IndVarSimplify.cpp revision 246b2564d3bbbafe06ebf6a67745cd24141b5cb4
1//===- IndVarSimplify.cpp - Induction Variable Elimination ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This transformation analyzes and transforms the induction variables (and
11// computations derived from them) into simpler forms suitable for subsequent
12// analysis and transformation.
13//
14// This transformation makes the following changes to each loop with an
15// identifiable induction variable:
16//   1. All loops are transformed to have a SINGLE canonical induction variable
17//      which starts at zero and steps by one.
18//   2. The canonical induction variable is guaranteed to be the first PHI node
19//      in the loop header block.
20//   3. Any pointer arithmetic recurrences are raised to use array subscripts.
21//
22// If the trip count of a loop is computable, this pass also makes the following
23// changes:
24//   1. The exit condition for the loop is canonicalized to compare the
25//      induction value against the exit value.  This turns loops like:
26//        'for (i = 7; i*i < 1000; ++i)' into 'for (i = 0; i != 25; ++i)'
27//   2. Any use outside of the loop of an expression derived from the indvar
28//      is changed to compute the derived value outside of the loop, eliminating
29//      the dependence on the exit value of the induction variable.  If the only
30//      purpose of the loop is to compute the exit value of some derived
31//      expression, this transformation will make the loop dead.
32//
33// This transformation should be followed by strength reduction after all of the
34// desired loop transformations have been performed.  Additionally, on targets
35// where it is profitable, the loop could be transformed to count down to zero
36// (the "do loop" optimization).
37//
38//===----------------------------------------------------------------------===//
39
40#define DEBUG_TYPE "indvars"
41#include "llvm/Transforms/Scalar.h"
42#include "llvm/BasicBlock.h"
43#include "llvm/Constants.h"
44#include "llvm/Instructions.h"
45#include "llvm/Type.h"
46#include "llvm/Analysis/ScalarEvolutionExpander.h"
47#include "llvm/Analysis/LoopInfo.h"
48#include "llvm/Analysis/LoopPass.h"
49#include "llvm/Support/CFG.h"
50#include "llvm/Support/Compiler.h"
51#include "llvm/Support/Debug.h"
52#include "llvm/Support/GetElementPtrTypeIterator.h"
53#include "llvm/Transforms/Utils/Local.h"
54#include "llvm/Support/CommandLine.h"
55#include "llvm/ADT/SmallVector.h"
56#include "llvm/ADT/Statistic.h"
57using namespace llvm;
58
59STATISTIC(NumRemoved , "Number of aux indvars removed");
60STATISTIC(NumPointer , "Number of pointer indvars promoted");
61STATISTIC(NumInserted, "Number of canonical indvars added");
62STATISTIC(NumReplaced, "Number of exit values replaced");
63STATISTIC(NumLFTR    , "Number of loop exit tests replaced");
64
65namespace {
66  class VISIBILITY_HIDDEN IndVarSimplify : public LoopPass {
67    LoopInfo        *LI;
68    ScalarEvolution *SE;
69    bool Changed;
70  public:
71
72   static char ID; // Pass identification, replacement for typeid
73   IndVarSimplify() : LoopPass((intptr_t)&ID) {}
74
75   bool runOnLoop(Loop *L, LPPassManager &LPM);
76   bool doInitialization(Loop *L, LPPassManager &LPM);
77   virtual void getAnalysisUsage(AnalysisUsage &AU) const {
78     AU.addRequired<ScalarEvolution>();
79     AU.addRequiredID(LCSSAID);
80     AU.addRequiredID(LoopSimplifyID);
81     AU.addRequired<LoopInfo>();
82     AU.addPreservedID(LoopSimplifyID);
83     AU.addPreservedID(LCSSAID);
84     AU.setPreservesCFG();
85   }
86
87  private:
88
89    void EliminatePointerRecurrence(PHINode *PN, BasicBlock *Preheader,
90                                    std::set<Instruction*> &DeadInsts);
91    Instruction *LinearFunctionTestReplace(Loop *L, SCEV *IterationCount,
92                                           SCEVExpander &RW);
93    void RewriteLoopExitValues(Loop *L);
94
95    void DeleteTriviallyDeadInstructions(std::set<Instruction*> &Insts);
96  };
97
98  char IndVarSimplify::ID = 0;
99  RegisterPass<IndVarSimplify> X("indvars", "Canonicalize Induction Variables");
100}
101
102LoopPass *llvm::createIndVarSimplifyPass() {
103  return new IndVarSimplify();
104}
105
106/// DeleteTriviallyDeadInstructions - If any of the instructions is the
107/// specified set are trivially dead, delete them and see if this makes any of
108/// their operands subsequently dead.
