IndVarSimplify.cpp revision 037d1c0c7e01cefeff7e538682c9a1e536e14030
1//===- IndVarSimplify.cpp - Induction Variable Elimination ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This transformation analyzes and transforms the induction variables (and
11// computations derived from them) into simpler forms suitable for subsequent
12// analysis and transformation.
13//
14// This transformation makes the following changes to each loop with an
15// identifiable induction variable:
16//   1. All loops are transformed to have a SINGLE canonical induction variable
17//      which starts at zero and steps by one.
18//   2. The canonical induction variable is guaranteed to be the first PHI node
19//      in the loop header block.
20//   3. The canonical induction variable is guaranteed to be in a wide enough
21//      type so that IV expressions need not be (directly) zero-extended or
22//      sign-extended.
23//   4. Any pointer arithmetic recurrences are raised to use array subscripts.
24//
25// If the trip count of a loop is computable, this pass also makes the following
26// changes:
27//   1. The exit condition for the loop is canonicalized to compare the
28//      induction value against the exit value.  This turns loops like:
29//        'for (i = 7; i*i < 1000; ++i)' into 'for (i = 0; i != 25; ++i)'
30//   2. Any use outside of the loop of an expression derived from the indvar
31//      is changed to compute the derived value outside of the loop, eliminating
32//      the dependence on the exit value of the induction variable.  If the only
33//      purpose of the loop is to compute the exit value of some derived
34//      expression, this transformation will make the loop dead.
35//
36// This transformation should be followed by strength reduction after all of the
37// desired loop transformations have been performed.
38//
39//===----------------------------------------------------------------------===//
40
41#define DEBUG_TYPE "indvars"
42#include "llvm/Transforms/Scalar.h"
43#include "llvm/BasicBlock.h"
44#include "llvm/Constants.h"
45#include "llvm/Instructions.h"
46#include "llvm/IntrinsicInst.h"
47#include "llvm/LLVMContext.h"
48#include "llvm/Type.h"
49#include "llvm/Analysis/Dominators.h"
50#include "llvm/Analysis/IVUsers.h"
51#include "llvm/Analysis/ScalarEvolutionExpander.h"
52#include "llvm/Analysis/LoopInfo.h"
53#include "llvm/Analysis/LoopPass.h"
54#include "llvm/Support/CFG.h"
55#include "llvm/Support/CommandLine.h"
56#include "llvm/Support/Debug.h"
57#include "llvm/Support/raw_ostream.h"
58#include "llvm/Transforms/Utils/Local.h"
59#include "llvm/Transforms/Utils/BasicBlockUtils.h"
60#include "llvm/Target/TargetData.h"
61#include "llvm/ADT/DenseMap.h"
62#include "llvm/ADT/SmallVector.h"
63#include "llvm/ADT/Statistic.h"
64#include "llvm/ADT/STLExtras.h"
65using namespace llvm;
66
67STATISTIC(NumRemoved     , "Number of aux indvars removed");
68STATISTIC(NumWidened     , "Number of indvars widened");
69STATISTIC(NumInserted    , "Number of canonical indvars added");
70STATISTIC(NumReplaced    , "Number of exit values replaced");
71STATISTIC(NumLFTR        , "Number of loop exit tests replaced");
72STATISTIC(NumElimIdentity, "Number of IV identities eliminated");
73STATISTIC(NumElimExt     , "Number of IV sign/zero extends eliminated");
74STATISTIC(NumElimRem     , "Number of IV remainder operations eliminated");
75STATISTIC(NumElimCmp     , "Number of IV comparisons eliminated");
76STATISTIC(NumElimIV      , "Number of congruent IVs eliminated");
77
78static cl::opt<bool> DisableIVRewrite(
79  "disable-iv-rewrite", cl::Hidden,
80  cl::desc("Disable canonical induction variable rewriting"));
81
82namespace {
83  class IndVarSimplify : public LoopPass {
84    typedef DenseMap<const SCEV *, PHINode *> ExprToIVMapTy;
85
86    IVUsers         *IU;
87    LoopInfo        *LI;
88    ScalarEvolution *SE;
89    DominatorTree   *DT;
90    TargetData      *TD;
91
92    ExprToIVMapTy ExprToIVMap;
93    SmallVector<WeakVH, 16> DeadInsts;
94    bool Changed;
95  public:
96
97    static char ID; // Pass identification, replacement for typeid
98    IndVarSimplify() : LoopPass(ID), IU(0), LI(0), SE(0), DT(0), TD(0),
99                       Changed(false) {
100      initializeIndVarSimplifyPass(*PassRegistry::getPassRegistry());
101    }
102
103    virtual bool runOnLoop(Loop *L, LPPassManager &LPM);
104
105    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
106      AU.addRequired<DominatorTree>();
107      AU.addRequired<LoopInfo>();
108      AU.addRequired<ScalarEvolution>();
109      AU.addRequiredID(LoopSimplifyID);
110      AU.addRequiredID(LCSSAID);
111      if (!DisableIVRewrite)
112        AU.addRequired<IVUsers>();
113      AU.addPreserved<ScalarEvolution>();
114      AU.addPreservedID(LoopSimplifyID);
115      AU.addPreservedID(LCSSAID);
116      if (!DisableIVRewrite)
117        AU.addPreserved<IVUsers>();
118      AU.setPreservesCFG();
119    }
120
121  private:
122    virtual void releaseMemory() {
123      ExprToIVMap.clear();
124      DeadInsts.clear();
125    }
126
127    bool isValidRewrite(Value *FromVal, Value *ToVal);
128
129    void SimplifyIVUsers(SCEVExpander &Rewriter);
130    void SimplifyIVUsersNoRewrite(Loop *L, SCEVExpander &Rewriter);
131
132    bool EliminateIVUser(Instruction *UseInst, Instruction *IVOperand);
133    void EliminateIVComparison(ICmpInst *ICmp, Value *IVOperand);
134    void EliminateIVRemainder(BinaryOperator *Rem,
135                              Value *IVOperand,
136                              bool IsSigned);
137    bool isSimpleIVUser(Instruction *I, const Loop *L);
138    void RewriteNonIntegerIVs(Loop *L);
139
140    ICmpInst *LinearFunctionTestReplace(Loop *L, const SCEV *BackedgeTakenCount,
141                                        PHINode *IndVar,
142                                        SCEVExpander &Rewriter);
143
144    void RewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter);
145
146    void SimplifyCongruentIVs(Loop *L);
147
148    void RewriteIVExpressions(Loop *L, SCEVExpander &Rewriter);
149
150    void SinkUnusedInvariants(Loop *L);
151
152    void HandleFloatingPointIV(Loop *L, PHINode *PH);
153  };
154}
155
156char IndVarSimplify::ID = 0;
157INITIALIZE_PASS_BEGIN(IndVarSimplify, "indvars",
158                "Induction Variable Simplification", false, false)
159INITIALIZE_PASS_DEPENDENCY(DominatorTree)
160INITIALIZE_PASS_DEPENDENCY(LoopInfo)
161INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
162INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
163INITIALIZE_PASS_DEPENDENCY(LCSSA)
164INITIALIZE_PASS_DEPENDENCY(IVUsers)
165INITIALIZE_PASS_END(IndVarSimplify, "indvars",
166                "Induction Variable Simplification", false, false)
167
168Pass *llvm::createIndVarSimplifyPass() {
169  return new IndVarSimplify();
170}
171
172/// isValidRewrite - Return true if the SCEV expansion generated by the
173/// rewriter can replace the original value. SCEV guarantees that it
174/// produces the same value, but the way it is produced may be illegal IR.
175/// Ideally, this function will only be called for verification.
176bool IndVarSimplify::isValidRewrite(Value *FromVal, Value *ToVal) {
177  // If an SCEV expression subsumed multiple pointers, its expansion could
178  // reassociate the GEP changing the base pointer. This is illegal because the
179  // final address produced by a GEP chain must be inbounds relative to its
180  // underlying object. Otherwise basic alias analysis, among other things,
181  // could fail in a dangerous way. Ultimately, SCEV will be improved to avoid
182  // producing an expression involving multiple pointers. Until then, we must
183  // bail out here.
184  //
185  // Retrieve the pointer operand of the GEP. Don't use GetUnderlyingObject
186  // because it understands lcssa phis while SCEV does not.
187  Value *FromPtr = FromVal;
188  Value *ToPtr = ToVal;
189  if (GEPOperator *GEP = dyn_cast<GEPOperator>(FromVal)) {
190    FromPtr = GEP->getPointerOperand();
191  }
192  if (GEPOperator *GEP = dyn_cast<GEPOperator>(ToVal)) {
193    ToPtr = GEP->getPointerOperand();
194  }
195  if (FromPtr != FromVal || ToPtr != ToVal) {
196    // Quickly check the common case
197    if (FromPtr == ToPtr)
198      return true;
199
200    // SCEV may have rewritten an expression that produces the GEP's pointer
201    // operand. That's ok as long as the pointer operand has the same base
202    // pointer. Unlike GetUnderlyingObject(), getPointerBase() will find the
203    // base of a recurrence. This handles the case in which SCEV expansion
204    // converts a pointer type recurrence into a nonrecurrent pointer base
205    // indexed by an integer recurrence.
206    const SCEV *FromBase = SE->getPointerBase(SE->getSCEV(FromPtr));
207    const SCEV *ToBase = SE->getPointerBase(SE->getSCEV(ToPtr));
208    if (FromBase == ToBase)
209      return true;
210
211    DEBUG(dbgs() << "INDVARS: GEP rewrite bail out "
212          << *FromBase << " != " << *ToBase << "\n");
213
214    return false;
215  }
216  return true;
217}
218
219/// canExpandBackedgeTakenCount - Return true if this loop's backedge taken
220/// count expression can be safely and cheaply expanded into an instruction
221/// sequence that can be used by LinearFunctionTestReplace.
222static bool canExpandBackedgeTakenCount(Loop *L, ScalarEvolution *SE) {
223  const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L);
224  if (isa<SCEVCouldNotCompute>(BackedgeTakenCount) ||
225      BackedgeTakenCount->isZero())
226    return false;
227
228  if (!L->getExitingBlock())
229    return false;
230
231  // Can't rewrite non-branch yet.
