IndVarSimplify.cpp revision 4b02915386046fa882a95553a7457ae7d05e9f27
1//===- IndVarSimplify.cpp - Induction Variable Elimination ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This transformation analyzes and transforms the induction variables (and
11// computations derived from them) into simpler forms suitable for subsequent
12// analysis and transformation.
13//
14// This transformation makes the following changes to each loop with an
15// identifiable induction variable:
16//   1. All loops are transformed to have a SINGLE canonical induction variable
17//      which starts at zero and steps by one.
18//   2. The canonical induction variable is guaranteed to be the first PHI node
19//      in the loop header block.
20//   3. The canonical induction variable is guaranteed to be in a wide enough
21//      type so that IV expressions need not be (directly) zero-extended or
22//      sign-extended.
23//   4. Any pointer arithmetic recurrences are raised to use array subscripts.
24//
25// If the trip count of a loop is computable, this pass also makes the following
26// changes:
27//   1. The exit condition for the loop is canonicalized to compare the
28//      induction value against the exit value.  This turns loops like:
29//        'for (i = 7; i*i < 1000; ++i)' into 'for (i = 0; i != 25; ++i)'
30//   2. Any use outside of the loop of an expression derived from the indvar
31//      is changed to compute the derived value outside of the loop, eliminating
32//      the dependence on the exit value of the induction variable.  If the only
33//      purpose of the loop is to compute the exit value of some derived
34//      expression, this transformation will make the loop dead.
35//
36// This transformation should be followed by strength reduction after all of the
37// desired loop transformations have been performed.
38//
39//===----------------------------------------------------------------------===//
40
41#define DEBUG_TYPE "indvars"
42#include "llvm/Transforms/Scalar.h"
43#include "llvm/BasicBlock.h"
44#include "llvm/Constants.h"
45#include "llvm/Instructions.h"
46#include "llvm/IntrinsicInst.h"
47#include "llvm/LLVMContext.h"
48#include "llvm/Type.h"
49#include "llvm/Analysis/Dominators.h"
50#include "llvm/Analysis/IVUsers.h"
51#include "llvm/Analysis/ScalarEvolutionExpander.h"
52#include "llvm/Analysis/LoopInfo.h"
53#include "llvm/Analysis/LoopPass.h"
54#include "llvm/Support/CFG.h"
55#include "llvm/Support/CommandLine.h"
56#include "llvm/Support/Debug.h"
57#include "llvm/Support/raw_ostream.h"
58#include "llvm/Transforms/Utils/Local.h"
59#include "llvm/Transforms/Utils/BasicBlockUtils.h"
60#include "llvm/Target/TargetData.h"
61#include "llvm/ADT/SmallVector.h"
62#include "llvm/ADT/Statistic.h"
63#include "llvm/ADT/STLExtras.h"
64using namespace llvm;
65
66STATISTIC(NumRemoved     , "Number of aux indvars removed");
67STATISTIC(NumWidened     , "Number of indvars widened");
68STATISTIC(NumInserted    , "Number of canonical indvars added");
69STATISTIC(NumReplaced    , "Number of exit values replaced");
70STATISTIC(NumLFTR        , "Number of loop exit tests replaced");
71STATISTIC(NumElimIdentity, "Number of IV identities eliminated");
72STATISTIC(NumElimExt     , "Number of IV sign/zero extends eliminated");
73STATISTIC(NumElimRem     , "Number of IV remainder operations eliminated");
74STATISTIC(NumElimCmp     , "Number of IV comparisons eliminated");
75
76static cl::opt<bool> DisableIVRewrite(
77  "disable-iv-rewrite", cl::Hidden,
78  cl::desc("Disable canonical induction variable rewriting"));
79
80namespace {
81  class IndVarSimplify : public LoopPass {
82    IVUsers         *IU;
83    LoopInfo        *LI;
84    ScalarEvolution *SE;
85    DominatorTree   *DT;
86    TargetData      *TD;
87
88    SmallVector<WeakVH, 16> DeadInsts;
89    bool Changed;
90  public:
91
92    static char ID; // Pass identification, replacement for typeid
93    IndVarSimplify() : LoopPass(ID), IU(0), LI(0), SE(0), DT(0), TD(0),
94                       Changed(false) {
95      initializeIndVarSimplifyPass(*PassRegistry::getPassRegistry());
96    }
97
98    virtual bool runOnLoop(Loop *L, LPPassManager &LPM);
99