109void IndVarSimplify::
110DeleteTriviallyDeadInstructions(std::set<Instruction*> &Insts) {
111  while (!Insts.empty()) {
112    Instruction *I = *Insts.begin();
113    Insts.erase(Insts.begin());
114    if (isInstructionTriviallyDead(I)) {
115      for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
116        if (Instruction *U = dyn_cast<Instruction>(I->getOperand(i)))
117          Insts.insert(U);
118      SE->deleteValueFromRecords(I);
119      DOUT << "INDVARS: Deleting: " << *I;
120      I->eraseFromParent();
121      Changed = true;
122    }
123  }
124}
125
126
127/// EliminatePointerRecurrence - Check to see if this is a trivial GEP pointer
128/// recurrence.  If so, change it into an integer recurrence, permitting
129/// analysis by the SCEV routines.
130void IndVarSimplify::EliminatePointerRecurrence(PHINode *PN,
131                                                BasicBlock *Preheader,
132                                            std::set<Instruction*> &DeadInsts) {
133  assert(PN->getNumIncomingValues() == 2 && "Noncanonicalized loop!");
134  unsigned PreheaderIdx = PN->getBasicBlockIndex(Preheader);
135  unsigned BackedgeIdx = PreheaderIdx^1;
136  if (GetElementPtrInst *GEPI =
137          dyn_cast<GetElementPtrInst>(PN->getIncomingValue(BackedgeIdx)))
138    if (GEPI->getOperand(0) == PN) {
139      assert(GEPI->getNumOperands() == 2 && "GEP types must match!");
140      DOUT << "INDVARS: Eliminating pointer recurrence: " << *GEPI;
141
142      // Okay, we found a pointer recurrence.  Transform this pointer
143      // recurrence into an integer recurrence.  Compute the value that gets
144      // added to the pointer at every iteration.
145      Value *AddedVal = GEPI->getOperand(1);
146
147      // Insert a new integer PHI node into the top of the block.
148      PHINode *NewPhi = new PHINode(AddedVal->getType(),
149                                    PN->getName()+".rec", PN);
150      NewPhi->addIncoming(Constant::getNullValue(NewPhi->getType()), Preheader);
151
152      // Create the new add instruction.
153      Value *NewAdd = BinaryOperator::createAdd(NewPhi, AddedVal,
154                                                GEPI->getName()+".rec", GEPI);
155      NewPhi->addIncoming(NewAdd, PN->getIncomingBlock(BackedgeIdx));
156
157      // Update the existing GEP to use the recurrence.
158      GEPI->setOperand(0, PN->getIncomingValue(PreheaderIdx));
159
160      // Update the GEP to use the new recurrence we just inserted.
161      GEPI->setOperand(1, NewAdd);
162
163      // If the incoming value is a constant expr GEP, try peeling out the array
164      // 0 index if possible to make things simpler.
165      if (ConstantExpr *CE = dyn_cast<ConstantExpr>(GEPI->getOperand(0)))
166        if (CE->getOpcode() == Instruction::GetElementPtr) {
167          unsigned NumOps = CE->getNumOperands();
168          assert(NumOps > 1 && "CE folding didn't work!");
169          if (CE->getOperand(NumOps-1)->isNullValue()) {
170            // Check to make sure the last index really is an array index.