232  BranchInst *BI = dyn_cast<BranchInst>(L->getExitingBlock()->getTerminator());
233  if (!BI)
234    return false;
235
236  // Special case: If the backedge-taken count is a UDiv, it's very likely a
237  // UDiv that ScalarEvolution produced in order to compute a precise
238  // expression, rather than a UDiv from the user's code. If we can't find a
239  // UDiv in the code with some simple searching, assume the former and forego
240  // rewriting the loop.
241  if (isa<SCEVUDivExpr>(BackedgeTakenCount)) {
242    ICmpInst *OrigCond = dyn_cast<ICmpInst>(BI->getCondition());
243    if (!OrigCond) return false;
244    const SCEV *R = SE->getSCEV(OrigCond->getOperand(1));
245    R = SE->getMinusSCEV(R, SE->getConstant(R->getType(), 1));
246    if (R != BackedgeTakenCount) {
247      const SCEV *L = SE->getSCEV(OrigCond->getOperand(0));
248      L = SE->getMinusSCEV(L, SE->getConstant(L->getType(), 1));
249      if (L != BackedgeTakenCount)
250        return false;
251    }
252  }
253  return true;
254}
255
256/// getBackedgeIVType - Get the widest type used by the loop test after peeking
257/// through Truncs.
258///
259/// TODO: Unnecessary once LinearFunctionTestReplace is removed.
260static const Type *getBackedgeIVType(Loop *L) {
261  if (!L->getExitingBlock())
262    return 0;
263
264  // Can't rewrite non-branch yet.
265  BranchInst *BI = dyn_cast<BranchInst>(L->getExitingBlock()->getTerminator());
266  if (!BI)
267    return 0;
268
269  ICmpInst *Cond = dyn_cast<ICmpInst>(BI->getCondition());
270  if (!Cond)
271    return 0;
272
273  const Type *Ty = 0;
274  for(User::op_iterator OI = Cond->op_begin(), OE = Cond->op_end();
275      OI != OE; ++OI) {
276    assert((!Ty || Ty == (*OI)->getType()) && "bad icmp operand types");
277    TruncInst *Trunc = dyn_cast<TruncInst>(*OI);
278    if (!Trunc)
279      continue;
280
281    return Trunc->getSrcTy();
282  }
283  return Ty;
284}
285
286/// LinearFunctionTestReplace - This method rewrites the exit condition of the
287/// loop to be a canonical != comparison against the incremented loop induction
288/// variable.  This pass is able to rewrite the exit tests of any loop where the
289/// SCEV analysis can determine a loop-invariant trip count of the loop, which
290/// is actually a much broader range than just linear tests.
291ICmpInst *IndVarSimplify::
292LinearFunctionTestReplace(Loop *L,
293                          const SCEV *BackedgeTakenCount,
294                          PHINode *IndVar,
295                          SCEVExpander &Rewriter) {
296  assert(canExpandBackedgeTakenCount(L, SE) && "precondition");
297  BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator());
298
299  // If the exiting block is not the same as the backedge block, we must compare
300  // against the preincremented value, otherwise we prefer to compare against
301  // the post-incremented value.
302  Value *CmpIndVar;
303  const SCEV *RHS = BackedgeTakenCount;
304  if (L->getExitingBlock() == L->getLoopLatch()) {
305    // Add one to the "backedge-taken" count to get the trip count.
306    // If this addition may overflow, we have to be more pessimistic and
307    // cast the induction variable before doing the add.
308    const SCEV *Zero = SE->getConstant(BackedgeTakenCount->getType(), 0);
309    const SCEV *N =
310      SE->getAddExpr(BackedgeTakenCount,
311                     SE->getConstant(BackedgeTakenCount->getType(), 1));
312    if ((isa<SCEVConstant>(N) && !N->isZero()) ||
313        SE->isLoopEntryGuardedByCond(L, ICmpInst::ICMP_NE, N, Zero)) {
314      // No overflow. Cast the sum.
315      RHS = SE->getTruncateOrZeroExtend(N, IndVar->getType());
316    } else {
317      // Potential overflow. Cast before doing the add.
318      RHS = SE->getTruncateOrZeroExtend(BackedgeTakenCount,
319                                        IndVar->getType());
320      RHS = SE->getAddExpr(RHS,
321                           SE->getConstant(IndVar->getType(), 1));
322    }
323
324    // The BackedgeTaken expression contains the number of times that the
325    // backedge branches to the loop header.  This is one less than the
326    // number of times the loop executes, so use the incremented indvar.
327    CmpIndVar = IndVar->getIncomingValueForBlock(L->getExitingBlock());
328  } else {
329    // We have to use the preincremented value...
330    RHS = SE->getTruncateOrZeroExtend(BackedgeTakenCount,
331                                      IndVar->getType());
332    CmpIndVar = IndVar;
333  }
334
335  // Expand the code for the iteration count.
336  assert(SE->isLoopInvariant(RHS, L) &&
337         "Computed iteration count is not loop invariant!");
338  Value *ExitCnt = Rewriter.expandCodeFor(RHS, IndVar->getType(), BI);
339
340  // Insert a new icmp_ne or icmp_eq instruction before the branch.
341  ICmpInst::Predicate Opcode;
342  if (L->contains(BI->getSuccessor(0)))
343    Opcode = ICmpInst::ICMP_NE;
344  else
345    Opcode = ICmpInst::ICMP_EQ;
346
347  DEBUG(dbgs() << "INDVARS: Rewriting loop exit condition to:\n"
348               << "      LHS:" << *CmpIndVar << '\n'
349               << "       op:\t"
350               << (Opcode == ICmpInst::ICMP_NE ? "!=" : "==") << "\n"
351               << "      RHS:\t" << *RHS << "\n");
352
353  ICmpInst *Cond = new ICmpInst(BI, Opcode, CmpIndVar, ExitCnt, "exitcond");
354  Cond->setDebugLoc(BI->getDebugLoc());
355  Value *OrigCond = BI->getCondition();
356  // It's tempting to use replaceAllUsesWith here to fully replace the old
357  // comparison, but that's not immediately safe, since users of the old
358  // comparison may not be dominated by the new comparison. Instead, just
359  // update the branch to use the new comparison; in the common case this
360  // will make old comparison dead.
361  BI->setCondition(Cond);
362  DeadInsts.push_back(OrigCond);
363
364  ++NumLFTR;
365  Changed = true;
366  return Cond;
367}
368
369/// RewriteLoopExitValues - Check to see if this loop has a computable
370/// loop-invariant execution count.  If so, this means that we can compute the
371/// final value of any expressions that are recurrent in the loop, and
372/// substitute the exit values from the loop into any instructions outside of
373/// the loop that use the final values of the current expressions.
374///
375/// This is mostly redundant with the regular IndVarSimplify activities that
376/// happen later, except that it's more powerful in some cases, because it's
377/// able to brute-force evaluate arbitrary instructions as long as they have
378/// constant operands at the beginning of the loop.
379void IndVarSimplify::RewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter) {
380  // Verify the input to the pass in already in LCSSA form.
381  assert(L->isLCSSAForm(*DT));
382
383  SmallVector<BasicBlock*, 8> ExitBlocks;
384  L->getUniqueExitBlocks(ExitBlocks);
385
386  // Find all values that are computed inside the loop, but used outside of it.
387  // Because of LCSSA, these values will only occur in LCSSA PHI Nodes.  Scan
388  // the exit blocks of the loop to find them.
389  for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
390    BasicBlock *ExitBB = ExitBlocks[i];
391
392    // If there are no PHI nodes in this exit block, then no values defined
393    // inside the loop are used on this path, skip it.
394    PHINode *PN = dyn_cast<PHINode>(ExitBB->begin());
395    if (!PN) continue;
396
397    unsigned NumPreds = PN->getNumIncomingValues();
398
399    // Iterate over all of the PHI nodes.
400    BasicBlock::iterator BBI = ExitBB->begin();
401    while ((PN = dyn_cast<PHINode>(BBI++))) {
402      if (PN->use_empty())
403        continue; // dead use, don't replace it
404
405      // SCEV only supports integer expressions for now.
406      if (!PN->getType()->isIntegerTy() && !PN->getType()->isPointerTy())
407        continue;
408
409      // It's necessary to tell ScalarEvolution about this explicitly so that
410      // it can walk the def-use list and forget all SCEVs, as it may not be
411      // watching the PHI itself. Once the new exit value is in place, there
412      // may not be a def-use connection between the loop and every instruction
413      // which got a SCEVAddRecExpr for that loop.
414      SE->forgetValue(PN);
415
416      // Iterate over all of the values in all the PHI nodes.
417      for (unsigned i = 0; i != NumPreds; ++i) {
418        // If the value being merged in is not integer or is not defined
419        // in the loop, skip it.
420        Value *InVal = PN->getIncomingValue(i);
421        if (!isa<Instruction>(InVal))
422          continue;
423
424        // If this pred is for a subloop, not L itself, skip it.
425        if (LI->getLoopFor(PN->getIncomingBlock(i)) != L)
426          continue; // The Block is in a subloop, skip it.
427
428        // Check that InVal is defined in the loop.
429        Instruction *Inst = cast<Instruction>(InVal);
430        if (!L->contains(Inst))
431          continue;
432
433        // Okay, this instruction has a user outside of the current loop
434        // and varies predictably *inside* the loop.  Evaluate the value it
435        // contains when the loop exits, if possible.
436        const SCEV *ExitValue = SE->getSCEVAtScope(Inst, L->getParentLoop());
437        if (!SE->isLoopInvariant(ExitValue, L))
438          continue;
439
440        Value *ExitVal = Rewriter.expandCodeFor(ExitValue, PN->getType(), Inst);
441
442        DEBUG(dbgs() << "INDVARS: RLEV: AfterLoopVal = " << *ExitVal << '\n'
443                     << "  LoopVal = " << *Inst << "\n");
444
445        if (!isValidRewrite(Inst, ExitVal)) {
446          DeadInsts.push_back(ExitVal);
447          continue;
448        }
449        Changed = true;
450        ++NumReplaced;
451
452        PN->setIncomingValue(i, ExitVal);
453
454        // If this instruction is dead now, delete it.
455        RecursivelyDeleteTriviallyDeadInstructions(Inst);
456
457        if (NumPreds == 1) {
458          // Completely replace a single-pred PHI. This is safe, because the
459          // NewVal won't be variant in the loop, so we don't need an LCSSA phi
460          // node anymore.