100    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
101      AU.addRequired<DominatorTree>();
102      AU.addRequired<LoopInfo>();
103      AU.addRequired<ScalarEvolution>();
104      AU.addRequiredID(LoopSimplifyID);
105      AU.addRequiredID(LCSSAID);
106      if (!DisableIVRewrite)
107        AU.addRequired<IVUsers>();
108      AU.addPreserved<ScalarEvolution>();
109      AU.addPreservedID(LoopSimplifyID);
110      AU.addPreservedID(LCSSAID);
111      if (!DisableIVRewrite)
112        AU.addPreserved<IVUsers>();
113      AU.setPreservesCFG();
114    }
115
116  private:
117    bool isValidRewrite(Value *FromVal, Value *ToVal);
118
119    void SimplifyIVUsers(SCEVExpander &Rewriter);
120    void SimplifyIVUsersNoRewrite(Loop *L, SCEVExpander &Rewriter);
121
122    bool EliminateIVUser(Instruction *UseInst, Instruction *IVOperand);
123    void EliminateIVComparison(ICmpInst *ICmp, Value *IVOperand);
124    void EliminateIVRemainder(BinaryOperator *Rem,
125                              Value *IVOperand,
126                              bool IsSigned);
127    bool isSimpleIVUser(Instruction *I, const Loop *L);
128    void RewriteNonIntegerIVs(Loop *L);
129
130    ICmpInst *LinearFunctionTestReplace(Loop *L, const SCEV *BackedgeTakenCount,
131                                        PHINode *IndVar,
132                                        SCEVExpander &Rewriter);
133
134    void RewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter);
135
136    void RewriteIVExpressions(Loop *L, SCEVExpander &Rewriter);
137
138    void SinkUnusedInvariants(Loop *L);
139
140    void HandleFloatingPointIV(Loop *L, PHINode *PH);
141  };
142}
143
144char IndVarSimplify::ID = 0;
145INITIALIZE_PASS_BEGIN(IndVarSimplify, "indvars",
146                "Induction Variable Simplification", false, false)
147INITIALIZE_PASS_DEPENDENCY(DominatorTree)
148INITIALIZE_PASS_DEPENDENCY(LoopInfo)
149INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
150INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
151INITIALIZE_PASS_DEPENDENCY(LCSSA)
152INITIALIZE_PASS_DEPENDENCY(IVUsers)
153INITIALIZE_PASS_END(IndVarSimplify, "indvars",
154                "Induction Variable Simplification", false, false)
155
156Pass *llvm::createIndVarSimplifyPass() {
157  return new IndVarSimplify();
158}
159
160/// isValidRewrite - Return true if the SCEV expansion generated by the
161/// rewriter can replace the original value. SCEV guarantees that it
162/// produces the same value, but the way it is produced may be illegal IR.
163/// Ideally, this function will only be called for verification.
164bool IndVarSimplify::isValidRewrite(Value *FromVal, Value *ToVal) {
165  // If an SCEV expression subsumed multiple pointers, its expansion could
166  // reassociate the GEP changing the base pointer. This is illegal because the
167  // final address produced by a GEP chain must be inbounds relative to its
168  // underlying object. Otherwise basic alias analysis, among other things,
169  // could fail in a dangerous way. Ultimately, SCEV will be improved to avoid
170  // producing an expression involving multiple pointers. Until then, we must
171  // bail out here.
172  //
173  // Retrieve the pointer operand of the GEP. Don't use GetUnderlyingObject
174  // because it understands lcssa phis while SCEV does not.
175  Value *FromPtr = FromVal;
176  Value *ToPtr = ToVal;
177  if (GEPOperator *GEP = dyn_cast<GEPOperator>(FromVal)) {
178    FromPtr = GEP->getPointerOperand();
179  }
180  if (GEPOperator *GEP = dyn_cast<GEPOperator>(ToVal)) {
181    ToPtr = GEP->getPointerOperand();
182  }
183  if (FromPtr != FromVal || ToPtr != ToVal) {
184    // Quickly check the common case
185    if (FromPtr == ToPtr)
186      return true;
187
188    // SCEV may have rewritten an expression that produces the GEP's pointer
189    // operand. That's ok as long as the pointer operand has the same base
190    // pointer. Unlike GetUnderlyingObject(), getPointerBase() will find the
191    // base of a recurrence. This handles the case in which SCEV expansion
192    // converts a pointer type recurrence into a nonrecurrent pointer base
193    // indexed by an integer recurrence.
