InstructionCombining.cpp revision aab8e28d5e470711d80276bbf717408c3ab966fd
1//===- InstructionCombining.cpp - Combine multiple instructions -----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// InstructionCombining - Combine instructions to form fewer, simple
11// instructions.  This pass does not modify the CFG.  This pass is where
12// algebraic simplification happens.
13//
14// This pass combines things like:
15//    %Y = add i32 %X, 1
16//    %Z = add i32 %Y, 1
17// into:
18//    %Z = add i32 %X, 2
19//
20// This is a simple worklist driven algorithm.
21//
22// This pass guarantees that the following canonicalizations are performed on
23// the program:
24//    1. If a binary operator has a constant operand, it is moved to the RHS
25//    2. Bitwise operators with constant operands are always grouped so that
26//       shifts are performed first, then or's, then and's, then xor's.
27//    3. Compare instructions are converted from <,>,<=,>= to ==,!= if possible
28//    4. All cmp instructions on boolean values are replaced with logical ops
29//    5. add X, X is represented as (X*2) => (X << 1)
30//    6. Multiplies with a power-of-two constant argument are transformed into
31//       shifts.
32//   ... etc.
33//
34//===----------------------------------------------------------------------===//
35
36#define DEBUG_TYPE "instcombine"
37#include "llvm/Transforms/Scalar.h"
38#include "InstCombine.h"
39#include "llvm/IntrinsicInst.h"
40#include "llvm/Analysis/ConstantFolding.h"
41#include "llvm/Analysis/InstructionSimplify.h"
42#include "llvm/Analysis/MemoryBuiltins.h"
43#include "llvm/Target/TargetData.h"
44#include "llvm/Target/TargetLibraryInfo.h"
45#include "llvm/Transforms/Utils/Local.h"
46#include "llvm/Support/CFG.h"
47#include "llvm/Support/Debug.h"
48#include "llvm/Support/GetElementPtrTypeIterator.h"
49#include "llvm/Support/PatternMatch.h"
50#include "llvm/Support/ValueHandle.h"
51#include "llvm/ADT/SmallPtrSet.h"
52#include "llvm/ADT/Statistic.h"
53#include "llvm/ADT/StringSwitch.h"
54#include "llvm-c/Initialization.h"
55#include <algorithm>
56#include <climits>
57using namespace llvm;
58using namespace llvm::PatternMatch;
59
60STATISTIC(NumCombined , "Number of insts combined");
61STATISTIC(NumConstProp, "Number of constant folds");
62STATISTIC(NumDeadInst , "Number of dead inst eliminated");
63STATISTIC(NumSunkInst , "Number of instructions sunk");
64STATISTIC(NumExpand,    "Number of expansions");
65STATISTIC(NumFactor   , "Number of factorizations");
66STATISTIC(NumReassoc  , "Number of reassociations");
67
68// Initialization Routines
69void llvm::initializeInstCombine(PassRegistry &Registry) {
70  initializeInstCombinerPass(Registry);
71}
72
73void LLVMInitializeInstCombine(LLVMPassRegistryRef R) {
74  initializeInstCombine(*unwrap(R));
75}
76
77char InstCombiner::ID = 0;
78INITIALIZE_PASS_BEGIN(InstCombiner, "instcombine",
79                "Combine redundant instructions", false, false)
80INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo)
81INITIALIZE_PASS_END(InstCombiner, "instcombine",
82                "Combine redundant instructions", false, false)
83
84void InstCombiner::getAnalysisUsage(AnalysisUsage &AU) const {
85  AU.setPreservesCFG();
86  AU.addRequired<TargetLibraryInfo>();
87}
88
89
90/// ShouldChangeType - Return true if it is desirable to convert a computation
91/// from 'From' to 'To'.  We don't want to convert from a legal to an illegal
92/// type for example, or from a smaller to a larger illegal type.
93bool InstCombiner::ShouldChangeType(Type *From, Type *To) const {
94  assert(From->isIntegerTy() && To->isIntegerTy());
95
96  // If we don't have TD, we don't know if the source/dest are legal.
97  if (!TD) return false;
98
99  unsigned FromWidth = From->getPrimitiveSizeInBits();
100  unsigned ToWidth = To->getPrimitiveSizeInBits();
101  bool FromLegal = TD->isLegalInteger(FromWidth);
102  bool ToLegal = TD->isLegalInteger(ToWidth);
103
104  // If this is a legal integer from type, and the result would be an illegal
105  // type, don't do the transformation.
106  if (FromLegal && !ToLegal)
107    return false;
108
109  // Otherwise, if both are illegal, do not increase the size of the result. We
110  // do allow things like i160 -> i64, but not i64 -> i160.
111  if (!FromLegal && !ToLegal && ToWidth > FromWidth)
112    return false;
113
114  return true;
115}
116
117// Return true, if No Signed Wrap should be maintained for I.
118// The No Signed Wrap flag can be kept if the operation "B (I.getOpcode) C",
119// where both B and C should be ConstantInts, results in a constant that does
120// not overflow. This function only handles the Add and Sub opcodes. For
121// all other opcodes, the function conservatively returns false.
122static bool MaintainNoSignedWrap(BinaryOperator &I, Value *B, Value *C) {
123  OverflowingBinaryOperator *OBO = dyn_cast<OverflowingBinaryOperator>(&I);
124  if (!OBO || !OBO->hasNoSignedWrap()) {
125    return false;
126  }
127
128  // We reason about Add and Sub Only.
129  Instruction::BinaryOps Opcode = I.getOpcode();
130  if (Opcode != Instruction::Add &&
131      Opcode != Instruction::Sub) {
132    return false;
133  }
134
135  ConstantInt *CB = dyn_cast<ConstantInt>(B);
136  ConstantInt *CC = dyn_cast<ConstantInt>(C);
137
138  if (!CB || !CC) {
139    return false;
140  }
141
142  const APInt &BVal = CB->getValue();
143  const APInt &CVal = CC->getValue();
144  bool Overflow = false;
145
146  if (Opcode == Instruction::Add) {
147    BVal.sadd_ov(CVal, Overflow);
148  } else {
149    BVal.ssub_ov(CVal, Overflow);
150  }
151
152  return !Overflow;
153}
154
155/// SimplifyAssociativeOrCommutative - This performs a few simplifications for
156/// operators which are associative or commutative:
157//
158//  Commutative operators:
159//
160//  1. Order operands such that they are listed from right (least complex) to
161//     left (most complex).  This puts constants before unary operators before
162//     binary operators.
163//
164//  Associative operators:
165//
166//  2. Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies.
167//  3. Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies.
168//
169//  Associative and commutative operators:
170//
171//  4. Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies.
172//  5. Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies.
173//  6. Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)"
174//     if C1 and C2 are constants.
175//
176bool InstCombiner::SimplifyAssociativeOrCommutative(BinaryOperator &I) {
177  Instruction::BinaryOps Opcode = I.getOpcode();
178  bool Changed = false;
179
180  do {
181    // Order operands such that they are listed from right (least complex) to
182    // left (most complex).  This puts constants before unary operators before
183    // binary operators.
184    if (I.isCommutative() && getComplexity(I.getOperand(0)) <
185        getComplexity(I.getOperand(1)))
186      Changed = !I.swapOperands();
187
188    BinaryOperator *Op0 = dyn_cast<BinaryOperator>(I.getOperand(0));
189    BinaryOperator *Op1 = dyn_cast<BinaryOperator>(I.getOperand(1));
190
191    if (I.isAssociative()) {
192      // Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies.
193      if (Op0 && Op0->getOpcode() == Opcode) {
194        Value *A = Op0->getOperand(0);
195        Value *B = Op0->getOperand(1);
196        Value *C = I.getOperand(1);
197
198        // Does "B op C" simplify?
199        if (Value *V = SimplifyBinOp(Opcode, B, C, TD)) {
200          // It simplifies to V.  Form "A op V".
201          I.setOperand(0, A);
202          I.setOperand(1, V);
203          // Conservatively clear the optional flags, since they may not be
204          // preserved by the reassociation.
205          if (MaintainNoSignedWrap(I, B, C) &&
206	      (!Op0 || (isa<BinaryOperator>(Op0) && Op0->hasNoSignedWrap()))) {
207            // Note: this is only valid because SimplifyBinOp doesn't look at
208            // the operands to Op0.
209            I.clearSubclassOptionalData();
210            I.setHasNoSignedWrap(true);
211          } else {
212            I.clearSubclassOptionalData();
213          }
214
215          Changed = true;
216          ++NumReassoc;
217          continue;
218        }
219      }
220
221      // Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies.
222      if (Op1 && Op1->getOpcode() == Opcode) {
223        Value *A = I.getOperand(0);
224        Value *B = Op1->getOperand(0);
225        Value *C = Op1->getOperand(1);
226
227        // Does "A op B" simplify?
228        if (Value *V = SimplifyBinOp(Opcode, A, B, TD)) {
229          // It simplifies to V.  Form "V op C".
230          I.setOperand(0, V);
231          I.setOperand(1, C);
232          // Conservatively clear the optional flags, since they may not be
233          // preserved by the reassociation.
234          I.clearSubclassOptionalData();
235          Changed = true;
236          ++NumReassoc;
237          continue;
238        }
239      }
240    }
241
242    if (I.isAssociative() && I.isCommutative()) {
243      // Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies.
244      if (Op0 && Op0->getOpcode() == Opcode) {
245        Value *A = Op0->getOperand(0);
246        Value *B = Op0->getOperand(1);
247        Value *C = I.getOperand(1);
248
249        // Does "C op A" simplify?
250        if (Value *V = SimplifyBinOp(Opcode, C, A, TD)) {
251          // It simplifies to V.  Form "V op B".
252          I.setOperand(0, V);
253          I.setOperand(1, B);
254          // Conservatively clear the optional flags, since they may not be
255          // preserved by the reassociation.
256          I.clearSubclassOptionalData();
257          Changed = true;
258          ++NumReassoc;
259          continue;
260        }
261      }
262
263      // Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies.
264      if (Op1 && Op1->getOpcode() == Opcode) {
265        Value *A = I.getOperand(0);
266        Value *B = Op1->getOperand(0);
267        Value *C = Op1->getOperand(1);
268
269        // Does "C op A" simplify?
270        if (Value *V = SimplifyBinOp(Opcode, C, A, TD)) {
271          // It simplifies to V.  Form "B op V".
272          I.setOperand(0, B);
273          I.setOperand(1, V);
274          // Conservatively clear the optional flags, since they may not be
275          // preserved by the reassociation.
276          I.clearSubclassOptionalData();
277          Changed = true;
278          ++NumReassoc;
279          continue;
280        }
281      }
282
283      // Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)"
284      // if C1 and C2 are constants.
285      if (Op0 && Op1 &&
286          Op0->getOpcode() == Opcode && Op1->getOpcode() == Opcode &&
287          isa<Constant>(Op0->getOperand(1)) &&
288          isa<Constant>(Op1->getOperand(1)) &&
289          Op0->hasOneUse() && Op1->hasOneUse()) {
290        Value *A = Op0->getOperand(0);
291        Constant *C1 = cast<Constant>(Op0->getOperand(1));
292        Value *B = Op1->getOperand(0);
293        Constant *C2 = cast<Constant>(Op1->getOperand(1));
294
295        Constant *Folded = ConstantExpr::get(Opcode, C1, C2);
296        BinaryOperator *New = BinaryOperator::Create(Opcode, A, B);
297        InsertNewInstWith(New, I);
298        New->takeName(Op1);
299        I.setOperand(0, New);
300        I.setOperand(1, Folded);
301        // Conservatively clear the optional flags, since they may not be
302        // preserved by the reassociation.