461          PN->replaceAllUsesWith(ExitVal);
462          RecursivelyDeleteTriviallyDeadInstructions(PN);
463        }
464      }
465      if (NumPreds != 1) {
466        // Clone the PHI and delete the original one. This lets IVUsers and
467        // any other maps purge the original user from their records.
468        PHINode *NewPN = cast<PHINode>(PN->clone());
469        NewPN->takeName(PN);
470        NewPN->insertBefore(PN);
471        PN->replaceAllUsesWith(NewPN);
472        PN->eraseFromParent();
473      }
474    }
475  }
476
477  // The insertion point instruction may have been deleted; clear it out
478  // so that the rewriter doesn't trip over it later.
479  Rewriter.clearInsertPoint();
480}
481
482void IndVarSimplify::RewriteNonIntegerIVs(Loop *L) {
483  // First step.  Check to see if there are any floating-point recurrences.
484  // If there are, change them into integer recurrences, permitting analysis by
485  // the SCEV routines.
486  //
487  BasicBlock *Header = L->getHeader();
488
489  SmallVector<WeakVH, 8> PHIs;
490  for (BasicBlock::iterator I = Header->begin();
491       PHINode *PN = dyn_cast<PHINode>(I); ++I)
492    PHIs.push_back(PN);
493
494  for (unsigned i = 0, e = PHIs.size(); i != e; ++i)
495    if (PHINode *PN = dyn_cast_or_null<PHINode>(&*PHIs[i]))
496      HandleFloatingPointIV(L, PN);
497
498  // If the loop previously had floating-point IV, ScalarEvolution
499  // may not have been able to compute a trip count. Now that we've done some
500  // re-writing, the trip count may be computable.
501  if (Changed)
502    SE->forgetLoop(L);
503}
504
505/// SimplifyIVUsers - Iteratively perform simplification on IVUsers within this
506/// loop. IVUsers is treated as a worklist. Each successive simplification may
507/// push more users which may themselves be candidates for simplification.
508///
509/// This is the old approach to IV simplification to be replaced by
510/// SimplifyIVUsersNoRewrite.
511///
512void IndVarSimplify::SimplifyIVUsers(SCEVExpander &Rewriter) {
513  // Each round of simplification involves a round of eliminating operations
514  // followed by a round of widening IVs. A single IVUsers worklist is used
515  // across all rounds. The inner loop advances the user. If widening exposes
516  // more uses, then another pass through the outer loop is triggered.
517  for (IVUsers::iterator I = IU->begin(); I != IU->end(); ++I) {
518    Instruction *UseInst = I->getUser();
519    Value *IVOperand = I->getOperandValToReplace();
520
521    if (ICmpInst *ICmp = dyn_cast<ICmpInst>(UseInst)) {
522      EliminateIVComparison(ICmp, IVOperand);
523      continue;
524    }
525    if (BinaryOperator *Rem = dyn_cast<BinaryOperator>(UseInst)) {
526      bool IsSigned = Rem->getOpcode() == Instruction::SRem;
527      if (IsSigned || Rem->getOpcode() == Instruction::URem) {
528        EliminateIVRemainder(Rem, IVOperand, IsSigned);
529        continue;
530      }
531    }
532  }
533}
534
535namespace {
536  // Collect information about induction variables that are used by sign/zero
537  // extend operations. This information is recorded by CollectExtend and
538  // provides the input to WidenIV.
539  struct WideIVInfo {
540    const Type *WidestNativeType; // Widest integer type created [sz]ext
541    bool IsSigned;                // Was an sext user seen before a zext?
542
543    WideIVInfo() : WidestNativeType(0), IsSigned(false) {}
544  };
545}
546
547/// CollectExtend - Update information about the induction variable that is
548/// extended by this sign or zero extend operation. This is used to determine
549/// the final width of the IV before actually widening it.
550static void CollectExtend(CastInst *Cast, bool IsSigned, WideIVInfo &WI,
551                          ScalarEvolution *SE, const TargetData *TD) {
552  const Type *Ty = Cast->getType();
553  uint64_t Width = SE->getTypeSizeInBits(Ty);
554  if (TD && !TD->isLegalInteger(Width))
555    return;
556
557  if (!WI.WidestNativeType) {
558    WI.WidestNativeType = SE->getEffectiveSCEVType(Ty);
559    WI.IsSigned = IsSigned;
560    return;
561  }
562
563  // We extend the IV to satisfy the sign of its first user, arbitrarily.
564  if (WI.IsSigned != IsSigned)
565    return;
566
567  if (Width > SE->getTypeSizeInBits(WI.WidestNativeType))
568    WI.WidestNativeType = SE->getEffectiveSCEVType(Ty);
569}
570
571namespace {
572/// WidenIV - The goal of this transform is to remove sign and zero extends
573/// without creating any new induction variables. To do this, it creates a new
574/// phi of the wider type and redirects all users, either removing extends or
575/// inserting truncs whenever we stop propagating the type.
576///
577class WidenIV {
578  // Parameters
579  PHINode *OrigPhi;
580  const Type *WideType;
581  bool IsSigned;
582
583  // Context
584  LoopInfo        *LI;
585  Loop            *L;
586  ScalarEvolution *SE;
587  DominatorTree   *DT;
588
589  // Result
590  PHINode *WidePhi;
591  Instruction *WideInc;
592  const SCEV *WideIncExpr;
593  SmallVectorImpl<WeakVH> &DeadInsts;
594
595  SmallPtrSet<Instruction*,16> Widened;
596  SmallVector<std::pair<Use *, Instruction *>, 8> NarrowIVUsers;
597
598public:
599  WidenIV(PHINode *PN, const WideIVInfo &WI, LoopInfo *LInfo,
600          ScalarEvolution *SEv, DominatorTree *DTree,
601          SmallVectorImpl<WeakVH> &DI) :
602    OrigPhi(PN),
603    WideType(WI.WidestNativeType),
604    IsSigned(WI.IsSigned),
605    LI(LInfo),
606    L(LI->getLoopFor(OrigPhi->getParent())),
607    SE(SEv),
608    DT(DTree),
609    WidePhi(0),
610    WideInc(0),
611    WideIncExpr(0),
612    DeadInsts(DI) {
613    assert(L->getHeader() == OrigPhi->getParent() && "Phi must be an IV");
614  }
615
616  PHINode *CreateWideIV(SCEVExpander &Rewriter);
617
618protected:
619  Instruction *CloneIVUser(Instruction *NarrowUse,
620                           Instruction *NarrowDef,
621                           Instruction *WideDef);
622
623  const SCEVAddRecExpr *GetWideRecurrence(Instruction *NarrowUse);
624
625  Instruction *WidenIVUse(Use &NarrowDefUse, Instruction *NarrowDef,
626                          Instruction *WideDef);
627
628  void pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef);
629};
630} // anonymous namespace
631
632static Value *getExtend( Value *NarrowOper, const Type *WideType,
633                               bool IsSigned, IRBuilder<> &Builder) {
634  return IsSigned ? Builder.CreateSExt(NarrowOper, WideType) :
635                    Builder.CreateZExt(NarrowOper, WideType);
636}
637
638/// CloneIVUser - Instantiate a wide operation to replace a narrow
639/// operation. This only needs to handle operations that can evaluation to
640/// SCEVAddRec. It can safely return 0 for any operation we decide not to clone.
641Instruction *WidenIV::CloneIVUser(Instruction *NarrowUse,
642                                  Instruction *NarrowDef,
643                                  Instruction *WideDef) {
644  unsigned Opcode = NarrowUse->getOpcode();
645  switch (Opcode) {
646  default:
647    return 0;
648  case Instruction::Add:
649  case Instruction::Mul:
650  case Instruction::UDiv:
651  case Instruction::Sub:
652  case Instruction::And:
653  case Instruction::Or:
654  case Instruction::Xor:
655  case Instruction::Shl:
656  case Instruction::LShr:
657  case Instruction::AShr:
658    DEBUG(dbgs() << "Cloning IVUser: " << *NarrowUse << "\n");
659
660    IRBuilder<> Builder(NarrowUse);
661
662    // Replace NarrowDef operands with WideDef. Otherwise, we don't know
663    // anything about the narrow operand yet so must insert a [sz]ext. It is
664    // probably loop invariant and will be folded or hoisted. If it actually
665    // comes from a widened IV, it should be removed during a future call to
666    // WidenIVUse.
667    Value *LHS = (NarrowUse->getOperand(0) == NarrowDef) ? WideDef :
668      getExtend(NarrowUse->getOperand(0), WideType, IsSigned, Builder);
669    Value *RHS = (NarrowUse->getOperand(1) == NarrowDef) ? WideDef :
670      getExtend(NarrowUse->getOperand(1), WideType, IsSigned, Builder);
671
672    BinaryOperator *NarrowBO = cast<BinaryOperator>(NarrowUse);
673    BinaryOperator *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(),
674                                                    LHS, RHS,
675                                                    NarrowBO->getName());
676    Builder.Insert(WideBO);
677    if (const OverflowingBinaryOperator *OBO =
678        dyn_cast<OverflowingBinaryOperator>(NarrowBO)) {
679      if (OBO->hasNoUnsignedWrap()) WideBO->setHasNoUnsignedWrap();
680      if (OBO->hasNoSignedWrap()) WideBO->setHasNoSignedWrap();
681    }
682    return WideBO;
683  }
684  llvm_unreachable(0);
685}
686
687/// HoistStep - Attempt to hoist an IV increment above a potential use.
688///
689/// To successfully hoist, two criteria must be met:
690/// - IncV operands dominate InsertPos and
691/// - InsertPos dominates IncV
692///
693/// Meeting the second condition means that we don't need to check all of IncV's
694/// existing uses (it's moving up in the domtree).
695///
696/// This does not yet recursively hoist the operands, although that would
697/// not be difficult.
698static bool HoistStep(Instruction *IncV, Instruction *InsertPos,
699                      const DominatorTree *DT)
700{
701  if (DT->dominates(IncV, InsertPos))
702    return true;
703
704  if (!DT->dominates(InsertPos->getParent(), IncV->getParent()))
705    return false;
706
707  if (IncV->mayHaveSideEffects())
708    return false;
709
710  // Attempt to hoist IncV
711  for (User::op_iterator OI = IncV->op_begin(), OE = IncV->op_end();
712       OI != OE; ++OI) {
713    Instruction *OInst = dyn_cast<Instruction>(OI);
714    if (OInst && !DT->dominates(OInst, InsertPos))
715      return false;
716  }
717  IncV->moveBefore(InsertPos);
718  return true;
719}
720
721// GetWideRecurrence - Is this instruction potentially interesting from IVUsers'
722// perspective after widening it's type? In other words, can the extend be
723// safely hoisted out of the loop with SCEV reducing the value to a recurrence
724// on the same loop. If so, return the sign or zero extended
725// recurrence. Otherwise return NULL.
