*(Y*(Z*4)) by a factor of 4
828  // will find the constant factor 4 and produce X*(Y*Z).  Descaling X*(Y*8) by
829  // a factor of 4 will produce X*(Y*2).  The principle of operation is to bore
830  // down from Val:
831  //
832  //     Val = M1 * X          ||   Analysis starts here and works down
833  //      M1 = M2 * Y          ||   Doesn't descend into terms with more
834  //      M2 =  Z * 4          \/   than one use
835  //
836  // Then to modify a term at the bottom:
837  //
838  //     Val = M1 * X
839  //      M1 =  Z * Y          ||   Replaced M2 with Z
840  //
841  // Then to work back up correcting nsw flags.
842
843  // Op - the term we are currently analyzing.  Starts at Val then drills down.
844  // Replaced with its descaled value before exiting from the drill down loop.
845  Value *Op = Val;
846
847  // Parent - initially null, but after drilling down notes where Op came from.
848  // In the example above, Parent is (Val, 0) when Op is M1, because M1 is the
849  // 0'th operand of Val.
850  std::pair<Instruction*, unsigned> Parent;
851
852  // RequireNoSignedWrap - Set if the transform requires a descaling at deeper
853  // levels that doesn't overflow.
854  bool RequireNoSignedWrap = false;
855
856  // logScale - log base 2 of the scale.  Negative if not a power of 2.
857  int32_t logScale = Scale.exactLogBase2();
858
859  for (;; Op = Parent.first->getOperand(Parent.second)) { // Drill down
860
861    if (ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
862      // If Op is a constant divisible by Scale then descale to the quotient.
863      APInt Quotient(Scale), Remainder(Scale); // Init ensures right bitwidth.
864      APInt::sdivrem(CI->getValue(), Scale, Quotient, Remainder);
865      if (!Remainder.isMinValue())
866        // Not divisible by Scale.
867        return 0;
868      // Replace with the quotient in the parent.
869      Op = ConstantInt::get(CI->getType(), Quotient);
870      NoSignedWrap = true;
871      break;
872    }
873
874    if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op)) {
875
876      if (BO->getOpcode() == Instruction::Mul) {
877        // Multiplication.
878        NoSignedWrap = BO->hasNoSignedWrap();
879        if (RequireNoSignedWrap && !NoSignedWrap)
880          return 0;
881
882        // There are three cases for multiplication: multiplication by exactly
883        // the scale, multiplication by a constant different to the scale, and
884        // multiplication by something else.
885        Value *LHS = BO->getOperand(0);
886        Value *RHS = BO->getOperand(1);
887
888        if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
889          // Multiplication by a constant.
890          if (CI->getValue() == Scale) {
891            // Multiplication by exactly the scale, replace the multiplication
892            // by its left-hand side in the parent.
893            Op = LHS;
894            break;
895          }
896
897          // Otherwise drill down into the constant.
898          if (!Op->hasOneUse())
899            return 0;
900
901          Parent = std::make_pair(BO, 1);
902          continue;
903        }
904
905        // Multiplication by something else. Drill down into the left-hand side
906        // since that's where the reassociate pass puts the good stuff.
907        if (!Op->hasOneUse())
908          return 0;
909
910        Parent = std::make_pair(BO, 0);
911        continue;
912      }
913
914      if (logScale > 0 && BO->getOpcode() == Instruction::Shl &&
915          isa<ConstantInt>(BO->getOperand(1))) {
916        // Multiplication by a power of 2.
917        NoSignedWrap = BO->hasNoSignedWrap();
918        if (RequireNoSignedWrap && !NoSignedWrap)
919          return 0;
920
921        Value *LHS = BO->getOperand(0);
922        int32_t Amt = cast<ConstantInt>(BO->getOperand(1))->
923          getLimitedValue(Scale.getBitWidth());
924        // Op = LHS << Amt.
925
926        if (Amt == logScale) {
927          // Multiplication by exactly the scale, replace the multiplication
928          // by its left-hand side in the parent.
929          Op = LHS;
930          break;
931        }
932        if (Amt < logScale || !Op->hasOneUse())
933          return 0;
934
935        // Multiplication by more than the scale.  Reduce the multiplying amount
936        // by the scale in the parent.
937        Parent = std::make_pair(BO, 1);
938        Op = ConstantInt::get(BO->getType(), Amt - logScale);
939        break;
940      }
941    }
942
943    if (!Op->hasOneUse())
944      return 0;
945
946    if (CastInst *Cast = dyn_cast<CastInst>(Op)) {
947      if (Cast->getOpcode() == Instruction::SExt) {
948        // Op is sign-extended from a smaller type, descale in the smaller type.
949        unsigned SmallSize = Cast->getSrcTy()->getPrimitiveSizeInBits();
950        APInt SmallScale = Scale.trunc(SmallSize);
951        // Suppose Op = sext X, and we descale X as Y * SmallScale.  We want to
952        // descale Op as (sext Y) * Scale.  In order to have
953        //   sext (Y * SmallScale) = (sext Y) * Scale
954        // some conditions need to hold however: SmallScale must sign-extend to
955        // Scale and the multiplication Y * SmallScale should not overflow.
956        if (SmallScale.sext(Scale.getBitWidth()) != Scale)
957          // SmallScale does not sign-extend to Scale.
958          return 0;
959        assert(SmallScale.exactLogBase2() == logScale);
960        // Require that Y * SmallScale must not overflow.
961        RequireNoSignedWrap = true;
962
963        // Drill down through the cast.
964        Parent = std::make_pair(Cast, 0);
965        Scale = SmallScale;
966        continue;
967      }
968
969      if (Cast->getOpcode() == Instruction::Trunc) {
970        // Op is truncated from a larger type, descale in the larger type.
971        // Suppose Op = trunc X, and we descale X as Y * sext Scale.  Then
972        //   trunc (Y * sext Scale) = (trunc Y) * Scale
973        // always holds.  However (trunc Y) * Scale may overflow even if
974        // trunc (Y * sext Scale) does not, so nsw flags need to be cleared
975        // from this point up in the expression (see later).
976        if (RequireNoSignedWrap)
977          return 0;
978
979        // Drill down through the cast.
980        unsigned LargeSize = Cast->getSrcTy()->getPrimitiveSizeInBits();
981        Parent = std::make_pair(Cast, 0);
982        Scale = Scale.sext(LargeSize);
983        if (logScale + 1 == (int32_t)Cast->getType()->getPrimitiveSizeInBits())
984          logScale = -1;
985        assert(Scale.exactLogBase2() == logScale);
986        continue;
987      }
988    }
989
990    // Unsupported expression, bail out.
991    return 0;
992  }
993
994  // We know that we can successfully descale, so from here on we can safely
995  // modify the IR.  Op holds the descaled version of the deepest term in the
996  // expression.  NoSignedWrap is 'true' if multiplying Op by Scale is known
997  // not to overflow.
998
999  if (!Parent.first)
1000    // The expression only had one term.
1001    return Op;
1002
1003  // Rewrite the parent using the descaled version of its operand.
1004  assert(Parent.first->hasOneUse() && "Drilled down when more than one use!");
1005  assert(Op != Parent.first->getOperand(Parent.second) &&
1006         "Descaling was a no-op?");
1007  Parent.first->setOperand(Parent.second, Op);
1008  Worklist.Add(Parent.first);
1009
1010  // Now work back up the expression correcting nsw flags.  The logic is based
1011  // on the following observation: if X * Y is known not to overflow as a signed
1012  // multiplication, and Y is replaced by a value Z with smaller absolute value,
1013  // then X * Z will not overflow as a signed multiplication either.  As we work
1014  // our way up, having NoSignedWrap 'true' means that the descaled value at the
1015  // current level has strictly smaller absolute value than the original.
1016  Instruction *Ancestor = Parent.first;
1017  do {
1018    if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Ancestor)) {
1019      // If the multiplication wasn't nsw then we can't say anything about the
1020      // value of the descaled multiplication, and we have to clear nsw flags
1021      // from this point on up.
1022      bool OpNoSignedWrap = BO->hasNoSignedWrap();
1023      NoSignedWrap &= OpNoSignedWrap;
1024      if (NoSignedWrap != OpNoSignedWrap) {
1025        BO->setHasNoSignedWrap(NoSignedWrap);
1026        Worklist.Add(Ancestor);
1027      }
1028    } else if (Ancestor->getOpcode() == Instruction::Trunc) {
1029      // The fact that the descaled input to the trunc has smaller absolute
1030      // value than the original input doesn't tell us anything useful about
1031      // the absolute values of the truncations.
1032      NoSignedWrap = false;
1033    }
1034    assert((Ancestor->getOpcode() != Instruction::SExt || NoSignedWrap) &&
1035           "Failed to keep proper track of nsw flags while drilling down?");
1036
1037    if (Ancestor == Val)
1038      // Got to the top, all done!
1039      return Val;
1040
1041    // Move up one level in the expression.
1042    assert(Ancestor->hasOneUse() && "Drilled down when more than one use!");
1043    Ancestor = Ancestor->use_back();
1044  } while (1);
1045}
1046
1047Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) {
1048  SmallVector<Value*, 8> Ops(GEP.op_begin(), GEP.op_end());
1049
1050  if (Value *V = SimplifyGEPInst(Ops, TD))
1051    return ReplaceInstUsesWith(GEP, V);
1052
1053  Value *PtrOp = GEP.getOperand(0);
1054
1055  // Eliminate unneeded casts for indices, and replace indices which displace
1056  // by multiples of a zero size type with zero.