303        I.clearSubclassOptionalData();
304
305        Changed = true;
306        continue;
307      }
308    }
309
310    // No further simplifications.
311    return Changed;
312  } while (1);
313}
314
315/// LeftDistributesOverRight - Whether "X LOp (Y ROp Z)" is always equal to
316/// "(X LOp Y) ROp (X LOp Z)".
317static bool LeftDistributesOverRight(Instruction::BinaryOps LOp,
318                                     Instruction::BinaryOps ROp) {
319  switch (LOp) {
320  default:
321    return false;
322
323  case Instruction::And:
324    // And distributes over Or and Xor.
325    switch (ROp) {
326    default:
327      return false;
328    case Instruction::Or:
329    case Instruction::Xor:
330      return true;
331    }
332
333  case Instruction::Mul:
334    // Multiplication distributes over addition and subtraction.
335    switch (ROp) {
336    default:
337      return false;
338    case Instruction::Add:
339    case Instruction::Sub:
340      return true;
341    }
342
343  case Instruction::Or:
344    // Or distributes over And.
345    switch (ROp) {
346    default:
347      return false;
348    case Instruction::And:
349      return true;
350    }
351  }
352}
353
354/// RightDistributesOverLeft - Whether "(X LOp Y) ROp Z" is always equal to
355/// "(X ROp Z) LOp (Y ROp Z)".
356static bool RightDistributesOverLeft(Instruction::BinaryOps LOp,
357                                     Instruction::BinaryOps ROp) {
358  if (Instruction::isCommutative(ROp))
359    return LeftDistributesOverRight(ROp, LOp);
360  // TODO: It would be nice to handle division, aka "(X + Y)/Z = X/Z + Y/Z",
361  // but this requires knowing that the addition does not overflow and other
362  // such subtleties.
363  return false;
364}
365
366/// SimplifyUsingDistributiveLaws - This tries to simplify binary operations
367/// which some other binary operation distributes over either by factorizing
368/// out common terms (eg "(A*B)+(A*C)" -> "A*(B+C)") or expanding out if this
369/// results in simplifications (eg: "A & (B | C) -> (A&B) | (A&C)" if this is
370/// a win).  Returns the simplified value, or null if it didn't simplify.
371Value *InstCombiner::SimplifyUsingDistributiveLaws(BinaryOperator &I) {
372  Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
373  BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS);
374  BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS);
375  Instruction::BinaryOps TopLevelOpcode = I.getOpcode(); // op
376
377  // Factorization.
378  if (Op0 && Op1 && Op0->getOpcode() == Op1->getOpcode()) {
379    // The instruction has the form "(A op' B) op (C op' D)".  Try to factorize
380    // a common term.
381    Value *A = Op0->getOperand(0), *B = Op0->getOperand(1);
382    Value *C = Op1->getOperand(0), *D = Op1->getOperand(1);
383    Instruction::BinaryOps InnerOpcode = Op0->getOpcode(); // op'
384
385    // Does "X op' Y" always equal "Y op' X"?
386    bool InnerCommutative = Instruction::isCommutative(InnerOpcode);
387
388    // Does "X op' (Y op Z)" always equal "(X op' Y) op (X op' Z)"?
389    if (LeftDistributesOverRight(InnerOpcode, TopLevelOpcode))
390      // Does the instruction have the form "(A op' B) op (A op' D)" or, in the
391      // commutative case, "(A op' B) op (C op' A)"?
392      if (A == C || (InnerCommutative && A == D)) {
393        if (A != C)
394          std::swap(C, D);
395        // Consider forming "A op' (B op D)".
396        // If "B op D" simplifies then it can be formed with no cost.
397        Value *V = SimplifyBinOp(TopLevelOpcode, B, D, TD);
398        // If "B op D" doesn't simplify then only go on if both of the existing
399        // operations "A op' B" and "C op' D" will be zapped as no longer used.
400        if (!V && Op0->hasOneUse() && Op1->hasOneUse())
401          V = Builder->CreateBinOp(TopLevelOpcode, B, D, Op1->getName());
402        if (V) {
403          ++NumFactor;
404          V = Builder->CreateBinOp(InnerOpcode, A, V);
405          V->takeName(&I);
406          return V;
407        }
408      }
409
410    // Does "(X op Y) op' Z" always equal "(X op' Z) op (Y op' Z)"?
411    if (RightDistributesOverLeft(TopLevelOpcode, InnerOpcode))
412      // Does the instruction have the form "(A op' B) op (C op' B)" or, in the
413      // commutative case, "(A op' B) op (B op' D)"?
414      if (B == D || (InnerCommutative && B == C)) {
415        if (B != D)
416          std::swap(C, D);
417        // Consider forming "(A op C) op' B".
418        // If "A op C" simplifies then it can be formed with no cost.
419        Value *V = SimplifyBinOp(TopLevelOpcode, A, C, TD);
420        // If "A op C" doesn't simplify then only go on if both of the existing
421        // operations "A op' B" and "C op' D" will be zapped as no longer used.
422        if (!V && Op0->hasOneUse() && Op1->hasOneUse())
423          V = Builder->CreateBinOp(TopLevelOpcode, A, C, Op0->getName());
424        if (V) {
425          ++NumFactor;
426          V = Builder->CreateBinOp(InnerOpcode, V, B);
427          V->takeName(&I);
428          return V;
429        }
430      }
431  }
432
433  // Expansion.
434  if (Op0 && RightDistributesOverLeft(Op0->getOpcode(), TopLevelOpcode)) {
435    // The instruction has the form "(A op' B) op C".  See if expanding it out
436    // to "(A op C) op' (B op C)" results in simplifications.
437    Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS;
438    Instruction::BinaryOps InnerOpcode = Op0->getOpcode(); // op'
439
440    // Do "A op C" and "B op C" both simplify?
441    if (Value *L = SimplifyBinOp(TopLevelOpcode, A, C, TD))
442      if (Value *R = SimplifyBinOp(TopLevelOpcode, B, C, TD)) {
443        // They do! Return "L op' R".
444        ++NumExpand;
445        // If "L op' R" equals "A op' B" then "L op' R" is just the LHS.
446        if ((L == A && R == B) ||
447            (Instruction::isCommutative(InnerOpcode) && L == B && R == A))
448          return Op0;
449        // Otherwise return "L op' R" if it simplifies.
450        if (Value *V = SimplifyBinOp(InnerOpcode, L, R, TD))
451          return V;
452        // Otherwise, create a new instruction.
453        C = Builder->CreateBinOp(InnerOpcode, L, R);
454        C->takeName(&I);
455        return C;
456      }
457  }
458
459  if (Op1 && LeftDistributesOverRight(TopLevelOpcode, Op1->getOpcode())) {
460    // The instruction has the form "A op (B op' C)".  See if expanding it out
461    // to "(A op B) op' (A op C)" results in simplifications.
462    Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1);
463    Instruction::BinaryOps InnerOpcode = Op1->getOpcode(); // op'
464
465    // Do "A op B" and "A op C" both simplify?
466    if (Value *L = SimplifyBinOp(TopLevelOpcode, A, B, TD))
467      if (Value *R = SimplifyBinOp(TopLevelOpcode, A, C, TD)) {
468        // They do! Return "L op' R".
469        ++NumExpand;
470        // If "L op' R" equals "B op' C" then "L op' R" is just the RHS.
471        if ((L == B && R == C) ||
472            (Instruction::isCommutative(InnerOpcode) && L == C && R == B))
473          return Op1;
474        // Otherwise return "L op' R" if it simplifies.
475        if (Value *V = SimplifyBinOp(InnerOpcode, L, R, TD))
476          return V;
477        // Otherwise, create a new instruction.
478        A = Builder->CreateBinOp(InnerOpcode, L, R);
479        A->takeName(&I);
480        return A;
481      }
482  }
483
484  return 0;
485}
486
487// dyn_castNegVal - Given a 'sub' instruction, return the RHS of the instruction
488// if the LHS is a constant zero (which is the 'negate' form).
489//
490Value *InstCombiner::dyn_castNegVal(Value *V) const {
491  if (BinaryOperator::isNeg(V))
492    return BinaryOperator::getNegArgument(V);
493
494  // Constants can be considered to be negated values if they can be folded.
495  if (ConstantInt *C = dyn_cast<ConstantInt>(V))
496    return ConstantExpr::getNeg(C);
497
498  if (ConstantVector *C = dyn_cast<ConstantVector>(V))
499    if (C->getType()->getElementType()->isIntegerTy())
500      return ConstantExpr::getNeg(C);
501
502  return 0;
503}
504
505// dyn_castFNegVal - Given a 'fsub' instruction, return the RHS of the
506// instruction if the LHS is a constant negative zero (which is the 'negate'
507// form).
508//
509Value *InstCombiner::dyn_castFNegVal(Value *V) const {
510  if (BinaryOperator::isFNeg(V))
511    return BinaryOperator::getFNegArgument(V);
512
513  // Constants can be considered to be negated values if they can be folded.
514  if (ConstantFP *C = dyn_cast<ConstantFP>(V))
515    return ConstantExpr::getFNeg(C);
516
517  if (ConstantVector *C = dyn_cast<ConstantVector>(V))
518    if (C->getType()->getElementType()->isFloatingPointTy())
519      return ConstantExpr::getFNeg(C);
520
521  return 0;
522}
523
524static Value *FoldOperationIntoSelectOperand(Instruction &I, Value *SO,
525                                             InstCombiner *IC) {
526  if (CastInst *CI = dyn_cast<CastInst>(&I)) {
527    return IC->Builder->CreateCast(CI->getOpcode(), SO, I.getType());
528  }
529
530  // Figure out if the constant is the left or the right argument.
531  bool ConstIsRHS = isa<Constant>(I.getOperand(1));
532  Constant *ConstOperand = cast<Constant>(I.getOperand(ConstIsRHS));
533
534  if (Constant *SOC = dyn_cast<Constant>(SO)) {
535    if (ConstIsRHS)
536      return ConstantExpr::get(I.getOpcode(), SOC, ConstOperand);
537    return ConstantExpr::get(I.getOpcode(), ConstOperand, SOC);
538  }
539
540  Value *Op0 = SO, *Op1 = ConstOperand;
541  if (!ConstIsRHS)
542    std::swap(Op0, Op1);
543
544  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(&I))
545    return IC->Builder->CreateBinOp(BO->getOpcode(), Op0, Op1,
546                                    SO->getName()+".op");
547  if (ICmpInst *CI = dyn_cast<ICmpInst>(&I))
548    return IC->Builder->CreateICmp(CI->getPredicate(), Op0, Op1,
549                                   SO->getName()+".cmp");
550  if (FCmpInst *CI = dyn_cast<FCmpInst>(&I))
551    return IC->Builder->CreateICmp(CI->getPredicate(), Op0, Op1,
552                                   SO->getName()+".cmp");
553  llvm_unreachable("Unknown binary instruction type!");
554}
555
556// FoldOpIntoSelect - Given an instruction with a select as one operand and a
557// constant as the other operand, try to fold the binary operator into the
558// select arguments.  This also works for Cast instructions, which obviously do
559// not have a second operand.
560Instruction *InstCombiner::FoldOpIntoSelect(Instruction &Op, SelectInst *SI) {
561  // Don't modify shared select instructions
562  if (!SI->hasOneUse()) return 0;
563  Value *TV = SI->getOperand(1);
564  Value *FV = SI->getOperand(2);
565
566  if (isa<Constant>(TV) || isa<Constant>(FV)) {
567    // Bool selects with constant operands can be folded to logical ops.
