IndVarSimplify.cpp revision 36a5bf8fd8b32fe749c207f8809ae7d4f66eeb03
1//===- IndVarSimplify.cpp - Induction Variable Elimination ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This transformation analyzes and transforms the induction variables (and
11// computations derived from them) into simpler forms suitable for subsequent
12// analysis and transformation.
13//
14// This transformation makes the following changes to each loop with an
15// identifiable induction variable:
16//   1. All loops are transformed to have a SINGLE canonical induction variable
17//      which starts at zero and steps by one.
18//   2. The canonical induction variable is guaranteed to be the first PHI node
19//      in the loop header block.
20//   3. Any pointer arithmetic recurrences are raised to use array subscripts.
21//
22// If the trip count of a loop is computable, this pass also makes the following
23// changes:
24//   1. The exit condition for the loop is canonicalized to compare the
25//      induction value against the exit value.  This turns loops like:
26//        'for (i = 7; i*i < 1000; ++i)' into 'for (i = 0; i != 25; ++i)'
27//   2. Any use outside of the loop of an expression derived from the indvar
28//      is changed to compute the derived value outside of the loop, eliminating
29//      the dependence on the exit value of the induction variable.  If the only
30//      purpose of the loop is to compute the exit value of some derived
31//      expression, this transformation will make the loop dead.
32//
33// This transformation should be followed by strength reduction after all of the
34// desired loop transformations have been performed.  Additionally, on targets
35// where it is profitable, the loop could be transformed to count down to zero
36// (the "do loop" optimization).
37//
38//===----------------------------------------------------------------------===//
39
40#define DEBUG_TYPE "indvars"
41#include "llvm/Transforms/Scalar.h"
42#include "llvm/BasicBlock.h"
43#include "llvm/Constants.h"
44#include "llvm/Instructions.h"
45#include "llvm/Type.h"
46#include "llvm/Analysis/ScalarEvolutionExpander.h"
47#include "llvm/Analysis/LoopInfo.h"
48#include "llvm/Analysis/LoopPass.h"
49#include "llvm/Support/CFG.h"
50#include "llvm/Support/Compiler.h"
51#include "llvm/Support/Debug.h"
52#include "llvm/Support/GetElementPtrTypeIterator.h"
53#include "llvm/Transforms/Utils/Local.h"
54#include "llvm/Support/CommandLine.h"
55#include "llvm/ADT/SmallVector.h"
56#include "llvm/ADT/Statistic.h"
57using namespace llvm;
58
59STATISTIC(NumRemoved , "Number of aux indvars removed");
60STATISTIC(NumPointer , "Number of pointer indvars promoted");
61STATISTIC(NumInserted, "Number of canonical indvars added");
62STATISTIC(NumReplaced, "Number of exit values replaced");
63STATISTIC(NumLFTR    , "Number of loop exit tests replaced");
64
65namespace {
66  class VISIBILITY_HIDDEN IndVarSimplify : public LoopPass {
67    LoopInfo        *LI;
68    ScalarEvolution *SE;
69    bool Changed;
70  public:
71
72   static char ID; // Pass identification, replacement for typeid
73   IndVarSimplify() : LoopPass(&ID) {}
74
75   bool runOnLoop(Loop *L, LPPassManager &LPM);
76   bool doInitialization(Loop *L, LPPassManager &LPM);
77   virtual void getAnalysisUsage(AnalysisUsage &AU) const {
78     AU.addRequired<ScalarEvolution>();
79     AU.addRequiredID(LCSSAID);
80     AU.addRequiredID(LoopSimplifyID);
81     AU.addRequired<LoopInfo>();
82     AU.addPreservedID(LoopSimplifyID);
83     AU.addPreservedID(LCSSAID);
84     AU.setPreservesCFG();
85   }
86
87  private:
88
89    void EliminatePointerRecurrence(PHINode *PN, BasicBlock *Preheader,
90                                    std::set<Instruction*> &DeadInsts);
91    Instruction *LinearFunctionTestReplace(Loop *L, SCEV *IterationCount,
92                                           SCEVExpander &RW);
93    void RewriteLoopExitValues(Loop *L, SCEV *IterationCount);
94
95    void DeleteTriviallyDeadInstructions(std::set<Instruction*> &Insts);
96
97    void OptimizeCanonicalIVType(Loop *L);
98  };
99}
100
101char IndVarSimplify::ID = 0;
102static RegisterPass<IndVarSimplify>
103X("indvars", "Canonicalize Induction Variables");
104
105LoopPass *llvm::createIndVarSimplifyPass() {
106  return new IndVarSimplify();
107}
108
109/// DeleteTriviallyDeadInstructions - If any of the instructions is the
110/// specified set are trivially dead, delete them and see if this makes any of
111/// their operands subsequently dead.