171            gep_type_iterator GTI = gep_type_begin(CE);
172            for (unsigned i = 1, e = CE->getNumOperands()-1;
173                 i != e; ++i, ++GTI)
174              /*empty*/;
175            if (isa<SequentialType>(*GTI)) {
176              // Pull the last index out of the constant expr GEP.
177              SmallVector<Value*, 8> CEIdxs(CE->op_begin()+1, CE->op_end()-1);
178              Constant *NCE = ConstantExpr::getGetElementPtr(CE->getOperand(0),
179                                                             &CEIdxs[0],
180                                                             CEIdxs.size());
181              Value *Idx[2];
182              Idx[0] = Constant::getNullValue(Type::Int32Ty);
183              Idx[1] = NewAdd;
184              GetElementPtrInst *NGEPI = new GetElementPtrInst(
185                  NCE, Idx, Idx + 2,
186                  GEPI->getName(), GEPI);
187              SE->deleteValueFromRecords(GEPI);
188              GEPI->replaceAllUsesWith(NGEPI);
189              GEPI->eraseFromParent();
190              GEPI = NGEPI;
191            }
192          }
193        }
194
195
196      // Finally, if there are any other users of the PHI node, we must
197      // insert a new GEP instruction that uses the pre-incremented version
198      // of the induction amount.
199      if (!PN->use_empty()) {
200        BasicBlock::iterator InsertPos = PN; ++InsertPos;
201        while (isa<PHINode>(InsertPos)) ++InsertPos;
202        Value *PreInc =
203          new GetElementPtrInst(PN->getIncomingValue(PreheaderIdx),
204                                NewPhi, "", InsertPos);
205        PreInc->takeName(PN);
206        PN->replaceAllUsesWith(PreInc);
207      }
208
209      // Delete the old PHI for sure, and the GEP if its otherwise unused.
210      DeadInsts.insert(PN);
211
212      ++NumPointer;
213      Changed = true;
214    }
215}
216
217/// LinearFunctionTestReplace - This method rewrites the exit condition of the
218/// loop to be a canonical != comparison against the incremented loop induction
219/// variable.  This pass is able to rewrite the exit tests of any loop where the
220/// SCEV analysis can determine a loop-invariant trip count of the loop, which
221/// is actually a much broader range than just linear tests.
222///
223/// This method returns a "potentially dead" instruction whose computation chain
224/// should be deleted when convenient.
225Instruction *IndVarSimplify::LinearFunctionTestReplace(Loop *L,
226                                                       SCEV *IterationCount,
227                                                       SCEVExpander &RW) {
228  // Find the exit block for the loop.  We can currently only handle loops with
229  // a single exit.
230  SmallVector<BasicBlock*, 8> ExitBlocks;
231  L->getExitBlocks(ExitBlocks);
232  if (ExitBlocks.size() != 1) return 0;
233  BasicBlock *ExitBlock = ExitBlocks[0];
234
235  // Make sure there is only one predecessor block in the loop.
236  BasicBlock *ExitingBlock = 0;
237  for (pred_iterator PI = pred_begin(ExitBlock), PE = pred_end(ExitBlock);
238       PI != PE; ++PI)
239    if (L->contains(*PI)) {
240      if (ExitingBlock == 0)
241        ExitingBlock = *PI;
242      else
243        return 0;  // Multiple exits from loop to this block.
244    }
245  assert(ExitingBlock && "Loop info is broken");
246
247  if (!isa<BranchInst>(ExitingBlock->getTerminator()))
248    return 0;  // Can't rewrite non-branch yet
249  BranchInst *BI = cast<BranchInst>(ExitingBlock->getTerminator());
250  assert(BI->isConditional() && "Must be conditional to be part of loop!");
251
252  Instruction *PotentiallyDeadInst = dyn_cast<Instruction>(BI->getCondition());
253
254  // If the exiting block is not the same as the backedge block, we must compare
255  // against the preincremented value, otherwise we prefer to compare against
256  // the post-incremented value.