568    if (SI->getType()->isIntegerTy(1)) return 0;
569
570    // If it's a bitcast involving vectors, make sure it has the same number of
571    // elements on both sides.
572    if (BitCastInst *BC = dyn_cast<BitCastInst>(&Op)) {
573      VectorType *DestTy = dyn_cast<VectorType>(BC->getDestTy());
574      VectorType *SrcTy = dyn_cast<VectorType>(BC->getSrcTy());
575
576      // Verify that either both or neither are vectors.
577      if ((SrcTy == NULL) != (DestTy == NULL)) return 0;
578      // If vectors, verify that they have the same number of elements.
579      if (SrcTy && SrcTy->getNumElements() != DestTy->getNumElements())
580        return 0;
581    }
582
583    Value *SelectTrueVal = FoldOperationIntoSelectOperand(Op, TV, this);
584    Value *SelectFalseVal = FoldOperationIntoSelectOperand(Op, FV, this);
585
586    return SelectInst::Create(SI->getCondition(),
587                              SelectTrueVal, SelectFalseVal);
588  }
589  return 0;
590}
591
592
593/// FoldOpIntoPhi - Given a binary operator, cast instruction, or select which
594/// has a PHI node as operand #0, see if we can fold the instruction into the
595/// PHI (which is only possible if all operands to the PHI are constants).
596///
597Instruction *InstCombiner::FoldOpIntoPhi(Instruction &I) {
598  PHINode *PN = cast<PHINode>(I.getOperand(0));
599  unsigned NumPHIValues = PN->getNumIncomingValues();
600  if (NumPHIValues == 0)
601    return 0;
602
603  // We normally only transform phis with a single use.  However, if a PHI has
604  // multiple uses and they are all the same operation, we can fold *all* of the
605  // uses into the PHI.
606  if (!PN->hasOneUse()) {
607    // Walk the use list for the instruction, comparing them to I.
608    for (Value::use_iterator UI = PN->use_begin(), E = PN->use_end();
609         UI != E; ++UI) {
610      Instruction *User = cast<Instruction>(*UI);
611      if (User != &I && !I.isIdenticalTo(User))
612        return 0;
613    }
614    // Otherwise, we can replace *all* users with the new PHI we form.
615  }
616
617  // Check to see if all of the operands of the PHI are simple constants
618  // (constantint/constantfp/undef).  If there is one non-constant value,
619  // remember the BB it is in.  If there is more than one or if *it* is a PHI,
620  // bail out.  We don't do arbitrary constant expressions here because moving
621  // their computation can be expensive without a cost model.
622  BasicBlock *NonConstBB = 0;
623  for (unsigned i = 0; i != NumPHIValues; ++i) {
624    Value *InVal = PN->getIncomingValue(i);
625    if (isa<Constant>(InVal) && !isa<ConstantExpr>(InVal))
626      continue;
627
628    if (isa<PHINode>(InVal)) return 0;  // Itself a phi.
629    if (NonConstBB) return 0;  // More than one non-const value.
630
631    NonConstBB = PN->getIncomingBlock(i);
632
633    // If the InVal is an invoke at the end of the pred block, then we can't
634    // insert a computation after it without breaking the edge.
635    if (InvokeInst *II = dyn_cast<InvokeInst>(InVal))
636      if (II->getParent() == NonConstBB)
637        return 0;
638
639    // If the incoming non-constant value is in I's block, we will remove one
640    // instruction, but insert another equivalent one, leading to infinite
641    // instcombine.
642    if (NonConstBB == I.getParent())
643      return 0;
644  }
645
646  // If there is exactly one non-constant value, we can insert a copy of the
647  // operation in that block.  However, if this is a critical edge, we would be
648  // inserting the computation one some other paths (e.g. inside a loop).  Only
649  // do this if the pred block is unconditionally branching into the phi block.
650  if (NonConstBB != 0) {
651    BranchInst *BI = dyn_cast<BranchInst>(NonConstBB->getTerminator());
652    if (!BI || !BI->isUnconditional()) return 0;
653  }
654
655  // Okay, we can do the transformation: create the new PHI node.
656  PHINode *NewPN = PHINode::Create(I.getType(), PN->getNumIncomingValues());
657  InsertNewInstBefore(NewPN, *PN);
658  NewPN->takeName(PN);
659
660  // If we are going to have to insert a new computation, do so right before the
661  // predecessors terminator.
662  if (NonConstBB)
663    Builder->SetInsertPoint(NonConstBB->getTerminator());
664
665  // Next, add all of the operands to the PHI.
666  if (SelectInst *SI = dyn_cast<SelectInst>(&I)) {
667    // We only currently try to fold the condition of a select when it is a phi,
668    // not the true/false values.
669    Value *TrueV = SI->getTrueValue();
670    Value *FalseV = SI->getFalseValue();
671    BasicBlock *PhiTransBB = PN->getParent();
672    for (unsigned i = 0; i != NumPHIValues; ++i) {
673      BasicBlock *ThisBB = PN->getIncomingBlock(i);
674      Value *TrueVInPred = TrueV->DoPHITranslation(PhiTransBB, ThisBB);
675      Value *FalseVInPred = FalseV->DoPHITranslation(PhiTransBB, ThisBB);
676      Value *InV = 0;
677      if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)))
678        InV = InC->isNullValue() ? FalseVInPred : TrueVInPred;
679      else
680        InV = Builder->CreateSelect(PN->getIncomingValue(i),
681                                    TrueVInPred, FalseVInPred, "phitmp");
682      NewPN->addIncoming(InV, ThisBB);
683    }
684  } else if (CmpInst *CI = dyn_cast<CmpInst>(&I)) {
685    Constant *C = cast<Constant>(I.getOperand(1));
686    for (unsigned i = 0; i != NumPHIValues; ++i) {
687      Value *InV = 0;
688      if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)))
689        InV = ConstantExpr::getCompare(CI->getPredicate(), InC, C);
690      else if (isa<ICmpInst>(CI))
691        InV = Builder->CreateICmp(CI->getPredicate(), PN->getIncomingValue(i),
692                                  C, "phitmp");
693      else
694        InV = Builder->CreateFCmp(CI->getPredicate(), PN->getIncomingValue(i),
695                                  C, "phitmp");
696      NewPN->addIncoming(InV, PN->getIncomingBlock(i));
697    }
698  } else if (I.getNumOperands() == 2) {
699    Constant *C = cast<Constant>(I.getOperand(1));
700    for (unsigned i = 0; i != NumPHIValues; ++i) {
701      Value *InV = 0;
702      if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)))
703        InV = ConstantExpr::get(I.getOpcode(), InC, C);
704      else
705        InV = Builder->CreateBinOp(cast<BinaryOperator>(I).getOpcode(),
706                                   PN->getIncomingValue(i), C, "phitmp");
707      NewPN->addIncoming(InV, PN->getIncomingBlock(i));
708    }
709  } else {
710    CastInst *CI = cast<CastInst>(&I);
711    Type *RetTy = CI->getType();
712    for (unsigned i = 0; i != NumPHIValues; ++i) {
713      Value *InV;
714      if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)))
715        InV = ConstantExpr::getCast(CI->getOpcode(), InC, RetTy);
716      else
717        InV = Builder->CreateCast(CI->getOpcode(),
718                                PN->getIncomingValue(i), I.getType(), "phitmp");
719      NewPN->addIncoming(InV, PN->getIncomingBlock(i));
720    }
721  }
722
723  for (Value::use_iterator UI = PN->use_begin(), E = PN->use_end();
724       UI != E; ) {
725    Instruction *User = cast<Instruction>(*UI++);
726    if (User == &I) continue;
727    ReplaceInstUsesWith(*User, NewPN);
728    EraseInstFromFunction(*User);
729  }
730  return ReplaceInstUsesWith(I, NewPN);
731}
732
733/// FindElementAtOffset - Given a type and a constant offset, determine whether
734/// or not there is a sequence of GEP indices into the type that will land us at
735/// the specified offset.  If so, fill them into NewIndices and return the
736/// resultant element type, otherwise return null.
737Type *InstCombiner::FindElementAtOffset(Type *Ty, int64_t Offset,
738                                          SmallVectorImpl<Value*> &NewIndices) {
739  if (!TD) return 0;
740  if (!Ty->isSized()) return 0;
741
742  // Start with the index over the outer type.  Note that the type size
743  // might be zero (even if the offset isn't zero) if the indexed type
744  // is something like [0 x {int, int}]
745  Type *IntPtrTy = TD->getIntPtrType(Ty->getContext());
746  int64_t FirstIdx = 0;
747  if (int64_t TySize = TD->getTypeAllocSize(Ty)) {
748    FirstIdx = Offset/TySize;
749    Offset -= FirstIdx*TySize;
750
751    // Handle hosts where % returns negative instead of values [0..TySize).
752    if (Offset < 0) {
753      --FirstIdx;
754      Offset += TySize;
755      assert(Offset >= 0);
756    }
757    assert((uint64_t)Offset < (uint64_t)TySize && "Out of range offset");
758  }
759
760  NewIndices.push_back(ConstantInt::get(IntPtrTy, FirstIdx));
761
762  // Index into the types.  If we fail, set OrigBase to null.
763  while (Offset) {
764    // Indexing into tail padding between struct/array elements.
765    if (uint64_t(Offset*8) >= TD->getTypeSizeInBits(Ty))
766      return 0;
767
768    if (StructType *STy = dyn_cast<StructType>(Ty)) {
769      const StructLayout *SL = TD->getStructLayout(STy);
770      assert(Offset < (int64_t)SL->getSizeInBytes() &&
771             "Offset must stay within the indexed type");
772
773      unsigned Elt = SL->getElementContainingOffset(Offset);
774      NewIndices.push_back(ConstantInt::get(Type::getInt32Ty(Ty->getContext()),
775                                            Elt));
776
777      Offset -= SL->getElementOffset(Elt);
778      Ty = STy->getElementType(Elt);
779    } else if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) {
780      uint64_t EltSize = TD->getTypeAllocSize(AT->getElementType());
781      assert(EltSize && "Cannot index into a zero-sized array");
782      NewIndices.push_back(ConstantInt::get(IntPtrTy,Offset/EltSize));
783      Offset %= EltSize;
784      Ty = AT->getElementType();
785    } else {
786      // Otherwise, we can't index into the middle of this atomic type, bail.
787      return 0;
788    }
789  }
790
791  return Ty;
792}
793
794static bool shouldMergeGEPs(GEPOperator &GEP, GEPOperator &Src) {
795  // If this GEP has only 0 indices, it is the same pointer as
796  // Src. If Src is not a trivial GEP too, don't combine
797  // the indices.
798  if (GEP.hasAllZeroIndices() && !Src.hasAllZeroIndices() &&
799      !Src.hasOneUse())
800    return false;
801  return true;
802}
803
804Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) {
805  SmallVector<Value*, 8> Ops(GEP.op_begin(), GEP.op_end());
806
807  if (Value *V = SimplifyGEPInst(Ops, TD))
808    return ReplaceInstUsesWith(GEP, V);
809
810  Value *PtrOp = GEP.getOperand(0);
811
812  // Eliminate unneeded casts for indices, and replace indices which displace
813  // by multiples of a zero size type with zero.
814  if (TD) {
815    bool MadeChange = false;
816    Type *IntPtrTy = TD->getIntPtrType(GEP.getContext());
817
818    gep_type_iterator GTI = gep_type_begin(GEP);
819    for (User::op_iterator I = GEP.op_begin() + 1, E = GEP.op_end();
820         I != E; ++I, ++GTI) {
821      // Skip indices into struct types.