194    const SCEV *FromBase = SE->getPointerBase(SE->getSCEV(FromPtr));
195    const SCEV *ToBase = SE->getPointerBase(SE->getSCEV(ToPtr));
196    if (FromBase == ToBase)
197      return true;
198
199    DEBUG(dbgs() << "INDVARS: GEP rewrite bail out "
200          << *FromBase << " != " << *ToBase << "\n");
201
202    return false;
203  }
204  return true;
205}
206
207/// canExpandBackedgeTakenCount - Return true if this loop's backedge taken
208/// count expression can be safely and cheaply expanded into an instruction
209/// sequence that can be used by LinearFunctionTestReplace.
210static bool canExpandBackedgeTakenCount(Loop *L, ScalarEvolution *SE) {
211  const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L);
212  if (isa<SCEVCouldNotCompute>(BackedgeTakenCount) ||
213      BackedgeTakenCount->isZero())
214    return false;
215
216  if (!L->getExitingBlock())
217    return false;
218
219  // Can't rewrite non-branch yet.
220  BranchInst *BI = dyn_cast<BranchInst>(L->getExitingBlock()->getTerminator());
221  if (!BI)
222    return false;
223
224  // Special case: If the backedge-taken count is a UDiv, it's very likely a
225  // UDiv that ScalarEvolution produced in order to compute a precise
226  // expression, rather than a UDiv from the user's code. If we can't find a
227  // UDiv in the code with some simple searching, assume the former and forego
228  // rewriting the loop.
229  if (isa<SCEVUDivExpr>(BackedgeTakenCount)) {
230    ICmpInst *OrigCond = dyn_cast<ICmpInst>(BI->getCondition());
231    if (!OrigCond) return false;
232    const SCEV *R = SE->getSCEV(OrigCond->getOperand(1));
233    R = SE->getMinusSCEV(R, SE->getConstant(R->getType(), 1));
234    if (R != BackedgeTakenCount) {
235      const SCEV *L = SE->getSCEV(OrigCond->getOperand(0));
236      L = SE->getMinusSCEV(L, SE->getConstant(L->getType(), 1));
237      if (L != BackedgeTakenCount)
238        return false;
239    }
240  }
241  return true;
242}
243
244/// getBackedgeIVType - Get the widest type used by the loop test after peeking
245/// through Truncs.
246///
247/// TODO: Unnecessary once LinearFunctionTestReplace is removed.
248static const Type *getBackedgeIVType(Loop *L) {
249  if (!L->getExitingBlock())
250    return 0;
251
252  // Can't rewrite non-branch yet.
253  BranchInst *BI = dyn_cast<BranchInst>(L->getExitingBlock()->getTerminator());
254  if (!BI)
255    return 0;
256
257  ICmpInst *Cond = dyn_cast<ICmpInst>(BI->getCondition());
258  if (!Cond)
259    return 0;
260
261  const Type *Ty = 0;
262  for(User::op_iterator OI = Cond->op_begin(), OE = Cond->op_end();
263      OI != OE; ++OI) {
264    assert((!Ty || Ty == (*OI)->getType()) && "bad icmp operand types");
265    TruncInst *Trunc = dyn_cast<TruncInst>(*OI);
266    if (!Trunc)
267      continue;
268
269    return Trunc->getSrcTy();
270  }
271  return Ty;
272}
273
274/// LinearFunctionTestReplace - This method rewrites the exit condition of the
275/// loop to be a canonical != comparison against the incremented loop induction
276/// variable.  This pass is able to rewrite the exit tests of any loop where the
277/// SCEV analysis can determine a loop-invariant trip count of the loop, which
278/// is actually a much broader range than just linear tests.