1057  if (TD) {
1058    bool MadeChange = false;
1059    Type *IntPtrTy = TD->getIntPtrType(GEP.getPointerOperandType());
1060
1061    gep_type_iterator GTI = gep_type_begin(GEP);
1062    for (User::op_iterator I = GEP.op_begin() + 1, E = GEP.op_end();
1063         I != E; ++I, ++GTI) {
1064      // Skip indices into struct types.
1065      SequentialType *SeqTy = dyn_cast<SequentialType>(*GTI);
1066      if (!SeqTy) continue;
1067
1068      // If the element type has zero size then any index over it is equivalent
1069      // to an index of zero, so replace it with zero if it is not zero already.
1070      if (SeqTy->getElementType()->isSized() &&
1071          TD->getTypeAllocSize(SeqTy->getElementType()) == 0)
1072        if (!isa<Constant>(*I) || !cast<Constant>(*I)->isNullValue()) {
1073          *I = Constant::getNullValue(IntPtrTy);
1074          MadeChange = true;
1075        }
1076
1077      Type *IndexTy = (*I)->getType();
1078      if (IndexTy != IntPtrTy) {
1079        // If we are using a wider index than needed for this platform, shrink
1080        // it to what we need.  If narrower, sign-extend it to what we need.
1081        // This explicit cast can make subsequent optimizations more obvious.
1082        *I = Builder->CreateIntCast(*I, IntPtrTy, true);
1083        MadeChange = true;
1084      }
1085    }
1086    if (MadeChange) return &GEP;
1087  }
1088
1089  // Combine Indices - If the source pointer to this getelementptr instruction
1090  // is a getelementptr instruction, combine the indices of the two
1091  // getelementptr instructions into a single instruction.
1092  //
1093  if (GEPOperator *Src = dyn_cast<GEPOperator>(PtrOp)) {
1094    if (!shouldMergeGEPs(*cast<GEPOperator>(&GEP), *Src))
1095      return 0;
1096
1097    // Note that if our source is a gep chain itself then we wait for that
1098    // chain to be resolved before we perform this transformation.  This
1099    // avoids us creating a TON of code in some cases.
1100    if (GEPOperator *SrcGEP =
1101          dyn_cast<GEPOperator>(Src->getOperand(0)))
1102      if (SrcGEP->getNumOperands() == 2 && shouldMergeGEPs(*Src, *SrcGEP))
1103        return 0;   // Wait until our source is folded to completion.
1104
1105    SmallVector<Value*, 8> Indices;
1106
1107    // Find out whether the last index in the source GEP is a sequential idx.
1108    bool EndsWithSequential = false;
1109    for (gep_type_iterator I = gep_type_begin(*Src), E = gep_type_end(*Src);
1110         I != E; ++I)
1111      EndsWithSequential = !(*I)->isStructTy();
1112
1113    // Can we combine the two pointer arithmetics offsets?
1114    if (EndsWithSequential) {
1115      // Replace: gep (gep %P, long B), long A, ...
1116      // With:    T = long A+B; gep %P, T, ...
1117      //
1118      Value *Sum;
1119      Value *SO1 = Src->getOperand(Src->getNumOperands()-1);
1120      Value *GO1 = GEP.getOperand(1);
1121      if (SO1 == Constant::getNullValue(SO1->getType())) {
1122        Sum = GO1;
1123      } else if (GO1 == Constant::getNullValue(GO1->getType())) {
1124        Sum = SO1;
1125      } else {
1126        // If they aren't the same type, then the input hasn't been processed
1127        // by the loop above yet (which canonicalizes sequential index types to
1128        // intptr_t).  Just avoid transforming this until the input has been
1129        // normalized.
1130        if (SO1->getType() != GO1->getType())
1131          return 0;
1132        Sum = Builder->CreateAdd(SO1, GO1, PtrOp->getName()+".sum");
1133      }
1134
1135      // Update the GEP in place if possible.
1136      if (Src->getNumOperands() == 2) {
1137        GEP.setOperand(0, Src->getOperand(0));
1138        GEP.setOperand(1, Sum);
1139        return &GEP;
1140      }
1141      Indices.append(Src->op_begin()+1, Src->op_end()-1);
1142      Indices.push_back(Sum);
1143      Indices.append(GEP.op_begin()+2, GEP.op_end());
1144    } else if (isa<Constant>(*GEP.idx_begin()) &&
1145               cast<Constant>(*GEP.idx_begin())->isNullValue() &&
1146               Src->getNumOperands() != 1) {
1147      // Otherwise we can do the fold if the first index of the GEP is a zero
1148      Indices.append(Src->op_begin()+1, Src->op_end());
1149      Indices.append(GEP.idx_begin()+1, GEP.idx_end());
1150    }
1151
1152    if (!Indices.empty())
1153      return (GEP.isInBounds() && Src->isInBounds()) ?
1154        GetElementPtrInst::CreateInBounds(Src->getOperand(0), Indices,
1155                                          GEP.getName()) :
1156        GetElementPtrInst::Create(Src->getOperand(0), Indices, GEP.getName());
1157  }
1158
1159  // Handle gep(bitcast x) and gep(gep x, 0, 0, 0).
1160  Value *StrippedPtr = PtrOp->stripPointerCasts();
1161  PointerType *StrippedPtrTy = dyn_cast<PointerType>(StrippedPtr->getType());
1162
1163  // We do not handle pointer-vector geps here.
1164  if (!StrippedPtrTy)
1165    return 0;
1166
1167  if (StrippedPtr != PtrOp &&
1168    StrippedPtrTy->getAddressSpace() == GEP.getPointerAddressSpace()) {
1169
1170    bool HasZeroPointerIndex = false;
1171    if (ConstantInt *C = dyn_cast<ConstantInt>(GEP.getOperand(1)))
1172      HasZeroPointerIndex = C->isZero();
1173
1174    // Transform: GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ...
1175    // into     : GEP [10 x i8]* X, i32 0, ...
1176    //
1177    // Likewise, transform: GEP (bitcast i8* X to [0 x i8]*), i32 0, ...
1178    //           into     : GEP i8* X, ...
1179    //
1180    // This occurs when the program declares an array extern like "int X[];"
1181    if (HasZeroPointerIndex) {
1182      PointerType *CPTy = cast<PointerType>(PtrOp->getType());
1183      if (ArrayType *CATy =
1184          dyn_cast<ArrayType>(CPTy->getElementType())) {
1185        // GEP (bitcast i8* X to [0 x i8]*), i32 0, ... ?
1186        if (CATy->getElementType() == StrippedPtrTy->getElementType()) {
1187          // -> GEP i8* X, ...
1188          SmallVector<Value*, 8> Idx(GEP.idx_begin()+1, GEP.idx_end());
1189          GetElementPtrInst *Res =
1190            GetElementPtrInst::Create(StrippedPtr, Idx, GEP.getName());
1191          Res->setIsInBounds(GEP.isInBounds());
1192          return Res;
1193        }
1194
1195        if (ArrayType *XATy =
1196              dyn_cast<ArrayType>(StrippedPtrTy->getElementType())){
1197          // GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ... ?
1198          if (CATy->getElementType() == XATy->getElementType()) {
1199            // -> GEP [10 x i8]* X, i32 0, ...
1200            // At this point, we know that the cast source type is a pointer
1201            // to an array of the same type as the destination pointer
1202            // array.  Because the array type is never stepped over (there
1203            // is a leading zero) we can fold the cast into this GEP.
1204            GEP.setOperand(0, StrippedPtr);
1205            return &GEP;
1206          }
1207        }
1208      }
1209    } else if (GEP.getNumOperands() == 2) {
1210      // Transform things like:
1211      // %t = getelementptr i32* bitcast ([2 x i32]* %str to i32*), i32 %V
1212      // into:  %t1 = getelementptr [2 x i32]* %str, i32 0, i32 %V; bitcast
1213      Type *SrcElTy = StrippedPtrTy->getElementType();
1214      Type *ResElTy=cast<PointerType>(PtrOp->getType())->getElementType();
1215      if (TD && SrcElTy->isArrayTy() &&
1216          TD->getTypeAllocSize(cast<ArrayType>(SrcElTy)->getElementType()) ==
1217          TD->getTypeAllocSize(ResElTy)) {
1218        Value *Idx[2];
1219        Idx[0] = Constant::getNullValue(Type::getInt32Ty(GEP.getContext()));
1220        Idx[1] = GEP.getOperand(1);
1221        Value *NewGEP = GEP.isInBounds() ?
1222          Builder->CreateInBoundsGEP(StrippedPtr, Idx, GEP.getName()) :
1223          Builder->CreateGEP(StrippedPtr, Idx, GEP.getName());
1224        // V and GEP are both pointer types --> BitCast
1225        return new BitCastInst(NewGEP, GEP.getType());
1226      }
1227
1228      // Transform things like:
1229      // %V = mul i64 %N, 4
1230      // %t = getelementptr i8* bitcast (i32* %arr to i8*), i32 %V
1231      // into:  %t1 = getelementptr i32* %arr, i32 %N; bitcast
1232      if (TD && ResElTy->isSized() && SrcElTy->isSized()) {
1233        // Check that changing the type amounts to dividing the index by a scale
1234        // factor.