822      SequentialType *SeqTy = dyn_cast<SequentialType>(*GTI);
823      if (!SeqTy) continue;
824
825      // If the element type has zero size then any index over it is equivalent
826      // to an index of zero, so replace it with zero if it is not zero already.
827      if (SeqTy->getElementType()->isSized() &&
828          TD->getTypeAllocSize(SeqTy->getElementType()) == 0)
829        if (!isa<Constant>(*I) || !cast<Constant>(*I)->isNullValue()) {
830          *I = Constant::getNullValue(IntPtrTy);
831          MadeChange = true;
832        }
833
834      if ((*I)->getType() != IntPtrTy) {
835        // If we are using a wider index than needed for this platform, shrink
836        // it to what we need.  If narrower, sign-extend it to what we need.
837        // This explicit cast can make subsequent optimizations more obvious.
838        *I = Builder->CreateIntCast(*I, IntPtrTy, true);
839        MadeChange = true;
840      }
841    }
842    if (MadeChange) return &GEP;
843  }
844
845  // Combine Indices - If the source pointer to this getelementptr instruction
846  // is a getelementptr instruction, combine the indices of the two
847  // getelementptr instructions into a single instruction.
848  //
849  if (GEPOperator *Src = dyn_cast<GEPOperator>(PtrOp)) {
850    if (!shouldMergeGEPs(*cast<GEPOperator>(&GEP), *Src))
851      return 0;
852
853    // Note that if our source is a gep chain itself that we wait for that
854    // chain to be resolved before we perform this transformation.  This
855    // avoids us creating a TON of code in some cases.
856    if (GEPOperator *SrcGEP =
857          dyn_cast<GEPOperator>(Src->getOperand(0)))
858      if (SrcGEP->getNumOperands() == 2 && shouldMergeGEPs(*Src, *SrcGEP))
859        return 0;   // Wait until our source is folded to completion.
860
861    SmallVector<Value*, 8> Indices;
862
863    // Find out whether the last index in the source GEP is a sequential idx.
864    bool EndsWithSequential = false;
865    for (gep_type_iterator I = gep_type_begin(*Src), E = gep_type_end(*Src);
866         I != E; ++I)
867      EndsWithSequential = !(*I)->isStructTy();
868
869    // Can we combine the two pointer arithmetics offsets?
870    if (EndsWithSequential) {
871      // Replace: gep (gep %P, long B), long A, ...
872      // With:    T = long A+B; gep %P, T, ...
873      //
874      Value *Sum;
875      Value *SO1 = Src->getOperand(Src->getNumOperands()-1);
876      Value *GO1 = GEP.getOperand(1);
877      if (SO1 == Constant::getNullValue(SO1->getType())) {
878        Sum = GO1;
879      } else if (GO1 == Constant::getNullValue(GO1->getType())) {
880        Sum = SO1;
881      } else {
882        // If they aren't the same type, then the input hasn't been processed
883        // by the loop above yet (which canonicalizes sequential index types to
884        // intptr_t).  Just avoid transforming this until the input has been
885        // normalized.
886        if (SO1->getType() != GO1->getType())
887          return 0;
888        Sum = Builder->CreateAdd(SO1, GO1, PtrOp->getName()+".sum");
889      }
890
891      // Update the GEP in place if possible.
892      if (Src->getNumOperands() == 2) {
893        GEP.setOperand(0, Src->getOperand(0));
894        GEP.setOperand(1, Sum);
895        return &GEP;
896      }
897      Indices.append(Src->op_begin()+1, Src->op_end()-1);
898      Indices.push_back(Sum);
899      Indices.append(GEP.op_begin()+2, GEP.op_end());
900    } else if (isa<Constant>(*GEP.idx_begin()) &&
901               cast<Constant>(*GEP.idx_begin())->isNullValue() &&
902               Src->getNumOperands() != 1) {
903      // Otherwise we can do the fold if the first index of the GEP is a zero
904      Indices.append(Src->op_begin()+1, Src->op_end());
905      Indices.append(GEP.idx_begin()+1, GEP.idx_end());
906    }
907
908    if (!Indices.empty())
909      return (GEP.isInBounds() && Src->isInBounds()) ?
910        GetElementPtrInst::CreateInBounds(Src->getOperand(0), Indices,
911                                          GEP.getName()) :
912        GetElementPtrInst::Create(Src->getOperand(0), Indices, GEP.getName());
913  }
914
915  // Handle gep(bitcast x) and gep(gep x, 0, 0, 0).
916  Value *StrippedPtr = PtrOp->stripPointerCasts();
917  PointerType *StrippedPtrTy =cast<PointerType>(StrippedPtr->getType());
918  if (StrippedPtr != PtrOp &&
919    StrippedPtrTy->getAddressSpace() == GEP.getPointerAddressSpace()) {
920
921    bool HasZeroPointerIndex = false;
922    if (ConstantInt *C = dyn_cast<ConstantInt>(GEP.getOperand(1)))
923      HasZeroPointerIndex = C->isZero();
924
925    // Transform: GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ...
926    // into     : GEP [10 x i8]* X, i32 0, ...
927    //
928    // Likewise, transform: GEP (bitcast i8* X to [0 x i8]*), i32 0, ...
929    //           into     : GEP i8* X, ...
930    //
931    // This occurs when the program declares an array extern like "int X[];"
932    if (HasZeroPointerIndex) {
933      PointerType *CPTy = cast<PointerType>(PtrOp->getType());
934      if (ArrayType *CATy =
935          dyn_cast<ArrayType>(CPTy->getElementType())) {
936        // GEP (bitcast i8* X to [0 x i8]*), i32 0, ... ?
937        if (CATy->getElementType() == StrippedPtrTy->getElementType()) {
938          // -> GEP i8* X, ...
939          SmallVector<Value*, 8> Idx(GEP.idx_begin()+1, GEP.idx_end());
940          GetElementPtrInst *Res =
941            GetElementPtrInst::Create(StrippedPtr, Idx, GEP.getName());
942          Res->setIsInBounds(GEP.isInBounds());
943          return Res;
944        }
945
946        if (ArrayType *XATy =
947              dyn_cast<ArrayType>(StrippedPtrTy->getElementType())){
948          // GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ... ?
949          if (CATy->getElementType() == XATy->getElementType()) {
950            // -> GEP [10 x i8]* X, i32 0, ...
951            // At this point, we know that the cast source type is a pointer
952            // to an array of the same type as the destination pointer
953            // array.  Because the array type is never stepped over (there
954            // is a leading zero) we can fold the cast into this GEP.
955            GEP.setOperand(0, StrippedPtr);
956            return &GEP;
957          }
958        }
959      }
960    } else if (GEP.getNumOperands() == 2) {
961      // Transform things like:
962      // %t = getelementptr i32* bitcast ([2 x i32]* %str to i32*), i32 %V
963      // into:  %t1 = getelementptr [2 x i32]* %str, i32 0, i32 %V; bitcast
964      Type *SrcElTy = StrippedPtrTy->getElementType();
965      Type *ResElTy=cast<PointerType>(PtrOp->getType())->getElementType();
966      if (TD && SrcElTy->isArrayTy() &&
967          TD->getTypeAllocSize(cast<ArrayType>(SrcElTy)->getElementType()) ==
968          TD->getTypeAllocSize(ResElTy)) {
969        Value *Idx[2];
970        Idx[0] = Constant::getNullValue(Type::getInt32Ty(GEP.getContext()));
971        Idx[1] = GEP.getOperand(1);
972        Value *NewGEP = GEP.isInBounds() ?
973          Builder->CreateInBoundsGEP(StrippedPtr, Idx, GEP.getName()) :
974          Builder->CreateGEP(StrippedPtr, Idx, GEP.getName());
975        // V and GEP are both pointer types --> BitCast
976        return new BitCastInst(NewGEP, GEP.getType());
977      }
978
979      // Transform things like:
980      // getelementptr i8* bitcast ([100 x double]* X to i8*), i32 %tmp
981      //   (where tmp = 8*tmp2) into:
982      // getelementptr [100 x double]* %arr, i32 0, i32 %tmp2; bitcast
983
984      if (TD && SrcElTy->isArrayTy() && ResElTy->isIntegerTy(8)) {
985        uint64_t ArrayEltSize =
986            TD->getTypeAllocSize(cast<ArrayType>(SrcElTy)->getElementType());
987
988        // Check to see if "tmp" is a scale by a multiple of ArrayEltSize.  We
989        // allow either a mul, shift, or constant here.
990        Value *NewIdx = 0;
991        ConstantInt *Scale = 0;
992        if (ArrayEltSize == 1) {
993          NewIdx = GEP.getOperand(1);
994          Scale = ConstantInt::get(cast<IntegerType>(NewIdx->getType()), 1);
995        } else if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP.getOperand(1))) {
996          NewIdx = ConstantInt::get(CI->getType(), 1);
997          Scale = CI;
998        } else if (Instruction *Inst =dyn_cast<Instruction>(GEP.getOperand(1))){
999          if (Inst->getOpcode() == Instruction::Shl &&
1000              isa<ConstantInt>(Inst->getOperand(1))) {
1001            ConstantInt *ShAmt = cast<ConstantInt>(Inst->getOperand(1));
1002            uint32_t ShAmtVal = ShAmt->getLimitedValue(64);
1003            Scale = ConstantInt::get(cast<IntegerType>(Inst->getType()),
1004                                     1ULL << ShAmtVal);
1005            NewIdx = Inst->getOperand(0);
1006          } else if (Inst->getOpcode() == Instruction::Mul &&
1007                     isa<ConstantInt>(Inst->getOperand(1))) {
1008            Scale = cast<ConstantInt>(Inst->getOperand(1));
1009            NewIdx = Inst->getOperand(0);
1010          }
1011        }
1012
1013        // If the index will be to exactly the right offset with the scale taken
1014        // out, perform the transformation. Note, we don't know whether Scale is
1015        // signed or not. We'll use unsigned version of division/modulo
1016        // operation after making sure Scale doesn't have the sign bit set.
1017        if (ArrayEltSize && Scale && Scale->getSExtValue() >= 0LL &&
1018            Scale->getZExtValue() % ArrayEltSize == 0) {
1019          Scale = ConstantInt::get(Scale->getType(),
1020                                   Scale->getZExtValue() / ArrayEltSize);
1021          if (Scale->getZExtValue() != 1) {
1022            Constant *C = ConstantExpr::getIntegerCast(Scale, NewIdx->getType(),
1023                                                       false /*ZExt*/);
1024            NewIdx = Builder->CreateMul(NewIdx, C, "idxscale");
1025          }
1026
1027          // Insert the new GEP instruction.
1028          Value *Idx[2];
1029          Idx[0] = Constant::getNullValue(Type::getInt32Ty(GEP.getContext()));
1030          Idx[1] = NewIdx;
1031          Value *NewGEP = GEP.isInBounds() ?
1032            Builder->CreateInBoundsGEP(StrippedPtr, Idx, GEP.getName()):
1033            Builder->CreateGEP(StrippedPtr, Idx, GEP.getName());
1034          // The NewGEP must be pointer typed, so must the old one -> BitCast
1035          return new BitCastInst(NewGEP, GEP.getType());
1036        }
1037      }
1038    }
1039  }
1040
1041  /// See if we can simplify:
1042  ///   X = bitcast A* to B*
1043  ///   Y = gep X, <...constant indices...>
1044  /// into a gep of the original struct.  This is important for SROA and alias
1045  /// analysis of unions.  If "A" is also a bitcast, wait for A/X to be merged.