279ICmpInst *IndVarSimplify::
280LinearFunctionTestReplace(Loop *L,
281                          const SCEV *BackedgeTakenCount,
282                          PHINode *IndVar,
283                          SCEVExpander &Rewriter) {
284  assert(canExpandBackedgeTakenCount(L, SE) && "precondition");
285  BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator());
286
287  // If the exiting block is not the same as the backedge block, we must compare
288  // against the preincremented value, otherwise we prefer to compare against
289  // the post-incremented value.
290  Value *CmpIndVar;
291  const SCEV *RHS = BackedgeTakenCount;
292  if (L->getExitingBlock() == L->getLoopLatch()) {
293    // Add one to the "backedge-taken" count to get the trip count.
294    // If this addition may overflow, we have to be more pessimistic and
295    // cast the induction variable before doing the add.
296    const SCEV *Zero = SE->getConstant(BackedgeTakenCount->getType(), 0);
297    const SCEV *N =
298      SE->getAddExpr(BackedgeTakenCount,
299                     SE->getConstant(BackedgeTakenCount->getType(), 1));
300    if ((isa<SCEVConstant>(N) && !N->isZero()) ||
301        SE->isLoopEntryGuardedByCond(L, ICmpInst::ICMP_NE, N, Zero)) {
302      // No overflow. Cast the sum.
303      RHS = SE->getTruncateOrZeroExtend(N, IndVar->getType());
304    } else {
305      // Potential overflow. Cast before doing the add.
306      RHS = SE->getTruncateOrZeroExtend(BackedgeTakenCount,
307                                        IndVar->getType());
308      RHS = SE->getAddExpr(RHS,
309                           SE->getConstant(IndVar->getType(), 1));
310    }
311
312    // The BackedgeTaken expression contains the number of times that the
313    // backedge branches to the loop header.  This is one less than the
314    // number of times the loop executes, so use the incremented indvar.
315    CmpIndVar = IndVar->getIncomingValueForBlock(L->getExitingBlock());
316  } else {
317    // We have to use the preincremented value...
318    RHS = SE->getTruncateOrZeroExtend(BackedgeTakenCount,
319                                      IndVar->getType());
320    CmpIndVar = IndVar;
321  }
322
323  // Expand the code for the iteration count.
324  assert(SE->isLoopInvariant(RHS, L) &&
325         "Computed iteration count is not loop invariant!");
326  Value *ExitCnt = Rewriter.expandCodeFor(RHS, IndVar->getType(), BI);
327
328  // Insert a new icmp_ne or icmp_eq instruction before the branch.
329  ICmpInst::Predicate Opcode;
330  if (L->contains(BI->getSuccessor(0)))
331    Opcode = ICmpInst::ICMP_NE;
332  else
333    Opcode = ICmpInst::ICMP_EQ;
334
335  DEBUG(dbgs() << "INDVARS: Rewriting loop exit condition to:\n"
336               << "      LHS:" << *CmpIndVar << '\n'
337               << "       op:\t"
338               << (Opcode == ICmpInst::ICMP_NE ? "!=" : "==") << "\n"
339               << "      RHS:\t" << *RHS << "\n");
340
341  ICmpInst *Cond = new ICmpInst(BI, Opcode, CmpIndVar, ExitCnt, "exitcond");
342
343  Value *OrigCond = BI->getCondition();
344  // It's tempting to use replaceAllUsesWith here to fully replace the old
345  // comparison, but that's not immediately safe, since users of the old
346  // comparison may not be dominated by the new comparison. Instead, just
347  // update the branch to use the new comparison; in the common case this
348  // will make old comparison dead.
349  BI->setCondition(Cond);
350  DeadInsts.push_back(OrigCond);
351
352  ++NumLFTR;
353  Changed = true;
354  return Cond;
355}
356
357/// RewriteLoopExitValues - Check to see if this loop has a computable
358/// loop-invariant execution count.  If so, this means that we can compute the
359/// final value of any expressions that are recurrent in the loop, and
360/// substitute the exit values from the loop into any instructions outside of
361/// the loop that use the final values of the current expressions.
362///
363/// This is mostly redundant with the regular IndVarSimplify activities that
364/// happen later, except that it's more powerful in some cases, because it's
365/// able to brute-force evaluate arbitrary instructions as long as they have
366/// constant operands at the beginning of the loop.