1235        uint64_t ResSize = TD->getTypeAllocSize(ResElTy);
1236        uint64_t SrcSize = TD->getTypeAllocSize(SrcElTy);
1237        if (ResSize && SrcSize % ResSize == 0) {
1238          Value *Idx = GEP.getOperand(1);
1239          unsigned BitWidth = Idx->getType()->getPrimitiveSizeInBits();
1240          uint64_t Scale = SrcSize / ResSize;
1241
1242          // Earlier transforms ensure that the index has type IntPtrType, which
1243          // considerably simplifies the logic by eliminating implicit casts.
1244          assert(Idx->getType() == TD->getIntPtrType(GEP.getContext()) &&
1245                 "Index not cast to pointer width?");
1246
1247          bool NSW;
1248          if (Value *NewIdx = Descale(Idx, APInt(BitWidth, Scale), NSW)) {
1249            // Successfully decomposed Idx as NewIdx * Scale, form a new GEP.
1250            // If the multiplication NewIdx * Scale may overflow then the new
1251            // GEP may not be "inbounds".
1252            Value *NewGEP = GEP.isInBounds() && NSW ?
1253              Builder->CreateInBoundsGEP(StrippedPtr, NewIdx, GEP.getName()) :
1254              Builder->CreateGEP(StrippedPtr, NewIdx, GEP.getName());
1255            // The NewGEP must be pointer typed, so must the old one -> BitCast
1256            return new BitCastInst(NewGEP, GEP.getType());
1257          }
1258        }
1259      }
1260
1261      // Similarly, transform things like:
1262      // getelementptr i8* bitcast ([100 x double]* X to i8*), i32 %tmp
1263      //   (where tmp = 8*tmp2) into:
1264      // getelementptr [100 x double]* %arr, i32 0, i32 %tmp2; bitcast
1265      if (TD && ResElTy->isSized() && SrcElTy->isSized() &&
1266          SrcElTy->isArrayTy()) {
1267        // Check that changing to the array element type amounts to dividing the
1268        // index by a scale factor.
1269        uint64_t ResSize = TD->getTypeAllocSize(ResElTy);
1270        uint64_t ArrayEltSize =
1271          TD->getTypeAllocSize(cast<ArrayType>(SrcElTy)->getElementType());
1272        if (ResSize && ArrayEltSize % ResSize == 0) {
1273          Value *Idx = GEP.getOperand(1);
1274          unsigned BitWidth = Idx->getType()->getPrimitiveSizeInBits();
1275          uint64_t Scale = ArrayEltSize / ResSize;
1276
1277          // Earlier transforms ensure that the index has type IntPtrType, which
1278          // considerably simplifies the logic by eliminating implicit casts.
1279          assert(Idx->getType() == TD->getIntPtrType(GEP.getContext()) &&
1280                 "Index not cast to pointer width?");
1281
1282          bool NSW;
1283          if (Value *NewIdx = Descale(Idx, APInt(BitWidth, Scale), NSW)) {
1284            // Successfully decomposed Idx as NewIdx * Scale, form a new GEP.
1285            // If the multiplication NewIdx * Scale may overflow then the new
1286            // GEP may not be "inbounds".
1287            Value *Off[2];
1288            Off[0] = Constant::getNullValue(Type::getInt32Ty(GEP.getContext()));
1289            Off[1] = NewIdx;
1290            Value *NewGEP = GEP.isInBounds() && NSW ?
1291              Builder->CreateInBoundsGEP(StrippedPtr, Off, GEP.getName()) :
1292              Builder->CreateGEP(StrippedPtr, Off, GEP.getName());
1293            // The NewGEP must be pointer typed, so must the old one -> BitCast
1294            return new BitCastInst(NewGEP, GEP.getType());
1295          }
1296        }
1297      }
1298    }
1299  }
1300
1301  /// See if we can simplify:
1302  ///   X = bitcast A* to B*
1303  ///   Y = gep X, <...constant indices...>
1304  /// into a gep of the original struct.  This is important for SROA and alias
1305  /// analysis of unions.  If "A" is also a bitcast, wait for A/X to be merged.
1306  if (BitCastInst *BCI = dyn_cast<BitCastInst>(PtrOp)) {
1307    APInt Offset(TD ? TD->getPointerSizeInBits() : 1, 0);
1308    if (TD &&
1309        !isa<BitCastInst>(BCI->getOperand(0)) &&
1310        GEP.accumulateConstantOffset(*TD, Offset) &&
1311        StrippedPtrTy->getAddressSpace() == GEP.getPointerAddressSpace()) {
1312
1313      // If this GEP instruction doesn't move the pointer, just replace the GEP
1314      // with a bitcast of the real input to the dest type.
1315      if (!Offset) {
1316        // If the bitcast is of an allocation, and the allocation will be
1317        // converted to match the type of the cast, don't touch this.
1318        if (isa<AllocaInst>(BCI->getOperand(0)) ||
1319            isAllocationFn(BCI->getOperand(0), TLI)) {
1320          // See if the bitcast simplifies, if so, don't nuke this GEP yet.
1321          if (Instruction *I = visitBitCast(*BCI)) {
1322            if (I != BCI) {
1323              I->takeName(BCI);
1324              BCI->getParent()->getInstList().insert(BCI, I);
1325              ReplaceInstUsesWith(*BCI, I);
1326            }
1327            return &GEP;
1328          }
1329        }
1330        return new BitCastInst(BCI->getOperand(0), GEP.getType());
1331      }
1332
1333      // Otherwise, if the offset is non-zero, we need to find out if there is a
1334      // field at Offset in 'A's type.  If so, we can pull the cast through the
1335      // GEP.
1336      SmallVector<Value*, 8> NewIndices;
1337      Type *InTy =
1338        cast<PointerType>(BCI->getOperand(0)->getType())->getElementType();
1339      if (FindElementAtOffset(InTy, Offset.getSExtValue(), NewIndices)) {
1340        Value *NGEP = GEP.isInBounds() ?
1341          Builder->CreateInBoundsGEP(BCI->getOperand(0), NewIndices) :
1342          Builder->CreateGEP(BCI->getOperand(0), NewIndices);
1343
1344        if (NGEP->getType() == GEP.getType())
1345          return ReplaceInstUsesWith(GEP, NGEP);
1346        NGEP->takeName(&GEP);
1347        return new BitCastInst(NGEP, GEP.getType());
1348      }
1349    }
1350  }
1351
1352  return 0;
1353}
1354
1355
1356
1357static bool
1358isAllocSiteRemovable(Instruction *AI, SmallVectorImpl<WeakVH> &Users,
1359                     const TargetLibraryInfo *TLI) {
1360  SmallVector<Instruction*, 4> Worklist;
1361  Worklist.push_back(AI);
1362
1363  do {
1364    Instruction *PI = Worklist.pop_back_val();
1365    for (Value::use_iterator UI = PI->use_begin(), UE = PI->use_end(); UI != UE;
1366         ++UI) {
1367      Instruction *I = cast<Instruction>(*UI);
1368      switch (I->getOpcode()) {
1369      default:
1370        // Give up the moment we see something we can't handle.
1371        return false;
1372
1373      case Instruction::BitCast:
1374      case Instruction::GetElementPtr:
1375        Users.push_back(I);
1376        Worklist.push_back(I);
1377        continue;
1378
1379      case Instruction::ICmp: {
1380        ICmpInst *ICI = cast<ICmpInst>(I);
1381        // We can fold eq/ne comparisons with null to false/true, respectively.
1382        if (!ICI->isEquality() || !isa<ConstantPointerNull>(ICI->getOperand(1)))
1383          return false;
1384        Users.push_back(I);
1385        continue;
1386      }
1387
1388      case Instruction::Call:
1389        // Ignore no-op and store intrinsics.
1390        if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
1391          switch (II->getIntrinsicID()) {
1392          default:
1393            return false;
1394
1395          case Intrinsic::memmove:
1396          case Intrinsic::memcpy:
1397          case Intrinsic::memset: {
1398            MemIntrinsic *MI = cast<MemIntrinsic>(II);
1399            if (MI->isVolatile() || MI->getRawDest() != PI)
1400              return false;
1401          }
1402          // fall through
1403          case Intrinsic::dbg_declare:
1404          case Intrinsic::dbg_value:
1405          case Intrinsic::invariant_start:
1406          case Intrinsic::invariant_end:
1407          case Intrinsic::lifetime_start:
1408          case Intrinsic::lifetime_end:
1409          case Intrinsic::objectsize:
1410            Users.push_back(I);
1411            continue;
1412          }
1413        }
1414
1415        if (isFreeCall(I, TLI)) {
1416          Users.push_back(I);
1417          continue;
1418        }
1419        return false;
1420
1421      case Instruction::Store: {
1422        StoreInst *SI = cast<StoreInst>(I);
1423        if (SI->isVolatile() || SI->getPointerOperand() != PI)
1424          return false;
1425        Users.push_back(I);
1426        continue;
1427      }
1428      }
1429      llvm_unreachable("missing a return?");
1430    }
1431  } while (!Worklist.empty());
1432  return true;
1433}
1434
1435Instruction *InstCombiner::visitAllocSite(Instruction &MI) {
1436  // If we have a malloc call which is only used in any amount of comparisons
1437  // to null and free calls, delete the calls and replace the comparisons with
1438  // true or false as appropriate.