1046  if (BitCastInst *BCI = dyn_cast<BitCastInst>(PtrOp)) {
1047    if (TD &&
1048        !isa<BitCastInst>(BCI->getOperand(0)) && GEP.hasAllConstantIndices() &&
1049        StrippedPtrTy->getAddressSpace() == GEP.getPointerAddressSpace()) {
1050
1051      // Determine how much the GEP moves the pointer.  We are guaranteed to get
1052      // a constant back from EmitGEPOffset.
1053      ConstantInt *OffsetV = cast<ConstantInt>(EmitGEPOffset(&GEP));
1054      int64_t Offset = OffsetV->getSExtValue();
1055
1056      // If this GEP instruction doesn't move the pointer, just replace the GEP
1057      // with a bitcast of the real input to the dest type.
1058      if (Offset == 0) {
1059        // If the bitcast is of an allocation, and the allocation will be
1060        // converted to match the type of the cast, don't touch this.
1061        if (isa<AllocaInst>(BCI->getOperand(0)) ||
1062            isMalloc(BCI->getOperand(0))) {
1063          // See if the bitcast simplifies, if so, don't nuke this GEP yet.
1064          if (Instruction *I = visitBitCast(*BCI)) {
1065            if (I != BCI) {
1066              I->takeName(BCI);
1067              BCI->getParent()->getInstList().insert(BCI, I);
1068              ReplaceInstUsesWith(*BCI, I);
1069            }
1070            return &GEP;
1071          }
1072        }
1073        return new BitCastInst(BCI->getOperand(0), GEP.getType());
1074      }
1075
1076      // Otherwise, if the offset is non-zero, we need to find out if there is a
1077      // field at Offset in 'A's type.  If so, we can pull the cast through the
1078      // GEP.
1079      SmallVector<Value*, 8> NewIndices;
1080      Type *InTy =
1081        cast<PointerType>(BCI->getOperand(0)->getType())->getElementType();
1082      if (FindElementAtOffset(InTy, Offset, NewIndices)) {
1083        Value *NGEP = GEP.isInBounds() ?
1084          Builder->CreateInBoundsGEP(BCI->getOperand(0), NewIndices) :
1085          Builder->CreateGEP(BCI->getOperand(0), NewIndices);
1086
1087        if (NGEP->getType() == GEP.getType())
1088          return ReplaceInstUsesWith(GEP, NGEP);
1089        NGEP->takeName(&GEP);
1090        return new BitCastInst(NGEP, GEP.getType());
1091      }
1092    }
1093  }
1094
1095  return 0;
1096}
1097
1098
1099
1100static bool IsOnlyNullComparedAndFreed(Value *V, SmallVectorImpl<WeakVH> &Users,
1101                                       int Depth = 0) {
1102  if (Depth == 8)
1103    return false;
1104
1105  for (Value::use_iterator UI = V->use_begin(), UE = V->use_end();
1106       UI != UE; ++UI) {
1107    User *U = *UI;
1108    if (isFreeCall(U)) {
1109      Users.push_back(U);
1110      continue;
1111    }
1112    if (ICmpInst *ICI = dyn_cast<ICmpInst>(U)) {
1113      if (ICI->isEquality() && isa<ConstantPointerNull>(ICI->getOperand(1))) {
1114        Users.push_back(ICI);
1115        continue;
1116      }
1117    }
1118    if (BitCastInst *BCI = dyn_cast<BitCastInst>(U)) {
1119      if (IsOnlyNullComparedAndFreed(BCI, Users, Depth+1)) {
1120        Users.push_back(BCI);
1121        continue;
1122      }
1123    }
1124    if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) {
1125      if (IsOnlyNullComparedAndFreed(GEPI, Users, Depth+1)) {
1126        Users.push_back(GEPI);
1127        continue;
1128      }
1129    }
1130    if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(U)) {
1131      if (II->getIntrinsicID() == Intrinsic::lifetime_start ||
1132          II->getIntrinsicID() == Intrinsic::lifetime_end) {
1133        Users.push_back(II);
1134        continue;
1135      }
1136    }
1137    return false;
1138  }
1139  return true;
1140}
1141
1142Instruction *InstCombiner::visitMalloc(Instruction &MI) {
1143  // If we have a malloc call which is only used in any amount of comparisons
1144  // to null and free calls, delete the calls and replace the comparisons with
1145  // true or false as appropriate.
1146  SmallVector<WeakVH, 64> Users;
1147  if (IsOnlyNullComparedAndFreed(&MI, Users)) {
1148    for (unsigned i = 0, e = Users.size(); i != e; ++i) {
1149      Instruction *I = cast_or_null<Instruction>(&*Users[i]);
1150      if (!I) continue;
1151
1152      if (ICmpInst *C = dyn_cast<ICmpInst>(I)) {
1153        ReplaceInstUsesWith(*C,
1154                            ConstantInt::get(Type::getInt1Ty(C->getContext()),
1155                                             C->isFalseWhenEqual()));
1156      } else if (isa<BitCastInst>(I) || isa<GetElementPtrInst>(I)) {
1157        ReplaceInstUsesWith(*I, UndefValue::get(I->getType()));
1158      }
1159      EraseInstFromFunction(*I);
1160    }
1161    return EraseInstFromFunction(MI);
1162  }
1163  return 0;
1164}
1165
1166
1167
1168Instruction *InstCombiner::visitFree(CallInst &FI) {
1169  Value *Op = FI.getArgOperand(0);
1170
1171  // free undef -> unreachable.
1172  if (isa<UndefValue>(Op)) {
1173    // Insert a new store to null because we cannot modify the CFG here.
1174    Builder->CreateStore(ConstantInt::getTrue(FI.getContext()),
1175                         UndefValue::get(Type::getInt1PtrTy(FI.getContext())));
1176    return EraseInstFromFunction(FI);
1177  }
1178
1179  // If we have 'free null' delete the instruction.  This can happen in stl code
1180  // when lots of inlining happens.
1181  if (isa<ConstantPointerNull>(Op))
1182    return EraseInstFromFunction(FI);
1183
1184  return 0;
1185}
1186
1187
1188
1189Instruction *InstCombiner::visitBranchInst(BranchInst &BI) {
1190  // Change br (not X), label True, label False to: br X, label False, True
1191  Value *X = 0;
1192  BasicBlock *TrueDest;
1193  BasicBlock *FalseDest;
1194  if (match(&BI, m_Br(m_Not(m_Value(X)), TrueDest, FalseDest)) &&
1195      !isa<Constant>(X)) {
1196    // Swap Destinations and condition...
1197    BI.setCondition(X);
1198    BI.swapSuccessors();
1199    return &BI;
1200  }
1201
1202  // Cannonicalize fcmp_one -> fcmp_oeq
1203  FCmpInst::Predicate FPred; Value *Y;
1204  if (match(&BI, m_Br(m_FCmp(FPred, m_Value(X), m_Value(Y)),
1205                             TrueDest, FalseDest)) &&
1206      BI.getCondition()->hasOneUse())
1207    if (FPred == FCmpInst::FCMP_ONE || FPred == FCmpInst::FCMP_OLE ||
1208        FPred == FCmpInst::FCMP_OGE) {
1209      FCmpInst *Cond = cast<FCmpInst>(BI.getCondition());
1210      Cond->setPredicate(FCmpInst::getInversePredicate(FPred));
1211
1212      // Swap Destinations and condition.
1213      BI.swapSuccessors();
1214      Worklist.Add(Cond);
1215      return &BI;
1216    }
1217
1218  // Cannonicalize icmp_ne -> icmp_eq
1219  ICmpInst::Predicate IPred;
1220  if (match(&BI, m_Br(m_ICmp(IPred, m_Value(X), m_Value(Y)),
1221                      TrueDest, FalseDest)) &&
1222      BI.getCondition()->hasOneUse())
1223    if (IPred == ICmpInst::ICMP_NE  || IPred == ICmpInst::ICMP_ULE ||
1224        IPred == ICmpInst::ICMP_SLE || IPred == ICmpInst::ICMP_UGE ||
1225        IPred == ICmpInst::ICMP_SGE) {
1226      ICmpInst *Cond = cast<ICmpInst>(BI.getCondition());
1227      Cond->setPredicate(ICmpInst::getInversePredicate(IPred));
1228      // Swap Destinations and condition.
1229      BI.swapSuccessors();
1230      Worklist.Add(Cond);
1231      return &BI;
1232    }
1233
1234  return 0;
1235}
1236
1237Instruction *InstCombiner::visitSwitchInst(SwitchInst &SI) {
1238  Value *Cond = SI.getCondition();
1239  if (Instruction *I = dyn_cast<Instruction>(Cond)) {
1240    if (I->getOpcode() == Instruction::Add)
1241      if (ConstantInt *AddRHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
1242        // change 'switch (X+4) case 1:' into 'switch (X) case -3'
1243        unsigned NumCases = SI.getNumCases();
1244        // Skip the first item since that's the default case.
1245        for (unsigned i = 1; i < NumCases; ++i) {
1246          ConstantInt* CaseVal = SI.getCaseValue(i);
1247          Constant* NewCaseVal = ConstantExpr::getSub(cast<Constant>(CaseVal),
1248                                                      AddRHS);
1249          assert(isa<ConstantInt>(NewCaseVal) &&
1250                 "Result of expression should be constant");
1251          SI.setSuccessorValue(i, cast<ConstantInt>(NewCaseVal));
1252        }
1253        SI.setCondition(I->getOperand(0));
1254        Worklist.Add(I);
1255        return &SI;
1256      }
1257  }
1258  return 0;
1259}
1260
1261Instruction *InstCombiner::visitExtractValueInst(ExtractValueInst &EV) {
1262  Value *Agg = EV.getAggregateOperand();
1263
1264  if (!EV.hasIndices())
1265    return ReplaceInstUsesWith(EV, Agg);
1266
1267  if (Constant *C = dyn_cast<Constant>(Agg)) {
1268    if (isa<UndefValue>(C))
1269      return ReplaceInstUsesWith(EV, UndefValue::get(EV.getType()));
1270
1271    if (isa<ConstantAggregateZero>(C))
1272      return ReplaceInstUsesWith(EV, Constant::getNullValue(EV.getType()));
1273
1274    if (isa<ConstantArray>(C) || isa<ConstantStruct>(C)) {
1275      // Extract the element indexed by the first index out of the constant
1276      Value *V = C->getOperand(*EV.idx_begin());
1277      if (EV.getNumIndices() > 1)
1278        // Extract the remaining indices out of the constant indexed by the
1279        // first index
1280        return ExtractValueInst::Create(V, EV.getIndices().slice(1));
1281      else
1282        return ReplaceInstUsesWith(EV, V);
1283    }
1284    return 0; // Can't handle other constants
1285  }
1286  if (InsertValueInst *IV = dyn_cast<InsertValueInst>(Agg)) {
1287    // We're extracting from an insertvalue instruction, compare the indices
1288    const unsigned *exti, *exte, *insi, *inse;
1289    for (exti = EV.idx_begin(), insi = IV->idx_begin(),
1290         exte = EV.idx_end(), inse = IV->idx_end();
1291         exti != exte && insi != inse;
1292         ++exti, ++insi) {
1293      if (*insi != *exti)
1294        // The insert and extract both reference distinctly different elements.