367void IndVarSimplify::RewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter) {
368  // Verify the input to the pass in already in LCSSA form.
369  assert(L->isLCSSAForm(*DT));
370
371  SmallVector<BasicBlock*, 8> ExitBlocks;
372  L->getUniqueExitBlocks(ExitBlocks);
373
374  // Find all values that are computed inside the loop, but used outside of it.
375  // Because of LCSSA, these values will only occur in LCSSA PHI Nodes.  Scan
376  // the exit blocks of the loop to find them.
377  for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
378    BasicBlock *ExitBB = ExitBlocks[i];
379
380    // If there are no PHI nodes in this exit block, then no values defined
381    // inside the loop are used on this path, skip it.
382    PHINode *PN = dyn_cast<PHINode>(ExitBB->begin());
383    if (!PN) continue;
384
385    unsigned NumPreds = PN->getNumIncomingValues();
386
387    // Iterate over all of the PHI nodes.
388    BasicBlock::iterator BBI = ExitBB->begin();
389    while ((PN = dyn_cast<PHINode>(BBI++))) {
390      if (PN->use_empty())
391        continue; // dead use, don't replace it
392
393      // SCEV only supports integer expressions for now.
394      if (!PN->getType()->isIntegerTy() && !PN->getType()->isPointerTy())
395        continue;
396
397      // It's necessary to tell ScalarEvolution about this explicitly so that
398      // it can walk the def-use list and forget all SCEVs, as it may not be
399      // watching the PHI itself. Once the new exit value is in place, there
400      // may not be a def-use connection between the loop and every instruction
401      // which got a SCEVAddRecExpr for that loop.
402      SE->forgetValue(PN);
403
404      // Iterate over all of the values in all the PHI nodes.
405      for (unsigned i = 0; i != NumPreds; ++i) {
406        // If the value being merged in is not integer or is not defined
407        // in the loop, skip it.
408        Value *InVal = PN->getIncomingValue(i);
409        if (!isa<Instruction>(InVal))
410          continue;
411
412        // If this pred is for a subloop, not L itself, skip it.
413        if (LI->getLoopFor(PN->getIncomingBlock(i)) != L)
414          continue; // The Block is in a subloop, skip it.
415
416        // Check that InVal is defined in the loop.
417        Instruction *Inst = cast<Instruction>(InVal);
418        if (!L->contains(Inst))
419          continue;
420
421        // Okay, this instruction has a user outside of the current loop
422        // and varies predictably *inside* the loop.  Evaluate the value it
423        // contains when the loop exits, if possible.
424        const SCEV *ExitValue = SE->getSCEVAtScope(Inst, L->getParentLoop());
425        if (!SE->isLoopInvariant(ExitValue, L))
426          continue;
427
428        Value *ExitVal = Rewriter.expandCodeFor(ExitValue, PN->getType(), Inst);
429
430        DEBUG(dbgs() << "INDVARS: RLEV: AfterLoopVal = " << *ExitVal << '\n'
431                     << "  LoopVal = " << *Inst << "\n");
432
433        if (!isValidRewrite(Inst, ExitVal)) {
434          DeadInsts.push_back(ExitVal);
435          continue;
436        }
437        Changed = true;
438        ++NumReplaced;
439
440        PN->setIncomingValue(i, ExitVal);
441
442        // If this instruction is dead now, delete it.
443        RecursivelyDeleteTriviallyDeadInstructions(Inst);
444
445        if (NumPreds == 1) {
446          // Completely replace a single-pred PHI. This is safe, because the
447          // NewVal won't be variant in the loop, so we don't need an LCSSA phi
448          // node anymore.
449          PN->replaceAllUsesWith(ExitVal);
450          RecursivelyDeleteTriviallyDeadInstructions(PN);
451        }
452      }
453      if (NumPreds != 1) {
454        // Clone the PHI and delete the original one. This lets IVUsers and
455        // any other maps purge the original user from their records.
456        PHINode *NewPN = cast<PHINode>(PN->clone());
457        NewPN->takeName(PN);
458        NewPN->insertBefore(PN);
459        PN->replaceAllUsesWith(NewPN);
460        PN->eraseFromParent();
461      }
462    }
463  }
464
465  // The insertion point instruction may have been deleted; clear it out
466  // so that the rewriter doesn't trip over it later.