726const SCEVAddRecExpr *WidenIV::GetWideRecurrence(Instruction *NarrowUse) {
727  if (!SE->isSCEVable(NarrowUse->getType()))
728    return 0;
729
730  const SCEV *NarrowExpr = SE->getSCEV(NarrowUse);
731  if (SE->getTypeSizeInBits(NarrowExpr->getType())
732      >= SE->getTypeSizeInBits(WideType)) {
733    // NarrowUse implicitly widens its operand. e.g. a gep with a narrow
734    // index. So don't follow this use.
735    return 0;
736  }
737
738  const SCEV *WideExpr = IsSigned ?
739    SE->getSignExtendExpr(NarrowExpr, WideType) :
740    SE->getZeroExtendExpr(NarrowExpr, WideType);
741  const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(WideExpr);
742  if (!AddRec || AddRec->getLoop() != L)
743    return 0;
744
745  return AddRec;
746}
747
748/// WidenIVUse - Determine whether an individual user of the narrow IV can be
749/// widened. If so, return the wide clone of the user.
750Instruction *WidenIV::WidenIVUse(Use &NarrowDefUse, Instruction *NarrowDef,
751                                 Instruction *WideDef) {
752  Instruction *NarrowUse = cast<Instruction>(NarrowDefUse.getUser());
753
754  // Stop traversing the def-use chain at inner-loop phis or post-loop phis.
755  if (isa<PHINode>(NarrowUse) && LI->getLoopFor(NarrowUse->getParent()) != L)
756    return 0;
757
758  // Our raison d'etre! Eliminate sign and zero extension.
759  if (IsSigned ? isa<SExtInst>(NarrowUse) : isa<ZExtInst>(NarrowUse)) {
760    Value *NewDef = WideDef;
761    if (NarrowUse->getType() != WideType) {
762      unsigned CastWidth = SE->getTypeSizeInBits(NarrowUse->getType());
763      unsigned IVWidth = SE->getTypeSizeInBits(WideType);
764      if (CastWidth < IVWidth) {
765        // The cast isn't as wide as the IV, so insert a Trunc.
766        IRBuilder<> Builder(NarrowDefUse);
767        NewDef = Builder.CreateTrunc(WideDef, NarrowUse->getType());
768      }
769      else {
770        // A wider extend was hidden behind a narrower one. This may induce
771        // another round of IV widening in which the intermediate IV becomes
772        // dead. It should be very rare.
773        DEBUG(dbgs() << "INDVARS: New IV " << *WidePhi
774              << " not wide enough to subsume " << *NarrowUse << "\n");
775        NarrowUse->replaceUsesOfWith(NarrowDef, WideDef);
776        NewDef = NarrowUse;
777      }
778    }
779    if (NewDef != NarrowUse) {
780      DEBUG(dbgs() << "INDVARS: eliminating " << *NarrowUse
781            << " replaced by " << *WideDef << "\n");
782      ++NumElimExt;
783      NarrowUse->replaceAllUsesWith(NewDef);
784      DeadInsts.push_back(NarrowUse);
785    }
786    // Now that the extend is gone, we want to expose it's uses for potential
787    // further simplification. We don't need to directly inform SimplifyIVUsers
788    // of the new users, because their parent IV will be processed later as a
789    // new loop phi. If we preserved IVUsers analysis, we would also want to
790    // push the uses of WideDef here.
791
792    // No further widening is needed. The deceased [sz]ext had done it for us.
793    return 0;
794  }
795
796  // Does this user itself evaluate to a recurrence after widening?
797  const SCEVAddRecExpr *WideAddRec = GetWideRecurrence(NarrowUse);
798  if (!WideAddRec) {
799    // This user does not evaluate to a recurence after widening, so don't
800    // follow it. Instead insert a Trunc to kill off the original use,
801    // eventually isolating the original narrow IV so it can be removed.
802    IRBuilder<> Builder(NarrowDefUse);
803    Value *Trunc = Builder.CreateTrunc(WideDef, NarrowDef->getType());
804    NarrowUse->replaceUsesOfWith(NarrowDef, Trunc);
805    return 0;
806  }
807  // We assume that block terminators are not SCEVable. We wouldn't want to
808  // insert a Trunc after a terminator if there happens to be a critical edge.
809  assert(NarrowUse != NarrowUse->getParent()->getTerminator() &&
810         "SCEV is not expected to evaluate a block terminator");
811
812  // Reuse the IV increment that SCEVExpander created as long as it dominates
813  // NarrowUse.
814  Instruction *WideUse = 0;
815  if (WideAddRec == WideIncExpr && HoistStep(WideInc, NarrowUse, DT)) {
816    WideUse = WideInc;
817  }
818  else {
819    WideUse = CloneIVUser(NarrowUse, NarrowDef, WideDef);
820    if (!WideUse)
821      return 0;
822  }
823  // Evaluation of WideAddRec ensured that the narrow expression could be
824  // extended outside the loop without overflow. This suggests that the wide use
825  // evaluates to the same expression as the extended narrow use, but doesn't
826  // absolutely guarantee it. Hence the following failsafe check. In rare cases
827  // where it fails, we simply throw away the newly created wide use.
828  if (WideAddRec != SE->getSCEV(WideUse)) {
829    DEBUG(dbgs() << "Wide use expression mismatch: " << *WideUse
830          << ": " << *SE->getSCEV(WideUse) << " != " << *WideAddRec << "\n");
831    DeadInsts.push_back(WideUse);
832    return 0;
833  }
834
835  // Returning WideUse pushes it on the worklist.
836  return WideUse;
837}
838
839/// pushNarrowIVUsers - Add eligible users of NarrowDef to NarrowIVUsers.
840///
841void WidenIV::pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef) {
842  for (Value::use_iterator UI = NarrowDef->use_begin(),
843         UE = NarrowDef->use_end(); UI != UE; ++UI) {
844    Use &U = UI.getUse();
845
846    // Handle data flow merges and bizarre phi cycles.
847    if (!Widened.insert(cast<Instruction>(U.getUser())))
848      continue;
849
850    NarrowIVUsers.push_back(std::make_pair(&UI.getUse(), WideDef));
851  }
852}
853
854/// CreateWideIV - Process a single induction variable. First use the
855/// SCEVExpander to create a wide induction variable that evaluates to the same
856/// recurrence as the original narrow IV. Then use a worklist to forward
857/// traverse the narrow IV's def-use chain. After WidenIVUse has processed all
858/// interesting IV users, the narrow IV will be isolated for removal by
859/// DeleteDeadPHIs.
860///
861/// It would be simpler to delete uses as they are processed, but we must avoid
862/// invalidating SCEV expressions.
863///
864PHINode *WidenIV::CreateWideIV(SCEVExpander &Rewriter) {
865  // Is this phi an induction variable?
866  const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(OrigPhi));
867  if (!AddRec)
868    return NULL;
869
870  // Widen the induction variable expression.
871  const SCEV *WideIVExpr = IsSigned ?
872    SE->getSignExtendExpr(AddRec, WideType) :
873    SE->getZeroExtendExpr(AddRec, WideType);
874
875  assert(SE->getEffectiveSCEVType(WideIVExpr->getType()) == WideType &&
876         "Expect the new IV expression to preserve its type");
877
878  // Can the IV be extended outside the loop without overflow?
879  AddRec = dyn_cast<SCEVAddRecExpr>(WideIVExpr);
880  if (!AddRec || AddRec->getLoop() != L)
881    return NULL;
882
883  // An AddRec must have loop-invariant operands. Since this AddRec is
884  // materialized by a loop header phi, the expression cannot have any post-loop
885  // operands, so they must dominate the loop header.
886  assert(SE->properlyDominates(AddRec->getStart(), L->getHeader()) &&
887         SE->properlyDominates(AddRec->getStepRecurrence(*SE), L->getHeader())
888         && "Loop header phi recurrence inputs do not dominate the loop");
889
890  // The rewriter provides a value for the desired IV expression. This may
891  // either find an existing phi or materialize a new one. Either way, we
892  // expect a well-formed cyclic phi-with-increments. i.e. any operand not part
893  // of the phi-SCC dominates the loop entry.
894  Instruction *InsertPt = L->getHeader()->begin();
895  WidePhi = cast<PHINode>(Rewriter.expandCodeFor(AddRec, WideType, InsertPt));
896
897  // Remembering the WideIV increment generated by SCEVExpander allows
898  // WidenIVUse to reuse it when widening the narrow IV's increment. We don't
899  // employ a general reuse mechanism because the call above is the only call to
900  // SCEVExpander. Henceforth, we produce 1-to-1 narrow to wide uses.
901  if (BasicBlock *LatchBlock = L->getLoopLatch()) {
902    WideInc =
903      cast<Instruction>(WidePhi->getIncomingValueForBlock(LatchBlock));
904    WideIncExpr = SE->getSCEV(WideInc);
905  }
906
907  DEBUG(dbgs() << "Wide IV: " << *WidePhi << "\n");
908  ++NumWidened;
909
910  // Traverse the def-use chain using a worklist starting at the original IV.
911  assert(Widened.empty() && NarrowIVUsers.empty() && "expect initial state" );
912
913  Widened.insert(OrigPhi);
914  pushNarrowIVUsers(OrigPhi, WidePhi);
915
916  while (!NarrowIVUsers.empty()) {
917    Use *UsePtr;
918    Instruction *WideDef;
919    tie(UsePtr, WideDef) = NarrowIVUsers.pop_back_val();
920    Use &NarrowDefUse = *UsePtr;
921
922    // Process a def-use edge. This may replace the use, so don't hold a
923    // use_iterator across it.
924    Instruction *NarrowDef = cast<Instruction>(NarrowDefUse.get());
925    Instruction *WideUse = WidenIVUse(NarrowDefUse, NarrowDef, WideDef);
926
927    // Follow all def-use edges from the previous narrow use.
928    if (WideUse)
929      pushNarrowIVUsers(cast<Instruction>(NarrowDefUse.getUser()), WideUse);
930
931    // WidenIVUse may have removed the def-use edge.
