InstructionCombining.cpp revision a3c44a5280042dbc0cde995675c225ede4528c6e
1//===- InstructionCombining.cpp - Combine multiple instructions -----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// InstructionCombining - Combine instructions to form fewer, simple
11// instructions.  This pass does not modify the CFG.  This pass is where
12// algebraic simplification happens.
13//
14// This pass combines things like:
15//    %Y = add i32 %X, 1
16//    %Z = add i32 %Y, 1
17// into:
18//    %Z = add i32 %X, 2
19//
20// This is a simple worklist driven algorithm.
21//
22// This pass guarantees that the following canonicalizations are performed on
23// the program:
24//    1. If a binary operator has a constant operand, it is moved to the RHS
25//    2. Bitwise operators with constant operands are always grouped so that
26//       shifts are performed first, then or's, then and's, then xor's.
27//    3. Compare instructions are converted from <,>,<=,>= to ==,!= if possible
28//    4. All cmp instructions on boolean values are replaced with logical ops
29//    5. add X, X is represented as (X*2) => (X << 1)
30//    6. Multiplies with a power-of-two constant argument are transformed into
31//       shifts.
32//   ... etc.
33//
34//===----------------------------------------------------------------------===//
35
36#define DEBUG_TYPE "instcombine"
37#include "llvm/Transforms/Scalar.h"
38#include "InstCombine.h"
39#include "llvm/IntrinsicInst.h"
40#include "llvm/Analysis/ConstantFolding.h"
41#include "llvm/Analysis/InstructionSimplify.h"
42#include "llvm/Analysis/MemoryBuiltins.h"
43#include "llvm/Target/TargetData.h"
44#include "llvm/Transforms/Utils/Local.h"
45#include "llvm/Support/CFG.h"
46#include "llvm/Support/Debug.h"
47#include "llvm/Support/GetElementPtrTypeIterator.h"
48#include "llvm/Support/PatternMatch.h"
49#include "llvm/ADT/SmallPtrSet.h"
50#include "llvm/ADT/Statistic.h"
51#include "llvm-c/Initialization.h"
52#include <algorithm>
53#include <climits>
54using namespace llvm;
55using namespace llvm::PatternMatch;
56
57STATISTIC(NumCombined , "Number of insts combined");
58STATISTIC(NumConstProp, "Number of constant folds");
59STATISTIC(NumDeadInst , "Number of dead inst eliminated");
60STATISTIC(NumSunkInst , "Number of instructions sunk");
61STATISTIC(NumFactor   , "Number of factorizations");
62STATISTIC(NumReassoc  , "Number of reassociations");
63
64// Initialization Routines
65void llvm::initializeInstCombine(PassRegistry &Registry) {
66  initializeInstCombinerPass(Registry);
67}
68
69void LLVMInitializeInstCombine(LLVMPassRegistryRef R) {
70  initializeInstCombine(*unwrap(R));
71}
72
73char InstCombiner::ID = 0;
74INITIALIZE_PASS(InstCombiner, "instcombine",
75                "Combine redundant instructions", false, false)
76
77void InstCombiner::getAnalysisUsage(AnalysisUsage &AU) const {
78  AU.addPreservedID(LCSSAID);
79  AU.setPreservesCFG();
80}
81
82
83/// ShouldChangeType - Return true if it is desirable to convert a computation
84/// from 'From' to 'To'.  We don't want to convert from a legal to an illegal
85/// type for example, or from a smaller to a larger illegal type.
86bool InstCombiner::ShouldChangeType(const Type *From, const Type *To) const {
87  assert(From->isIntegerTy() && To->isIntegerTy());
88
89  // If we don't have TD, we don't know if the source/dest are legal.
90  if (!TD) return false;
91
92  unsigned FromWidth = From->getPrimitiveSizeInBits();
93  unsigned ToWidth = To->getPrimitiveSizeInBits();
94  bool FromLegal = TD->isLegalInteger(FromWidth);
95  bool ToLegal = TD->isLegalInteger(ToWidth);
96
97  // If this is a legal integer from type, and the result would be an illegal
98  // type, don't do the transformation.
99  if (FromLegal && !ToLegal)
100    return false;
101
102  // Otherwise, if both are illegal, do not increase the size of the result. We
103  // do allow things like i160 -> i64, but not i64 -> i160.
104  if (!FromLegal && !ToLegal && ToWidth > FromWidth)
105    return false;
106
107  return true;
108}
109
110
111/// SimplifyAssociativeOrCommutative - This performs a few simplifications for
112/// operators which are associative or commutative:
113//
114//  Commutative operators:
115//
116//  1. Order operands such that they are listed from right (least complex) to
117//     left (most complex).  This puts constants before unary operators before
118//     binary operators.
119//
120//  Associative operators:
121//
122//  2. Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies.
123//  3. Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies.
124//
125//  Associative and commutative operators:
126//
127//  4. Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies.
128//  5. Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies.
129//  6. Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)"
130//     if C1 and C2 are constants.
131//
132bool InstCombiner::SimplifyAssociativeOrCommutative(BinaryOperator &I) {
133  Instruction::BinaryOps Opcode = I.getOpcode();
134  bool Changed = false;
135
136  do {
137    // Order operands such that they are listed from right (least complex) to
138    // left (most complex).  This puts constants before unary operators before
139    // binary operators.
140    if (I.isCommutative() && getComplexity(I.getOperand(0)) <
141        getComplexity(I.getOperand(1)))
142      Changed = !I.swapOperands();
143
144    BinaryOperator *Op0 = dyn_cast<BinaryOperator>(I.getOperand(0));
145    BinaryOperator *Op1 = dyn_cast<BinaryOperator>(I.getOperand(1));
146
147    if (I.isAssociative()) {
148      // Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies.
149      if (Op0 && Op0->getOpcode() == Opcode) {
150        Value *A = Op0->getOperand(0);
151        Value *B = Op0->getOperand(1);
152        Value *C = I.getOperand(1);
153
154        // Does "B op C" simplify?
155        if (Value *V = SimplifyBinOp(Opcode, B, C, TD)) {
156          // It simplifies to V.  Form "A op V".
157          I.setOperand(0, A);
158          I.setOperand(1, V);
159          Changed = true;
160          ++NumReassoc;
161          continue;
162        }
163      }
164
165      // Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies.
166      if (Op1 && Op1->getOpcode() == Opcode) {
167        Value *A = I.getOperand(0);
168        Value *B = Op1->getOperand(0);
169        Value *C = Op1->getOperand(1);
170
171        // Does "A op B" simplify?
172        if (Value *V = SimplifyBinOp(Opcode, A, B, TD)) {
173          // It simplifies to V.  Form "V op C".
174          I.setOperand(0, V);
175          I.setOperand(1, C);
176          Changed = true;
177          ++NumReassoc;
178          continue;
179        }
180      }
181    }
182
183    if (I.isAssociative() && I.isCommutative()) {
184      // Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies.
185      if (Op0 && Op0->getOpcode() == Opcode) {
186        Value *A = Op0->getOperand(0);
187        Value *B = Op0->getOperand(1);
188        Value *C = I.getOperand(1);
189
190        // Does "C op A" simplify?
191        if (Value *V = SimplifyBinOp(Opcode, C, A, TD)) {
192          // It simplifies to V.  Form "V op B".
193          I.setOperand(0, V);
194          I.setOperand(1, B);
195          Changed = true;
196          ++NumReassoc;
197          continue;
198        }
199      }
200
201      // Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies.
202      if (Op1 && Op1->getOpcode() == Opcode) {
203        Value *A = I.getOperand(0);
204        Value *B = Op1->getOperand(0);
205        Value *C = Op1->getOperand(1);
206
207        // Does "C op A" simplify?
208        if (Value *V = SimplifyBinOp(Opcode, C, A, TD)) {
209          // It simplifies to V.  Form "B op V".
210          I.setOperand(0, B);
211          I.setOperand(1, V);
212          Changed = true;
213          ++NumReassoc;
214          continue;
215        }
216      }
217
218      // Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)"
219      // if C1 and C2 are constants.
220      if (Op0 && Op1 &&
221          Op0->getOpcode() == Opcode && Op1->getOpcode() == Opcode &&
222          isa<Constant>(Op0->getOperand(1)) &&
223          isa<Constant>(Op1->getOperand(1)) &&
224          Op0->hasOneUse() && Op1->hasOneUse()) {
225        Value *A = Op0->getOperand(0);
226        Constant *C1 = cast<Constant>(Op0->getOperand(1));
227        Value *B = Op1->getOperand(0);
228        Constant *C2 = cast<Constant>(Op1->getOperand(1));
229
230        Constant *Folded = ConstantExpr::get(Opcode, C1, C2);
231        Instruction *New = BinaryOperator::Create(Opcode, A, B, Op1->getName(),
232                                                  &I);
233        Worklist.Add(New);
234        I.setOperand(0, New);
235        I.setOperand(1, Folded);
236        Changed = true;
237        continue;
238      }
239    }
240
241    // No further simplifications.