1439  SmallVector<WeakVH, 64> Users;
1440  if (isAllocSiteRemovable(&MI, Users, TLI)) {
1441    for (unsigned i = 0, e = Users.size(); i != e; ++i) {
1442      Instruction *I = cast_or_null<Instruction>(&*Users[i]);
1443      if (!I) continue;
1444
1445      if (ICmpInst *C = dyn_cast<ICmpInst>(I)) {
1446        ReplaceInstUsesWith(*C,
1447                            ConstantInt::get(Type::getInt1Ty(C->getContext()),
1448                                             C->isFalseWhenEqual()));
1449      } else if (isa<BitCastInst>(I) || isa<GetElementPtrInst>(I)) {
1450        ReplaceInstUsesWith(*I, UndefValue::get(I->getType()));
1451      } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
1452        if (II->getIntrinsicID() == Intrinsic::objectsize) {
1453          ConstantInt *CI = cast<ConstantInt>(II->getArgOperand(1));
1454          uint64_t DontKnow = CI->isZero() ? -1ULL : 0;
1455          ReplaceInstUsesWith(*I, ConstantInt::get(I->getType(), DontKnow));
1456        }
1457      }
1458      EraseInstFromFunction(*I);
1459    }
1460
1461    if (InvokeInst *II = dyn_cast<InvokeInst>(&MI)) {
1462      // Replace invoke with a NOP intrinsic to maintain the original CFG
1463      Module *M = II->getParent()->getParent()->getParent();
1464      Function *F = Intrinsic::getDeclaration(M, Intrinsic::donothing);
1465      InvokeInst::Create(F, II->getNormalDest(), II->getUnwindDest(),
1466                         ArrayRef<Value *>(), "", II->getParent());
1467    }
1468    return EraseInstFromFunction(MI);
1469  }
1470  return 0;
1471}
1472
1473/// \brief Move the call to free before a NULL test.
1474///
1475/// Check if this free is accessed after its argument has been test
1476/// against NULL (property 0).
1477/// If yes, it is legal to move this call in its predecessor block.
1478///
1479/// The move is performed only if the block containing the call to free
1480/// will be removed, i.e.:
1481/// 1. it has only one predecessor P, and P has two successors
1482/// 2. it contains the call and an unconditional branch
1483/// 3. its successor is the same as its predecessor's successor
1484///
1485/// The profitability is out-of concern here and this function should
1486/// be called only if the caller knows this transformation would be
1487/// profitable (e.g., for code size).
1488static Instruction *
1489tryToMoveFreeBeforeNullTest(CallInst &FI) {
1490  Value *Op = FI.getArgOperand(0);
1491  BasicBlock *FreeInstrBB = FI.getParent();
1492  BasicBlock *PredBB = FreeInstrBB->getSinglePredecessor();
1493
1494  // Validate part of constraint #1: Only one predecessor
1495  // FIXME: We can extend the number of predecessor, but in that case, we
1496  //        would duplicate the call to free in each predecessor and it may
1497  //        not be profitable even for code size.
1498  if (!PredBB)
1499    return 0;
1500
1501  // Validate constraint #2: Does this block contains only the call to
1502  //                         free and an unconditional branch?
1503  // FIXME: We could check if we can speculate everything in the
1504  //        predecessor block
1505  if (FreeInstrBB->size() != 2)
1506    return 0;
1507  BasicBlock *SuccBB;
1508  if (!match(FreeInstrBB->getTerminator(), m_UnconditionalBr(SuccBB)))
1509    return 0;
1510
1511  // Validate the rest of constraint #1 by matching on the pred branch.
1512  TerminatorInst *TI = PredBB->getTerminator();
1513  BasicBlock *TrueBB, *FalseBB;
1514  ICmpInst::Predicate Pred;
1515  if (!match(TI, m_Br(m_ICmp(Pred, m_Specific(Op), m_Zero()), TrueBB, FalseBB)))
1516    return 0;
1517  if (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE)
1518    return 0;
1519
1520  // Validate constraint #3: Ensure the null case just falls through.
1521  if (SuccBB != (Pred == ICmpInst::ICMP_EQ ? TrueBB : FalseBB))
1522    return 0;
1523  assert(FreeInstrBB == (Pred == ICmpInst::ICMP_EQ ? FalseBB : TrueBB) &&
1524         "Broken CFG: missing edge from predecessor to successor");
1525
1526  FI.moveBefore(TI);
1527  return &FI;
1528}
1529
1530
1531Instruction *InstCombiner::visitFree(CallInst &FI) {
1532  Value *Op = FI.getArgOperand(0);
1533
1534  // free undef -> unreachable.
1535  if (isa<UndefValue>(Op)) {
1536    // Insert a new store to null because we cannot modify the CFG here.
1537    Builder->CreateStore(ConstantInt::getTrue(FI.getContext()),
1538                         UndefValue::get(Type::getInt1PtrTy(FI.getContext())));
1539    return EraseInstFromFunction(FI);
1540  }
1541
1542  // If we have 'free null' delete the instruction.  This can happen in stl code
1543  // when lots of inlining happens.
1544  if (isa<ConstantPointerNull>(Op))
1545    return EraseInstFromFunction(FI);
1546
1547  // If we optimize for code size, try to move the call to free before the null
1548  // test so that simplify cfg can remove the empty block and dead code
1549  // elimination the branch. I.e., helps to turn something like:
1550  // if (foo) free(foo);
1551  // into
1552  // free(foo);
1553  if (MinimizeSize)
1554    if (Instruction *I = tryToMoveFreeBeforeNullTest(FI))
1555      return I;
1556
1557  return 0;
1558}
1559
1560
1561
1562Instruction *InstCombiner::visitBranchInst(BranchInst &BI) {
1563  // Change br (not X), label True, label False to: br X, label False, True
1564  Value *X = 0;
1565  BasicBlock *TrueDest;
1566  BasicBlock *FalseDest;
1567  if (match(&BI, m_Br(m_Not(m_Value(X)), TrueDest, FalseDest)) &&
1568      !isa<Constant>(X)) {
1569    // Swap Destinations and condition...
1570    BI.setCondition(X);
1571    BI.swapSuccessors();
1572    return &BI;
1573  }
1574
1575  // Cannonicalize fcmp_one -> fcmp_oeq
1576  FCmpInst::Predicate FPred; Value *Y;
1577  if (match(&BI, m_Br(m_FCmp(FPred, m_Value(X), m_Value(Y)),
1578                             TrueDest, FalseDest)) &&
1579      BI.getCondition()->hasOneUse())
1580    if (FPred == FCmpInst::FCMP_ONE || FPred == FCmpInst::FCMP_OLE ||
1581        FPred == FCmpInst::FCMP_OGE) {
1582      FCmpInst *Cond = cast<FCmpInst>(BI.getCondition());
1583      Cond->setPredicate(FCmpInst::getInversePredicate(FPred));
1584
1585      // Swap Destinations and condition.
1586      BI.swapSuccessors();
1587      Worklist.Add(Cond);
1588      return &BI;
1589    }
1590
1591  // Cannonicalize icmp_ne -> icmp_eq
1592  ICmpInst::Predicate IPred;
1593  if (match(&BI, m_Br(m_ICmp(IPred, m_Value(X), m_Value(Y)),
1594                      TrueDest, FalseDest)) &&
1595      BI.getCondition()->hasOneUse())
1596    if (IPred == ICmpInst::ICMP_NE  || IPred == ICmpInst::ICMP_ULE ||
1597        IPred == ICmpInst::ICMP_SLE || IPred == ICmpInst::ICMP_UGE ||
1598        IPred == ICmpInst::ICMP_SGE) {
1599      ICmpInst *Cond = cast<ICmpInst>(BI.getCondition());
1600      Cond->setPredicate(ICmpInst::getInversePredicate(IPred));
1601      // Swap Destinations and condition.
1602      BI.swapSuccessors();
1603      Worklist.Add(Cond);
1604      return &BI;
1605    }
1606
1607  return 0;
1608}
1609
1610Instruction *InstCombiner::visitSwitchInst(SwitchInst &SI) {
1611  Value *Cond = SI.getCondition();
1612  if (Instruction *I = dyn_cast<Instruction>(Cond)) {
1613    if (I->getOpcode() == Instruction::Add)
1614      if (ConstantInt *AddRHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
1615        // change 'switch (X+4) case 1:' into 'switch (X) case -3'
1616        // Skip the first item since that's the default case.
1617        for (SwitchInst::CaseIt i = SI.case_begin(), e = SI.case_end();
1618             i != e; ++i) {
1619          ConstantInt* CaseVal = i.getCaseValue();
1620          Constant* NewCaseVal = ConstantExpr::getSub(cast<Constant>(CaseVal),
1621                                                      AddRHS);
1622          assert(isa<ConstantInt>(NewCaseVal) &&
1623                 "Result of expression should be constant");
1624          i.setValue(cast<ConstantInt>(NewCaseVal));
1625        }
1626        SI.setCondition(I->getOperand(0));
1627        Worklist.Add(I);
1628        return &SI;
1629      }
1630  }
1631  return 0;
1632}
1633
1634Instruction *InstCombiner::visitExtractValueInst(ExtractValueInst &EV) {
1635  Value *Agg = EV.getAggregateOperand();
1636
1637  if (!EV.hasIndices())
1638    return ReplaceInstUsesWith(EV, Agg);
1639
1640  if (Constant *C = dyn_cast<Constant>(Agg)) {
1641    if (Constant *C2 = C->getAggregateElement(*EV.idx_begin())) {
1642      if (EV.getNumIndices() == 0)
1643        return ReplaceInstUsesWith(EV, C2);
1644      // Extract the remaining indices out of the constant indexed by the
1645      // first index
1646      return ExtractValueInst::Create(C2, EV.getIndices().slice(1));
1647    }
1648    return 0; // Can't handle other constants
1649  }
1650
1651  if (InsertValueInst *IV = dyn_cast<InsertValueInst>(Agg)) {
1652    // We're extracting from an insertvalue instruction, compare the indices
1653    const unsigned *exti, *exte, *insi, *inse;
1654    for (exti = EV.idx_begin(), insi = IV->idx_begin(),
1655         exte = EV.idx_end(), inse = IV->idx_end();
1656         exti != exte && insi != inse;
1657         ++exti, ++insi) {
1658      if (*insi != *exti)
1659        // The insert and extract both reference distinctly different elements.