1295        // This means the extract is not influenced by the insert, and we can
1296        // replace the aggregate operand of the extract with the aggregate
1297        // operand of the insert. i.e., replace
1298        // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
1299        // %E = extractvalue { i32, { i32 } } %I, 0
1300        // with
1301        // %E = extractvalue { i32, { i32 } } %A, 0
1302        return ExtractValueInst::Create(IV->getAggregateOperand(),
1303                                        EV.getIndices());
1304    }
1305    if (exti == exte && insi == inse)
1306      // Both iterators are at the end: Index lists are identical. Replace
1307      // %B = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
1308      // %C = extractvalue { i32, { i32 } } %B, 1, 0
1309      // with "i32 42"
1310      return ReplaceInstUsesWith(EV, IV->getInsertedValueOperand());
1311    if (exti == exte) {
1312      // The extract list is a prefix of the insert list. i.e. replace
1313      // %I = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
1314      // %E = extractvalue { i32, { i32 } } %I, 1
1315      // with
1316      // %X = extractvalue { i32, { i32 } } %A, 1
1317      // %E = insertvalue { i32 } %X, i32 42, 0
1318      // by switching the order of the insert and extract (though the
1319      // insertvalue should be left in, since it may have other uses).
1320      Value *NewEV = Builder->CreateExtractValue(IV->getAggregateOperand(),
1321                                                 EV.getIndices());
1322      return InsertValueInst::Create(NewEV, IV->getInsertedValueOperand(),
1323                                     makeArrayRef(insi, inse));
1324    }
1325    if (insi == inse)
1326      // The insert list is a prefix of the extract list
1327      // We can simply remove the common indices from the extract and make it
1328      // operate on the inserted value instead of the insertvalue result.
1329      // i.e., replace
1330      // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
1331      // %E = extractvalue { i32, { i32 } } %I, 1, 0
1332      // with
1333      // %E extractvalue { i32 } { i32 42 }, 0
1334      return ExtractValueInst::Create(IV->getInsertedValueOperand(),
1335                                      makeArrayRef(exti, exte));
1336  }
1337  if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Agg)) {
1338    // We're extracting from an intrinsic, see if we're the only user, which
1339    // allows us to simplify multiple result intrinsics to simpler things that
1340    // just get one value.
1341    if (II->hasOneUse()) {
1342      // Check if we're grabbing the overflow bit or the result of a 'with
1343      // overflow' intrinsic.  If it's the latter we can remove the intrinsic
1344      // and replace it with a traditional binary instruction.
1345      switch (II->getIntrinsicID()) {
1346      case Intrinsic::uadd_with_overflow:
1347      case Intrinsic::sadd_with_overflow:
1348        if (*EV.idx_begin() == 0) {  // Normal result.
1349          Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1);
1350          ReplaceInstUsesWith(*II, UndefValue::get(II->getType()));
1351          EraseInstFromFunction(*II);
1352          return BinaryOperator::CreateAdd(LHS, RHS);
1353        }
1354
1355        // If the normal result of the add is dead, and the RHS is a constant,
1356        // we can transform this into a range comparison.
1357        // overflow = uadd a, -4  -->  overflow = icmp ugt a, 3
1358        if (II->getIntrinsicID() == Intrinsic::uadd_with_overflow)
1359          if (ConstantInt *CI = dyn_cast<ConstantInt>(II->getArgOperand(1)))
1360            return new ICmpInst(ICmpInst::ICMP_UGT, II->getArgOperand(0),
1361                                ConstantExpr::getNot(CI));
1362        break;
1363      case Intrinsic::usub_with_overflow:
1364      case Intrinsic::ssub_with_overflow:
1365        if (*EV.idx_begin() == 0) {  // Normal result.
1366          Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1);
1367          ReplaceInstUsesWith(*II, UndefValue::get(II->getType()));
1368          EraseInstFromFunction(*II);
1369          return BinaryOperator::CreateSub(LHS, RHS);
1370        }
1371        break;
1372      case Intrinsic::umul_with_overflow:
1373      case Intrinsic::smul_with_overflow:
1374        if (*EV.idx_begin() == 0) {  // Normal result.
1375          Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1);
1376          ReplaceInstUsesWith(*II, UndefValue::get(II->getType()));
1377          EraseInstFromFunction(*II);
1378          return BinaryOperator::CreateMul(LHS, RHS);
1379        }
1380        break;
1381      default:
1382        break;
1383      }
1384    }
1385  }
1386  if (LoadInst *L = dyn_cast<LoadInst>(Agg))
1387    // If the (non-volatile) load only has one use, we can rewrite this to a
1388    // load from a GEP. This reduces the size of the load.
1389    // FIXME: If a load is used only by extractvalue instructions then this
1390    //        could be done regardless of having multiple uses.
1391    if (L->isSimple() && L->hasOneUse()) {
1392      // extractvalue has integer indices, getelementptr has Value*s. Convert.
1393      SmallVector<Value*, 4> Indices;
1394      // Prefix an i32 0 since we need the first element.
1395      Indices.push_back(Builder->getInt32(0));
1396      for (ExtractValueInst::idx_iterator I = EV.idx_begin(), E = EV.idx_end();
1397            I != E; ++I)
1398        Indices.push_back(Builder->getInt32(*I));
1399
1400      // We need to insert these at the location of the old load, not at that of
1401      // the extractvalue.
1402      Builder->SetInsertPoint(L->getParent(), L);
1403      Value *GEP = Builder->CreateInBoundsGEP(L->getPointerOperand(), Indices);
1404      // Returning the load directly will cause the main loop to insert it in
1405      // the wrong spot, so use ReplaceInstUsesWith().
1406      return ReplaceInstUsesWith(EV, Builder->CreateLoad(GEP));
1407    }
1408  // We could simplify extracts from other values. Note that nested extracts may
1409  // already be simplified implicitly by the above: extract (extract (insert) )
1410  // will be translated into extract ( insert ( extract ) ) first and then just
1411  // the value inserted, if appropriate. Similarly for extracts from single-use
1412  // loads: extract (extract (load)) will be translated to extract (load (gep))
1413  // and if again single-use then via load (gep (gep)) to load (gep).
1414  // However, double extracts from e.g. function arguments or return values
1415  // aren't handled yet.
1416  return 0;
1417}
1418
1419enum Personality_Type {
1420  Unknown_Personality,
1421  GNU_Ada_Personality,
1422  GNU_CXX_Personality,
1423  GNU_ObjC_Personality
1424};
1425
1426/// RecognizePersonality - See if the given exception handling personality
1427/// function is one that we understand.  If so, return a description of it;
1428/// otherwise return Unknown_Personality.
1429static Personality_Type RecognizePersonality(Value *Pers) {
1430  Function *F = dyn_cast<Function>(Pers->stripPointerCasts());
1431  if (!F)
1432    return Unknown_Personality;
1433  return StringSwitch<Personality_Type>(F->getName())
1434    .Case("__gnat_eh_personality", GNU_Ada_Personality)
1435    .Case("__gxx_personality_v0",  GNU_CXX_Personality)
1436    .Case("__objc_personality_v0", GNU_ObjC_Personality)
1437    .Default(Unknown_Personality);
1438}
1439
1440/// isCatchAll - Return 'true' if the given typeinfo will match anything.
1441static bool isCatchAll(Personality_Type Personality, Constant *TypeInfo) {
1442  switch (Personality) {
1443  case Unknown_Personality:
1444    return false;
1445  case GNU_Ada_Personality:
1446    // While __gnat_all_others_value will match any Ada exception, it doesn't
1447    // match foreign exceptions (or didn't, before gcc-4.7).
1448    return false;
1449  case GNU_CXX_Personality:
1450  case GNU_ObjC_Personality:
1451    return TypeInfo->isNullValue();
1452  }
1453  llvm_unreachable("Unknown personality!");
1454}
1455
1456static bool shorter_filter(const Value *LHS, const Value *RHS) {
1457  return
1458    cast<ArrayType>(LHS->getType())->getNumElements()
1459  <
1460    cast<ArrayType>(RHS->getType())->getNumElements();
1461}
1462
1463Instruction *InstCombiner::visitLandingPadInst(LandingPadInst &LI) {
1464  // The logic here should be correct for any real-world personality function.
1465  // However if that turns out not to be true, the offending logic can always
1466  // be conditioned on the personality function, like the catch-all logic is.
1467  Personality_Type Personality = RecognizePersonality(LI.getPersonalityFn());
1468
1469  // Simplify the list of clauses, eg by removing repeated catch clauses
1470  // (these are often created by inlining).
1471  bool MakeNewInstruction = false; // If true, recreate using the following:
1472  SmallVector<Value *, 16> NewClauses; // - Clauses for the new instruction;
1473  bool CleanupFlag = LI.isCleanup();   // - The new instruction is a cleanup.
1474
1475  SmallPtrSet<Value *, 16> AlreadyCaught; // Typeinfos known caught already.
1476  for (unsigned i = 0, e = LI.getNumClauses(); i != e; ++i) {
1477    bool isLastClause = i + 1 == e;
1478    if (LI.isCatch(i)) {
1479      // A catch clause.
1480      Value *CatchClause = LI.getClause(i);
1481      Constant *TypeInfo = cast<Constant>(CatchClause->stripPointerCasts());
1482
1483      // If we already saw this clause, there is no point in having a second
1484      // copy of it.
1485      if (AlreadyCaught.insert(TypeInfo)) {
1486        // This catch clause was not already seen.
1487        NewClauses.push_back(CatchClause);
1488      } else {
1489        // Repeated catch clause - drop the redundant copy.
1490        MakeNewInstruction = true;
1491      }
1492
1493      // If this is a catch-all then there is no point in keeping any following
1494      // clauses or marking the landingpad as having a cleanup.
1495      if (isCatchAll(Personality, TypeInfo)) {
1496        if (!isLastClause)
1497          MakeNewInstruction = true;
1498        CleanupFlag = false;
1499        break;
1500      }
1501    } else {
1502      // A filter clause.  If any of the filter elements were already caught
1503      // then they can be dropped from the filter.  It is tempting to try to
1504      // exploit the filter further by saying that any typeinfo that does not
1505      // occur in the filter can't be caught later (and thus can be dropped).
1506      // However this would be wrong, since typeinfos can match without being
1507      // equal (for example if one represents a C++ class, and the other some
1508      // class derived from it).
1509      assert(LI.isFilter(i) && "Unsupported landingpad clause!");
1510      Value *FilterClause = LI.getClause(i);
1511      ArrayType *FilterType = cast<ArrayType>(FilterClause->getType());
1512      unsigned NumTypeInfos = FilterType->getNumElements();
1513
1514      // An empty filter catches everything, so there is no point in keeping any
1515      // following clauses or marking the landingpad as having a cleanup.  By
1516      // dealing with this case here the following code is made a bit simpler.
1517      if (!NumTypeInfos) {
1518        NewClauses.push_back(FilterClause);
1519        if (!isLastClause)
1520          MakeNewInstruction = true;
1521        CleanupFlag = false;
1522        break;
1523      }
1524
1525      bool MakeNewFilter = false; // If true, make a new filter.
1526      SmallVector<Constant *, 16> NewFilterElts; // New elements.
1527      if (isa<ConstantAggregateZero>(FilterClause)) {
1528        // Not an empty filter - it contains at least one null typeinfo.
1529        assert(NumTypeInfos > 0 && "Should have handled empty filter already!");
1530        Constant *TypeInfo =
1531          Constant::getNullValue(FilterType->getElementType());
1532        // If this typeinfo is a catch-all then the filter can never match.
1533        if (isCatchAll(Personality, TypeInfo)) {
1534          // Throw the filter away.
1535          MakeNewInstruction = true;
1536          continue;
1537        }
1538
1539        // There is no point in having multiple copies of this typeinfo, so
1540        // discard all but the first copy if there is more than one.
1541        NewFilterElts.push_back(TypeInfo);
1542        if (NumTypeInfos > 1)
1543          MakeNewFilter = true;
1544      } else {
1545        ConstantArray *Filter = cast<ConstantArray>(FilterClause);
1546        SmallPtrSet<Value *, 16> SeenInFilter; // For uniquing the elements.
1547        NewFilterElts.reserve(NumTypeInfos);
1548
1549        // Remove any filter elements that were already caught or that already
1550        // occurred in the filter.  While there, see if any of the elements are
1551        // catch-alls.  If so, the filter can be discarded.