257  BasicBlock *Header = L->getHeader();
258  pred_iterator HPI = pred_begin(Header);
259  assert(HPI != pred_end(Header) && "Loop with zero preds???");
260  if (!L->contains(*HPI)) ++HPI;
261  assert(HPI != pred_end(Header) && L->contains(*HPI) &&
262         "No backedge in loop?");
263
264  SCEVHandle TripCount = IterationCount;
265  Value *IndVar;
266  if (*HPI == ExitingBlock) {
267    // The IterationCount expression contains the number of times that the
268    // backedge actually branches to the loop header.  This is one less than the
269    // number of times the loop executes, so add one to it.
270    ConstantInt *OneC = ConstantInt::get(IterationCount->getType(), 1);
271    TripCount = SE->getAddExpr(IterationCount, SE->getConstant(OneC));
272    IndVar = L->getCanonicalInductionVariableIncrement();
273  } else {
274    // We have to use the preincremented value...
275    IndVar = L->getCanonicalInductionVariable();
276  }
277
278  DOUT << "INDVARS: LFTR: TripCount = " << *TripCount
279       << "  IndVar = " << *IndVar << "\n";
280
281  // Expand the code for the iteration count into the preheader of the loop.
282  BasicBlock *Preheader = L->getLoopPreheader();
283  Value *ExitCnt = RW.expandCodeFor(TripCount, Preheader->getTerminator());
284
285  // Insert a new icmp_ne or icmp_eq instruction before the branch.
286  ICmpInst::Predicate Opcode;
287  if (L->contains(BI->getSuccessor(0)))
288    Opcode = ICmpInst::ICMP_NE;
289  else
290    Opcode = ICmpInst::ICMP_EQ;
291
292  Value *Cond = new ICmpInst(Opcode, IndVar, ExitCnt, "exitcond", BI);
293  BI->setCondition(Cond);
294  ++NumLFTR;
295  Changed = true;
296  return PotentiallyDeadInst;
297}
298
299
300/// RewriteLoopExitValues - Check to see if this loop has a computable
301/// loop-invariant execution count.  If so, this means that we can compute the
302/// final value of any expressions that are recurrent in the loop, and
303/// substitute the exit values from the loop into any instructions outside of
304/// the loop that use the final values of the current expressions.
305void IndVarSimplify::RewriteLoopExitValues(Loop *L) {
306  BasicBlock *Preheader = L->getLoopPreheader();
307
308  // Scan all of the instructions in the loop, looking at those that have
309  // extra-loop users and which are recurrences.
310  SCEVExpander Rewriter(*SE, *LI);
311
312  // We insert the code into the preheader of the loop if the loop contains
313  // multiple exit blocks, or in the exit block if there is exactly one.
314  BasicBlock *BlockToInsertInto;
315  SmallVector<BasicBlock*, 8> ExitBlocks;
316  L->getUniqueExitBlocks(ExitBlocks);
317  if (ExitBlocks.size() == 1)
318    BlockToInsertInto = ExitBlocks[0];
319  else
320    BlockToInsertInto = Preheader;
321  BasicBlock::iterator InsertPt = BlockToInsertInto->begin();
322  while (isa<PHINode>(InsertPt)) ++InsertPt;
323
324  bool HasConstantItCount = isa<SCEVConstant>(SE->getIterationCount(L));
325
326  std::set<Instruction*> InstructionsToDelete;
327  std::map<Instruction*, Value*> ExitValues;
328
329  // Find all values that are computed inside the loop, but used outside of it.
330  // Because of LCSSA, these values will only occur in LCSSA PHI Nodes.  Scan
331  // the exit blocks of the loop to find them.
332  for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
333    BasicBlock *ExitBB = ExitBlocks[i];
334
335    // If there are no PHI nodes in this exit block, then no values defined
336    // inside the loop are used on this path, skip it.