1660        // This means the extract is not influenced by the insert, and we can
1661        // replace the aggregate operand of the extract with the aggregate
1662        // operand of the insert. i.e., replace
1663        // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
1664        // %E = extractvalue { i32, { i32 } } %I, 0
1665        // with
1666        // %E = extractvalue { i32, { i32 } } %A, 0
1667        return ExtractValueInst::Create(IV->getAggregateOperand(),
1668                                        EV.getIndices());
1669    }
1670    if (exti == exte && insi == inse)
1671      // Both iterators are at the end: Index lists are identical. Replace
1672      // %B = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
1673      // %C = extractvalue { i32, { i32 } } %B, 1, 0
1674      // with "i32 42"
1675      return ReplaceInstUsesWith(EV, IV->getInsertedValueOperand());
1676    if (exti == exte) {
1677      // The extract list is a prefix of the insert list. i.e. replace
1678      // %I = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
1679      // %E = extractvalue { i32, { i32 } } %I, 1
1680      // with
1681      // %X = extractvalue { i32, { i32 } } %A, 1
1682      // %E = insertvalue { i32 } %X, i32 42, 0
1683      // by switching the order of the insert and extract (though the
1684      // insertvalue should be left in, since it may have other uses).
1685      Value *NewEV = Builder->CreateExtractValue(IV->getAggregateOperand(),
1686                                                 EV.getIndices());
1687      return InsertValueInst::Create(NewEV, IV->getInsertedValueOperand(),
1688                                     makeArrayRef(insi, inse));
1689    }
1690    if (insi == inse)
1691      // The insert list is a prefix of the extract list
1692      // We can simply remove the common indices from the extract and make it
1693      // operate on the inserted value instead of the insertvalue result.
1694      // i.e., replace
1695      // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
1696      // %E = extractvalue { i32, { i32 } } %I, 1, 0
1697      // with
1698      // %E extractvalue { i32 } { i32 42 }, 0
1699      return ExtractValueInst::Create(IV->getInsertedValueOperand(),
1700                                      makeArrayRef(exti, exte));
1701  }
1702  if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Agg)) {
1703    // We're extracting from an intrinsic, see if we're the only user, which
1704    // allows us to simplify multiple result intrinsics to simpler things that
1705    // just get one value.
1706    if (II->hasOneUse()) {
1707      // Check if we're grabbing the overflow bit or the result of a 'with
1708      // overflow' intrinsic.  If it's the latter we can remove the intrinsic
1709      // and replace it with a traditional binary instruction.
1710      switch (II->getIntrinsicID()) {
1711      case Intrinsic::uadd_with_overflow:
1712      case Intrinsic::sadd_with_overflow:
1713        if (*EV.idx_begin() == 0) {  // Normal result.
1714          Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1);
1715          ReplaceInstUsesWith(*II, UndefValue::get(II->getType()));
1716          EraseInstFromFunction(*II);
1717          return BinaryOperator::CreateAdd(LHS, RHS);
1718        }
1719
1720        // If the normal result of the add is dead, and the RHS is a constant,
1721        // we can transform this into a range comparison.
1722        // overflow = uadd a, -4  -->  overflow = icmp ugt a, 3
1723        if (II->getIntrinsicID() == Intrinsic::uadd_with_overflow)
1724          if (ConstantInt *CI = dyn_cast<ConstantInt>(II->getArgOperand(1)))
1725            return new ICmpInst(ICmpInst::ICMP_UGT, II->getArgOperand(0),
1726                                ConstantExpr::getNot(CI));
1727        break;
1728      case Intrinsic::usub_with_overflow:
1729      case Intrinsic::ssub_with_overflow:
1730        if (*EV.idx_begin() == 0) {  // Normal result.
1731          Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1);
1732          ReplaceInstUsesWith(*II, UndefValue::get(II->getType()));
1733          EraseInstFromFunction(*II);
1734          return BinaryOperator::CreateSub(LHS, RHS);
1735        }
1736        break;
1737      case Intrinsic::umul_with_overflow:
1738      case Intrinsic::smul_with_overflow:
1739        if (*EV.idx_begin() == 0) {  // Normal result.
1740          Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1);
1741          ReplaceInstUsesWith(*II, UndefValue::get(II->getType()));
1742          EraseInstFromFunction(*II);
1743          return BinaryOperator::CreateMul(LHS, RHS);
1744        }
1745        break;
1746      default:
1747        break;
1748      }
1749    }
1750  }
1751  if (LoadInst *L = dyn_cast<LoadInst>(Agg))
1752    // If the (non-volatile) load only has one use, we can rewrite this to a
1753    // load from a GEP. This reduces the size of the load.
1754    // FIXME: If a load is used only by extractvalue instructions then this
1755    //        could be done regardless of having multiple uses.
1756    if (L->isSimple() && L->hasOneUse()) {
1757      // extractvalue has integer indices, getelementptr has Value*s. Convert.
1758      SmallVector<Value*, 4> Indices;
1759      // Prefix an i32 0 since we need the first element.
1760      Indices.push_back(Builder->getInt32(0));
1761      for (ExtractValueInst::idx_iterator I = EV.idx_begin(), E = EV.idx_end();
1762            I != E; ++I)
1763        Indices.push_back(Builder->getInt32(*I));
1764
1765      // We need to insert these at the location of the old load, not at that of
1766      // the extractvalue.
1767      Builder->SetInsertPoint(L->getParent(), L);
1768      Value *GEP = Builder->CreateInBoundsGEP(L->getPointerOperand(), Indices);
1769      // Returning the load directly will cause the main loop to insert it in
1770      // the wrong spot, so use ReplaceInstUsesWith().
1771      return ReplaceInstUsesWith(EV, Builder->CreateLoad(GEP));
1772    }
1773  // We could simplify extracts from other values. Note that nested extracts may
1774  // already be simplified implicitly by the above: extract (extract (insert) )
1775  // will be translated into extract ( insert ( extract ) ) first and then just
1776  // the value inserted, if appropriate. Similarly for extracts from single-use
1777  // loads: extract (extract (load)) will be translated to extract (load (gep))
1778  // and if again single-use then via load (gep (gep)) to load (gep).
1779  // However, double extracts from e.g. function arguments or return values
1780  // aren't handled yet.
1781  return 0;
1782}
1783
1784enum Personality_Type {
1785  Unknown_Personality,
1786  GNU_Ada_Personality,
1787  GNU_CXX_Personality,
1788  GNU_ObjC_Personality
1789};
1790
1791/// RecognizePersonality - See if the given exception handling personality
1792/// function is one that we understand.  If so, return a description of it;
1793/// otherwise return Unknown_Personality.
1794static Personality_Type RecognizePersonality(Value *Pers) {
1795  Function *F = dyn_cast<Function>(Pers->stripPointerCasts());
1796  if (!F)
1797    return Unknown_Personality;
1798  return StringSwitch<Personality_Type>(F->getName())
1799    .Case("__gnat_eh_personality", GNU_Ada_Personality)
1800    .Case("__gxx_personality_v0",  GNU_CXX_Personality)
1801    .Case("__objc_personality_v0", GNU_ObjC_Personality)
1802    .Default(Unknown_Personality);
1803}
1804
1805/// isCatchAll - Return 'true' if the given typeinfo will match anything.
1806static bool isCatchAll(Personality_Type Personality, Constant *TypeInfo) {
1807  switch (Personality) {
1808  case Unknown_Personality:
1809    return false;
1810  case GNU_Ada_Personality:
1811    // While __gnat_all_others_value will match any Ada exception, it doesn't
1812    // match foreign exceptions (or didn't, before gcc-4.7).
1813    return false;
1814  case GNU_CXX_Personality:
1815  case GNU_ObjC_Personality:
1816    return TypeInfo->isNullValue();
1817  }
1818  llvm_unreachable("Unknown personality!");
1819}
1820
1821static bool shorter_filter(const Value *LHS, const Value *RHS) {
1822  return
1823    cast<ArrayType>(LHS->getType())->getNumElements()
1824  <
1825    cast<ArrayType>(RHS->getType())->getNumElements();
1826}
1827
1828Instruction *InstCombiner::visitLandingPadInst(LandingPadInst &LI) {
1829  // The logic here should be correct for any real-world personality function.
1830  // However if that turns out not to be true, the offending logic can always
1831  // be conditioned on the personality function, like the catch-all logic is.