112void IndVarSimplify::
113DeleteTriviallyDeadInstructions(std::set<Instruction*> &Insts) {
114  while (!Insts.empty()) {
115    Instruction *I = *Insts.begin();
116    Insts.erase(Insts.begin());
117    if (isInstructionTriviallyDead(I)) {
118      for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
119        if (Instruction *U = dyn_cast<Instruction>(I->getOperand(i)))
120          Insts.insert(U);
121      SE->deleteValueFromRecords(I);
122      DOUT << "INDVARS: Deleting: " << *I;
123      I->eraseFromParent();
124      Changed = true;
125    }
126  }
127}
128
129
130/// EliminatePointerRecurrence - Check to see if this is a trivial GEP pointer
131/// recurrence.  If so, change it into an integer recurrence, permitting
132/// analysis by the SCEV routines.
133void IndVarSimplify::EliminatePointerRecurrence(PHINode *PN,
134                                                BasicBlock *Preheader,
135                                            std::set<Instruction*> &DeadInsts) {
136  assert(PN->getNumIncomingValues() == 2 && "Noncanonicalized loop!");
137  unsigned PreheaderIdx = PN->getBasicBlockIndex(Preheader);
138  unsigned BackedgeIdx = PreheaderIdx^1;
139  if (GetElementPtrInst *GEPI =
140          dyn_cast<GetElementPtrInst>(PN->getIncomingValue(BackedgeIdx)))
141    if (GEPI->getOperand(0) == PN) {
142      assert(GEPI->getNumOperands() == 2 && "GEP types must match!");
143      DOUT << "INDVARS: Eliminating pointer recurrence: " << *GEPI;
144
145      // Okay, we found a pointer recurrence.  Transform this pointer
146      // recurrence into an integer recurrence.  Compute the value that gets
147      // added to the pointer at every iteration.
148      Value *AddedVal = GEPI->getOperand(1);
149
150      // Insert a new integer PHI node into the top of the block.
151      PHINode *NewPhi = PHINode::Create(AddedVal->getType(),
152                                        PN->getName()+".rec", PN);
153      NewPhi->addIncoming(Constant::getNullValue(NewPhi->getType()), Preheader);
154
155      // Create the new add instruction.
156      Value *NewAdd = BinaryOperator::CreateAdd(NewPhi, AddedVal,
157                                                GEPI->getName()+".rec", GEPI);
158      NewPhi->addIncoming(NewAdd, PN->getIncomingBlock(BackedgeIdx));
159
160      // Update the existing GEP to use the recurrence.
161      GEPI->setOperand(0, PN->getIncomingValue(PreheaderIdx));
162
163      // Update the GEP to use the new recurrence we just inserted.
164      GEPI->setOperand(1, NewAdd);
165
166      // If the incoming value is a constant expr GEP, try peeling out the array
167      // 0 index if possible to make things simpler.
168      if (ConstantExpr *CE = dyn_cast<ConstantExpr>(GEPI->getOperand(0)))
169        if (CE->getOpcode() == Instruction::GetElementPtr) {
170          unsigned NumOps = CE->getNumOperands();
171          assert(NumOps > 1 && "CE folding didn't work!");
172          if (CE->getOperand(NumOps-1)->isNullValue()) {
173            // Check to make sure the last index really is an array index.