337    PHINode *PN = dyn_cast<PHINode>(ExitBB->begin());
338    if (!PN) continue;
339
340    unsigned NumPreds = PN->getNumIncomingValues();
341
342    // Iterate over all of the PHI nodes.
343    BasicBlock::iterator BBI = ExitBB->begin();
344    while ((PN = dyn_cast<PHINode>(BBI++))) {
345
346      // Iterate over all of the values in all the PHI nodes.
347      for (unsigned i = 0; i != NumPreds; ++i) {
348        // If the value being merged in is not integer or is not defined
349        // in the loop, skip it.
350        Value *InVal = PN->getIncomingValue(i);
351        if (!isa<Instruction>(InVal) ||
352            // SCEV only supports integer expressions for now.
353            !isa<IntegerType>(InVal->getType()))
354          continue;
355
356        // If this pred is for a subloop, not L itself, skip it.
357        if (LI->getLoopFor(PN->getIncomingBlock(i)) != L)
358          continue; // The Block is in a subloop, skip it.
359
360        // Check that InVal is defined in the loop.
361        Instruction *Inst = cast<Instruction>(InVal);
362        if (!L->contains(Inst->getParent()))
363          continue;
364
365        // We require that this value either have a computable evolution or that
366        // the loop have a constant iteration count.  In the case where the loop
367        // has a constant iteration count, we can sometimes force evaluation of
368        // the exit value through brute force.
369        SCEVHandle SH = SE->getSCEV(Inst);
370        if (!SH->hasComputableLoopEvolution(L) && !HasConstantItCount)
371          continue;          // Cannot get exit evolution for the loop value.
372
373        // Okay, this instruction has a user outside of the current loop
374        // and varies predictably *inside* the loop.  Evaluate the value it
375        // contains when the loop exits, if possible.
376        SCEVHandle ExitValue = SE->getSCEVAtScope(Inst, L->getParentLoop());
377        if (isa<SCEVCouldNotCompute>(ExitValue) ||
378            !ExitValue->isLoopInvariant(L))
379          continue;
380
381        Changed = true;
382        ++NumReplaced;
383
384        // See if we already computed the exit value for the instruction, if so,
385        // just reuse it.
386        Value *&ExitVal = ExitValues[Inst];
387        if (!ExitVal)
388          ExitVal = Rewriter.expandCodeFor(ExitValue, InsertPt);
389
390        DOUT << "INDVARS: RLEV: AfterLoopVal = " << *ExitVal
391             << "  LoopVal = " << *Inst << "\n";
392
393        PN->setIncomingValue(i, ExitVal);
394
395        // If this instruction is dead now, schedule it to be removed.
396        if (Inst->use_empty())
397          InstructionsToDelete.insert(Inst);
398
399        // See if this is a single-entry LCSSA PHI node.  If so, we can (and
400        // have to) remove
401        // the PHI entirely.  This is safe, because the NewVal won't be variant
402        // in the loop, so we don't need an LCSSA phi node anymore.
403        if (NumPreds == 1) {
404          SE->deleteValueFromRecords(PN);
405          PN->replaceAllUsesWith(ExitVal);
406          PN->eraseFromParent();
407          break;
408        }
409      }
410    }
411  }
412
413  DeleteTriviallyDeadInstructions(InstructionsToDelete);
414}
415
416bool IndVarSimplify::doInitialization(Loop *L, LPPassManager &LPM) {
417
418  Changed = false;
419  // First step.  Check to see if there are any trivial GEP pointer recurrences.
420  // If there are, change them into integer recurrences, permitting analysis by
421  // the SCEV routines.