932    if (NarrowDef->use_empty())
933      DeadInsts.push_back(NarrowDef);
934  }
935  return WidePhi;
936}
937
938void IndVarSimplify::EliminateIVComparison(ICmpInst *ICmp, Value *IVOperand) {
939  unsigned IVOperIdx = 0;
940  ICmpInst::Predicate Pred = ICmp->getPredicate();
941  if (IVOperand != ICmp->getOperand(0)) {
942    // Swapped
943    assert(IVOperand == ICmp->getOperand(1) && "Can't find IVOperand");
944    IVOperIdx = 1;
945    Pred = ICmpInst::getSwappedPredicate(Pred);
946  }
947
948  // Get the SCEVs for the ICmp operands.
949  const SCEV *S = SE->getSCEV(ICmp->getOperand(IVOperIdx));
950  const SCEV *X = SE->getSCEV(ICmp->getOperand(1 - IVOperIdx));
951
952  // Simplify unnecessary loops away.
953  const Loop *ICmpLoop = LI->getLoopFor(ICmp->getParent());
954  S = SE->getSCEVAtScope(S, ICmpLoop);
955  X = SE->getSCEVAtScope(X, ICmpLoop);
956
957  // If the condition is always true or always false, replace it with
958  // a constant value.
959  if (SE->isKnownPredicate(Pred, S, X))
960    ICmp->replaceAllUsesWith(ConstantInt::getTrue(ICmp->getContext()));
961  else if (SE->isKnownPredicate(ICmpInst::getInversePredicate(Pred), S, X))
962    ICmp->replaceAllUsesWith(ConstantInt::getFalse(ICmp->getContext()));
963  else
964    return;
965
966  DEBUG(dbgs() << "INDVARS: Eliminated comparison: " << *ICmp << '\n');
967  ++NumElimCmp;
968  Changed = true;
969  DeadInsts.push_back(ICmp);
970}
971
972void IndVarSimplify::EliminateIVRemainder(BinaryOperator *Rem,
973                                          Value *IVOperand,
974                                          bool IsSigned) {
975  // We're only interested in the case where we know something about
976  // the numerator.
977  if (IVOperand != Rem->getOperand(0))
978    return;
979
980  // Get the SCEVs for the ICmp operands.
981  const SCEV *S = SE->getSCEV(Rem->getOperand(0));
982  const SCEV *X = SE->getSCEV(Rem->getOperand(1));
983
984  // Simplify unnecessary loops away.
985  const Loop *ICmpLoop = LI->getLoopFor(Rem->getParent());
986  S = SE->getSCEVAtScope(S, ICmpLoop);
987  X = SE->getSCEVAtScope(X, ICmpLoop);
988
989  // i % n  -->  i  if i is in [0,n).
990  if ((!IsSigned || SE->isKnownNonNegative(S)) &&
991      SE->isKnownPredicate(IsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT,
992                           S, X))
993    Rem->replaceAllUsesWith(Rem->getOperand(0));
994  else {
995    // (i+1) % n  -->  (i+1)==n?0:(i+1)  if i is in [0,n).
996    const SCEV *LessOne =
997      SE->getMinusSCEV(S, SE->getConstant(S->getType(), 1));
998    if (IsSigned && !SE->isKnownNonNegative(LessOne))
999      return;
1000
1001    if (!SE->isKnownPredicate(IsSigned ?
1002                              ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT,
1003                              LessOne, X))
1004      return;
1005
1006    ICmpInst *ICmp = new ICmpInst(Rem, ICmpInst::ICMP_EQ,
1007                                  Rem->getOperand(0), Rem->getOperand(1),
1008                                  "tmp");
1009    SelectInst *Sel =
1010      SelectInst::Create(ICmp,
1011                         ConstantInt::get(Rem->getType(), 0),
1012                         Rem->getOperand(0), "tmp", Rem);
1013    Rem->replaceAllUsesWith(Sel);
1014  }
1015
1016  // Inform IVUsers about the new users.
1017  if (IU) {
1018    if (Instruction *I = dyn_cast<Instruction>(Rem->getOperand(0)))
1019      IU->AddUsersIfInteresting(I);
1020  }
1021  DEBUG(dbgs() << "INDVARS: Simplified rem: " << *Rem << '\n');
1022  ++NumElimRem;
1023  Changed = true;
1024  DeadInsts.push_back(Rem);
1025}
1026
1027/// EliminateIVUser - Eliminate an operation that consumes a simple IV and has
1028/// no observable side-effect given the range of IV values.
1029bool IndVarSimplify::EliminateIVUser(Instruction *UseInst,
1030                                     Instruction *IVOperand) {
1031  if (ICmpInst *ICmp = dyn_cast<ICmpInst>(UseInst)) {
1032    EliminateIVComparison(ICmp, IVOperand);
1033    return true;
1034  }
1035  if (BinaryOperator *Rem = dyn_cast<BinaryOperator>(UseInst)) {
1036    bool IsSigned = Rem->getOpcode() == Instruction::SRem;
1037    if (IsSigned || Rem->getOpcode() == Instruction::URem) {
1038      EliminateIVRemainder(Rem, IVOperand, IsSigned);
1039      return true;
1040    }
1041  }
1042
1043  // Eliminate any operation that SCEV can prove is an identity function.
1044  if (!SE->isSCEVable(UseInst->getType()) ||
1045      (UseInst->getType() != IVOperand->getType()) ||
1046      (SE->getSCEV(UseInst) != SE->getSCEV(IVOperand)))
1047    return false;
1048
1049  DEBUG(dbgs() << "INDVARS: Eliminated identity: " << *UseInst << '\n');
1050
1051  UseInst->replaceAllUsesWith(IVOperand);
1052  ++NumElimIdentity;
1053  Changed = true;
1054  DeadInsts.push_back(UseInst);
1055  return true;
1056}
1057
1058/// pushIVUsers - Add all uses of Def to the current IV's worklist.
1059///
1060static void pushIVUsers(
1061  Instruction *Def,
1062  SmallPtrSet<Instruction*,16> &Simplified,
1063  SmallVectorImpl< std::pair<Instruction*,Instruction*> > &SimpleIVUsers) {
1064
1065  for (Value::use_iterator UI = Def->use_begin(), E = Def->use_end();
1066       UI != E; ++UI) {
1067    Instruction *User = cast<Instruction>(*UI);
1068
1069    // Avoid infinite or exponential worklist processing.
1070    // Also ensure unique worklist users.
1071    // If Def is a LoopPhi, it may not be in the Simplified set, so check for
1072    // self edges first.
1073    if (User != Def && Simplified.insert(User))
1074      SimpleIVUsers.push_back(std::make_pair(User, Def));
1075  }
1076}
1077
1078/// isSimpleIVUser - Return true if this instruction generates a simple SCEV
1079/// expression in terms of that IV.
1080///
1081/// This is similar to IVUsers' isInsteresting() but processes each instruction
1082/// non-recursively when the operand is already known to be a simpleIVUser.
1083///
1084bool IndVarSimplify::isSimpleIVUser(Instruction *I, const Loop *L) {
1085  if (!SE->isSCEVable(I->getType()))
1086    return false;
1087
1088  // Get the symbolic expression for this instruction.
1089  const SCEV *S = SE->getSCEV(I);
1090
1091  // We assume that terminators are not SCEVable.
1092  assert((!S || I != I->getParent()->getTerminator()) &&
1093         "can't fold terminators");
1094
1095  // Only consider affine recurrences.
1096  const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S);
1097  if (AR && AR->getLoop() == L)
1098    return true;
1099
1100  return false;
1101}
1102
1103/// SimplifyIVUsersNoRewrite - Iteratively perform simplification on a worklist
1104/// of IV users. Each successive simplification may push more users which may
1105/// themselves be candidates for simplification.
1106///
1107/// The "NoRewrite" algorithm does not require IVUsers analysis. Instead, it
1108/// simplifies instructions in-place during analysis. Rather than rewriting
1109/// induction variables bottom-up from their users, it transforms a chain of
1110/// IVUsers top-down, updating the IR only when it encouters a clear
1111/// optimization opportunitiy. A SCEVExpander "Rewriter" instance is still
1112/// needed, but only used to generate a new IV (phi) of wider type for sign/zero
1113/// extend elimination.
1114///
1115/// Once DisableIVRewrite is default, LSR will be the only client of IVUsers.
1116///
1117void IndVarSimplify::SimplifyIVUsersNoRewrite(Loop *L, SCEVExpander &Rewriter) {
1118  std::map<PHINode *, WideIVInfo> WideIVMap;
1119
1120  SmallVector<PHINode*, 8> LoopPhis;
1121  for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
1122    LoopPhis.push_back(cast<PHINode>(I));
1123  }
1124  // Each round of simplification iterates through the SimplifyIVUsers worklist
1125  // for all current phis, then determines whether any IVs can be
1126  // widened. Widening adds new phis to LoopPhis, inducing another round of
1127  // simplification on the wide IVs.
1128  while (!LoopPhis.empty()) {
1129    // Evaluate as many IV expressions as possible before widening any IVs. This
1130    // forces SCEV to set no-wrap flags before evaluating sign/zero
1131    // extension. The first time SCEV attempts to normalize sign/zero extension,
1132    // the result becomes final. So for the most predictable results, we delay
1133    // evaluation of sign/zero extend evaluation until needed, and avoid running
1134    // other SCEV based analysis prior to SimplifyIVUsersNoRewrite.
1135    do {
1136      PHINode *CurrIV = LoopPhis.pop_back_val();
1137
1138      // Information about sign/zero extensions of CurrIV.
1139      WideIVInfo WI;
1140
1141      // Instructions processed by SimplifyIVUsers for CurrIV.
1142      SmallPtrSet<Instruction*,16> Simplified;
1143
1144      // Use-def pairs if IV users waiting to be processed for CurrIV.
1145      SmallVector<std::pair<Instruction*, Instruction*>, 8> SimpleIVUsers;
1146
1147      // Push users of the current LoopPhi. In rare cases, pushIVUsers may be
1148      // called multiple times for the same LoopPhi. This is the proper thing to
1149      // do for loop header phis that use each other.
1150      pushIVUsers(CurrIV, Simplified, SimpleIVUsers);
1151
1152      while (!SimpleIVUsers.empty()) {
1153        Instruction *UseInst, *Operand;
1154        tie(UseInst, Operand) = SimpleIVUsers.pop_back_val();
1155        // Bypass back edges to avoid extra work.