242    return Changed;
243  } while (1);
244}
245
246/// LeftDistributesOverRight - Whether "X LOp (Y ROp Z)" is always equal to
247/// "(X LOp Y) ROp (X LOp Z)".
248static bool LeftDistributesOverRight(Instruction::BinaryOps LOp,
249                                     Instruction::BinaryOps ROp) {
250  switch (LOp) {
251  default:
252    return false;
253
254  case Instruction::And:
255    // And distributes over Or and Xor.
256    switch (ROp) {
257    default:
258      return false;
259    case Instruction::Or:
260    case Instruction::Xor:
261      return true;
262    }
263
264  case Instruction::Mul:
265    // Multiplication distributes over addition and subtraction.
266    switch (ROp) {
267    default:
268      return false;
269    case Instruction::Add:
270    case Instruction::Sub:
271      return true;
272    }
273
274  case Instruction::Or:
275    // Or distributes over And.
276    switch (ROp) {
277    default:
278      return false;
279    case Instruction::And:
280      return true;
281    }
282  }
283}
284
285/// RightDistributesOverLeft - Whether "(X LOp Y) ROp Z" is always equal to
286/// "(X ROp Z) LOp (Y ROp Z)".
287static bool RightDistributesOverLeft(Instruction::BinaryOps LOp,
288                                     Instruction::BinaryOps ROp) {
289  if (Instruction::isCommutative(ROp))
290    return LeftDistributesOverRight(ROp, LOp);
291  // TODO: It would be nice to handle division, aka "(X + Y)/Z = X/Z + Y/Z",
292  // but this requires knowing that the addition does not overflow and other
293  // such subtleties.
294  return false;
295}
296
297/// SimplifyByFactorizing - This tries to simplify binary operations which
298/// some other binary operation distributes over by factorizing out a common
299/// term (eg "(A*B)+(A*C)" -> "A*(B+C)").  Returns the simplified value, or
300/// null if no simplification was performed.
301Instruction *InstCombiner::SimplifyByFactorizing(BinaryOperator &I) {
302  BinaryOperator *Op0 = dyn_cast<BinaryOperator>(I.getOperand(0));
303  BinaryOperator *Op1 = dyn_cast<BinaryOperator>(I.getOperand(1));
304  if (!Op0 || !Op1 || Op0->getOpcode() != Op1->getOpcode())
305    return 0;
306
307  // The instruction has the form "(A op' B) op (C op' D)".
308  Value *A = Op0->getOperand(0); Value *B = Op0->getOperand(1);
309  Value *C = Op1->getOperand(0); Value *D = Op1->getOperand(1);
310  Instruction::BinaryOps OuterOpcode = I.getOpcode(); // op
311  Instruction::BinaryOps InnerOpcode = Op0->getOpcode(); // op'
312
313  // Does "X op' Y" always equal "Y op' X"?
314  bool InnerCommutative = Instruction::isCommutative(InnerOpcode);
315
316  // Does "X op' (Y op Z)" always equal "(X op' Y) op (X op' Z)"?
317  if (LeftDistributesOverRight(InnerOpcode, OuterOpcode))
318    // Does the instruction have the form "(A op' B) op (A op' D)" or, in the
319    // commutative case, "(A op' B) op (C op' A)"?
320    if (A == C || (InnerCommutative && A == D)) {
321      if (A != C)
322        std::swap(C, D);
323      // Consider forming "A op' (B op D)".
324      // If "B op D" simplifies then it can be formed with no cost.
325      Value *RHS = SimplifyBinOp(OuterOpcode, B, D, TD);
326      // If "B op D" doesn't simplify then only proceed if both of the existing
327      // operations "A op' B" and "C op' D" will be zapped since no longer used.
328      if (!RHS && Op0->hasOneUse() && Op1->hasOneUse())
329        RHS = Builder->CreateBinOp(OuterOpcode, B, D, Op1->getName());
330      if (RHS) {
331        ++NumFactor;
332        return BinaryOperator::Create(InnerOpcode, A, RHS);
333      }
334    }
335
336  // Does "(X op Y) op' Z" always equal "(X op' Z) op (Y op' Z)"?
337  if (RightDistributesOverLeft(OuterOpcode, InnerOpcode))
338    // Does the instruction have the form "(A op' B) op (C op' B)" or, in the
339    // commutative case, "(A op' B) op (B op' D)"?
340    if (B == D || (InnerCommutative && B == C)) {
341      if (B != D)
342        std::swap(C, D);
343      // Consider forming "(A op C) op' B".
344      // If "A op C" simplifies then it can be formed with no cost.
345      Value *LHS = SimplifyBinOp(OuterOpcode, A, C, TD);
346      // If "A op C" doesn't simplify then only proceed if both of the existing
347      // operations "A op' B" and "C op' D" will be zapped since no longer used.
348      if (!LHS && Op0->hasOneUse() && Op1->hasOneUse())
349        LHS = Builder->CreateBinOp(OuterOpcode, A, C, Op0->getName());
350      if (LHS) {
351        ++NumFactor;
352        return BinaryOperator::Create(InnerOpcode, LHS, B);
353      }
354    }
355
356  return 0;
357}
358
359// dyn_castNegVal - Given a 'sub' instruction, return the RHS of the instruction
360// if the LHS is a constant zero (which is the 'negate' form).
361//
362Value *InstCombiner::dyn_castNegVal(Value *V) const {
363  if (BinaryOperator::isNeg(V))
364    return BinaryOperator::getNegArgument(V);
365
366  // Constants can be considered to be negated values if they can be folded.
367  if (ConstantInt *C = dyn_cast<ConstantInt>(V))
368    return ConstantExpr::getNeg(C);
369
370  if (ConstantVector *C = dyn_cast<ConstantVector>(V))
371    if (C->getType()->getElementType()->isIntegerTy())
372      return ConstantExpr::getNeg(C);
373
374  return 0;
375}
376
377// dyn_castFNegVal - Given a 'fsub' instruction, return the RHS of the
378// instruction if the LHS is a constant negative zero (which is the 'negate'
379// form).
380//
381Value *InstCombiner::dyn_castFNegVal(Value *V) const {
382  if (BinaryOperator::isFNeg(V))
383    return BinaryOperator::getFNegArgument(V);
384
385  // Constants can be considered to be negated values if they can be folded.
386  if (ConstantFP *C = dyn_cast<ConstantFP>(V))
387    return ConstantExpr::getFNeg(C);
388
389  if (ConstantVector *C = dyn_cast<ConstantVector>(V))
390    if (C->getType()->getElementType()->isFloatingPointTy())
391      return ConstantExpr::getFNeg(C);
392
393  return 0;
394}
395
396static Value *FoldOperationIntoSelectOperand(Instruction &I, Value *SO,
397                                             InstCombiner *IC) {
398  if (CastInst *CI = dyn_cast<CastInst>(&I))
399    return IC->Builder->CreateCast(CI->getOpcode(), SO, I.getType());
400
401  // Figure out if the constant is the left or the right argument.
402  bool ConstIsRHS = isa<Constant>(I.getOperand(1));
403  Constant *ConstOperand = cast<Constant>(I.getOperand(ConstIsRHS));
404
405  if (Constant *SOC = dyn_cast<Constant>(SO)) {
406    if (ConstIsRHS)
407      return ConstantExpr::get(I.getOpcode(), SOC, ConstOperand);
408    return ConstantExpr::get(I.getOpcode(), ConstOperand, SOC);
409  }
410
411  Value *Op0 = SO, *Op1 = ConstOperand;
412  if (!ConstIsRHS)
413    std::swap(Op0, Op1);
414
415  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(&I))
416    return IC->Builder->CreateBinOp(BO->getOpcode(), Op0, Op1,
417                                    SO->getName()+".op");
418  if (ICmpInst *CI = dyn_cast<ICmpInst>(&I))
419    return IC->Builder->CreateICmp(CI->getPredicate(), Op0, Op1,
420                                   SO->getName()+".cmp");
421  if (FCmpInst *CI = dyn_cast<FCmpInst>(&I))
422    return IC->Builder->CreateICmp(CI->getPredicate(), Op0, Op1,
423                                   SO->getName()+".cmp");
424  llvm_unreachable("Unknown binary instruction type!");
425}
426
427// FoldOpIntoSelect - Given an instruction with a select as one operand and a
428// constant as the other operand, try to fold the binary operator into the
429// select arguments.  This also works for Cast instructions, which obviously do
430// not have a second operand.