467  Rewriter.clearInsertPoint();
468}
469
470void IndVarSimplify::RewriteNonIntegerIVs(Loop *L) {
471  // First step.  Check to see if there are any floating-point recurrences.
472  // If there are, change them into integer recurrences, permitting analysis by
473  // the SCEV routines.
474  //
475  BasicBlock *Header = L->getHeader();
476
477  SmallVector<WeakVH, 8> PHIs;
478  for (BasicBlock::iterator I = Header->begin();
479       PHINode *PN = dyn_cast<PHINode>(I); ++I)
480    PHIs.push_back(PN);
481
482  for (unsigned i = 0, e = PHIs.size(); i != e; ++i)
483    if (PHINode *PN = dyn_cast_or_null<PHINode>(&*PHIs[i]))
484      HandleFloatingPointIV(L, PN);
485
486  // If the loop previously had floating-point IV, ScalarEvolution
487  // may not have been able to compute a trip count. Now that we've done some
488  // re-writing, the trip count may be computable.
489  if (Changed)
490    SE->forgetLoop(L);
491}
492
493/// SimplifyIVUsers - Iteratively perform simplification on IVUsers within this
494/// loop. IVUsers is treated as a worklist. Each successive simplification may
495/// push more users which may themselves be candidates for simplification.
496///
497/// This is the old approach to IV simplification to be replaced by
498/// SimplifyIVUsersNoRewrite.
499///
500void IndVarSimplify::SimplifyIVUsers(SCEVExpander &Rewriter) {
501  // Each round of simplification involves a round of eliminating operations
502  // followed by a round of widening IVs. A single IVUsers worklist is used
503  // across all rounds. The inner loop advances the user. If widening exposes
504  // more uses, then another pass through the outer loop is triggered.
505  for (IVUsers::iterator I = IU->begin(); I != IU->end(); ++I) {
506    Instruction *UseInst = I->getUser();
507    Value *IVOperand = I->getOperandValToReplace();
508
509    if (ICmpInst *ICmp = dyn_cast<ICmpInst>(UseInst)) {
510      EliminateIVComparison(ICmp, IVOperand);
511      continue;
512    }
513    if (BinaryOperator *Rem = dyn_cast<BinaryOperator>(UseInst)) {
514      bool IsSigned = Rem->getOpcode() == Instruction::SRem;
515      if (IsSigned || Rem->getOpcode() == Instruction::URem) {
516        EliminateIVRemainder(Rem, IVOperand, IsSigned);
517        continue;
518      }
519    }
520  }
521}
522
523namespace {
524  // Collect information about induction variables that are used by sign/zero
525  // extend operations. This information is recorded by CollectExtend and
526  // provides the input to WidenIV.
527  struct WideIVInfo {
528    const Type *WidestNativeType; // Widest integer type created [sz]ext
529    bool IsSigned;                // Was an sext user seen before a zext?
530
531    WideIVInfo() : WidestNativeType(0), IsSigned(false) {}
532  };
533}
534
535/// CollectExtend - Update information about the induction variable that is
536/// extended by this sign or zero extend operation. This is used to determine
537/// the final width of the IV before actually widening it.
538static void CollectExtend(CastInst *Cast, bool IsSigned, WideIVInfo &WI,
539                          ScalarEvolution *SE, const TargetData *TD) {
540  const Type *Ty = Cast->getType();
541  uint64_t Width = SE->getTypeSizeInBits(Ty);
542  if (TD && !TD->isLegalInteger(Width))
543    return;
544
545  if (!WI.WidestNativeType) {
546    WI.WidestNativeType = SE->getEffectiveSCEVType(Ty);
547    WI.IsSigned = IsSigned;
548    return;
549  }
550
551  // We extend the IV to satisfy the sign of its first user, arbitrarily.
552  if (WI.IsSigned != IsSigned)
553    return;
554
555  if (Width > SE->getTypeSizeInBits(WI.WidestNativeType))
556    WI.WidestNativeType = SE->getEffectiveSCEVType(Ty);
557}
558
559namespace {
560/// WidenIV - The goal of this transform is to remove sign and zero extends
561/// without creating any new induction variables. To do this, it creates a new
562/// phi of the wider type and redirects all users, either removing extends or
563/// inserting truncs whenever we stop propagating the type.