1156        if (UseInst == CurrIV) continue;
1157
1158        if (EliminateIVUser(UseInst, Operand)) {
1159          pushIVUsers(Operand, Simplified, SimpleIVUsers);
1160          continue;
1161        }
1162        if (CastInst *Cast = dyn_cast<CastInst>(UseInst)) {
1163          bool IsSigned = Cast->getOpcode() == Instruction::SExt;
1164          if (IsSigned || Cast->getOpcode() == Instruction::ZExt) {
1165            CollectExtend(Cast, IsSigned, WI, SE, TD);
1166          }
1167          continue;
1168        }
1169        if (isSimpleIVUser(UseInst, L)) {
1170          pushIVUsers(UseInst, Simplified, SimpleIVUsers);
1171        }
1172      }
1173      if (WI.WidestNativeType) {
1174        WideIVMap[CurrIV] = WI;
1175      }
1176    } while(!LoopPhis.empty());
1177
1178    for (std::map<PHINode *, WideIVInfo>::const_iterator I = WideIVMap.begin(),
1179           E = WideIVMap.end(); I != E; ++I) {
1180      WidenIV Widener(I->first, I->second, LI, SE, DT, DeadInsts);
1181      if (PHINode *WidePhi = Widener.CreateWideIV(Rewriter)) {
1182        Changed = true;
1183        LoopPhis.push_back(WidePhi);
1184      }
1185    }
1186    WideIVMap.clear();
1187  }
1188}
1189
1190/// SimplifyCongruentIVs - Check for congruent phis in this loop header and
1191/// populate ExprToIVMap for use later.
1192///
1193void IndVarSimplify::SimplifyCongruentIVs(Loop *L) {
1194  for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
1195    PHINode *Phi = cast<PHINode>(I);
1196    const SCEV *S = SE->getSCEV(Phi);
1197    ExprToIVMapTy::const_iterator Pos;
1198    bool Inserted;
1199    tie(Pos, Inserted) = ExprToIVMap.insert(std::make_pair(S, Phi));
1200    if (Inserted)
1201      continue;
1202    PHINode *OrigPhi = Pos->second;
1203    // Replacing the congruent phi is sufficient because acyclic redundancy
1204    // elimination, CSE/GVN, should handle the rest. However, once SCEV proves
1205    // that a phi is congruent, it's almost certain to be the head of an IV
1206    // user cycle that is isomorphic with the original phi. So it's worth
1207    // eagerly cleaning up the common case of a single IV increment.
1208    if (BasicBlock *LatchBlock = L->getLoopLatch()) {
1209      Instruction *OrigInc =
1210        cast<Instruction>(OrigPhi->getIncomingValueForBlock(LatchBlock));
1211      Instruction *IsomorphicInc =
1212        cast<Instruction>(Phi->getIncomingValueForBlock(LatchBlock));
1213      if (OrigInc != IsomorphicInc &&
1214          SE->getSCEV(OrigInc) == SE->getSCEV(IsomorphicInc) &&
1215          HoistStep(OrigInc, IsomorphicInc, DT)) {
1216        DEBUG(dbgs() << "INDVARS: Eliminated congruent iv.inc: "
1217              << *IsomorphicInc << '\n');
1218        IsomorphicInc->replaceAllUsesWith(OrigInc);
1219        DeadInsts.push_back(IsomorphicInc);
1220      }
1221    }
1222    DEBUG(dbgs() << "INDVARS: Eliminated congruent iv: " << *Phi << '\n');
1223    ++NumElimIV;
1224    Phi->replaceAllUsesWith(OrigPhi);
1225    DeadInsts.push_back(Phi);
1226  }
1227}
1228
1229bool IndVarSimplify::runOnLoop(Loop *L, LPPassManager &LPM) {
1230  // If LoopSimplify form is not available, stay out of trouble. Some notes:
1231  //  - LSR currently only supports LoopSimplify-form loops. Indvars'
1232  //    canonicalization can be a pessimization without LSR to "clean up"
1233  //    afterwards.
1234  //  - We depend on having a preheader; in particular,
1235  //    Loop::getCanonicalInductionVariable only supports loops with preheaders,
1236  //    and we're in trouble if we can't find the induction variable even when
1237  //    we've manually inserted one.
1238  if (!L->isLoopSimplifyForm())
1239    return false;
1240
1241  if (!DisableIVRewrite)
1242    IU = &getAnalysis<IVUsers>();
1243  LI = &getAnalysis<LoopInfo>();
1244  SE = &getAnalysis<ScalarEvolution>();
1245  DT = &getAnalysis<DominatorTree>();
1246  TD = getAnalysisIfAvailable<TargetData>();
1247
1248  ExprToIVMap.clear();
1249  DeadInsts.clear();
1250  Changed = false;
1251
1252  // If there are any floating-point recurrences, attempt to
1253  // transform them to use integer recurrences.
1254  RewriteNonIntegerIVs(L);
1255
1256  const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L);
1257
1258  // Create a rewriter object which we'll use to transform the code with.
1259  SCEVExpander Rewriter(*SE, "indvars");
1260
1261  // Eliminate redundant IV users.
1262  //
1263  // Simplification works best when run before other consumers of SCEV. We
1264  // attempt to avoid evaluating SCEVs for sign/zero extend operations until
1265  // other expressions involving loop IVs have been evaluated. This helps SCEV
1266  // set no-wrap flags before normalizing sign/zero extension.
1267  if (DisableIVRewrite) {
1268    Rewriter.disableCanonicalMode();
1269    SimplifyIVUsersNoRewrite(L, Rewriter);
1270  }
1271
1272  // Check to see if this loop has a computable loop-invariant execution count.
1273  // If so, this means that we can compute the final value of any expressions
1274  // that are recurrent in the loop, and substitute the exit values from the
1275  // loop into any instructions outside of the loop that use the final values of
1276  // the current expressions.
1277  //
1278  if (!isa<SCEVCouldNotCompute>(BackedgeTakenCount))
1279    RewriteLoopExitValues(L, Rewriter);
1280
1281  // Eliminate redundant IV users.
1282  if (!DisableIVRewrite)
1283    SimplifyIVUsers(Rewriter);
1284
1285  // Eliminate redundant IV cycles and populate ExprToIVMap.
1286  // TODO: use ExprToIVMap to allow LFTR without canonical IVs
1287  if (DisableIVRewrite)
1288    SimplifyCongruentIVs(L);
1289
1290  // Compute the type of the largest recurrence expression, and decide whether
1291  // a canonical induction variable should be inserted.
1292  const Type *LargestType = 0;
1293  bool NeedCannIV = false;
1294  bool ExpandBECount = canExpandBackedgeTakenCount(L, SE);
1295  if (ExpandBECount) {
1296    // If we have a known trip count and a single exit block, we'll be
1297    // rewriting the loop exit test condition below, which requires a
1298    // canonical induction variable.
1299    NeedCannIV = true;
1300    const Type *Ty = BackedgeTakenCount->getType();
1301    if (DisableIVRewrite) {
1302      // In this mode, SimplifyIVUsers may have already widened the IV used by
1303      // the backedge test and inserted a Trunc on the compare's operand. Get
1304      // the wider type to avoid creating a redundant narrow IV only used by the
1305      // loop test.
1306      LargestType = getBackedgeIVType(L);
1307    }
1308    if (!LargestType ||
1309        SE->getTypeSizeInBits(Ty) >
1310        SE->getTypeSizeInBits(LargestType))
1311      LargestType = SE->getEffectiveSCEVType(Ty);
1312  }
1313  if (!DisableIVRewrite) {
1314    for (IVUsers::const_iterator I = IU->begin(), E = IU->end(); I != E; ++I) {
1315      NeedCannIV = true;
1316      const Type *Ty =
1317        SE->getEffectiveSCEVType(I->getOperandValToReplace()->getType());
1318      if (!LargestType ||
1319          SE->getTypeSizeInBits(Ty) >
1320          SE->getTypeSizeInBits(LargestType))
1321        LargestType = Ty;
1322    }
1323  }
1324
1325  // Now that we know the largest of the induction variable expressions
1326  // in this loop, insert a canonical induction variable of the largest size.
1327  PHINode *IndVar = 0;
1328  if (NeedCannIV) {
1329    // Check to see if the loop already has any canonical-looking induction
1330    // variables. If any are present and wider than the planned canonical
1331    // induction variable, temporarily remove them, so that the Rewriter
1332    // doesn't attempt to reuse them.
1333    SmallVector<PHINode *, 2> OldCannIVs;
1334    while (PHINode *OldCannIV = L->getCanonicalInductionVariable()) {
1335      if (SE->getTypeSizeInBits(OldCannIV->getType()) >
1336          SE->getTypeSizeInBits(LargestType))
1337        OldCannIV->removeFromParent();
1338      else
1339        break;
1340      OldCannIVs.push_back(OldCannIV);
1341    }
1342
1343    IndVar = Rewriter.getOrInsertCanonicalInductionVariable(L, LargestType);
1344
1345    ++NumInserted;
1346    Changed = true;
1347    DEBUG(dbgs() << "INDVARS: New CanIV: " << *IndVar << '\n');
1348
1349    // Now that the official induction variable is established, reinsert
1350    // any old canonical-looking variables after it so that the IR remains
1351    // consistent. They will be deleted as part of the dead-PHI deletion at
1352    // the end of the pass.
1353    while (!OldCannIVs.empty()) {
1354      PHINode *OldCannIV = OldCannIVs.pop_back_val();
1355      OldCannIV->insertBefore(L->getHeader()->getFirstNonPHI());
1356    }
1357  }
1358
1359  // If we have a trip count expression, rewrite the loop's exit condition
1360  // using it.  We can currently only handle loops with a single exit.
1361  ICmpInst *NewICmp = 0;
1362  if (ExpandBECount) {
1363    assert(canExpandBackedgeTakenCount(L, SE) &&
1364           "canonical IV disrupted BackedgeTaken expansion");
1365    assert(NeedCannIV &&
1366           "LinearFunctionTestReplace requires a canonical induction variable");
1367    NewICmp = LinearFunctionTestReplace(L, BackedgeTakenCount, IndVar,
1368                                        Rewriter);
1369  }
1370  // Rewrite IV-derived expressions.