1552        bool SawCatchAll = false;
1553        for (unsigned j = 0; j != NumTypeInfos; ++j) {
1554          Value *Elt = Filter->getOperand(j);
1555          Constant *TypeInfo = cast<Constant>(Elt->stripPointerCasts());
1556          if (isCatchAll(Personality, TypeInfo)) {
1557            // This element is a catch-all.  Bail out, noting this fact.
1558            SawCatchAll = true;
1559            break;
1560          }
1561          if (AlreadyCaught.count(TypeInfo))
1562            // Already caught by an earlier clause, so having it in the filter
1563            // is pointless.
1564            continue;
1565          // There is no point in having multiple copies of the same typeinfo in
1566          // a filter, so only add it if we didn't already.
1567          if (SeenInFilter.insert(TypeInfo))
1568            NewFilterElts.push_back(cast<Constant>(Elt));
1569        }
1570        // A filter containing a catch-all cannot match anything by definition.
1571        if (SawCatchAll) {
1572          // Throw the filter away.
1573          MakeNewInstruction = true;
1574          continue;
1575        }
1576
1577        // If we dropped something from the filter, make a new one.
1578        if (NewFilterElts.size() < NumTypeInfos)
1579          MakeNewFilter = true;
1580      }
1581      if (MakeNewFilter) {
1582        FilterType = ArrayType::get(FilterType->getElementType(),
1583                                    NewFilterElts.size());
1584        FilterClause = ConstantArray::get(FilterType, NewFilterElts);
1585        MakeNewInstruction = true;
1586      }
1587
1588      NewClauses.push_back(FilterClause);
1589
1590      // If the new filter is empty then it will catch everything so there is
1591      // no point in keeping any following clauses or marking the landingpad
1592      // as having a cleanup.  The case of the original filter being empty was
1593      // already handled above.
1594      if (MakeNewFilter && !NewFilterElts.size()) {
1595        assert(MakeNewInstruction && "New filter but not a new instruction!");
1596        CleanupFlag = false;
1597        break;
1598      }
1599    }
1600  }
1601
1602  // If several filters occur in a row then reorder them so that the shortest
1603  // filters come first (those with the smallest number of elements).  This is
1604  // advantageous because shorter filters are more likely to match, speeding up
1605  // unwinding, but mostly because it increases the effectiveness of the other
1606  // filter optimizations below.
1607  for (unsigned i = 0, e = NewClauses.size(); i + 1 < e; ) {
1608    unsigned j;
1609    // Find the maximal 'j' s.t. the range [i, j) consists entirely of filters.
1610    for (j = i; j != e; ++j)
1611      if (!isa<ArrayType>(NewClauses[j]->getType()))
1612        break;
1613
1614    // Check whether the filters are already sorted by length.  We need to know
1615    // if sorting them is actually going to do anything so that we only make a
1616    // new landingpad instruction if it does.
1617    for (unsigned k = i; k + 1 < j; ++k)
1618      if (shorter_filter(NewClauses[k+1], NewClauses[k])) {
1619        // Not sorted, so sort the filters now.  Doing an unstable sort would be
1620        // correct too but reordering filters pointlessly might confuse users.
1621        std::stable_sort(NewClauses.begin() + i, NewClauses.begin() + j,
1622                         shorter_filter);
1623        MakeNewInstruction = true;
1624        break;
1625      }
1626
1627    // Look for the next batch of filters.
1628    i = j + 1;
1629  }
1630
1631  // If typeinfos matched if and only if equal, then the elements of a filter L
1632  // that occurs later than a filter F could be replaced by the intersection of
1633  // the elements of F and L.  In reality two typeinfos can match without being
1634  // equal (for example if one represents a C++ class, and the other some class
1635  // derived from it) so it would be wrong to perform this transform in general.
1636  // However the transform is correct and useful if F is a subset of L.  In that
1637  // case L can be replaced by F, and thus removed altogether since repeating a
1638  // filter is pointless.  So here we look at all pairs of filters F and L where
1639  // L follows F in the list of clauses, and remove L if every element of F is
1640  // an element of L.  This can occur when inlining C++ functions with exception
1641  // specifications.
1642  for (unsigned i = 0; i + 1 < NewClauses.size(); ++i) {
1643    // Examine each filter in turn.
1644    Value *Filter = NewClauses[i];
1645    ArrayType *FTy = dyn_cast<ArrayType>(Filter->getType());
1646    if (!FTy)
1647      // Not a filter - skip it.
1648      continue;
1649    unsigned FElts = FTy->getNumElements();
1650    // Examine each filter following this one.  Doing this backwards means that
1651    // we don't have to worry about filters disappearing under us when removed.
1652    for (unsigned j = NewClauses.size() - 1; j != i; --j) {
1653      Value *LFilter = NewClauses[j];
1654      ArrayType *LTy = dyn_cast<ArrayType>(LFilter->getType());
1655      if (!LTy)
1656        // Not a filter - skip it.
1657        continue;
1658      // If Filter is a subset of LFilter, i.e. every element of Filter is also
1659      // an element of LFilter, then discard LFilter.
1660      SmallVector<Value *, 16>::iterator J = NewClauses.begin() + j;
1661      // If Filter is empty then it is a subset of LFilter.
1662      if (!FElts) {
1663        // Discard LFilter.
1664        NewClauses.erase(J);
1665        MakeNewInstruction = true;
1666        // Move on to the next filter.
1667        continue;
1668      }
1669      unsigned LElts = LTy->getNumElements();
1670      // If Filter is longer than LFilter then it cannot be a subset of it.
1671      if (FElts > LElts)
1672        // Move on to the next filter.
1673        continue;
1674      // At this point we know that LFilter has at least one element.
1675      if (isa<ConstantAggregateZero>(LFilter)) { // LFilter only contains zeros.
1676        // Filter is a subset of LFilter iff Filter contains only zeros (as we
1677        // already know that Filter is not longer than LFilter).
1678        if (isa<ConstantAggregateZero>(Filter)) {
1679          assert(FElts <= LElts && "Should have handled this case earlier!");
1680          // Discard LFilter.
1681          NewClauses.erase(J);
1682          MakeNewInstruction = true;
1683        }
1684        // Move on to the next filter.
1685        continue;
1686      }
1687      ConstantArray *LArray = cast<ConstantArray>(LFilter);
1688      if (isa<ConstantAggregateZero>(Filter)) { // Filter only contains zeros.
1689        // Since Filter is non-empty and contains only zeros, it is a subset of
1690        // LFilter iff LFilter contains a zero.
1691        assert(FElts > 0 && "Should have eliminated the empty filter earlier!");
1692        for (unsigned l = 0; l != LElts; ++l)
1693          if (LArray->getOperand(l)->isNullValue()) {
1694            // LFilter contains a zero - discard it.
1695            NewClauses.erase(J);
1696            MakeNewInstruction = true;
1697            break;
1698          }
1699        // Move on to the next filter.
1700        continue;
1701      }
1702      // At this point we know that both filters are ConstantArrays.  Loop over
1703      // operands to see whether every element of Filter is also an element of
1704      // LFilter.  Since filters tend to be short this is probably faster than
1705      // using a method that scales nicely.
1706      ConstantArray *FArray = cast<ConstantArray>(Filter);
1707      bool AllFound = true;
1708      for (unsigned f = 0; f != FElts; ++f) {
1709        Value *FTypeInfo = FArray->getOperand(f)->stripPointerCasts();
1710        AllFound = false;
1711        for (unsigned l = 0; l != LElts; ++l) {
1712          Value *LTypeInfo = LArray->getOperand(l)->stripPointerCasts();
1713          if (LTypeInfo == FTypeInfo) {
1714            AllFound = true;
1715            break;
1716          }
1717        }
1718        if (!AllFound)
1719          break;
1720      }
1721      if (AllFound) {
1722        // Discard LFilter.
1723        NewClauses.erase(J);
1724        MakeNewInstruction = true;
1725      }
1726      // Move on to the next filter.
1727    }
1728  }
1729
1730  // If we changed any of the clauses, replace the old landingpad instruction
1731  // with a new one.
1732  if (MakeNewInstruction) {
1733    LandingPadInst *NLI = LandingPadInst::Create(LI.getType(),
1734                                                 LI.getPersonalityFn(),
1735                                                 NewClauses.size());
1736    for (unsigned i = 0, e = NewClauses.size(); i != e; ++i)
1737      NLI->addClause(NewClauses[i]);
1738    // A landing pad with no clauses must have the cleanup flag set.  It is
1739    // theoretically possible, though highly unlikely, that we eliminated all
1740    // clauses.  If so, force the cleanup flag to true.
1741    if (NewClauses.empty())
1742      CleanupFlag = true;
1743    NLI->setCleanup(CleanupFlag);
1744    return NLI;
1745  }
1746
1747  // Even if none of the clauses changed, we may nonetheless have understood
1748  // that the cleanup flag is pointless.  Clear it if so.
1749  if (LI.isCleanup() != CleanupFlag) {
1750    assert(!CleanupFlag && "Adding a cleanup, not removing one?!");
1751    LI.setCleanup(CleanupFlag);
1752    return &LI;
1753  }
1754
1755  return 0;
1756}
1757
1758
1759
1760
1761/// TryToSinkInstruction - Try to move the specified instruction from its
1762/// current block into the beginning of DestBlock, which can only happen if it's
1763/// safe to move the instruction past all of the instructions between it and the
1764/// end of its block.
1765static bool TryToSinkInstruction(Instruction *I, BasicBlock *DestBlock) {
1766  assert(I->hasOneUse() && "Invariants didn't hold!");
1767
1768  // Cannot move control-flow-involving, volatile loads, vaarg, etc.
1769  if (isa<PHINode>(I) || isa<LandingPadInst>(I) || I->mayHaveSideEffects() ||
1770      isa<TerminatorInst>(I))
1771    return false;
1772
1773  // Do not sink alloca instructions out of the entry block.
1774  if (isa<AllocaInst>(I) && I->getParent() ==
1775        &DestBlock->getParent()->getEntryBlock())
1776    return false;
1777
1778  // We can only sink load instructions if there is nothing between the load and
1779  // the end of block that could change the value.
1780  if (I->mayReadFromMemory()) {
1781    for (BasicBlock::iterator Scan = I, E = I->getParent()->end();
1782         Scan != E; ++Scan)
1783      if (Scan->mayWriteToMemory())
1784        return false;
1785  }
1786
1787  BasicBlock::iterator InsertPos = DestBlock->getFirstInsertionPt();
1788  I->moveBefore(InsertPos);
1789  ++NumSunkInst;
1790  return true;
1791}
1792
1793
1794/// AddReachableCodeToWorklist - Walk the function in depth-first order, adding
1795/// all reachable code to the worklist.
1796///
1797/// This has a couple of tricks to make the code faster and more powerful.  In
1798/// particular, we constant fold and DCE instructions as we go, to avoid adding
1799/// them to the worklist (this significantly speeds up instcombine on code where
1800/// many instructions are dead or constant).  Additionally, if we find a branch
1801/// whose condition is a known constant, we only visit the reachable successors.