174            gep_type_iterator GTI = gep_type_begin(CE);
175            for (unsigned i = 1, e = CE->getNumOperands()-1;
176                 i != e; ++i, ++GTI)
177              /*empty*/;
178            if (isa<SequentialType>(*GTI)) {
179              // Pull the last index out of the constant expr GEP.
180              SmallVector<Value*, 8> CEIdxs(CE->op_begin()+1, CE->op_end()-1);
181              Constant *NCE = ConstantExpr::getGetElementPtr(CE->getOperand(0),
182                                                             &CEIdxs[0],
183                                                             CEIdxs.size());
184              Value *Idx[2];
185              Idx[0] = Constant::getNullValue(Type::Int32Ty);
186              Idx[1] = NewAdd;
187              GetElementPtrInst *NGEPI = GetElementPtrInst::Create(
188                  NCE, Idx, Idx + 2,
189                  GEPI->getName(), GEPI);
190              SE->deleteValueFromRecords(GEPI);
191              GEPI->replaceAllUsesWith(NGEPI);
192              GEPI->eraseFromParent();
193              GEPI = NGEPI;
194            }
195          }
196        }
197
198
199      // Finally, if there are any other users of the PHI node, we must
200      // insert a new GEP instruction that uses the pre-incremented version
201      // of the induction amount.
202      if (!PN->use_empty()) {
203        BasicBlock::iterator InsertPos = PN; ++InsertPos;
204        while (isa<PHINode>(InsertPos)) ++InsertPos;
205        Value *PreInc =
206          GetElementPtrInst::Create(PN->getIncomingValue(PreheaderIdx),
207                                    NewPhi, "", InsertPos);
208        PreInc->takeName(PN);
209        PN->replaceAllUsesWith(PreInc);
210      }
211
212      // Delete the old PHI for sure, and the GEP if its otherwise unused.
213      DeadInsts.insert(PN);
214
215      ++NumPointer;
216      Changed = true;
217    }
218}
219
220/// LinearFunctionTestReplace - This method rewrites the exit condition of the
221/// loop to be a canonical != comparison against the incremented loop induction
222/// variable.  This pass is able to rewrite the exit tests of any loop where the
223/// SCEV analysis can determine a loop-invariant trip count of the loop, which
224/// is actually a much broader range than just linear tests.
225///
226/// This method returns a "potentially dead" instruction whose computation chain
227/// should be deleted when convenient.
228Instruction *IndVarSimplify::LinearFunctionTestReplace(Loop *L,
229                                                       SCEV *IterationCount,
230                                                       SCEVExpander &RW) {
231  // Find the exit block for the loop.  We can currently only handle loops with
232  // a single exit.
233  SmallVector<BasicBlock*, 8> ExitBlocks;
234  L->getExitBlocks(ExitBlocks);
235  if (ExitBlocks.size() != 1) return 0;
236  BasicBlock *ExitBlock = ExitBlocks[0];
237
238  // Make sure there is only one predecessor block in the loop.
239  BasicBlock *ExitingBlock = 0;
240  for (pred_iterator PI = pred_begin(ExitBlock), PE = pred_end(ExitBlock);
241       PI != PE; ++PI)
242    if (L->contains(*PI)) {
243      if (ExitingBlock == 0)
244        ExitingBlock = *PI;
245      else
246        return 0;  // Multiple exits from loop to this block.
247    }
248  assert(ExitingBlock && "Loop info is broken");
249
250  if (!isa<BranchInst>(ExitingBlock->getTerminator()))
251    return 0;  // Can't rewrite non-branch yet
252  BranchInst *BI = cast<BranchInst>(ExitingBlock->getTerminator());
253  assert(BI->isConditional() && "Must be conditional to be part of loop!");
254
255  Instruction *PotentiallyDeadInst = dyn_cast<Instruction>(BI->getCondition());
256
257  // If the exiting block is not the same as the backedge block, we must compare
258  // against the preincremented value, otherwise we prefer to compare against
259  // the post-incremented value.