431Instruction *InstCombiner::FoldOpIntoSelect(Instruction &Op, SelectInst *SI) {
432  // Don't modify shared select instructions
433  if (!SI->hasOneUse()) return 0;
434  Value *TV = SI->getOperand(1);
435  Value *FV = SI->getOperand(2);
436
437  if (isa<Constant>(TV) || isa<Constant>(FV)) {
438    // Bool selects with constant operands can be folded to logical ops.
439    if (SI->getType()->isIntegerTy(1)) return 0;
440
441    Value *SelectTrueVal = FoldOperationIntoSelectOperand(Op, TV, this);
442    Value *SelectFalseVal = FoldOperationIntoSelectOperand(Op, FV, this);
443
444    return SelectInst::Create(SI->getCondition(), SelectTrueVal,
445                              SelectFalseVal);
446  }
447  return 0;
448}
449
450
451/// FoldOpIntoPhi - Given a binary operator, cast instruction, or select which
452/// has a PHI node as operand #0, see if we can fold the instruction into the
453/// PHI (which is only possible if all operands to the PHI are constants).
454///
455/// If AllowAggressive is true, FoldOpIntoPhi will allow certain transforms
456/// that would normally be unprofitable because they strongly encourage jump
457/// threading.
458Instruction *InstCombiner::FoldOpIntoPhi(Instruction &I,
459                                         bool AllowAggressive) {
460  AllowAggressive = false;
461  PHINode *PN = cast<PHINode>(I.getOperand(0));
462  unsigned NumPHIValues = PN->getNumIncomingValues();
463  if (NumPHIValues == 0 ||
464      // We normally only transform phis with a single use, unless we're trying
465      // hard to make jump threading happen.
466      (!PN->hasOneUse() && !AllowAggressive))
467    return 0;
468
469
470  // Check to see if all of the operands of the PHI are simple constants
471  // (constantint/constantfp/undef).  If there is one non-constant value,
472  // remember the BB it is in.  If there is more than one or if *it* is a PHI,
473  // bail out.  We don't do arbitrary constant expressions here because moving
474  // their computation can be expensive without a cost model.
475  BasicBlock *NonConstBB = 0;
476  for (unsigned i = 0; i != NumPHIValues; ++i)
477    if (!isa<Constant>(PN->getIncomingValue(i)) ||
478        isa<ConstantExpr>(PN->getIncomingValue(i))) {
479      if (NonConstBB) return 0;  // More than one non-const value.
480      if (isa<PHINode>(PN->getIncomingValue(i))) return 0;  // Itself a phi.
481      NonConstBB = PN->getIncomingBlock(i);
482
483      // If the incoming non-constant value is in I's block, we have an infinite
484      // loop.
485      if (NonConstBB == I.getParent())
486        return 0;
487    }
488
489  // If there is exactly one non-constant value, we can insert a copy of the
490  // operation in that block.  However, if this is a critical edge, we would be
491  // inserting the computation one some other paths (e.g. inside a loop).  Only
492  // do this if the pred block is unconditionally branching into the phi block.
493  if (NonConstBB != 0 && !AllowAggressive) {
494    BranchInst *BI = dyn_cast<BranchInst>(NonConstBB->getTerminator());
495    if (!BI || !BI->isUnconditional()) return 0;
496  }
497
498  // Okay, we can do the transformation: create the new PHI node.
499  PHINode *NewPN = PHINode::Create(I.getType(), "");
500  NewPN->reserveOperandSpace(PN->getNumOperands()/2);
501  InsertNewInstBefore(NewPN, *PN);
502  NewPN->takeName(PN);
503
504  // Next, add all of the operands to the PHI.
505  if (SelectInst *SI = dyn_cast<SelectInst>(&I)) {
506    // We only currently try to fold the condition of a select when it is a phi,
507    // not the true/false values.
508    Value *TrueV = SI->getTrueValue();
509    Value *FalseV = SI->getFalseValue();
510    BasicBlock *PhiTransBB = PN->getParent();
511    for (unsigned i = 0; i != NumPHIValues; ++i) {
512      BasicBlock *ThisBB = PN->getIncomingBlock(i);
513      Value *TrueVInPred = TrueV->DoPHITranslation(PhiTransBB, ThisBB);
514      Value *FalseVInPred = FalseV->DoPHITranslation(PhiTransBB, ThisBB);
515      Value *InV = 0;
516      if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i))) {
517        InV = InC->isNullValue() ? FalseVInPred : TrueVInPred;
518      } else {
519        assert(PN->getIncomingBlock(i) == NonConstBB);
520        InV = SelectInst::Create(PN->getIncomingValue(i), TrueVInPred,
521                                 FalseVInPred,
522                                 "phitmp", NonConstBB->getTerminator());
523        Worklist.Add(cast<Instruction>(InV));
524      }
525      NewPN->addIncoming(InV, ThisBB);
526    }
527  } else if (I.getNumOperands() == 2) {
528    Constant *C = cast<Constant>(I.getOperand(1));
529    for (unsigned i = 0; i != NumPHIValues; ++i) {
530      Value *InV = 0;
531      if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i))) {
532        if (CmpInst *CI = dyn_cast<CmpInst>(&I))
533          InV = ConstantExpr::getCompare(CI->getPredicate(), InC, C);
534        else
535          InV = ConstantExpr::get(I.getOpcode(), InC, C);
536      } else {
537        assert(PN->getIncomingBlock(i) == NonConstBB);
538        if (BinaryOperator *BO = dyn_cast<BinaryOperator>(&I))
539          InV = BinaryOperator::Create(BO->getOpcode(),
540                                       PN->getIncomingValue(i), C, "phitmp",
541                                       NonConstBB->getTerminator());
542        else if (CmpInst *CI = dyn_cast<CmpInst>(&I))
543          InV = CmpInst::Create(CI->getOpcode(),
544                                CI->getPredicate(),
545                                PN->getIncomingValue(i), C, "phitmp",
546                                NonConstBB->getTerminator());
547        else
548          llvm_unreachable("Unknown binop!");
549
550        Worklist.Add(cast<Instruction>(InV));
551      }
552      NewPN->addIncoming(InV, PN->getIncomingBlock(i));
553    }
554  } else {
555    CastInst *CI = cast<CastInst>(&I);
556    const Type *RetTy = CI->getType();
557    for (unsigned i = 0; i != NumPHIValues; ++i) {
558      Value *InV;
559      if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i))) {
560        InV = ConstantExpr::getCast(CI->getOpcode(), InC, RetTy);
561      } else {
562        assert(PN->getIncomingBlock(i) == NonConstBB);
563        InV = CastInst::Create(CI->getOpcode(), PN->getIncomingValue(i),
564                               I.getType(), "phitmp",
565                               NonConstBB->getTerminator());
566        Worklist.Add(cast<Instruction>(InV));
567      }
568      NewPN->addIncoming(InV, PN->getIncomingBlock(i));
569    }
570  }
571  return ReplaceInstUsesWith(I, NewPN);
572}
573
574/// FindElementAtOffset - Given a type and a constant offset, determine whether
575/// or not there is a sequence of GEP indices into the type that will land us at
576/// the specified offset.  If so, fill them into NewIndices and return the
577/// resultant element type, otherwise return null.
578const Type *InstCombiner::FindElementAtOffset(const Type *Ty, int64_t Offset,
579                                          SmallVectorImpl<Value*> &NewIndices) {
580  if (!TD) return 0;
581  if (!Ty->isSized()) return 0;
582
583  // Start with the index over the outer type.  Note that the type size
584  // might be zero (even if the offset isn't zero) if the indexed type
585  // is something like [0 x {int, int}]
586  const Type *IntPtrTy = TD->getIntPtrType(Ty->getContext());
587  int64_t FirstIdx = 0;
588  if (int64_t TySize = TD->getTypeAllocSize(Ty)) {
589    FirstIdx = Offset/TySize;
590    Offset -= FirstIdx*TySize;
591
592    // Handle hosts where % returns negative instead of values [0..TySize).
593    if (Offset < 0) {
594      --FirstIdx;
595      Offset += TySize;
596      assert(Offset >= 0);
597    }
598    assert((uint64_t)Offset < (uint64_t)TySize && "Out of range offset");
599  }
600
601  NewIndices.push_back(ConstantInt::get(IntPtrTy, FirstIdx));
602
603  // Index into the types.  If we fail, set OrigBase to null.
604  while (Offset) {
605    // Indexing into tail padding between struct/array elements.