1802///
1803static bool AddReachableCodeToWorklist(BasicBlock *BB,
1804                                       SmallPtrSet<BasicBlock*, 64> &Visited,
1805                                       InstCombiner &IC,
1806                                       const TargetData *TD,
1807                                       const TargetLibraryInfo *TLI) {
1808  bool MadeIRChange = false;
1809  SmallVector<BasicBlock*, 256> Worklist;
1810  Worklist.push_back(BB);
1811
1812  SmallVector<Instruction*, 128> InstrsForInstCombineWorklist;
1813  DenseMap<ConstantExpr*, Constant*> FoldedConstants;
1814
1815  do {
1816    BB = Worklist.pop_back_val();
1817
1818    // We have now visited this block!  If we've already been here, ignore it.
1819    if (!Visited.insert(BB)) continue;
1820
1821    for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) {
1822      Instruction *Inst = BBI++;
1823
1824      // DCE instruction if trivially dead.
1825      if (isInstructionTriviallyDead(Inst)) {
1826        ++NumDeadInst;
1827        DEBUG(errs() << "IC: DCE: " << *Inst << '\n');
1828        Inst->eraseFromParent();
1829        continue;
1830      }
1831
1832      // ConstantProp instruction if trivially constant.
1833      if (!Inst->use_empty() && isa<Constant>(Inst->getOperand(0)))
1834        if (Constant *C = ConstantFoldInstruction(Inst, TD, TLI)) {
1835          DEBUG(errs() << "IC: ConstFold to: " << *C << " from: "
1836                       << *Inst << '\n');
1837          Inst->replaceAllUsesWith(C);
1838          ++NumConstProp;
1839          Inst->eraseFromParent();
1840          continue;
1841        }
1842
1843      if (TD) {
1844        // See if we can constant fold its operands.
1845        for (User::op_iterator i = Inst->op_begin(), e = Inst->op_end();
1846             i != e; ++i) {
1847          ConstantExpr *CE = dyn_cast<ConstantExpr>(i);
1848          if (CE == 0) continue;
1849
1850          Constant*& FoldRes = FoldedConstants[CE];
1851          if (!FoldRes)
1852            FoldRes = ConstantFoldConstantExpression(CE, TD, TLI);
1853          if (!FoldRes)
1854            FoldRes = CE;
1855
1856          if (FoldRes != CE) {
1857            *i = FoldRes;
1858            MadeIRChange = true;
1859          }
1860        }
1861      }
1862
1863      InstrsForInstCombineWorklist.push_back(Inst);
1864    }
1865
1866    // Recursively visit successors.  If this is a branch or switch on a
1867    // constant, only visit the reachable successor.
1868    TerminatorInst *TI = BB->getTerminator();
1869    if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
1870      if (BI->isConditional() && isa<ConstantInt>(BI->getCondition())) {
1871        bool CondVal = cast<ConstantInt>(BI->getCondition())->getZExtValue();
1872        BasicBlock *ReachableBB = BI->getSuccessor(!CondVal);
1873        Worklist.push_back(ReachableBB);
1874        continue;
1875      }
1876    } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
1877      if (ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition())) {
1878        // See if this is an explicit destination.
1879        for (unsigned i = 1, e = SI->getNumSuccessors(); i != e; ++i)
1880          if (SI->getCaseValue(i) == Cond) {
1881            BasicBlock *ReachableBB = SI->getSuccessor(i);
1882            Worklist.push_back(ReachableBB);
1883            continue;
1884          }
1885
1886        // Otherwise it is the default destination.
1887        Worklist.push_back(SI->getSuccessor(0));
1888        continue;
1889      }
1890    }
1891
1892    for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
1893      Worklist.push_back(TI->getSuccessor(i));
1894  } while (!Worklist.empty());
1895
1896  // Once we've found all of the instructions to add to instcombine's worklist,
1897  // add them in reverse order.  This way instcombine will visit from the top
1898  // of the function down.  This jives well with the way that it adds all uses
1899  // of instructions to the worklist after doing a transformation, thus avoiding
1900  // some N^2 behavior in pathological cases.
1901  IC.Worklist.AddInitialGroup(&InstrsForInstCombineWorklist[0],
1902                              InstrsForInstCombineWorklist.size());
1903
1904  return MadeIRChange;
1905}
1906
1907bool InstCombiner::DoOneIteration(Function &F, unsigned Iteration) {
1908  MadeIRChange = false;
1909
1910  DEBUG(errs() << "\n\nINSTCOMBINE ITERATION #" << Iteration << " on "
1911               << F.getName() << "\n");
1912
1913  {
1914    // Do a depth-first traversal of the function, populate the worklist with
1915    // the reachable instructions.  Ignore blocks that are not reachable.  Keep
1916    // track of which blocks we visit.
1917    SmallPtrSet<BasicBlock*, 64> Visited;
1918    MadeIRChange |= AddReachableCodeToWorklist(F.begin(), Visited, *this, TD,
1919                                               TLI);
1920
1921    // Do a quick scan over the function.  If we find any blocks that are
1922    // unreachable, remove any instructions inside of them.  This prevents
1923    // the instcombine code from having to deal with some bad special cases.
1924    for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
1925      if (Visited.count(BB)) continue;
1926
1927      // Delete the instructions backwards, as it has a reduced likelihood of
1928      // having to update as many def-use and use-def chains.
1929      Instruction *EndInst = BB->getTerminator(); // Last not to be deleted.
1930      while (EndInst != BB->begin()) {
1931        // Delete the next to last instruction.
1932        BasicBlock::iterator I = EndInst;
1933        Instruction *Inst = --I;
1934        if (!Inst->use_empty())
1935          Inst->replaceAllUsesWith(UndefValue::get(Inst->getType()));
1936        if (isa<LandingPadInst>(Inst)) {
1937          EndInst = Inst;
1938          continue;
1939        }
1940        if (!isa<DbgInfoIntrinsic>(Inst)) {
1941          ++NumDeadInst;
1942          MadeIRChange = true;
1943        }
1944        Inst->eraseFromParent();
1945      }
1946    }
1947  }
1948
1949  while (!Worklist.isEmpty()) {
1950    Instruction *I = Worklist.RemoveOne();
1951    if (I == 0) continue;  // skip null values.
1952
1953    // Check to see if we can DCE the instruction.
1954    if (isInstructionTriviallyDead(I)) {
1955      DEBUG(errs() << "IC: DCE: " << *I << '\n');
1956      EraseInstFromFunction(*I);
1957      ++NumDeadInst;
1958      MadeIRChange = true;
1959      continue;
1960    }
1961
1962    // Instruction isn't dead, see if we can constant propagate it.
1963    if (!I->use_empty() && isa<Constant>(I->getOperand(0)))
1964      if (Constant *C = ConstantFoldInstruction(I, TD, TLI)) {
1965        DEBUG(errs() << "IC: ConstFold to: " << *C << " from: " << *I << '\n');
1966
1967        // Add operands to the worklist.
1968        ReplaceInstUsesWith(*I, C);
1969        ++NumConstProp;
1970        EraseInstFromFunction(*I);
1971        MadeIRChange = true;
1972        continue;
1973      }
1974
1975    // See if we can trivially sink this instruction to a successor basic block.
1976    if (I->hasOneUse()) {
1977      BasicBlock *BB = I->getParent();
1978      Instruction *UserInst = cast<Instruction>(I->use_back());
1979      BasicBlock *UserParent;
1980
1981      // Get the block the use occurs in.
1982      if (PHINode *PN = dyn_cast<PHINode>(UserInst))
1983        UserParent = PN->getIncomingBlock(I->use_begin().getUse());
1984      else
1985        UserParent = UserInst->getParent();
1986
1987      if (UserParent != BB) {
1988        bool UserIsSuccessor = false;
1989        // See if the user is one of our successors.
1990        for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI)
1991          if (*SI == UserParent) {
1992            UserIsSuccessor = true;
1993            break;
1994          }
1995
1996        // If the user is one of our immediate successors, and if that successor
1997        // only has us as a predecessors (we'd have to split the critical edge
1998        // otherwise), we can keep going.
1999        if (UserIsSuccessor && UserParent->getSinglePredecessor())
2000          // Okay, the CFG is simple enough, try to sink this instruction.
2001          MadeIRChange |= TryToSinkInstruction(I, UserParent);
2002      }
2003    }
2004
2005    // Now that we have an instruction, try combining it to simplify it.
2006    Builder->SetInsertPoint(I->getParent(), I);
2007    Builder->SetCurrentDebugLocation(I->getDebugLoc());
2008
2009#ifndef NDEBUG
2010    std::string OrigI;
2011#endif
2012    DEBUG(raw_string_ostream SS(OrigI); I->print(SS); OrigI = SS.str(););
2013    DEBUG(errs() << "IC: Visiting: " << OrigI << '\n');
2014
2015    if (Instruction *Result = visit(*I)) {
2016      ++NumCombined;
2017      // Should we replace the old instruction with a new one?
2018      if (Result != I) {
2019        DEBUG(errs() << "IC: Old = " << *I << '\n'
2020                     << "    New = " << *Result << '\n');
2021
2022        if (!I->getDebugLoc().isUnknown())
2023          Result->setDebugLoc(I->getDebugLoc());
2024        // Everything uses the new instruction now.
2025        I->replaceAllUsesWith(Result);
2026
2027        // Move the name to the new instruction first.
2028        Result->takeName(I);
2029
2030        // Push the new instruction and any users onto the worklist.
2031        Worklist.Add(Result);
2032        Worklist.AddUsersToWorkList(*Result);
2033
2034        // Insert the new instruction into the basic block...
2035        BasicBlock *InstParent = I->getParent();
2036        BasicBlock::iterator InsertPos = I;
2037
2038        // If we replace a PHI with something that isn't a PHI, fix up the
2039        // insertion point.
2040        if (!isa<PHINode>(Result) && isa<PHINode>(InsertPos))
2041          InsertPos = InstParent->getFirstInsertionPt();
2042
2043        InstParent->getInstList().insert(InsertPos, Result);
2044
2045        EraseInstFromFunction(*I);
2046      } else {
2047#ifndef NDEBUG
2048        DEBUG(errs() << "IC: Mod = " << OrigI << '\n'
2049                     << "    New = " << *I << '\n');
2050#endif
2051
2052        // If the instruction was modified, it's possible that it is now dead.
2053        // if so, remove it.
2054        if (isInstructionTriviallyDead(I)) {
2055          EraseInstFromFunction(*I);
2056        } else {
2057          Worklist.Add(I);
2058          Worklist.AddUsersToWorkList(*I);
2059        }
2060      }
2061      MadeIRChange = true;
2062    }
2063  }
2064
2065  Worklist.Zap();
2066  return MadeIRChange;
2067}
2068
2069
2070bool InstCombiner::runOnFunction(Function &F) {
2071  TD = getAnalysisIfAvailable<TargetData>();
2072  TLI = &getAnalysis<TargetLibraryInfo>();
2073
2074  /// Builder - This is an IRBuilder that automatically inserts new
2075  /// instructions into the worklist when they are created.
2076  IRBuilder<true, TargetFolder, InstCombineIRInserter>
2077    TheBuilder(F.getContext(), TargetFolder(TD),
2078               InstCombineIRInserter(Worklist));
2079  Builder = &TheBuilder;
2080
2081  bool EverMadeChange = false;
2082
2083  // Lower dbg.declare intrinsics otherwise their value may be clobbered
2084  // by instcombiner.
2085  EverMadeChange = LowerDbgDeclare(F);
2086
2087  // Iterate while there is work to do.
2088  unsigned Iteration = 0;
2089  while (DoOneIteration(F, Iteration++))
2090    EverMadeChange = true;
2091
2092  Builder = 0;
2093  return EverMadeChange;
2094}
2095
2096FunctionPass *llvm::createInstructionCombiningPass() {
2097  return new InstCombiner();
2098}
2099