260  BasicBlock *Header = L->getHeader();
261  pred_iterator HPI = pred_begin(Header);
262  assert(HPI != pred_end(Header) && "Loop with zero preds???");
263  if (!L->contains(*HPI)) ++HPI;
264  assert(HPI != pred_end(Header) && L->contains(*HPI) &&
265         "No backedge in loop?");
266
267  SCEVHandle TripCount = IterationCount;
268  Value *IndVar;
269  if (*HPI == ExitingBlock) {
270    // The IterationCount expression contains the number of times that the
271    // backedge actually branches to the loop header.  This is one less than the
272    // number of times the loop executes, so add one to it.
273    ConstantInt *OneC = ConstantInt::get(IterationCount->getType(), 1);
274    TripCount = SE->getAddExpr(IterationCount, SE->getConstant(OneC));
275    IndVar = L->getCanonicalInductionVariableIncrement();
276  } else {
277    // We have to use the preincremented value...
278    IndVar = L->getCanonicalInductionVariable();
279  }
280
281  DOUT << "INDVARS: LFTR: TripCount = " << *TripCount
282       << "  IndVar = " << *IndVar << "\n";
283
284  // Expand the code for the iteration count into the preheader of the loop.
285  BasicBlock *Preheader = L->getLoopPreheader();
286  Value *ExitCnt = RW.expandCodeFor(TripCount, Preheader->getTerminator());
287
288  // Insert a new icmp_ne or icmp_eq instruction before the branch.
289  ICmpInst::Predicate Opcode;
290  if (L->contains(BI->getSuccessor(0)))
291    Opcode = ICmpInst::ICMP_NE;
292  else
293    Opcode = ICmpInst::ICMP_EQ;
294
295  Value *Cond = new ICmpInst(Opcode, IndVar, ExitCnt, "exitcond", BI);
296  BI->setCondition(Cond);
297  ++NumLFTR;
298  Changed = true;
299  return PotentiallyDeadInst;
300}
301
302
303/// RewriteLoopExitValues - Check to see if this loop has a computable
304/// loop-invariant execution count.  If so, this means that we can compute the
305/// final value of any expressions that are recurrent in the loop, and
306/// substitute the exit values from the loop into any instructions outside of
307/// the loop that use the final values of the current expressions.
308void IndVarSimplify::RewriteLoopExitValues(Loop *L, SCEV *IterationCount) {
309  BasicBlock *Preheader = L->getLoopPreheader();
310
311  // Scan all of the instructions in the loop, looking at those that have
312  // extra-loop users and which are recurrences.
313  SCEVExpander Rewriter(*SE, *LI);
314
315  // We insert the code into the preheader of the loop if the loop contains
316  // multiple exit blocks, or in the exit block if there is exactly one.
317  BasicBlock *BlockToInsertInto;
318  SmallVector<BasicBlock*, 8> ExitBlocks;
319  L->getUniqueExitBlocks(ExitBlocks);
320  if (ExitBlocks.size() == 1)
321    BlockToInsertInto = ExitBlocks[0];
322  else
323    BlockToInsertInto = Preheader;
324  BasicBlock::iterator InsertPt = BlockToInsertInto->getFirstNonPHI();
325
326  bool HasConstantItCount = isa<SCEVConstant>(IterationCount);
327
328  std::set<Instruction*> InstructionsToDelete;
329  std::map<Instruction*, Value*> ExitValues;
330
331  // Find all values that are computed inside the loop, but used outside of it.
332  // Because of LCSSA, these values will only occur in LCSSA PHI Nodes.  Scan
333  // the exit blocks of the loop to find them.
334  for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
335    BasicBlock *ExitBB = ExitBlocks[i];
336
337    // If there are no PHI nodes in this exit block, then no values defined
338    // inside the loop are used on this path, skip it.
339    PHINode *PN = dyn_cast<PHINode>(ExitBB->begin());
340    if (!PN) continue;
341
342    unsigned NumPreds = PN->getNumIncomingValues();
343
344    // Iterate over all of the PHI nodes.
345    BasicBlock::iterator BBI = ExitBB->begin();
346    while ((PN = dyn_cast<PHINode>(BBI++))) {
347
348      // Iterate over all of the values in all the PHI nodes.