606    if (uint64_t(Offset*8) >= TD->getTypeSizeInBits(Ty))
607      return 0;
608
609    if (const StructType *STy = dyn_cast<StructType>(Ty)) {
610      const StructLayout *SL = TD->getStructLayout(STy);
611      assert(Offset < (int64_t)SL->getSizeInBytes() &&
612             "Offset must stay within the indexed type");
613
614      unsigned Elt = SL->getElementContainingOffset(Offset);
615      NewIndices.push_back(ConstantInt::get(Type::getInt32Ty(Ty->getContext()),
616                                            Elt));
617
618      Offset -= SL->getElementOffset(Elt);
619      Ty = STy->getElementType(Elt);
620    } else if (const ArrayType *AT = dyn_cast<ArrayType>(Ty)) {
621      uint64_t EltSize = TD->getTypeAllocSize(AT->getElementType());
622      assert(EltSize && "Cannot index into a zero-sized array");
623      NewIndices.push_back(ConstantInt::get(IntPtrTy,Offset/EltSize));
624      Offset %= EltSize;
625      Ty = AT->getElementType();
626    } else {
627      // Otherwise, we can't index into the middle of this atomic type, bail.
628      return 0;
629    }
630  }
631
632  return Ty;
633}
634
635
636
637Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) {
638  SmallVector<Value*, 8> Ops(GEP.op_begin(), GEP.op_end());
639
640  if (Value *V = SimplifyGEPInst(&Ops[0], Ops.size(), TD))
641    return ReplaceInstUsesWith(GEP, V);
642
643  Value *PtrOp = GEP.getOperand(0);
644
645  // Eliminate unneeded casts for indices, and replace indices which displace
646  // by multiples of a zero size type with zero.
647  if (TD) {
648    bool MadeChange = false;
649    const Type *IntPtrTy = TD->getIntPtrType(GEP.getContext());
650
651    gep_type_iterator GTI = gep_type_begin(GEP);
652    for (User::op_iterator I = GEP.op_begin() + 1, E = GEP.op_end();
653         I != E; ++I, ++GTI) {
654      // Skip indices into struct types.
655      const SequentialType *SeqTy = dyn_cast<SequentialType>(*GTI);
656      if (!SeqTy) continue;
657
658      // If the element type has zero size then any index over it is equivalent
659      // to an index of zero, so replace it with zero if it is not zero already.
660      if (SeqTy->getElementType()->isSized() &&
661          TD->getTypeAllocSize(SeqTy->getElementType()) == 0)
662        if (!isa<Constant>(*I) || !cast<Constant>(*I)->isNullValue()) {
663          *I = Constant::getNullValue(IntPtrTy);
664          MadeChange = true;
665        }
666
667      if ((*I)->getType() != IntPtrTy) {
668        // If we are using a wider index than needed for this platform, shrink
669        // it to what we need.  If narrower, sign-extend it to what we need.
670        // This explicit cast can make subsequent optimizations more obvious.
671        *I = Builder->CreateIntCast(*I, IntPtrTy, true);
672        MadeChange = true;
673      }
674    }
675    if (MadeChange) return &GEP;
676  }
677
678  // Combine Indices - If the source pointer to this getelementptr instruction
679  // is a getelementptr instruction, combine the indices of the two
680  // getelementptr instructions into a single instruction.
681  //
682  if (GEPOperator *Src = dyn_cast<GEPOperator>(PtrOp)) {
683    // Note that if our source is a gep chain itself that we wait for that
684    // chain to be resolved before we perform this transformation.  This
685    // avoids us creating a TON of code in some cases.
686    //
687    if (GetElementPtrInst *SrcGEP =
688          dyn_cast<GetElementPtrInst>(Src->getOperand(0)))
689      if (SrcGEP->getNumOperands() == 2)
690        return 0;   // Wait until our source is folded to completion.
691
692    SmallVector<Value*, 8> Indices;
693
694    // Find out whether the last index in the source GEP is a sequential idx.
695    bool EndsWithSequential = false;
696    for (gep_type_iterator I = gep_type_begin(*Src), E = gep_type_end(*Src);
697         I != E; ++I)
698      EndsWithSequential = !(*I)->isStructTy();
699
700    // Can we combine the two pointer arithmetics offsets?
701    if (EndsWithSequential) {
702      // Replace: gep (gep %P, long B), long A, ...
703      // With:    T = long A+B; gep %P, T, ...
704      //
705      Value *Sum;
706      Value *SO1 = Src->getOperand(Src->getNumOperands()-1);
707      Value *GO1 = GEP.getOperand(1);
708      if (SO1 == Constant::getNullValue(SO1->getType())) {
709        Sum = GO1;
710      } else if (GO1 == Constant::getNullValue(GO1->getType())) {
711        Sum = SO1;
712      } else {
713        // If they aren't the same type, then the input hasn't been processed
714        // by the loop above yet (which canonicalizes sequential index types to
715        // intptr_t).  Just avoid transforming this until the input has been
716        // normalized.
717        if (SO1->getType() != GO1->getType())
718          return 0;
719        Sum = Builder->CreateAdd(SO1, GO1, PtrOp->getName()+".sum");
720      }
721
722      // Update the GEP in place if possible.
723      if (Src->getNumOperands() == 2) {
724        GEP.setOperand(0, Src->getOperand(0));
725        GEP.setOperand(1, Sum);
726        return &GEP;
727      }
728      Indices.append(Src->op_begin()+1, Src->op_end()-1);
729      Indices.push_back(Sum);
730      Indices.append(GEP.op_begin()+2, GEP.op_end());
731    } else if (isa<Constant>(*GEP.idx_begin()) &&
732               cast<Constant>(*GEP.idx_begin())->isNullValue() &&
733               Src->getNumOperands() != 1) {
734      // Otherwise we can do the fold if the first index of the GEP is a zero
735      Indices.append(Src->op_begin()+1, Src->op_end());
736      Indices.append(GEP.idx_begin()+1, GEP.idx_end());
737    }
738
739    if (!Indices.empty())
740      return (GEP.isInBounds() && Src->isInBounds()) ?
741        GetElementPtrInst::CreateInBounds(Src->getOperand(0), Indices.begin(),
742                                          Indices.end(), GEP.getName()) :
743        GetElementPtrInst::Create(Src->getOperand(0), Indices.begin(),
744                                  Indices.end(), GEP.getName());
745  }
746
747  // Handle gep(bitcast x) and gep(gep x, 0, 0, 0).
748  Value *StrippedPtr = PtrOp->stripPointerCasts();
749  if (StrippedPtr != PtrOp) {
750    const PointerType *StrippedPtrTy =cast<PointerType>(StrippedPtr->getType());
751
752    bool HasZeroPointerIndex = false;
753    if (ConstantInt *C = dyn_cast<ConstantInt>(GEP.getOperand(1)))
754      HasZeroPointerIndex = C->isZero();
755
756    // Transform: GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ...
757    // into     : GEP [10 x i8]* X, i32 0, ...
758    //
759    // Likewise, transform: GEP (bitcast i8* X to [0 x i8]*), i32 0, ...
760    //           into     : GEP i8* X, ...
761    //
762    // This occurs when the program declares an array extern like "int X[];"
763    if (HasZeroPointerIndex) {
764      const PointerType *CPTy = cast<PointerType>(PtrOp->getType());
765      if (const ArrayType *CATy =
766          dyn_cast<ArrayType>(CPTy->getElementType())) {
767        // GEP (bitcast i8* X to [0 x i8]*), i32 0, ... ?
768        if (CATy->getElementType() == StrippedPtrTy->getElementType()) {
769          // -> GEP i8* X, ...
770          SmallVector<Value*, 8> Idx(GEP.idx_begin()+1, GEP.idx_end());
771          GetElementPtrInst *Res =
772            GetElementPtrInst::Create(StrippedPtr, Idx.begin(),
773                                      Idx.end(), GEP.getName());
774          Res->setIsInBounds(GEP.isInBounds());
775          return Res;
776        }
777
778        if (const ArrayType *XATy =
779              dyn_cast<ArrayType>(StrippedPtrTy->getElementType())){
780          // GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ... ?
781          if (CATy->getElementType() == XATy->getElementType()) {
782            // -> GEP [10 x i8]* X, i32 0, ...
783            // At this point, we know that the cast source type is a pointer
784            // to an array of the same type as the destination pointer
785            // array.  Because the array type is never stepped over (there
786            // is a leading zero) we can fold the cast into this GEP.