1832  Personality_Type Personality = RecognizePersonality(LI.getPersonalityFn());
1833
1834  // Simplify the list of clauses, eg by removing repeated catch clauses
1835  // (these are often created by inlining).
1836  bool MakeNewInstruction = false; // If true, recreate using the following:
1837  SmallVector<Value *, 16> NewClauses; // - Clauses for the new instruction;
1838  bool CleanupFlag = LI.isCleanup();   // - The new instruction is a cleanup.
1839
1840  SmallPtrSet<Value *, 16> AlreadyCaught; // Typeinfos known caught already.
1841  for (unsigned i = 0, e = LI.getNumClauses(); i != e; ++i) {
1842    bool isLastClause = i + 1 == e;
1843    if (LI.isCatch(i)) {
1844      // A catch clause.
1845      Value *CatchClause = LI.getClause(i);
1846      Constant *TypeInfo = cast<Constant>(CatchClause->stripPointerCasts());
1847
1848      // If we already saw this clause, there is no point in having a second
1849      // copy of it.
1850      if (AlreadyCaught.insert(TypeInfo)) {
1851        // This catch clause was not already seen.
1852        NewClauses.push_back(CatchClause);
1853      } else {
1854        // Repeated catch clause - drop the redundant copy.
1855        MakeNewInstruction = true;
1856      }
1857
1858      // If this is a catch-all then there is no point in keeping any following
1859      // clauses or marking the landingpad as having a cleanup.
1860      if (isCatchAll(Personality, TypeInfo)) {
1861        if (!isLastClause)
1862          MakeNewInstruction = true;
1863        CleanupFlag = false;
1864        break;
1865      }
1866    } else {
1867      // A filter clause.  If any of the filter elements were already caught
1868      // then they can be dropped from the filter.  It is tempting to try to
1869      // exploit the filter further by saying that any typeinfo that does not
1870      // occur in the filter can't be caught later (and thus can be dropped).
1871      // However this would be wrong, since typeinfos can match without being
1872      // equal (for example if one represents a C++ class, and the other some
1873      // class derived from it).
1874      assert(LI.isFilter(i) && "Unsupported landingpad clause!");
1875      Value *FilterClause = LI.getClause(i);
1876      ArrayType *FilterType = cast<ArrayType>(FilterClause->getType());
1877      unsigned NumTypeInfos = FilterType->getNumElements();
1878
1879      // An empty filter catches everything, so there is no point in keeping any
1880      // following clauses or marking the landingpad as having a cleanup.  By
1881      // dealing with this case here the following code is made a bit simpler.
1882      if (!NumTypeInfos) {
1883        NewClauses.push_back(FilterClause);
1884        if (!isLastClause)
1885          MakeNewInstruction = true;
1886        CleanupFlag = false;
1887        break;
1888      }
1889
1890      bool MakeNewFilter = false; // If true, make a new filter.
1891      SmallVector<Constant *, 16> NewFilterElts; // New elements.
1892      if (isa<ConstantAggregateZero>(FilterClause)) {
1893        // Not an empty filter - it contains at least one null typeinfo.
1894        assert(NumTypeInfos > 0 && "Should have handled empty filter already!");
1895        Constant *TypeInfo =
1896          Constant::getNullValue(FilterType->getElementType());
1897        // If this typeinfo is a catch-all then the filter can never match.
1898        if (isCatchAll(Personality, TypeInfo)) {
1899          // Throw the filter away.
1900          MakeNewInstruction = true;
1901          continue;
1902        }
1903
1904        // There is no point in having multiple copies of this typeinfo, so
1905        // discard all but the first copy if there is more than one.
1906        NewFilterElts.push_back(TypeInfo);
1907        if (NumTypeInfos > 1)
1908          MakeNewFilter = true;
1909      } else {
1910        ConstantArray *Filter = cast<ConstantArray>(FilterClause);
1911        SmallPtrSet<Value *, 16> SeenInFilter; // For uniquing the elements.
1912        NewFilterElts.reserve(NumTypeInfos);
1913
1914        // Remove any filter elements that were already caught or that already
1915        // occurred in the filter.  While there, see if any of the elements are
1916        // catch-alls.  If so, the filter can be discarded.
1917        bool SawCatchAll = false;
1918        for (unsigned j = 0; j != NumTypeInfos; ++j) {
1919          Value *Elt = Filter->getOperand(j);
1920          Constant *TypeInfo = cast<Constant>(Elt->stripPointerCasts());
1921          if (isCatchAll(Personality, TypeInfo)) {
1922            // This element is a catch-all.  Bail out, noting this fact.
1923            SawCatchAll = true;
1924            break;
1925          }
1926          if (AlreadyCaught.count(TypeInfo))
1927            // Already caught by an earlier clause, so having it in the filter
1928            // is pointless.
1929            continue;
1930          // There is no point in having multiple copies of the same typeinfo in
1931          // a filter, so only add it if we didn't already.
1932          if (SeenInFilter.insert(TypeInfo))
1933            NewFilterElts.push_back(cast<Constant>(Elt));
1934        }
1935        // A filter containing a catch-all cannot match anything by definition.
1936        if (SawCatchAll) {
1937          // Throw the filter away.
1938          MakeNewInstruction = true;
1939          continue;
1940        }
1941
1942        // If we dropped something from the filter, make a new one.
1943        if (NewFilterElts.size() < NumTypeInfos)
1944          MakeNewFilter = true;
1945      }
1946      if (MakeNewFilter) {
1947        FilterType = ArrayType::get(FilterType->getElementType(),
1948                                    NewFilterElts.size());
1949        FilterClause = ConstantArray::get(FilterType, NewFilterElts);
1950        MakeNewInstruction = true;
1951      }
1952
1953      NewClauses.push_back(FilterClause);
1954
1955      // If the new filter is empty then it will catch everything so there is
1956      // no point in keeping any following clauses or marking the landingpad
1957      // as having a cleanup.  The case of the original filter being empty was
1958      // already handled above.
1959      if (MakeNewFilter && !NewFilterElts.size()) {
1960        assert(MakeNewInstruction && "New filter but not a new instruction!");
1961        CleanupFlag = false;
1962        break;
1963      }
1964    }
1965  }
1966
1967  // If several filters occur in a row then reorder them so that the shortest
1968  // filters come first (those with the smallest number of elements).  This is
1969  // advantageous because shorter filters are more likely to match, speeding up
1970  // unwinding, but mostly because it increases the effectiveness of the other
1971  // filter optimizations below.
1972  for (unsigned i = 0, e = NewClauses.size(); i + 1 < e; ) {
1973    unsigned j;
1974    // Find the maximal 'j' s.t. the range [i, j) consists entirely of filters.
1975    for (j = i; j != e; ++j)
1976      if (!isa<ArrayType>(NewClauses[j]->getType()))
1977        break;
1978
1979    // Check whether the filters are already sorted by length.  We need to know
1980    // if sorting them is actually going to do anything so that we only make a
1981    // new landingpad instruction if it does.
1982    for (unsigned k = i; k + 1 < j; ++k)
1983      if (shorter_filter(NewClauses[k+1], NewClauses[k])) {
1984        // Not sorted, so sort the filters now.  Doing an unstable sort would be
1985        // correct too but reordering filters pointlessly might confuse users.
1986        std::stable_sort(NewClauses.begin() + i, NewClauses.begin() + j,
1987                         shorter_filter);
1988        MakeNewInstruction = true;
1989        break;
1990      }
1991
1992    // Look for the next batch of filters.
1993    i = j + 1;
1994  }
1995
1996  // If typeinfos matched if and only if equal, then the elements of a filter L
1997  // that occurs later than a filter F could be replaced by the intersection of
1998  // the elements of F and L.  In reality two typeinfos can match without being
1999  // equal (for example if one represents a C++ class, and the other some class
2000  // derived from it) so it would be wrong to perform this transform in general.
2001  // However the transform is correct and useful if F is a subset of L.  In that
2002  // case L can be replaced by F, and thus removed altogether since repeating a
2003  // filter is pointless.  So here we look at all pairs of filters F and L where
2004  // L follows F in the list of clauses, and remove L if every element of F is
2005  // an element of L.  This can occur when inlining C++ functions with exception
2006  // specifications.
2007  for (unsigned i = 0; i + 1 < NewClauses.size(); ++i) {
2008    // Examine each filter in turn.
2009    Value *Filter = NewClauses[i];
2010    ArrayType *FTy = dyn_cast<ArrayType>(Filter->getType());
2011    if (!FTy)
2012      // Not a filter - skip it.
2013      continue;
2014    unsigned FElts = FTy->getNumElements();
2015    // Examine each filter following this one.  Doing this backwards means that
2016    // we don't have to worry about filters disappearing under us when removed.
2017    for (unsigned j = NewClauses.size() - 1; j != i; --j) {
2018      Value *LFilter = NewClauses[j];
2019      ArrayType *LTy = dyn_cast<ArrayType>(LFilter->getType());
2020      if (!LTy)
2021        // Not a filter - skip it.
2022        continue;
2023      // If Filter is a subset of LFilter, i.e. every element of Filter is also
2024      // an element of LFilter, then discard LFilter.
2025      SmallVector<Value *, 16>::iterator J = NewClauses.begin() + j;
2026      // If Filter is empty then it is a subset of LFilter.
2027      if (!FElts) {
2028        // Discard LFilter.
2029        NewClauses.erase(J);
2030        MakeNewInstruction = true;
2031        // Move on to the next filter.