1371  if (!DisableIVRewrite)
1372    RewriteIVExpressions(L, Rewriter);
1373
1374  // Clear the rewriter cache, because values that are in the rewriter's cache
1375  // can be deleted in the loop below, causing the AssertingVH in the cache to
1376  // trigger.
1377  Rewriter.clear();
1378
1379  // Now that we're done iterating through lists, clean up any instructions
1380  // which are now dead.
1381  while (!DeadInsts.empty())
1382    if (Instruction *Inst =
1383          dyn_cast_or_null<Instruction>(&*DeadInsts.pop_back_val()))
1384      RecursivelyDeleteTriviallyDeadInstructions(Inst);
1385
1386  // The Rewriter may not be used from this point on.
1387
1388  // Loop-invariant instructions in the preheader that aren't used in the
1389  // loop may be sunk below the loop to reduce register pressure.
1390  SinkUnusedInvariants(L);
1391
1392  // For completeness, inform IVUsers of the IV use in the newly-created
1393  // loop exit test instruction.
1394  if (NewICmp && IU)
1395    IU->AddUsersIfInteresting(cast<Instruction>(NewICmp->getOperand(0)));
1396
1397  // Clean up dead instructions.
1398  Changed |= DeleteDeadPHIs(L->getHeader());
1399  // Check a post-condition.
1400  assert(L->isLCSSAForm(*DT) && "Indvars did not leave the loop in lcssa form!");
1401  return Changed;
1402}
1403
1404// FIXME: It is an extremely bad idea to indvar substitute anything more
1405// complex than affine induction variables.  Doing so will put expensive
1406// polynomial evaluations inside of the loop, and the str reduction pass
1407// currently can only reduce affine polynomials.  For now just disable
1408// indvar subst on anything more complex than an affine addrec, unless
1409// it can be expanded to a trivial value.
1410static bool isSafe(const SCEV *S, const Loop *L, ScalarEvolution *SE) {
1411  // Loop-invariant values are safe.
1412  if (SE->isLoopInvariant(S, L)) return true;
1413
1414  // Affine addrecs are safe. Non-affine are not, because LSR doesn't know how
1415  // to transform them into efficient code.
1416  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
1417    return AR->isAffine();
1418
1419  // An add is safe it all its operands are safe.
1420  if (const SCEVCommutativeExpr *Commutative = dyn_cast<SCEVCommutativeExpr>(S)) {
1421    for (SCEVCommutativeExpr::op_iterator I = Commutative->op_begin(),
1422         E = Commutative->op_end(); I != E; ++I)
1423      if (!isSafe(*I, L, SE)) return false;
1424    return true;
1425  }
1426
1427  // A cast is safe if its operand is.
1428  if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S))
1429    return isSafe(C->getOperand(), L, SE);
1430
1431  // A udiv is safe if its operands are.
1432  if (const SCEVUDivExpr *UD = dyn_cast<SCEVUDivExpr>(S))
1433    return isSafe(UD->getLHS(), L, SE) &&
1434           isSafe(UD->getRHS(), L, SE);
1435
1436  // SCEVUnknown is always safe.
1437  if (isa<SCEVUnknown>(S))
1438    return true;
1439
1440  // Nothing else is safe.
1441  return false;
1442}
1443
1444void IndVarSimplify::RewriteIVExpressions(Loop *L, SCEVExpander &Rewriter) {
1445  // Rewrite all induction variable expressions in terms of the canonical
1446  // induction variable.
1447  //
1448  // If there were induction variables of other sizes or offsets, manually
1449  // add the offsets to the primary induction variable and cast, avoiding
1450  // the need for the code evaluation methods to insert induction variables
1451  // of different sizes.
1452  for (IVUsers::iterator UI = IU->begin(), E = IU->end(); UI != E; ++UI) {
1453    Value *Op = UI->getOperandValToReplace();
1454    const Type *UseTy = Op->getType();
1455    Instruction *User = UI->getUser();
1456
1457    // Compute the final addrec to expand into code.
1458    const SCEV *AR = IU->getReplacementExpr(*UI);
1459
1460    // Evaluate the expression out of the loop, if possible.
1461    if (!L->contains(UI->getUser())) {
1462      const SCEV *ExitVal = SE->getSCEVAtScope(AR, L->getParentLoop());
1463      if (SE->isLoopInvariant(ExitVal, L))
1464        AR = ExitVal;
1465    }
1466
1467    // FIXME: It is an extremely bad idea to indvar substitute anything more
1468    // complex than affine induction variables.  Doing so will put expensive
1469    // polynomial evaluations inside of the loop, and the str reduction pass
1470    // currently can only reduce affine polynomials.  For now just disable
1471    // indvar subst on anything more complex than an affine addrec, unless
1472    // it can be expanded to a trivial value.
1473    if (!isSafe(AR, L, SE))
1474      continue;
1475
1476    // Determine the insertion point for this user. By default, insert
1477    // immediately before the user. The SCEVExpander class will automatically
1478    // hoist loop invariants out of the loop. For PHI nodes, there may be
1479    // multiple uses, so compute the nearest common dominator for the
1480    // incoming blocks.
1481    Instruction *InsertPt = User;
1482    if (PHINode *PHI = dyn_cast<PHINode>(InsertPt))
1483      for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i)
1484        if (PHI->getIncomingValue(i) == Op) {
1485          if (InsertPt == User)
1486            InsertPt = PHI->getIncomingBlock(i)->getTerminator();
1487          else
1488            InsertPt =
1489              DT->findNearestCommonDominator(InsertPt->getParent(),
1490                                             PHI->getIncomingBlock(i))
1491                    ->getTerminator();
1492        }
1493
1494    // Now expand it into actual Instructions and patch it into place.
1495    Value *NewVal = Rewriter.expandCodeFor(AR, UseTy, InsertPt);
1496
1497    DEBUG(dbgs() << "INDVARS: Rewrote IV '" << *AR << "' " << *Op << '\n'
1498                 << "   into = " << *NewVal << "\n");
1499
1500    if (!isValidRewrite(Op, NewVal)) {
1501      DeadInsts.push_back(NewVal);
1502      continue;
1503    }
1504    // Inform ScalarEvolution that this value is changing. The change doesn't
1505    // affect its value, but it does potentially affect which use lists the
1506    // value will be on after the replacement, which affects ScalarEvolution's
1507    // ability to walk use lists and drop dangling pointers when a value is
1508    // deleted.
1509    SE->forgetValue(User);
1510
1511    // Patch the new value into place.
1512    if (Op->hasName())
1513      NewVal->takeName(Op);
1514    if (Instruction *NewValI = dyn_cast<Instruction>(NewVal))
1515      NewValI->setDebugLoc(User->getDebugLoc());
1516    User->replaceUsesOfWith(Op, NewVal);
1517    UI->setOperandValToReplace(NewVal);
1518
1519    ++NumRemoved;
1520    Changed = true;
1521
1522    // The old value may be dead now.
1523    DeadInsts.push_back(Op);
1524  }
1525}
1526
1527/// If there's a single exit block, sink any loop-invariant values that
1528/// were defined in the preheader but not used inside the loop into the
1529/// exit block to reduce register pressure in the loop.
1530void IndVarSimplify::SinkUnusedInvariants(Loop *L) {
1531  BasicBlock *ExitBlock = L->getExitBlock();
1532  if (!ExitBlock) return;
1533
1534  BasicBlock *Preheader = L->getLoopPreheader();
1535  if (!Preheader) return;
1536
1537  Instruction *InsertPt = ExitBlock->getFirstNonPHI();
1538  BasicBlock::iterator I = Preheader->getTerminator();
1539  while (I != Preheader->begin()) {
1540    --I;
1541    // New instructions were inserted at the end of the preheader.
1542    if (isa<PHINode>(I))
1543      break;
1544
1545    // Don't move instructions which might have side effects, since the side
1546    // effects need to complete before instructions inside the loop.  Also don't
1547    // move instructions which might read memory, since the loop may modify
1548    // memory. Note that it's okay if the instruction might have undefined
1549    // behavior: LoopSimplify guarantees that the preheader dominates the exit
1550    // block.
1551    if (I->mayHaveSideEffects() || I->mayReadFromMemory())
1552      continue;
1553
1554    // Skip debug info intrinsics.
1555    if (isa<DbgInfoIntrinsic>(I))
1556      continue;
1557
1558    // Don't sink static AllocaInsts out of the entry block, which would
1559    // turn them into dynamic allocas!
1560    if (AllocaInst *AI = dyn_cast<AllocaInst>(I))
1561      if (AI->isStaticAlloca())
1562        continue;
1563
1564    // Determine if there is a use in or before the loop (direct or
1565    // otherwise).
1566    bool UsedInLoop = false;
1567    for (Value::use_iterator UI = I->use_begin(), UE = I->use_end();
1568         UI != UE; ++UI) {
1569      User *U = *UI;
1570      BasicBlock *UseBB = cast<Instruction>(U)->getParent();
1571      if (PHINode *P = dyn_cast<PHINode>(U)) {
1572        unsigned i =
1573          PHINode::getIncomingValueNumForOperand(UI.getOperandNo());
1574        UseBB = P->getIncomingBlock(i);
1575      }
1576      if (UseBB == Preheader || L->contains(UseBB)) {
1577        UsedInLoop = true;
1578        break;
1579      }
1580    }
1581
1582    // If there is, the def must remain in the preheader.
1583    if (UsedInLoop)
1584      continue;
1585
1586    // Otherwise, sink it to the exit block.
1587    Instruction *ToMove = I;
1588    bool Done = false;
1589
1590    if (I != Preheader->begin()) {
1591      // Skip debug info intrinsics.
1592      do {
1593        --I;
1594      } while (isa<DbgInfoIntrinsic>(I) && I != Preheader->begin());
1595
1596      if (isa<DbgInfoIntrinsic>(I) && I == Preheader->begin())
1597        Done = true;
1598    } else {
1599      Done = true;
1600    }
1601
1602    ToMove->moveBefore(InsertPt);
1603    if (Done) break;
1604    InsertPt = ToMove;
1605  }
1606}
1607
1608/// ConvertToSInt - Convert APF to an integer, if possible.