787            GEP.setOperand(0, StrippedPtr);
788            return &GEP;
789          }
790        }
791      }
792    } else if (GEP.getNumOperands() == 2) {
793      // Transform things like:
794      // %t = getelementptr i32* bitcast ([2 x i32]* %str to i32*), i32 %V
795      // into:  %t1 = getelementptr [2 x i32]* %str, i32 0, i32 %V; bitcast
796      const Type *SrcElTy = StrippedPtrTy->getElementType();
797      const Type *ResElTy=cast<PointerType>(PtrOp->getType())->getElementType();
798      if (TD && SrcElTy->isArrayTy() &&
799          TD->getTypeAllocSize(cast<ArrayType>(SrcElTy)->getElementType()) ==
800          TD->getTypeAllocSize(ResElTy)) {
801        Value *Idx[2];
802        Idx[0] = Constant::getNullValue(Type::getInt32Ty(GEP.getContext()));
803        Idx[1] = GEP.getOperand(1);
804        Value *NewGEP = GEP.isInBounds() ?
805          Builder->CreateInBoundsGEP(StrippedPtr, Idx, Idx + 2, GEP.getName()) :
806          Builder->CreateGEP(StrippedPtr, Idx, Idx + 2, GEP.getName());
807        // V and GEP are both pointer types --> BitCast
808        return new BitCastInst(NewGEP, GEP.getType());
809      }
810
811      // Transform things like:
812      // getelementptr i8* bitcast ([100 x double]* X to i8*), i32 %tmp
813      //   (where tmp = 8*tmp2) into:
814      // getelementptr [100 x double]* %arr, i32 0, i32 %tmp2; bitcast
815
816      if (TD && SrcElTy->isArrayTy() && ResElTy->isIntegerTy(8)) {
817        uint64_t ArrayEltSize =
818            TD->getTypeAllocSize(cast<ArrayType>(SrcElTy)->getElementType());
819
820        // Check to see if "tmp" is a scale by a multiple of ArrayEltSize.  We
821        // allow either a mul, shift, or constant here.
822        Value *NewIdx = 0;
823        ConstantInt *Scale = 0;
824        if (ArrayEltSize == 1) {
825          NewIdx = GEP.getOperand(1);
826          Scale = ConstantInt::get(cast<IntegerType>(NewIdx->getType()), 1);
827        } else if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP.getOperand(1))) {
828          NewIdx = ConstantInt::get(CI->getType(), 1);
829          Scale = CI;
830        } else if (Instruction *Inst =dyn_cast<Instruction>(GEP.getOperand(1))){
831          if (Inst->getOpcode() == Instruction::Shl &&
832              isa<ConstantInt>(Inst->getOperand(1))) {
833            ConstantInt *ShAmt = cast<ConstantInt>(Inst->getOperand(1));
834            uint32_t ShAmtVal = ShAmt->getLimitedValue(64);
835            Scale = ConstantInt::get(cast<IntegerType>(Inst->getType()),
836                                     1ULL << ShAmtVal);
837            NewIdx = Inst->getOperand(0);
838          } else if (Inst->getOpcode() == Instruction::Mul &&
839                     isa<ConstantInt>(Inst->getOperand(1))) {
840            Scale = cast<ConstantInt>(Inst->getOperand(1));
841            NewIdx = Inst->getOperand(0);
842          }
843        }
844
845        // If the index will be to exactly the right offset with the scale taken
846        // out, perform the transformation. Note, we don't know whether Scale is
847        // signed or not. We'll use unsigned version of division/modulo
848        // operation after making sure Scale doesn't have the sign bit set.
849        if (ArrayEltSize && Scale && Scale->getSExtValue() >= 0LL &&
850            Scale->getZExtValue() % ArrayEltSize == 0) {
851          Scale = ConstantInt::get(Scale->getType(),
852                                   Scale->getZExtValue() / ArrayEltSize);
853          if (Scale->getZExtValue() != 1) {
854            Constant *C = ConstantExpr::getIntegerCast(Scale, NewIdx->getType(),
855                                                       false /*ZExt*/);
856            NewIdx = Builder->CreateMul(NewIdx, C, "idxscale");
857          }
858
859          // Insert the new GEP instruction.
860          Value *Idx[2];
861          Idx[0] = Constant::getNullValue(Type::getInt32Ty(GEP.getContext()));
862          Idx[1] = NewIdx;
863          Value *NewGEP = GEP.isInBounds() ?
864            Builder->CreateInBoundsGEP(StrippedPtr, Idx, Idx + 2,GEP.getName()):
865            Builder->CreateGEP(StrippedPtr, Idx, Idx + 2, GEP.getName());
866          // The NewGEP must be pointer typed, so must the old one -> BitCast
867          return new BitCastInst(NewGEP, GEP.getType());
868        }
869      }
870    }
871  }
872
873  /// See if we can simplify:
874  ///   X = bitcast A* to B*
875  ///   Y = gep X, <...constant indices...>
876  /// into a gep of the original struct.  This is important for SROA and alias
877  /// analysis of unions.  If "A" is also a bitcast, wait for A/X to be merged.
878  if (BitCastInst *BCI = dyn_cast<BitCastInst>(PtrOp)) {
879    if (TD &&
880        !isa<BitCastInst>(BCI->getOperand(0)) && GEP.hasAllConstantIndices()) {
881      // Determine how much the GEP moves the pointer.  We are guaranteed to get
882      // a constant back from EmitGEPOffset.
883      ConstantInt *OffsetV = cast<ConstantInt>(EmitGEPOffset(&GEP));
884      int64_t Offset = OffsetV->getSExtValue();
885
886      // If this GEP instruction doesn't move the pointer, just replace the GEP
887      // with a bitcast of the real input to the dest type.
888      if (Offset == 0) {
889        // If the bitcast is of an allocation, and the allocation will be
890        // converted to match the type of the cast, don't touch this.
891        if (isa<AllocaInst>(BCI->getOperand(0)) ||
892            isMalloc(BCI->getOperand(0))) {
893          // See if the bitcast simplifies, if so, don't nuke this GEP yet.
894          if (Instruction *I = visitBitCast(*BCI)) {
895            if (I != BCI) {
896              I->takeName(BCI);
897              BCI->getParent()->getInstList().insert(BCI, I);
898              ReplaceInstUsesWith(*BCI, I);
899            }
900            return &GEP;
901          }
902        }
903        return new BitCastInst(BCI->getOperand(0), GEP.getType());
904      }
905
906      // Otherwise, if the offset is non-zero, we need to find out if there is a
907      // field at Offset in 'A's type.  If so, we can pull the cast through the
908      // GEP.
909      SmallVector<Value*, 8> NewIndices;
910      const Type *InTy =
911        cast<PointerType>(BCI->getOperand(0)->getType())->getElementType();
912      if (FindElementAtOffset(InTy, Offset, NewIndices)) {
913        Value *NGEP = GEP.isInBounds() ?
914          Builder->CreateInBoundsGEP(BCI->getOperand(0), NewIndices.begin(),
915                                     NewIndices.end()) :
916          Builder->CreateGEP(BCI->getOperand(0), NewIndices.begin(),
917                             NewIndices.end());
918
919        if (NGEP->getType() == GEP.getType())
920          return ReplaceInstUsesWith(GEP, NGEP);
921        NGEP->takeName(&GEP);
922        return new BitCastInst(NGEP, GEP.getType());
923      }
924    }
925  }
926
927  return 0;
928}
929
930
931
932static bool IsOnlyNullComparedAndFreed(const Value &V) {
933  for (Value::const_use_iterator UI = V.use_begin(), UE = V.use_end();
934       UI != UE; ++UI) {
935    const User *U = *UI;
936    if (isFreeCall(U))
937      continue;
938    if (const ICmpInst *ICI = dyn_cast<ICmpInst>(U))
939      if (ICI->isEquality() && isa<ConstantPointerNull>(ICI->getOperand(1)))
940        continue;
941    return false;
942  }
943  return true;
944}
945
946Instruction *InstCombiner::visitMalloc(Instruction &MI) {
947  // If we have a malloc call which is only used in any amount of comparisons
948  // to null and free calls, delete the calls and replace the comparisons with
949  // true or false as appropriate.
950  if (IsOnlyNullComparedAndFreed(MI)) {
951    for (Value::use_iterator UI = MI.use_begin(), UE = MI.use_end();
952         UI != UE;) {
953      // We can assume that every remaining use is a free call or an icmp eq/ne
954      // to null, so the cast is safe.
955      Instruction *I = cast<Instruction>(*UI);
956
957      // Early increment here, as we're about to get rid of the user.
958      ++UI;
959
960      if (isFreeCall(I)) {
961        EraseInstFromFunction(*cast<CallInst>(I));
962        continue;
963      }
964      // Again, the cast is safe.