349      for (unsigned i = 0; i != NumPreds; ++i) {
350        // If the value being merged in is not integer or is not defined
351        // in the loop, skip it.
352        Value *InVal = PN->getIncomingValue(i);
353        if (!isa<Instruction>(InVal) ||
354            // SCEV only supports integer expressions for now.
355            !isa<IntegerType>(InVal->getType()))
356          continue;
357
358        // If this pred is for a subloop, not L itself, skip it.
359        if (LI->getLoopFor(PN->getIncomingBlock(i)) != L)
360          continue; // The Block is in a subloop, skip it.
361
362        // Check that InVal is defined in the loop.
363        Instruction *Inst = cast<Instruction>(InVal);
364        if (!L->contains(Inst->getParent()))
365          continue;
366
367        // We require that this value either have a computable evolution or that
368        // the loop have a constant iteration count.  In the case where the loop
369        // has a constant iteration count, we can sometimes force evaluation of
370        // the exit value through brute force.
371        SCEVHandle SH = SE->getSCEV(Inst);
372        if (!SH->hasComputableLoopEvolution(L) && !HasConstantItCount)
373          continue;          // Cannot get exit evolution for the loop value.
374
375        // Okay, this instruction has a user outside of the current loop
376        // and varies predictably *inside* the loop.  Evaluate the value it
377        // contains when the loop exits, if possible.
378        SCEVHandle ExitValue = SE->getSCEVAtScope(Inst, L->getParentLoop());
379        if (isa<SCEVCouldNotCompute>(ExitValue) ||
380            !ExitValue->isLoopInvariant(L))
381          continue;
382
383        Changed = true;
384        ++NumReplaced;
385
386        // See if we already computed the exit value for the instruction, if so,
387        // just reuse it.
388        Value *&ExitVal = ExitValues[Inst];
389        if (!ExitVal)
390          ExitVal = Rewriter.expandCodeFor(ExitValue, InsertPt);
391
392        DOUT << "INDVARS: RLEV: AfterLoopVal = " << *ExitVal
393             << "  LoopVal = " << *Inst << "\n";
394
395        PN->setIncomingValue(i, ExitVal);
396
397        // If this instruction is dead now, schedule it to be removed.
398        if (Inst->use_empty())
399          InstructionsToDelete.insert(Inst);
400
401        // See if this is a single-entry LCSSA PHI node.  If so, we can (and
402        // have to) remove
403        // the PHI entirely.  This is safe, because the NewVal won't be variant
404        // in the loop, so we don't need an LCSSA phi node anymore.
405        if (NumPreds == 1) {
406          SE->deleteValueFromRecords(PN);
407          PN->replaceAllUsesWith(ExitVal);
408          PN->eraseFromParent();
409          break;
410        }
411      }
412    }
413  }
414
415  DeleteTriviallyDeadInstructions(InstructionsToDelete);
416}
417
418bool IndVarSimplify::doInitialization(Loop *L, LPPassManager &LPM) {
419
420  Changed = false;
421  // First step.  Check to see if there are any trivial GEP pointer recurrences.
422  // If there are, change them into integer recurrences, permitting analysis by
423  // the SCEV routines.
424  //
425  BasicBlock *Header    = L->getHeader();
426  BasicBlock *Preheader = L->getLoopPreheader();
427  SE = &LPM.getAnalysis<ScalarEvolution>();
428
429  std::set<Instruction*> DeadInsts;
430  for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
431    PHINode *PN = cast<PHINode>(I);
432    if (isa<PointerType>(PN->getType()))
433      EliminatePointerRecurrence(PN, Preheader, DeadInsts);
434  }
435
436  if (!DeadInsts.empty())
437    DeleteTriviallyDeadInstructions(DeadInsts);
438
439  return Changed;
440}
441
442bool IndVarSimplify::runOnLoop(Loop *L, LPPassManager &LPM) {
443
444
445  LI = &getAnalysis<LoopInfo>();
446  SE = &getAnalysis<ScalarEvolution>();
447
448  Changed = false;
449  BasicBlock *Header    = L->getHeader();
450  std::set<Instruction*> DeadInsts;
451
452  // Verify the input to the pass in already in LCSSA form.