422  //
423  BasicBlock *Header    = L->getHeader();
424  BasicBlock *Preheader = L->getLoopPreheader();
425  SE = &LPM.getAnalysis<ScalarEvolution>();
426
427  std::set<Instruction*> DeadInsts;
428  for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
429    PHINode *PN = cast<PHINode>(I);
430    if (isa<PointerType>(PN->getType()))
431      EliminatePointerRecurrence(PN, Preheader, DeadInsts);
432  }
433
434  if (!DeadInsts.empty())
435    DeleteTriviallyDeadInstructions(DeadInsts);
436
437  return Changed;
438}
439
440bool IndVarSimplify::runOnLoop(Loop *L, LPPassManager &LPM) {
441
442
443  LI = &getAnalysis<LoopInfo>();
444  SE = &getAnalysis<ScalarEvolution>();
445
446  Changed = false;
447  BasicBlock *Header    = L->getHeader();
448  std::set<Instruction*> DeadInsts;
449
450  // Verify the input to the pass in already in LCSSA form.
451  assert(L->isLCSSAForm());
452
453  // Check to see if this loop has a computable loop-invariant execution count.
454  // If so, this means that we can compute the final value of any expressions
455  // that are recurrent in the loop, and substitute the exit values from the
456  // loop into any instructions outside of the loop that use the final values of
457  // the current expressions.
458  //
459  SCEVHandle IterationCount = SE->getIterationCount(L);
460  if (!isa<SCEVCouldNotCompute>(IterationCount))
461    RewriteLoopExitValues(L);
462
463  // Next, analyze all of the induction variables in the loop, canonicalizing
464  // auxillary induction variables.
465  std::vector<std::pair<PHINode*, SCEVHandle> > IndVars;
466
467  for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
468    PHINode *PN = cast<PHINode>(I);
469    if (PN->getType()->isInteger()) { // FIXME: when we have fast-math, enable!
470      SCEVHandle SCEV = SE->getSCEV(PN);
471      if (SCEV->hasComputableLoopEvolution(L))
472        // FIXME: It is an extremely bad idea to indvar substitute anything more
473        // complex than affine induction variables.  Doing so will put expensive
474        // polynomial evaluations inside of the loop, and the str reduction pass
475        // currently can only reduce affine polynomials.  For now just disable
476        // indvar subst on anything more complex than an affine addrec.
477        if (SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SCEV))
478          if (AR->isAffine())
479            IndVars.push_back(std::make_pair(PN, SCEV));
480    }
481  }
482
483  // If there are no induction variables in the loop, there is nothing more to
484  // do.
485  if (IndVars.empty()) {
486    // Actually, if we know how many times the loop iterates, lets insert a
487    // canonical induction variable to help subsequent passes.
488    if (!isa<SCEVCouldNotCompute>(IterationCount)) {
489      SCEVExpander Rewriter(*SE, *LI);
490      Rewriter.getOrInsertCanonicalInductionVariable(L,
491                                                     IterationCount->getType());
492      if (Instruction *I = LinearFunctionTestReplace(L, IterationCount,
493                                                     Rewriter)) {
494        std::set<Instruction*> InstructionsToDelete;
495        InstructionsToDelete.insert(I);
496        DeleteTriviallyDeadInstructions(InstructionsToDelete);
497      }
498    }
499    return Changed;
500  }
501
502  // Compute the type of the largest recurrence expression.
503  //
504  const Type *LargestType = IndVars[0].first->getType();
505  bool DifferingSizes = false;
506  for (unsigned i = 1, e = IndVars.size(); i != e; ++i) {
507    const Type *Ty = IndVars[i].first->getType();
508    DifferingSizes |=
509      Ty->getPrimitiveSizeInBits() != LargestType->getPrimitiveSizeInBits();
510    if (Ty->getPrimitiveSizeInBits() > LargestType->getPrimitiveSizeInBits())
511      LargestType = Ty;
512  }
513
514  // Create a rewriter object which we'll use to transform the code with.
515  SCEVExpander Rewriter(*SE, *LI);
516
517  // Now that we know the largest of of the induction variables in this loop,
518  // insert a canonical induction variable of the largest size.