965      ICmpInst *C = cast<ICmpInst>(I);
966      ReplaceInstUsesWith(*C, ConstantInt::get(Type::getInt1Ty(C->getContext()),
967                                               C->isFalseWhenEqual()));
968      EraseInstFromFunction(*C);
969    }
970    return EraseInstFromFunction(MI);
971  }
972  return 0;
973}
974
975
976
977Instruction *InstCombiner::visitFree(CallInst &FI) {
978  Value *Op = FI.getArgOperand(0);
979
980  // free undef -> unreachable.
981  if (isa<UndefValue>(Op)) {
982    // Insert a new store to null because we cannot modify the CFG here.
983    new StoreInst(ConstantInt::getTrue(FI.getContext()),
984           UndefValue::get(Type::getInt1PtrTy(FI.getContext())), &FI);
985    return EraseInstFromFunction(FI);
986  }
987
988  // If we have 'free null' delete the instruction.  This can happen in stl code
989  // when lots of inlining happens.
990  if (isa<ConstantPointerNull>(Op))
991    return EraseInstFromFunction(FI);
992
993  return 0;
994}
995
996
997
998Instruction *InstCombiner::visitBranchInst(BranchInst &BI) {
999  // Change br (not X), label True, label False to: br X, label False, True
1000  Value *X = 0;
1001  BasicBlock *TrueDest;
1002  BasicBlock *FalseDest;
1003  if (match(&BI, m_Br(m_Not(m_Value(X)), TrueDest, FalseDest)) &&
1004      !isa<Constant>(X)) {
1005    // Swap Destinations and condition...
1006    BI.setCondition(X);
1007    BI.setSuccessor(0, FalseDest);
1008    BI.setSuccessor(1, TrueDest);
1009    return &BI;
1010  }
1011
1012  // Cannonicalize fcmp_one -> fcmp_oeq
1013  FCmpInst::Predicate FPred; Value *Y;
1014  if (match(&BI, m_Br(m_FCmp(FPred, m_Value(X), m_Value(Y)),
1015                             TrueDest, FalseDest)) &&
1016      BI.getCondition()->hasOneUse())
1017    if (FPred == FCmpInst::FCMP_ONE || FPred == FCmpInst::FCMP_OLE ||
1018        FPred == FCmpInst::FCMP_OGE) {
1019      FCmpInst *Cond = cast<FCmpInst>(BI.getCondition());
1020      Cond->setPredicate(FCmpInst::getInversePredicate(FPred));
1021
1022      // Swap Destinations and condition.
1023      BI.setSuccessor(0, FalseDest);
1024      BI.setSuccessor(1, TrueDest);
1025      Worklist.Add(Cond);
1026      return &BI;
1027    }
1028
1029  // Cannonicalize icmp_ne -> icmp_eq
1030  ICmpInst::Predicate IPred;
1031  if (match(&BI, m_Br(m_ICmp(IPred, m_Value(X), m_Value(Y)),
1032                      TrueDest, FalseDest)) &&
1033      BI.getCondition()->hasOneUse())
1034    if (IPred == ICmpInst::ICMP_NE  || IPred == ICmpInst::ICMP_ULE ||
1035        IPred == ICmpInst::ICMP_SLE || IPred == ICmpInst::ICMP_UGE ||
1036        IPred == ICmpInst::ICMP_SGE) {
1037      ICmpInst *Cond = cast<ICmpInst>(BI.getCondition());
1038      Cond->setPredicate(ICmpInst::getInversePredicate(IPred));
1039      // Swap Destinations and condition.
1040      BI.setSuccessor(0, FalseDest);
1041      BI.setSuccessor(1, TrueDest);
1042      Worklist.Add(Cond);
1043      return &BI;
1044    }
1045
1046  return 0;
1047}
1048
1049Instruction *InstCombiner::visitSwitchInst(SwitchInst &SI) {
1050  Value *Cond = SI.getCondition();
1051  if (Instruction *I = dyn_cast<Instruction>(Cond)) {
1052    if (I->getOpcode() == Instruction::Add)
1053      if (ConstantInt *AddRHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
1054        // change 'switch (X+4) case 1:' into 'switch (X) case -3'
1055        for (unsigned i = 2, e = SI.getNumOperands(); i != e; i += 2)
1056          SI.setOperand(i,
1057                   ConstantExpr::getSub(cast<Constant>(SI.getOperand(i)),
1058                                                AddRHS));
1059        SI.setOperand(0, I->getOperand(0));
1060        Worklist.Add(I);
1061        return &SI;
1062      }
1063  }
1064  return 0;
1065}
1066
1067Instruction *InstCombiner::visitExtractValueInst(ExtractValueInst &EV) {
1068  Value *Agg = EV.getAggregateOperand();
1069
1070  if (!EV.hasIndices())
1071    return ReplaceInstUsesWith(EV, Agg);
1072
1073  if (Constant *C = dyn_cast<Constant>(Agg)) {
1074    if (isa<UndefValue>(C))
1075      return ReplaceInstUsesWith(EV, UndefValue::get(EV.getType()));
1076
1077    if (isa<ConstantAggregateZero>(C))
1078      return ReplaceInstUsesWith(EV, Constant::getNullValue(EV.getType()));
1079
1080    if (isa<ConstantArray>(C) || isa<ConstantStruct>(C)) {
1081      // Extract the element indexed by the first index out of the constant
1082      Value *V = C->getOperand(*EV.idx_begin());
1083      if (EV.getNumIndices() > 1)
1084        // Extract the remaining indices out of the constant indexed by the
1085        // first index
1086        return ExtractValueInst::Create(V, EV.idx_begin() + 1, EV.idx_end());
1087      else
1088        return ReplaceInstUsesWith(EV, V);
1089    }
1090    return 0; // Can't handle other constants
1091  }
1092  if (InsertValueInst *IV = dyn_cast<InsertValueInst>(Agg)) {
1093    // We're extracting from an insertvalue instruction, compare the indices
1094    const unsigned *exti, *exte, *insi, *inse;
1095    for (exti = EV.idx_begin(), insi = IV->idx_begin(),
1096         exte = EV.idx_end(), inse = IV->idx_end();
1097         exti != exte && insi != inse;
1098         ++exti, ++insi) {
1099      if (*insi != *exti)
1100        // The insert and extract both reference distinctly different elements.
1101        // This means the extract is not influenced by the insert, and we can
1102        // replace the aggregate operand of the extract with the aggregate
1103        // operand of the insert. i.e., replace
1104        // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
1105        // %E = extractvalue { i32, { i32 } } %I, 0
1106        // with
1107        // %E = extractvalue { i32, { i32 } } %A, 0
1108        return ExtractValueInst::Create(IV->getAggregateOperand(),
1109                                        EV.idx_begin(), EV.idx_end());
1110    }
1111    if (exti == exte && insi == inse)
1112      // Both iterators are at the end: Index lists are identical. Replace
1113      // %B = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
1114      // %C = extractvalue { i32, { i32 } } %B, 1, 0
1115      // with "i32 42"
1116      return ReplaceInstUsesWith(EV, IV->getInsertedValueOperand());
1117    if (exti == exte) {
1118      // The extract list is a prefix of the insert list. i.e. replace
1119      // %I = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
1120      // %E = extractvalue { i32, { i32 } } %I, 1
1121      // with
1122      // %X = extractvalue { i32, { i32 } } %A, 1
1123      // %E = insertvalue { i32 } %X, i32 42, 0
1124      // by switching the order of the insert and extract (though the
1125      // insertvalue should be left in, since it may have other uses).
1126      Value *NewEV = Builder->CreateExtractValue(IV->getAggregateOperand(),
1127                                                 EV.idx_begin(), EV.idx_end());
1128      return InsertValueInst::Create(NewEV, IV->getInsertedValueOperand(),
1129                                     insi, inse);
1130    }
1131    if (insi == inse)
1132      // The insert list is a prefix of the extract list
1133      // We can simply remove the common indices from the extract and make it
1134      // operate on the inserted value instead of the insertvalue result.
1135      // i.e., replace
1136      // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
1137      // %E = extractvalue { i32, { i32 } } %I, 1, 0
1138      // with
1139      // %E extractvalue { i32 } { i32 42 }, 0
1140      return ExtractValueInst::Create(IV->getInsertedValueOperand(),
1141                                      exti, exte);
1142  }
1143  if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Agg)) {
1144    // We're extracting from an intrinsic, see if we're the only user, which
1145    // allows us to simplify multiple result intrinsics to simpler things that
1146    // just get one value.