2032        continue;
2033      }
2034      unsigned LElts = LTy->getNumElements();
2035      // If Filter is longer than LFilter then it cannot be a subset of it.
2036      if (FElts > LElts)
2037        // Move on to the next filter.
2038        continue;
2039      // At this point we know that LFilter has at least one element.
2040      if (isa<ConstantAggregateZero>(LFilter)) { // LFilter only contains zeros.
2041        // Filter is a subset of LFilter iff Filter contains only zeros (as we
2042        // already know that Filter is not longer than LFilter).
2043        if (isa<ConstantAggregateZero>(Filter)) {
2044          assert(FElts <= LElts && "Should have handled this case earlier!");
2045          // Discard LFilter.
2046          NewClauses.erase(J);
2047          MakeNewInstruction = true;
2048        }
2049        // Move on to the next filter.
2050        continue;
2051      }
2052      ConstantArray *LArray = cast<ConstantArray>(LFilter);
2053      if (isa<ConstantAggregateZero>(Filter)) { // Filter only contains zeros.
2054        // Since Filter is non-empty and contains only zeros, it is a subset of
2055        // LFilter iff LFilter contains a zero.
2056        assert(FElts > 0 && "Should have eliminated the empty filter earlier!");
2057        for (unsigned l = 0; l != LElts; ++l)
2058          if (LArray->getOperand(l)->isNullValue()) {
2059            // LFilter contains a zero - discard it.
2060            NewClauses.erase(J);
2061            MakeNewInstruction = true;
2062            break;
2063          }
2064        // Move on to the next filter.
2065        continue;
2066      }
2067      // At this point we know that both filters are ConstantArrays.  Loop over
2068      // operands to see whether every element of Filter is also an element of
2069      // LFilter.  Since filters tend to be short this is probably faster than
2070      // using a method that scales nicely.
2071      ConstantArray *FArray = cast<ConstantArray>(Filter);
2072      bool AllFound = true;
2073      for (unsigned f = 0; f != FElts; ++f) {
2074        Value *FTypeInfo = FArray->getOperand(f)->stripPointerCasts();
2075        AllFound = false;
2076        for (unsigned l = 0; l != LElts; ++l) {
2077          Value *LTypeInfo = LArray->getOperand(l)->stripPointerCasts();
2078          if (LTypeInfo == FTypeInfo) {
2079            AllFound = true;
2080            break;
2081          }
2082        }
2083        if (!AllFound)
2084          break;
2085      }
2086      if (AllFound) {
2087        // Discard LFilter.
2088        NewClauses.erase(J);
2089        MakeNewInstruction = true;
2090      }
2091      // Move on to the next filter.
2092    }
2093  }
2094
2095  // If we changed any of the clauses, replace the old landingpad instruction
2096  // with a new one.
2097  if (MakeNewInstruction) {
2098    LandingPadInst *NLI = LandingPadInst::Create(LI.getType(),
2099                                                 LI.getPersonalityFn(),
2100                                                 NewClauses.size());
2101    for (unsigned i = 0, e = NewClauses.size(); i != e; ++i)
2102      NLI->addClause(NewClauses[i]);
2103    // A landing pad with no clauses must have the cleanup flag set.  It is
2104    // theoretically possible, though highly unlikely, that we eliminated all
2105    // clauses.  If so, force the cleanup flag to true.
2106    if (NewClauses.empty())
2107      CleanupFlag = true;
2108    NLI->setCleanup(CleanupFlag);
2109    return NLI;
2110  }
2111
2112  // Even if none of the clauses changed, we may nonetheless have understood
2113  // that the cleanup flag is pointless.  Clear it if so.
2114  if (LI.isCleanup() != CleanupFlag) {
2115    assert(!CleanupFlag && "Adding a cleanup, not removing one?!");
2116    LI.setCleanup(CleanupFlag);
2117    return &LI;
2118  }
2119
2120  return 0;
2121}
2122
2123
2124
2125
2126/// TryToSinkInstruction - Try to move the specified instruction from its
2127/// current block into the beginning of DestBlock, which can only happen if it's
2128/// safe to move the instruction past all of the instructions between it and the
2129/// end of its block.
2130static bool TryToSinkInstruction(Instruction *I, BasicBlock *DestBlock) {
2131  assert(I->hasOneUse() && "Invariants didn't hold!");
2132
2133  // Cannot move control-flow-involving, volatile loads, vaarg, etc.
2134  if (isa<PHINode>(I) || isa<LandingPadInst>(I) || I->mayHaveSideEffects() ||
2135      isa<TerminatorInst>(I))
2136    return false;
2137
2138  // Do not sink alloca instructions out of the entry block.
2139  if (isa<AllocaInst>(I) && I->getParent() ==
2140        &DestBlock->getParent()->getEntryBlock())
2141    return false;
2142
2143  // We can only sink load instructions if there is nothing between the load and
2144  // the end of block that could change the value.
2145  if (I->mayReadFromMemory()) {
2146    for (BasicBlock::iterator Scan = I, E = I->getParent()->end();
2147         Scan != E; ++Scan)
2148      if (Scan->mayWriteToMemory())
2149        return false;
2150  }
2151
2152  BasicBlock::iterator InsertPos = DestBlock->getFirstInsertionPt();
2153  I->moveBefore(InsertPos);
2154  ++NumSunkInst;
2155  return true;
2156}
2157
2158
2159/// AddReachableCodeToWorklist - Walk the function in depth-first order, adding
2160/// all reachable code to the worklist.
2161///
2162/// This has a couple of tricks to make the code faster and more powerful.  In
2163/// particular, we constant fold and DCE instructions as we go, to avoid adding
2164/// them to the worklist (this significantly speeds up instcombine on code where
2165/// many instructions are dead or constant).  Additionally, if we find a branch
2166/// whose condition is a known constant, we only visit the reachable successors.
2167///
2168static bool AddReachableCodeToWorklist(BasicBlock *BB,
2169                                       SmallPtrSet<BasicBlock*, 64> &Visited,
2170                                       InstCombiner &IC,
2171                                       const DataLayout *TD,
2172                                       const TargetLibraryInfo *TLI) {
2173  bool MadeIRChange = false;
2174  SmallVector<BasicBlock*, 256> Worklist;
2175  Worklist.push_back(BB);
2176
2177  SmallVector<Instruction*, 128> InstrsForInstCombineWorklist;
2178  DenseMap<ConstantExpr*, Constant*> FoldedConstants;
2179
2180  do {
2181    BB = Worklist.pop_back_val();
2182
2183    // We have now visited this block!  If we've already been here, ignore it.
2184    if (!Visited.insert(BB)) continue;
2185
2186    for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) {
2187      Instruction *Inst = BBI++;
2188
2189      // DCE instruction if trivially dead.
2190      if (isInstructionTriviallyDead(Inst, TLI)) {
2191        ++NumDeadInst;
2192        DEBUG(errs() << "IC: DCE: " << *Inst << '\n');
2193        Inst->eraseFromParent();
2194        continue;
2195      }
2196
2197      // ConstantProp instruction if trivially constant.
2198      if (!Inst->use_empty() && isa<Constant>(Inst->getOperand(0)))
2199        if (Constant *C = ConstantFoldInstruction(Inst, TD, TLI)) {
2200          DEBUG(errs() << "IC: ConstFold to: " << *C << " from: "
2201                       << *Inst << '\n');
2202          Inst->replaceAllUsesWith(C);
2203          ++NumConstProp;
2204          Inst->eraseFromParent();
2205          continue;
2206        }
2207
2208      if (TD) {
2209        // See if we can constant fold its operands.
2210        for (User::op_iterator i = Inst->op_begin(), e = Inst->op_end();
2211             i != e; ++i) {
2212          ConstantExpr *CE = dyn_cast<ConstantExpr>(i);
2213          if (CE == 0) continue;
2214
2215          Constant*& FoldRes = FoldedConstants[CE];
2216          if (!FoldRes)
2217            FoldRes = ConstantFoldConstantExpression(CE, TD, TLI);
2218          if (!FoldRes)
2219            FoldRes = CE;
2220
2221          if (FoldRes != CE) {
2222            *i = FoldRes;
2223            MadeIRChange = true;
2224          }
2225        }
2226      }
2227
2228      InstrsForInstCombineWorklist.push_back(Inst);
2229    }
2230
2231    // Recursively visit successors.  If this is a branch or switch on a
2232    // constant, only visit the reachable successor.
2233    TerminatorInst *TI = BB->getTerminator();
2234    if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
2235      if (BI->isConditional() && isa<ConstantInt>(BI->getCondition())) {
2236        bool CondVal = cast<ConstantInt>(BI->getCondition())->getZExtValue();
2237        BasicBlock *ReachableBB = BI->getSuccessor(!CondVal);
2238        Worklist.push_back(ReachableBB);
2239        continue;
2240      }
2241    } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
2242      if (ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition())) {
2243        // See if this is an explicit destination.
2244        for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end();
2245             i != e; ++i)
2246          if (i.getCaseValue() == Cond) {
2247            BasicBlock *ReachableBB = i.getCaseSuccessor();
2248            Worklist.push_back(ReachableBB);
2249            continue;
2250          }
2251
2252        // Otherwise it is the default destination.