519  Value *IndVar = Rewriter.getOrInsertCanonicalInductionVariable(L,LargestType);
520  ++NumInserted;
521  Changed = true;
522  DOUT << "INDVARS: New CanIV: " << *IndVar;
523
524  if (!isa<SCEVCouldNotCompute>(IterationCount)) {
525    if (IterationCount->getType()->getPrimitiveSizeInBits() <
526        LargestType->getPrimitiveSizeInBits())
527      IterationCount = SE->getZeroExtendExpr(IterationCount, LargestType);
528    else if (IterationCount->getType() != LargestType)
529      IterationCount = SE->getTruncateExpr(IterationCount, LargestType);
530    if (Instruction *DI = LinearFunctionTestReplace(L, IterationCount,Rewriter))
531      DeadInsts.insert(DI);
532  }
533
534  // Now that we have a canonical induction variable, we can rewrite any
535  // recurrences in terms of the induction variable.  Start with the auxillary
536  // induction variables, and recursively rewrite any of their uses.
537  BasicBlock::iterator InsertPt = Header->begin();
538  while (isa<PHINode>(InsertPt)) ++InsertPt;
539
540  // If there were induction variables of other sizes, cast the primary
541  // induction variable to the right size for them, avoiding the need for the
542  // code evaluation methods to insert induction variables of different sizes.
543  if (DifferingSizes) {
544    SmallVector<unsigned,4> InsertedSizes;
545    InsertedSizes.push_back(LargestType->getPrimitiveSizeInBits());
546    for (unsigned i = 0, e = IndVars.size(); i != e; ++i) {
547      unsigned ithSize = IndVars[i].first->getType()->getPrimitiveSizeInBits();
548      if (std::find(InsertedSizes.begin(), InsertedSizes.end(), ithSize)
549          == InsertedSizes.end()) {
550        PHINode *PN = IndVars[i].first;
551        InsertedSizes.push_back(ithSize);
552        Instruction *New = new TruncInst(IndVar, PN->getType(), "indvar",
553                                         InsertPt);
554        Rewriter.addInsertedValue(New, SE->getSCEV(New));
555        DOUT << "INDVARS: Made trunc IV for " << *PN
556             << "   NewVal = " << *New << "\n";
557      }
558    }
559  }
560
561  // Rewrite all induction variables in terms of the canonical induction
562  // variable.
563  std::map<unsigned, Value*> InsertedSizes;
564  while (!IndVars.empty()) {
565    PHINode *PN = IndVars.back().first;
566    Value *NewVal = Rewriter.expandCodeFor(IndVars.back().second, InsertPt);
567    DOUT << "INDVARS: Rewrote IV '" << *IndVars.back().second << "' " << *PN
568         << "   into = " << *NewVal << "\n";
569    NewVal->takeName(PN);
570
571    // Replace the old PHI Node with the inserted computation.
572    PN->replaceAllUsesWith(NewVal);
573    DeadInsts.insert(PN);
574    IndVars.pop_back();
575    ++NumRemoved;
576    Changed = true;
577  }
578
579#if 0
580  // Now replace all derived expressions in the loop body with simpler
581  // expressions.
582  for (unsigned i = 0, e = L->getBlocks().size(); i != e; ++i)
583    if (LI->getLoopFor(L->getBlocks()[i]) == L) {  // Not in a subloop...
584      BasicBlock *BB = L->getBlocks()[i];
585      for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
586        if (I->getType()->isInteger() &&      // Is an integer instruction
587            !I->use_empty() &&
588            !Rewriter.isInsertedInstruction(I)) {
589          SCEVHandle SH = SE->getSCEV(I);
590          Value *V = Rewriter.expandCodeFor(SH, I, I->getType());
591          if (V != I) {
592            if (isa<Instruction>(V))
593              V->takeName(I);
594            I->replaceAllUsesWith(V);
595            DeadInsts.insert(I);
596            ++NumRemoved;
597            Changed = true;
598          }
599        }
600    }
601#endif
602
603  DeleteTriviallyDeadInstructions(DeadInsts);
604
605  assert(L->isLCSSAForm());
606  return Changed;
607}
608