453  assert(L->isLCSSAForm());
454
455  // Check to see if this loop has a computable loop-invariant execution count.
456  // If so, this means that we can compute the final value of any expressions
457  // that are recurrent in the loop, and substitute the exit values from the
458  // loop into any instructions outside of the loop that use the final values of
459  // the current expressions.
460  //
461  SCEVHandle IterationCount = SE->getIterationCount(L);
462  if (!isa<SCEVCouldNotCompute>(IterationCount))
463    RewriteLoopExitValues(L, IterationCount);
464
465  // Next, analyze all of the induction variables in the loop, canonicalizing
466  // auxillary induction variables.
467  std::vector<std::pair<PHINode*, SCEVHandle> > IndVars;
468
469  for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
470    PHINode *PN = cast<PHINode>(I);
471    if (PN->getType()->isInteger()) { // FIXME: when we have fast-math, enable!
472      SCEVHandle SCEV = SE->getSCEV(PN);
473      if (SCEV->hasComputableLoopEvolution(L))
474        // FIXME: It is an extremely bad idea to indvar substitute anything more
475        // complex than affine induction variables.  Doing so will put expensive
476        // polynomial evaluations inside of the loop, and the str reduction pass
477        // currently can only reduce affine polynomials.  For now just disable
478        // indvar subst on anything more complex than an affine addrec.
479        if (SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SCEV))
480          if (AR->isAffine())
481            IndVars.push_back(std::make_pair(PN, SCEV));
482    }
483  }
484
485  // If there are no induction variables in the loop, there is nothing more to
486  // do.
487  if (IndVars.empty()) {
488    // Actually, if we know how many times the loop iterates, lets insert a
489    // canonical induction variable to help subsequent passes.
490    if (!isa<SCEVCouldNotCompute>(IterationCount)) {
491      SCEVExpander Rewriter(*SE, *LI);
492      Rewriter.getOrInsertCanonicalInductionVariable(L,
493                                                     IterationCount->getType());
494      if (Instruction *I = LinearFunctionTestReplace(L, IterationCount,
495                                                     Rewriter)) {
496        std::set<Instruction*> InstructionsToDelete;
497        InstructionsToDelete.insert(I);
498        DeleteTriviallyDeadInstructions(InstructionsToDelete);
499      }
500    }
501    return Changed;
502  }
503
504  // Compute the type of the largest recurrence expression.
505  //
506  const Type *LargestType = IndVars[0].first->getType();
507  bool DifferingSizes = false;
508  for (unsigned i = 1, e = IndVars.size(); i != e; ++i) {
509    const Type *Ty = IndVars[i].first->getType();
510    DifferingSizes |=
511      Ty->getPrimitiveSizeInBits() != LargestType->getPrimitiveSizeInBits();
512    if (Ty->getPrimitiveSizeInBits() > LargestType->getPrimitiveSizeInBits())
513      LargestType = Ty;
514  }
515
516  // Create a rewriter object which we'll use to transform the code with.
517  SCEVExpander Rewriter(*SE, *LI);
518
519  // Now that we know the largest of of the induction variables in this loop,
520  // insert a canonical induction variable of the largest size.
521  Value *IndVar = Rewriter.getOrInsertCanonicalInductionVariable(L,LargestType);
522  ++NumInserted;
523  Changed = true;
524  DOUT << "INDVARS: New CanIV: " << *IndVar;
525
526  if (!isa<SCEVCouldNotCompute>(IterationCount)) {
527    IterationCount = SE->getTruncateOrZeroExtend(IterationCount, LargestType);
528    if (Instruction *DI = LinearFunctionTestReplace(L, IterationCount,Rewriter))
529      DeadInsts.insert(DI);
530  }
531
532  // Now that we have a canonical induction variable, we can rewrite any
533  // recurrences in terms of the induction variable.  Start with the auxillary
534  // induction variables, and recursively rewrite any of their uses.