1147    if (II->hasOneUse()) {
1148      // Check if we're grabbing the overflow bit or the result of a 'with
1149      // overflow' intrinsic.  If it's the latter we can remove the intrinsic
1150      // and replace it with a traditional binary instruction.
1151      switch (II->getIntrinsicID()) {
1152      case Intrinsic::uadd_with_overflow:
1153      case Intrinsic::sadd_with_overflow:
1154        if (*EV.idx_begin() == 0) {  // Normal result.
1155          Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1);
1156          II->replaceAllUsesWith(UndefValue::get(II->getType()));
1157          EraseInstFromFunction(*II);
1158          return BinaryOperator::CreateAdd(LHS, RHS);
1159        }
1160
1161        // If the normal result of the add is dead, and the RHS is a constant,
1162        // we can transform this into a range comparison.
1163        // overflow = uadd a, -4  -->  overflow = icmp ugt a, 3
1164        if (II->getIntrinsicID() == Intrinsic::uadd_with_overflow)
1165          if (ConstantInt *CI = dyn_cast<ConstantInt>(II->getArgOperand(1)))
1166            return new ICmpInst(ICmpInst::ICMP_UGT, II->getArgOperand(0),
1167                                ConstantExpr::getNot(CI));
1168        break;
1169      case Intrinsic::usub_with_overflow:
1170      case Intrinsic::ssub_with_overflow:
1171        if (*EV.idx_begin() == 0) {  // Normal result.
1172          Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1);
1173          II->replaceAllUsesWith(UndefValue::get(II->getType()));
1174          EraseInstFromFunction(*II);
1175          return BinaryOperator::CreateSub(LHS, RHS);
1176        }
1177        break;
1178      case Intrinsic::umul_with_overflow:
1179      case Intrinsic::smul_with_overflow:
1180        if (*EV.idx_begin() == 0) {  // Normal result.
1181          Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1);
1182          II->replaceAllUsesWith(UndefValue::get(II->getType()));
1183          EraseInstFromFunction(*II);
1184          return BinaryOperator::CreateMul(LHS, RHS);
1185        }
1186        break;
1187      default:
1188        break;
1189      }
1190    }
1191  }
1192  if (LoadInst *L = dyn_cast<LoadInst>(Agg))
1193    // If the (non-volatile) load only has one use, we can rewrite this to a
1194    // load from a GEP. This reduces the size of the load.
1195    // FIXME: If a load is used only by extractvalue instructions then this
1196    //        could be done regardless of having multiple uses.
1197    if (!L->isVolatile() && L->hasOneUse()) {
1198      // extractvalue has integer indices, getelementptr has Value*s. Convert.
1199      SmallVector<Value*, 4> Indices;
1200      // Prefix an i32 0 since we need the first element.
1201      Indices.push_back(Builder->getInt32(0));
1202      for (ExtractValueInst::idx_iterator I = EV.idx_begin(), E = EV.idx_end();
1203            I != E; ++I)
1204        Indices.push_back(Builder->getInt32(*I));
1205
1206      // We need to insert these at the location of the old load, not at that of
1207      // the extractvalue.
1208      Builder->SetInsertPoint(L->getParent(), L);
1209      Value *GEP = Builder->CreateInBoundsGEP(L->getPointerOperand(),
1210                                              Indices.begin(), Indices.end());
1211      // Returning the load directly will cause the main loop to insert it in
1212      // the wrong spot, so use ReplaceInstUsesWith().
1213      return ReplaceInstUsesWith(EV, Builder->CreateLoad(GEP));
1214    }
1215  // We could simplify extracts from other values. Note that nested extracts may
1216  // already be simplified implicitly by the above: extract (extract (insert) )
1217  // will be translated into extract ( insert ( extract ) ) first and then just
1218  // the value inserted, if appropriate. Similarly for extracts from single-use
1219  // loads: extract (extract (load)) will be translated to extract (load (gep))
1220  // and if again single-use then via load (gep (gep)) to load (gep).
1221  // However, double extracts from e.g. function arguments or return values
1222  // aren't handled yet.
1223  return 0;
1224}
1225
1226
1227
1228
1229/// TryToSinkInstruction - Try to move the specified instruction from its
1230/// current block into the beginning of DestBlock, which can only happen if it's
1231/// safe to move the instruction past all of the instructions between it and the
1232/// end of its block.
1233static bool TryToSinkInstruction(Instruction *I, BasicBlock *DestBlock) {
1234  assert(I->hasOneUse() && "Invariants didn't hold!");
1235
1236  // Cannot move control-flow-involving, volatile loads, vaarg, etc.
1237  if (isa<PHINode>(I) || I->mayHaveSideEffects() || isa<TerminatorInst>(I))
1238    return false;
1239
1240  // Do not sink alloca instructions out of the entry block.
1241  if (isa<AllocaInst>(I) && I->getParent() ==
1242        &DestBlock->getParent()->getEntryBlock())
1243    return false;
1244
1245  // We can only sink load instructions if there is nothing between the load and
1246  // the end of block that could change the value.
1247  if (I->mayReadFromMemory()) {
1248    for (BasicBlock::iterator Scan = I, E = I->getParent()->end();
1249         Scan != E; ++Scan)
1250      if (Scan->mayWriteToMemory())
1251        return false;
1252  }
1253
1254  BasicBlock::iterator InsertPos = DestBlock->getFirstNonPHI();
1255
1256  I->moveBefore(InsertPos);
1257  ++NumSunkInst;
1258  return true;
1259}
1260
1261
1262/// AddReachableCodeToWorklist - Walk the function in depth-first order, adding
1263/// all reachable code to the worklist.
1264///
1265/// This has a couple of tricks to make the code faster and more powerful.  In
1266/// particular, we constant fold and DCE instructions as we go, to avoid adding
1267/// them to the worklist (this significantly speeds up instcombine on code where
1268/// many instructions are dead or constant).  Additionally, if we find a branch
1269/// whose condition is a known constant, we only visit the reachable successors.
1270///
1271static bool AddReachableCodeToWorklist(BasicBlock *BB,
1272                                       SmallPtrSet<BasicBlock*, 64> &Visited,
1273                                       InstCombiner &IC,
1274                                       const TargetData *TD) {
1275  bool MadeIRChange = false;
1276  SmallVector<BasicBlock*, 256> Worklist;
1277  Worklist.push_back(BB);
1278
1279  SmallVector<Instruction*, 128> InstrsForInstCombineWorklist;
1280  SmallPtrSet<ConstantExpr*, 64> FoldedConstants;
1281
1282  do {
1283    BB = Worklist.pop_back_val();
1284
1285    // We have now visited this block!  If we've already been here, ignore it.
1286    if (!Visited.insert(BB)) continue;
1287
1288    for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) {
1289      Instruction *Inst = BBI++;
1290
1291      // DCE instruction if trivially dead.
1292      if (isInstructionTriviallyDead(Inst)) {
1293        ++NumDeadInst;
1294        DEBUG(errs() << "IC: DCE: " << *Inst << '\n');
1295        Inst->eraseFromParent();
1296        continue;
1297      }
1298
1299      // ConstantProp instruction if trivially constant.
1300      if (!Inst->use_empty() && isa<Constant>(Inst->getOperand(0)))
1301        if (Constant *C = ConstantFoldInstruction(Inst, TD)) {
1302          DEBUG(errs() << "IC: ConstFold to: " << *C << " from: "
1303                       << *Inst << '\n');
1304          Inst->replaceAllUsesWith(C);
1305          ++NumConstProp;
1306          Inst->eraseFromParent();
1307          continue;
1308        }
1309
1310      if (TD) {
1311        // See if we can constant fold its operands.
1312        for (User::op_iterator i = Inst->op_begin(), e = Inst->op_end();
1313             i != e; ++i) {
1314          ConstantExpr *CE = dyn_cast<ConstantExpr>(i);
1315          if (CE == 0) continue;
1316
1317          // If we already folded this constant, don't try again.
1318          if (!FoldedConstants.insert(CE))
1319            continue;
1320
1321          Constant *NewC = ConstantFoldConstantExpression(CE, TD);
1322          if (NewC && NewC != CE) {
1323            *i = NewC;
1324            MadeIRChange = true;
1325          }
1326        }
1327      }
1328
1329      InstrsForInstCombineWorklist.push_back(Inst);
1330    }
1331
1332    // Recursively visit successors.  If this is a branch or switch on a
1333    // constant, only visit the reachable successor.
1334    TerminatorInst *TI = BB->getTerminator();
1335    if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
1336      if (BI->isConditional() && isa<ConstantInt>(BI->getCondition())) {
1337        bool CondVal = cast<ConstantInt>(BI->getCondition())->getZExtValue();
1338        BasicBlock *ReachableBB = BI->getSuccessor(!CondVal);
1339        Worklist.push_back(ReachableBB);
1340        continue;
1341      }
1342    } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
1343      if (ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition())) {
1344        // See if this is an explicit destination.