2253        Worklist.push_back(SI->getDefaultDest());
2254        continue;
2255      }
2256    }
2257
2258    for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
2259      Worklist.push_back(TI->getSuccessor(i));
2260  } while (!Worklist.empty());
2261
2262  // Once we've found all of the instructions to add to instcombine's worklist,
2263  // add them in reverse order.  This way instcombine will visit from the top
2264  // of the function down.  This jives well with the way that it adds all uses
2265  // of instructions to the worklist after doing a transformation, thus avoiding
2266  // some N^2 behavior in pathological cases.
2267  IC.Worklist.AddInitialGroup(&InstrsForInstCombineWorklist[0],
2268                              InstrsForInstCombineWorklist.size());
2269
2270  return MadeIRChange;
2271}
2272
2273bool InstCombiner::DoOneIteration(Function &F, unsigned Iteration) {
2274  MadeIRChange = false;
2275
2276  DEBUG(errs() << "\n\nINSTCOMBINE ITERATION #" << Iteration << " on "
2277               << F.getName() << "\n");
2278
2279  {
2280    // Do a depth-first traversal of the function, populate the worklist with
2281    // the reachable instructions.  Ignore blocks that are not reachable.  Keep
2282    // track of which blocks we visit.
2283    SmallPtrSet<BasicBlock*, 64> Visited;
2284    MadeIRChange |= AddReachableCodeToWorklist(F.begin(), Visited, *this, TD,
2285                                               TLI);
2286
2287    // Do a quick scan over the function.  If we find any blocks that are
2288    // unreachable, remove any instructions inside of them.  This prevents
2289    // the instcombine code from having to deal with some bad special cases.
2290    for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
2291      if (Visited.count(BB)) continue;
2292
2293      // Delete the instructions backwards, as it has a reduced likelihood of
2294      // having to update as many def-use and use-def chains.
2295      Instruction *EndInst = BB->getTerminator(); // Last not to be deleted.
2296      while (EndInst != BB->begin()) {
2297        // Delete the next to last instruction.
2298        BasicBlock::iterator I = EndInst;
2299        Instruction *Inst = --I;
2300        if (!Inst->use_empty())
2301          Inst->replaceAllUsesWith(UndefValue::get(Inst->getType()));
2302        if (isa<LandingPadInst>(Inst)) {
2303          EndInst = Inst;
2304          continue;
2305        }
2306        if (!isa<DbgInfoIntrinsic>(Inst)) {
2307          ++NumDeadInst;
2308          MadeIRChange = true;
2309        }
2310        Inst->eraseFromParent();
2311      }
2312    }
2313  }
2314
2315  while (!Worklist.isEmpty()) {
2316    Instruction *I = Worklist.RemoveOne();
2317    if (I == 0) continue;  // skip null values.
2318
2319    // Check to see if we can DCE the instruction.
2320    if (isInstructionTriviallyDead(I, TLI)) {
2321      DEBUG(errs() << "IC: DCE: " << *I << '\n');
2322      EraseInstFromFunction(*I);
2323      ++NumDeadInst;
2324      MadeIRChange = true;
2325      continue;
2326    }
2327
2328    // Instruction isn't dead, see if we can constant propagate it.
2329    if (!I->use_empty() && isa<Constant>(I->getOperand(0)))
2330      if (Constant *C = ConstantFoldInstruction(I, TD, TLI)) {
2331        DEBUG(errs() << "IC: ConstFold to: " << *C << " from: " << *I << '\n');
2332
2333        // Add operands to the worklist.
2334        ReplaceInstUsesWith(*I, C);
2335        ++NumConstProp;
2336        EraseInstFromFunction(*I);
2337        MadeIRChange = true;
2338        continue;
2339      }
2340
2341    // See if we can trivially sink this instruction to a successor basic block.
2342    if (I->hasOneUse()) {
2343      BasicBlock *BB = I->getParent();
2344      Instruction *UserInst = cast<Instruction>(I->use_back());
2345      BasicBlock *UserParent;
2346
2347      // Get the block the use occurs in.
2348      if (PHINode *PN = dyn_cast<PHINode>(UserInst))
2349        UserParent = PN->getIncomingBlock(I->use_begin().getUse());
2350      else
2351        UserParent = UserInst->getParent();
2352
2353      if (UserParent != BB) {
2354        bool UserIsSuccessor = false;
2355        // See if the user is one of our successors.
2356        for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI)
2357          if (*SI == UserParent) {
2358            UserIsSuccessor = true;
2359            break;
2360          }
2361
2362        // If the user is one of our immediate successors, and if that successor
2363        // only has us as a predecessors (we'd have to split the critical edge
2364        // otherwise), we can keep going.
2365        if (UserIsSuccessor && UserParent->getSinglePredecessor())
2366          // Okay, the CFG is simple enough, try to sink this instruction.
2367          MadeIRChange |= TryToSinkInstruction(I, UserParent);
2368      }
2369    }
2370
2371    // Now that we have an instruction, try combining it to simplify it.
2372    Builder->SetInsertPoint(I->getParent(), I);
2373    Builder->SetCurrentDebugLocation(I->getDebugLoc());
2374
2375#ifndef NDEBUG
2376    std::string OrigI;
2377#endif
2378    DEBUG(raw_string_ostream SS(OrigI); I->print(SS); OrigI = SS.str(););
2379    DEBUG(errs() << "IC: Visiting: " << OrigI << '\n');
2380
2381    if (Instruction *Result = visit(*I)) {
2382      ++NumCombined;
2383      // Should we replace the old instruction with a new one?
2384      if (Result != I) {
2385        DEBUG(errs() << "IC: Old = " << *I << '\n'
2386                     << "    New = " << *Result << '\n');
2387
2388        if (!I->getDebugLoc().isUnknown())
2389          Result->setDebugLoc(I->getDebugLoc());
2390        // Everything uses the new instruction now.
2391        I->replaceAllUsesWith(Result);
2392
2393        // Move the name to the new instruction first.
2394        Result->takeName(I);
2395
2396        // Push the new instruction and any users onto the worklist.
2397        Worklist.Add(Result);
2398        Worklist.AddUsersToWorkList(*Result);
2399
2400        // Insert the new instruction into the basic block...
2401        BasicBlock *InstParent = I->getParent();
2402        BasicBlock::iterator InsertPos = I;
2403
2404        // If we replace a PHI with something that isn't a PHI, fix up the
2405        // insertion point.
2406        if (!isa<PHINode>(Result) && isa<PHINode>(InsertPos))
2407          InsertPos = InstParent->getFirstInsertionPt();
2408
2409        InstParent->getInstList().insert(InsertPos, Result);
2410
2411        EraseInstFromFunction(*I);
2412      } else {
2413#ifndef NDEBUG
2414        DEBUG(errs() << "IC: Mod = " << OrigI << '\n'
2415                     << "    New = " << *I << '\n');
2416#endif
2417
2418        // If the instruction was modified, it's possible that it is now dead.
2419        // if so, remove it.
2420        if (isInstructionTriviallyDead(I, TLI)) {
2421          EraseInstFromFunction(*I);
2422        } else {
2423          Worklist.Add(I);
2424          Worklist.AddUsersToWorkList(*I);
2425        }
2426      }
2427      MadeIRChange = true;
2428    }
2429  }
2430
2431  Worklist.Zap();
2432  return MadeIRChange;
2433}
2434
2435namespace {
2436class InstCombinerLibCallSimplifier : public LibCallSimplifier {
2437  InstCombiner *IC;
2438public:
2439  InstCombinerLibCallSimplifier(const DataLayout *TD,
2440                                const TargetLibraryInfo *TLI,
2441                                InstCombiner *IC)
2442    : LibCallSimplifier(TD, TLI, UnsafeFPShrink) {
2443    this->IC = IC;
2444  }
2445
2446  /// replaceAllUsesWith - override so that instruction replacement
2447  /// can be defined in terms of the instruction combiner framework.
2448  virtual void replaceAllUsesWith(Instruction *I, Value *With) const {
2449    IC->ReplaceInstUsesWith(*I, With);
2450  }
2451};
2452}
2453
2454bool InstCombiner::runOnFunction(Function &F) {
2455  TD = getAnalysisIfAvailable<DataLayout>();
2456  TLI = &getAnalysis<TargetLibraryInfo>();
2457  // Minimizing size?
2458  MinimizeSize = F.getAttributes().hasAttribute(AttributeSet::FunctionIndex,
2459                                                Attribute::MinSize);
2460
2461  /// Builder - This is an IRBuilder that automatically inserts new
2462  /// instructions into the worklist when they are created.
2463  IRBuilder<true, TargetFolder, InstCombineIRInserter>
2464    TheBuilder(F.getContext(), TargetFolder(TD),
2465               InstCombineIRInserter(Worklist));
2466  Builder = &TheBuilder;
2467
2468  InstCombinerLibCallSimplifier TheSimplifier(TD, TLI, this);
2469  Simplifier = &TheSimplifier;
2470
2471  bool EverMadeChange = false;
2472
2473  // Lower dbg.declare intrinsics otherwise their value may be clobbered
2474  // by instcombiner.
2475  EverMadeChange = LowerDbgDeclare(F);
2476
2477  // Iterate while there is work to do.
2478  unsigned Iteration = 0;
2479  while (DoOneIteration(F, Iteration++))
2480    EverMadeChange = true;
2481
2482  Builder = 0;
2483  return EverMadeChange;
2484}
2485
2486FunctionPass *llvm::createInstructionCombiningPass() {
2487  return new InstCombiner();
2488}
2489