535  BasicBlock::iterator InsertPt = Header->getFirstNonPHI();
536
537  // If there were induction variables of other sizes, cast the primary
538  // induction variable to the right size for them, avoiding the need for the
539  // code evaluation methods to insert induction variables of different sizes.
540  if (DifferingSizes) {
541    SmallVector<unsigned,4> InsertedSizes;
542    InsertedSizes.push_back(LargestType->getPrimitiveSizeInBits());
543    for (unsigned i = 0, e = IndVars.size(); i != e; ++i) {
544      unsigned ithSize = IndVars[i].first->getType()->getPrimitiveSizeInBits();
545      if (std::find(InsertedSizes.begin(), InsertedSizes.end(), ithSize)
546          == InsertedSizes.end()) {
547        PHINode *PN = IndVars[i].first;
548        InsertedSizes.push_back(ithSize);
549        Instruction *New = new TruncInst(IndVar, PN->getType(), "indvar",
550                                         InsertPt);
551        Rewriter.addInsertedValue(New, SE->getSCEV(New));
552        DOUT << "INDVARS: Made trunc IV for " << *PN
553             << "   NewVal = " << *New << "\n";
554      }
555    }
556  }
557
558  // Rewrite all induction variables in terms of the canonical induction
559  // variable.
560  while (!IndVars.empty()) {
561    PHINode *PN = IndVars.back().first;
562    Value *NewVal = Rewriter.expandCodeFor(IndVars.back().second, InsertPt);
563    DOUT << "INDVARS: Rewrote IV '" << *IndVars.back().second << "' " << *PN
564         << "   into = " << *NewVal << "\n";
565    NewVal->takeName(PN);
566
567    // Replace the old PHI Node with the inserted computation.
568    PN->replaceAllUsesWith(NewVal);
569    DeadInsts.insert(PN);
570    IndVars.pop_back();
571    ++NumRemoved;
572    Changed = true;
573  }
574
575#if 0
576  // Now replace all derived expressions in the loop body with simpler
577  // expressions.
578  for (LoopInfo::block_iterator I = L->block_begin(), E = L->block_end();
579       I != E; ++I) {
580    BasicBlock *BB = *I;
581    if (LI->getLoopFor(BB) == L) {  // Not in a subloop...
582      for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
583        if (I->getType()->isInteger() &&      // Is an integer instruction
584            !I->use_empty() &&
585            !Rewriter.isInsertedInstruction(I)) {
586          SCEVHandle SH = SE->getSCEV(I);
587          Value *V = Rewriter.expandCodeFor(SH, I, I->getType());
588          if (V != I) {
589            if (isa<Instruction>(V))
590              V->takeName(I);
591            I->replaceAllUsesWith(V);
592            DeadInsts.insert(I);
593            ++NumRemoved;
594            Changed = true;
595          }
596        }
597    }
598  }
599#endif
600
601  DeleteTriviallyDeadInstructions(DeadInsts);
602  OptimizeCanonicalIVType(L);
603  assert(L->isLCSSAForm());
604  return Changed;
605}
606
607/// OptimizeCanonicalIVType - If loop induction variable is always
608/// sign or zero extended then extend the type of the induction
609/// variable.
610void IndVarSimplify::OptimizeCanonicalIVType(Loop *L) {
611  PHINode *PH = L->getCanonicalInductionVariable();
612  if (!PH) return;
613
614  // Check loop iteration count.
615  SCEVHandle IC = SE->getIterationCount(L);
616  if (isa<SCEVCouldNotCompute>(IC)) return;
617  SCEVConstant *IterationCount = dyn_cast<SCEVConstant>(IC);
618  if (!IterationCount) return;
619
620  unsigned IncomingEdge = L->contains(PH->getIncomingBlock(0));
621  unsigned BackEdge     = IncomingEdge^1;
622
623  // Check IV uses. If all IV uses are either SEXT or ZEXT (except
624  // IV increment instruction) then this IV is suitable for this
625  // transformation.