1345        for (unsigned i = 1, e = SI->getNumSuccessors(); i != e; ++i)
1346          if (SI->getCaseValue(i) == Cond) {
1347            BasicBlock *ReachableBB = SI->getSuccessor(i);
1348            Worklist.push_back(ReachableBB);
1349            continue;
1350          }
1351
1352        // Otherwise it is the default destination.
1353        Worklist.push_back(SI->getSuccessor(0));
1354        continue;
1355      }
1356    }
1357
1358    for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
1359      Worklist.push_back(TI->getSuccessor(i));
1360  } while (!Worklist.empty());
1361
1362  // Once we've found all of the instructions to add to instcombine's worklist,
1363  // add them in reverse order.  This way instcombine will visit from the top
1364  // of the function down.  This jives well with the way that it adds all uses
1365  // of instructions to the worklist after doing a transformation, thus avoiding
1366  // some N^2 behavior in pathological cases.
1367  IC.Worklist.AddInitialGroup(&InstrsForInstCombineWorklist[0],
1368                              InstrsForInstCombineWorklist.size());
1369
1370  return MadeIRChange;
1371}
1372
1373bool InstCombiner::DoOneIteration(Function &F, unsigned Iteration) {
1374  MadeIRChange = false;
1375
1376  DEBUG(errs() << "\n\nINSTCOMBINE ITERATION #" << Iteration << " on "
1377        << F.getNameStr() << "\n");
1378
1379  {
1380    // Do a depth-first traversal of the function, populate the worklist with
1381    // the reachable instructions.  Ignore blocks that are not reachable.  Keep
1382    // track of which blocks we visit.
1383    SmallPtrSet<BasicBlock*, 64> Visited;
1384    MadeIRChange |= AddReachableCodeToWorklist(F.begin(), Visited, *this, TD);
1385
1386    // Do a quick scan over the function.  If we find any blocks that are
1387    // unreachable, remove any instructions inside of them.  This prevents
1388    // the instcombine code from having to deal with some bad special cases.
1389    for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
1390      if (!Visited.count(BB)) {
1391        Instruction *Term = BB->getTerminator();
1392        while (Term != BB->begin()) {   // Remove instrs bottom-up
1393          BasicBlock::iterator I = Term; --I;
1394
1395          DEBUG(errs() << "IC: DCE: " << *I << '\n');
1396          // A debug intrinsic shouldn't force another iteration if we weren't
1397          // going to do one without it.
1398          if (!isa<DbgInfoIntrinsic>(I)) {
1399            ++NumDeadInst;
1400            MadeIRChange = true;
1401          }
1402
1403          // If I is not void type then replaceAllUsesWith undef.
1404          // This allows ValueHandlers and custom metadata to adjust itself.
1405          if (!I->getType()->isVoidTy())
1406            I->replaceAllUsesWith(UndefValue::get(I->getType()));
1407          I->eraseFromParent();
1408        }
1409      }
1410  }
1411
1412  while (!Worklist.isEmpty()) {
1413    Instruction *I = Worklist.RemoveOne();
1414    if (I == 0) continue;  // skip null values.
1415
1416    // Check to see if we can DCE the instruction.
1417    if (isInstructionTriviallyDead(I)) {
1418      DEBUG(errs() << "IC: DCE: " << *I << '\n');
1419      EraseInstFromFunction(*I);
1420      ++NumDeadInst;
1421      MadeIRChange = true;
1422      continue;
1423    }
1424
1425    // Instruction isn't dead, see if we can constant propagate it.
1426    if (!I->use_empty() && isa<Constant>(I->getOperand(0)))
1427      if (Constant *C = ConstantFoldInstruction(I, TD)) {
1428        DEBUG(errs() << "IC: ConstFold to: " << *C << " from: " << *I << '\n');
1429
1430        // Add operands to the worklist.
1431        ReplaceInstUsesWith(*I, C);
1432        ++NumConstProp;
1433        EraseInstFromFunction(*I);
1434        MadeIRChange = true;
1435        continue;
1436      }
1437
1438    // See if we can trivially sink this instruction to a successor basic block.
1439    if (I->hasOneUse()) {
1440      BasicBlock *BB = I->getParent();
1441      Instruction *UserInst = cast<Instruction>(I->use_back());
1442      BasicBlock *UserParent;
1443
1444      // Get the block the use occurs in.
1445      if (PHINode *PN = dyn_cast<PHINode>(UserInst))
1446        UserParent = PN->getIncomingBlock(I->use_begin().getUse());
1447      else
1448        UserParent = UserInst->getParent();
1449
1450      if (UserParent != BB) {
1451        bool UserIsSuccessor = false;
1452        // See if the user is one of our successors.
1453        for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI)
1454          if (*SI == UserParent) {
1455            UserIsSuccessor = true;
1456            break;
1457          }
1458
1459        // If the user is one of our immediate successors, and if that successor
1460        // only has us as a predecessors (we'd have to split the critical edge
1461        // otherwise), we can keep going.
1462        if (UserIsSuccessor && UserParent->getSinglePredecessor())
1463          // Okay, the CFG is simple enough, try to sink this instruction.
1464          MadeIRChange |= TryToSinkInstruction(I, UserParent);
1465      }
1466    }
1467
1468    // Now that we have an instruction, try combining it to simplify it.
1469    Builder->SetInsertPoint(I->getParent(), I);
1470
1471#ifndef NDEBUG
1472    std::string OrigI;
1473#endif
1474    DEBUG(raw_string_ostream SS(OrigI); I->print(SS); OrigI = SS.str(););
1475    DEBUG(errs() << "IC: Visiting: " << OrigI << '\n');
1476
1477    if (Instruction *Result = visit(*I)) {
1478      ++NumCombined;
1479      // Should we replace the old instruction with a new one?
1480      if (Result != I) {
1481        DEBUG(errs() << "IC: Old = " << *I << '\n'
1482                     << "    New = " << *Result << '\n');
1483
1484        // Everything uses the new instruction now.
1485        I->replaceAllUsesWith(Result);
1486
1487        // Push the new instruction and any users onto the worklist.
1488        Worklist.Add(Result);
1489        Worklist.AddUsersToWorkList(*Result);
1490
1491        // Move the name to the new instruction first.
1492        Result->takeName(I);
1493
1494        // Insert the new instruction into the basic block...
1495        BasicBlock *InstParent = I->getParent();
1496        BasicBlock::iterator InsertPos = I;
1497
1498        if (!isa<PHINode>(Result))        // If combining a PHI, don't insert
1499          while (isa<PHINode>(InsertPos)) // middle of a block of PHIs.
1500            ++InsertPos;
1501
1502        InstParent->getInstList().insert(InsertPos, Result);
1503
1504        EraseInstFromFunction(*I);
1505      } else {
1506#ifndef NDEBUG
1507        DEBUG(errs() << "IC: Mod = " << OrigI << '\n'
1508                     << "    New = " << *I << '\n');
1509#endif
1510
1511        // If the instruction was modified, it's possible that it is now dead.
1512        // if so, remove it.
1513        if (isInstructionTriviallyDead(I)) {
1514          EraseInstFromFunction(*I);
1515        } else {
1516          Worklist.Add(I);
1517          Worklist.AddUsersToWorkList(*I);
1518        }
1519      }
1520      MadeIRChange = true;
1521    }
1522  }
1523
1524  Worklist.Zap();
1525  return MadeIRChange;
1526}
1527
1528
1529bool InstCombiner::runOnFunction(Function &F) {
1530  MustPreserveLCSSA = mustPreserveAnalysisID(LCSSAID);
1531  TD = getAnalysisIfAvailable<TargetData>();
1532
1533
1534  /// Builder - This is an IRBuilder that automatically inserts new
1535  /// instructions into the worklist when they are created.
1536  IRBuilder<true, TargetFolder, InstCombineIRInserter>
1537    TheBuilder(F.getContext(), TargetFolder(TD),
1538               InstCombineIRInserter(Worklist));
1539  Builder = &TheBuilder;
1540
1541  bool EverMadeChange = false;
1542
1543  // Iterate while there is work to do.
1544  unsigned Iteration = 0;
1545  while (DoOneIteration(F, Iteration++))
1546    EverMadeChange = true;
1547
1548  Builder = 0;
1549  return EverMadeChange;
1550}
1551
1552FunctionPass *llvm::createInstructionCombiningPass() {
1553  return new InstCombiner();
1554}
1555