1609static bool ConvertToSInt(const APFloat &APF, int64_t &IntVal) {
1610  bool isExact = false;
1611  if (&APF.getSemantics() == &APFloat::PPCDoubleDouble)
1612    return false;
1613  // See if we can convert this to an int64_t
1614  uint64_t UIntVal;
1615  if (APF.convertToInteger(&UIntVal, 64, true, APFloat::rmTowardZero,
1616                           &isExact) != APFloat::opOK || !isExact)
1617    return false;
1618  IntVal = UIntVal;
1619  return true;
1620}
1621
1622/// HandleFloatingPointIV - If the loop has floating induction variable
1623/// then insert corresponding integer induction variable if possible.
1624/// For example,
1625/// for(double i = 0; i < 10000; ++i)
1626///   bar(i)
1627/// is converted into
1628/// for(int i = 0; i < 10000; ++i)
1629///   bar((double)i);
1630///
1631void IndVarSimplify::HandleFloatingPointIV(Loop *L, PHINode *PN) {
1632  unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0));
1633  unsigned BackEdge     = IncomingEdge^1;
1634
1635  // Check incoming value.
1636  ConstantFP *InitValueVal =
1637    dyn_cast<ConstantFP>(PN->getIncomingValue(IncomingEdge));
1638
1639  int64_t InitValue;
1640  if (!InitValueVal || !ConvertToSInt(InitValueVal->getValueAPF(), InitValue))
1641    return;
1642
1643  // Check IV increment. Reject this PN if increment operation is not
1644  // an add or increment value can not be represented by an integer.
1645  BinaryOperator *Incr =
1646    dyn_cast<BinaryOperator>(PN->getIncomingValue(BackEdge));
1647  if (Incr == 0 || Incr->getOpcode() != Instruction::FAdd) return;
1648
1649  // If this is not an add of the PHI with a constantfp, or if the constant fp
1650  // is not an integer, bail out.
1651  ConstantFP *IncValueVal = dyn_cast<ConstantFP>(Incr->getOperand(1));
1652  int64_t IncValue;
1653  if (IncValueVal == 0 || Incr->getOperand(0) != PN ||
1654      !ConvertToSInt(IncValueVal->getValueAPF(), IncValue))
1655    return;
1656
1657  // Check Incr uses. One user is PN and the other user is an exit condition
1658  // used by the conditional terminator.
1659  Value::use_iterator IncrUse = Incr->use_begin();
1660  Instruction *U1 = cast<Instruction>(*IncrUse++);
1661  if (IncrUse == Incr->use_end()) return;
1662  Instruction *U2 = cast<Instruction>(*IncrUse++);
1663  if (IncrUse != Incr->use_end()) return;
1664
1665  // Find exit condition, which is an fcmp.  If it doesn't exist, or if it isn't
1666  // only used by a branch, we can't transform it.
1667  FCmpInst *Compare = dyn_cast<FCmpInst>(U1);
1668  if (!Compare)
1669    Compare = dyn_cast<FCmpInst>(U2);
1670  if (Compare == 0 || !Compare->hasOneUse() ||
1671      !isa<BranchInst>(Compare->use_back()))
1672    return;
1673
1674  BranchInst *TheBr = cast<BranchInst>(Compare->use_back());
1675
1676  // We need to verify that the branch actually controls the iteration count
1677  // of the loop.  If not, the new IV can overflow and no one will notice.
1678  // The branch block must be in the loop and one of the successors must be out
1679  // of the loop.
1680  assert(TheBr->isConditional() && "Can't use fcmp if not conditional");
1681  if (!L->contains(TheBr->getParent()) ||
1682      (L->contains(TheBr->getSuccessor(0)) &&
1683       L->contains(TheBr->getSuccessor(1))))
1684    return;
1685
1686
1687  // If it isn't a comparison with an integer-as-fp (the exit value), we can't
1688  // transform it.
1689  ConstantFP *ExitValueVal = dyn_cast<ConstantFP>(Compare->getOperand(1));
1690  int64_t ExitValue;
1691  if (ExitValueVal == 0 ||
1692      !ConvertToSInt(ExitValueVal->getValueAPF(), ExitValue))
1693    return;
1694
1695  // Find new predicate for integer comparison.
1696  CmpInst::Predicate NewPred = CmpInst::BAD_ICMP_PREDICATE;
1697  switch (Compare->getPredicate()) {
1698  default: return;  // Unknown comparison.
1699  case CmpInst::FCMP_OEQ:
1700  case CmpInst::FCMP_UEQ: NewPred = CmpInst::ICMP_EQ; break;
1701  case CmpInst::FCMP_ONE:
1702  case CmpInst::FCMP_UNE: NewPred = CmpInst::ICMP_NE; break;
1703  case CmpInst::FCMP_OGT:
1704  case CmpInst::FCMP_UGT: NewPred = CmpInst::ICMP_SGT; break;
1705  case CmpInst::FCMP_OGE:
1706  case CmpInst::FCMP_UGE: NewPred = CmpInst::ICMP_SGE; break;
1707  case CmpInst::FCMP_OLT:
1708  case CmpInst::FCMP_ULT: NewPred = CmpInst::ICMP_SLT; break;
1709  case CmpInst::FCMP_OLE:
1710  case CmpInst::FCMP_ULE: NewPred = CmpInst::ICMP_SLE; break;
1711  }
1712
1713  // We convert the floating point induction variable to a signed i32 value if
1714  // we can.  This is only safe if the comparison will not overflow in a way
1715  // that won't be trapped by the integer equivalent operations.  Check for this
1716  // now.
1717  // TODO: We could use i64 if it is native and the range requires it.
1718
1719  // The start/stride/exit values must all fit in signed i32.
1720  if (!isInt<32>(InitValue) || !isInt<32>(IncValue) || !isInt<32>(ExitValue))
1721    return;
1722
1723  // If not actually striding (add x, 0.0), avoid touching the code.
1724  if (IncValue == 0)
1725    return;
1726
1727  // Positive and negative strides have different safety conditions.
1728  if (IncValue > 0) {
1729    // If we have a positive stride, we require the init to be less than the
1730    // exit value and an equality or less than comparison.
1731    if (InitValue >= ExitValue ||
1732        NewPred == CmpInst::ICMP_SGT || NewPred == CmpInst::ICMP_SGE)
1733      return;
1734
1735    uint32_t Range = uint32_t(ExitValue-InitValue);
1736    if (NewPred == CmpInst::ICMP_SLE) {
1737      // Normalize SLE -> SLT, check for infinite loop.
1738      if (++Range == 0) return;  // Range overflows.
1739    }
1740
1741    unsigned Leftover = Range % uint32_t(IncValue);
1742
1743    // If this is an equality comparison, we require that the strided value
1744    // exactly land on the exit value, otherwise the IV condition will wrap
1745    // around and do things the fp IV wouldn't.
1746    if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) &&
1747        Leftover != 0)
1748      return;
1749
1750    // If the stride would wrap around the i32 before exiting, we can't
1751    // transform the IV.
1752    if (Leftover != 0 && int32_t(ExitValue+IncValue) < ExitValue)
1753      return;
1754
1755  } else {
1756    // If we have a negative stride, we require the init to be greater than the
1757    // exit value and an equality or greater than comparison.
1758    if (InitValue >= ExitValue ||
1759        NewPred == CmpInst::ICMP_SLT || NewPred == CmpInst::ICMP_SLE)
1760      return;
1761
1762    uint32_t Range = uint32_t(InitValue-ExitValue);
1763    if (NewPred == CmpInst::ICMP_SGE) {
1764      // Normalize SGE -> SGT, check for infinite loop.
1765      if (++Range == 0) return;  // Range overflows.
1766    }
1767
1768    unsigned Leftover = Range % uint32_t(-IncValue);
1769
1770    // If this is an equality comparison, we require that the strided value
1771    // exactly land on the exit value, otherwise the IV condition will wrap
1772    // around and do things the fp IV wouldn't.
1773    if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) &&
1774        Leftover != 0)
1775      return;
1776
1777    // If the stride would wrap around the i32 before exiting, we can't
1778    // transform the IV.
1779    if (Leftover != 0 && int32_t(ExitValue+IncValue) > ExitValue)
1780      return;
1781  }
1782
1783  const IntegerType *Int32Ty = Type::getInt32Ty(PN->getContext());
1784
1785  // Insert new integer induction variable.
1786  PHINode *NewPHI = PHINode::Create(Int32Ty, 2, PN->getName()+".int", PN);
1787  NewPHI->addIncoming(ConstantInt::get(Int32Ty, InitValue),
1788                      PN->getIncomingBlock(IncomingEdge));
1789
1790  Value *NewAdd =
1791    BinaryOperator::CreateAdd(NewPHI, ConstantInt::get(Int32Ty, IncValue),
1792                              Incr->getName()+".int", Incr);
1793  NewPHI->addIncoming(NewAdd, PN->getIncomingBlock(BackEdge));
1794
1795  ICmpInst *NewCompare = new ICmpInst(TheBr, NewPred, NewAdd,
1796                                      ConstantInt::get(Int32Ty, ExitValue),
1797                                      Compare->getName());
1798
1799  // In the following deletions, PN may become dead and may be deleted.
1800  // Use a WeakVH to observe whether this happens.
1801  WeakVH WeakPH = PN;
1802
1803  // Delete the old floating point exit comparison.  The branch starts using the
1804  // new comparison.
1805  NewCompare->takeName(Compare);
1806  Compare->replaceAllUsesWith(NewCompare);
1807  RecursivelyDeleteTriviallyDeadInstructions(Compare);
1808
1809  // Delete the old floating point increment.
1810  Incr->replaceAllUsesWith(UndefValue::get(Incr->getType()));
1811  RecursivelyDeleteTriviallyDeadInstructions(Incr);
1812
1813  // If the FP induction variable still has uses, this is because something else
1814  // in the loop uses its value.  In order to canonicalize the induction
1815  // variable, we chose to eliminate the IV and rewrite it in terms of an
1816  // int->fp cast.
1817  //
1818  // We give preference to sitofp over uitofp because it is faster on most
1819  // platforms.
1820  if (WeakPH) {
1821    Value *Conv = new SIToFPInst(NewPHI, PN->getType(), "indvar.conv",
1822                                 PN->getParent()->getFirstNonPHI());
1823    PN->replaceAllUsesWith(Conv);
1824    RecursivelyDeleteTriviallyDeadInstructions(PN);
1825  }
1826
1827  // Add a new IVUsers entry for the newly-created integer PHI.
1828  if (IU)
1829    IU->AddUsersIfInteresting(NewPHI);
1830}
1831