626  bool isSEXT = false;
627  BinaryOperator *Incr = NULL;
628  const Type *NewType = NULL;
629  for(Value::use_iterator UI = PH->use_begin(), UE = PH->use_end();
630      UI != UE; ++UI) {
631    const Type *CandidateType = NULL;
632    if (ZExtInst *ZI = dyn_cast<ZExtInst>(UI))
633      CandidateType = ZI->getDestTy();
634    else if (SExtInst *SI = dyn_cast<SExtInst>(UI)) {
635      CandidateType = SI->getDestTy();
636      isSEXT = true;
637    }
638    else if ((Incr = dyn_cast<BinaryOperator>(UI))) {
639      // Validate IV increment instruction.
640      if (PH->getIncomingValue(BackEdge) == Incr)
641        continue;
642    }
643    if (!CandidateType) {
644      NewType = NULL;
645      break;
646    }
647    if (!NewType)
648      NewType = CandidateType;
649    else if (NewType != CandidateType) {
650      NewType = NULL;
651      break;
652    }
653  }
654
655  // IV uses are not suitable then avoid this transformation.
656  if (!NewType || !Incr)
657    return;
658
659  // IV increment instruction has two uses, one is loop exit condition
660  // and second is the IV (phi node) itself.
661  ICmpInst *Exit = NULL;
662  for(Value::use_iterator II = Incr->use_begin(), IE = Incr->use_end();
663      II != IE; ++II) {
664    if (PH == *II)  continue;
665    Exit = dyn_cast<ICmpInst>(*II);
666    break;
667  }
668  if (!Exit) return;
669  ConstantInt *EV = dyn_cast<ConstantInt>(Exit->getOperand(0));
670  if (!EV)
671    EV = dyn_cast<ConstantInt>(Exit->getOperand(1));
672  if (!EV) return;
673
674  // Check iteration count max value to avoid loops that wrap around IV.
675  APInt ICount = IterationCount->getValue()->getValue();
676  if (ICount.isNegative()) return;
677  uint32_t BW = PH->getType()->getPrimitiveSizeInBits();
678  APInt Max = (isSEXT ? APInt::getSignedMaxValue(BW) : APInt::getMaxValue(BW));
679  if (ICount.getZExtValue() > Max.getZExtValue())  return;
680
681  // Extend IV type.
682
683  SCEVExpander Rewriter(*SE, *LI);
684  Value *NewIV = Rewriter.getOrInsertCanonicalInductionVariable(L,NewType);
685  PHINode *NewPH = cast<PHINode>(NewIV);
686  Instruction *NewIncr = cast<Instruction>(NewPH->getIncomingValue(BackEdge));
687
688  // Replace all SEXT or ZEXT uses.
689  SmallVector<Instruction *, 4> PHUses;
690  for(Value::use_iterator UI = PH->use_begin(), UE = PH->use_end();
691      UI != UE; ++UI) {
692      Instruction *I = cast<Instruction>(UI);
693      PHUses.push_back(I);
694  }
695  while (!PHUses.empty()){
696    Instruction *Use = PHUses.back(); PHUses.pop_back();
697    if (Incr == Use) continue;
698
699    SE->deleteValueFromRecords(Use);
700    Use->replaceAllUsesWith(NewIV);
701    Use->eraseFromParent();
702  }
703
704  // Replace exit condition.
705  ConstantInt *NEV = ConstantInt::get(NewType, EV->getZExtValue());
706  Instruction *NE = new ICmpInst(Exit->getPredicate(),
707                                 NewIncr, NEV, "new.exit",
708                                 Exit->getParent()->getTerminator());
709  SE->deleteValueFromRecords(Exit);
710  Exit->replaceAllUsesWith(NE);
711  Exit->eraseFromParent();
712
713  // Remove old IV and increment instructions.
714  SE->deleteValueFromRecords(PH);
715  PH->removeIncomingValue((unsigned)0);
716  PH->removeIncomingValue((unsigned)0);
717  SE->deleteValueFromRecords(Incr);
718  Incr->eraseFromParent();
719}
720
721