564///
565class WidenIV {
566  // Parameters
567  PHINode *OrigPhi;
568  const Type *WideType;
569  bool IsSigned;
570
571  // Context
572  LoopInfo        *LI;
573  Loop            *L;
574  ScalarEvolution *SE;
575  DominatorTree   *DT;
576
577  // Result
578  PHINode *WidePhi;
579  Instruction *WideInc;
580  const SCEV *WideIncExpr;
581  SmallVectorImpl<WeakVH> &DeadInsts;
582
583  SmallPtrSet<Instruction*,16> Widened;
584  SmallVector<std::pair<Use *, Instruction *>, 8> NarrowIVUsers;
585
586public:
587  WidenIV(PHINode *PN, const WideIVInfo &WI, LoopInfo *LInfo,
588          ScalarEvolution *SEv, DominatorTree *DTree,
589          SmallVectorImpl<WeakVH> &DI) :
590    OrigPhi(PN),
591    WideType(WI.WidestNativeType),
592    IsSigned(WI.IsSigned),
593    LI(LInfo),
594    L(LI->getLoopFor(OrigPhi->getParent())),
595    SE(SEv),
596    DT(DTree),
597    WidePhi(0),
598    WideInc(0),
599    WideIncExpr(0),
600    DeadInsts(DI) {
601    assert(L->getHeader() == OrigPhi->getParent() && "Phi must be an IV");
602  }
603
604  PHINode *CreateWideIV(SCEVExpander &Rewriter);
605
606protected:
607  Instruction *CloneIVUser(Instruction *NarrowUse,
608                           Instruction *NarrowDef,
609                           Instruction *WideDef);
610
611  Instruction *WidenIVUse(Use &NarrowDefUse, Instruction *NarrowDef,
612                          Instruction *WideDef);
613
614  void pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef);
615};
616} // anonymous namespace
617
618static Value *getExtend( Value *NarrowOper, const Type *WideType,
619                               bool IsSigned, IRBuilder<> &Builder) {
620  return IsSigned ? Builder.CreateSExt(NarrowOper, WideType) :
621                    Builder.CreateZExt(NarrowOper, WideType);
622}
623
624/// CloneIVUser - Instantiate a wide operation to replace a narrow
625/// operation. This only needs to handle operations that can evaluation to
626/// SCEVAddRec. It can safely return 0 for any operation we decide not to clone.
627Instruction *WidenIV::CloneIVUser(Instruction *NarrowUse,
628                                  Instruction *NarrowDef,
629                                  Instruction *WideDef) {
630  unsigned Opcode = NarrowUse->getOpcode();
631  switch (Opcode) {
632  default:
633    return 0;
634  case Instruction::Add:
635  case Instruction::Mul:
636  case Instruction::UDiv:
637  case Instruction::Sub:
638  case Instruction::And:
639  case Instruction::Or:
640  case Instruction::Xor:
641  case Instruction::Shl:
642  case Instruction::LShr:
643  case Instruction::AShr:
644    DEBUG(dbgs() << "Cloning IVUser: " << *NarrowUse << "\n");
645
646    IRBuilder<> Builder(NarrowUse);
647
648    // Replace NarrowDef operands with WideDef. Otherwise, we don't know
649    // anything about the narrow operand yet so must insert a [sz]ext. It is
650    // probably loop invariant and will be folded or hoisted. If it actually
651    // comes from a widened IV, it should be removed during a future call to
652    // WidenIVUse.
653    Value *LHS = (NarrowUse->getOperand(0) == NarrowDef) ? WideDef :
654      getExtend(NarrowUse->getOperand(0), WideType, IsSigned, Builder);
655    Value *RHS = (NarrowUse->getOperand(1) == NarrowDef) ? WideDef :
656      getExtend(NarrowUse->getOperand(1), WideType, IsSigned, Builder);
657
658    BinaryOperator *NarrowBO = cast<BinaryOperator>(NarrowUse);
659    BinaryOperator *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(),
660                                                    LHS, RHS,
661                                                    NarrowBO->getName());
662    Builder.Insert(WideBO);
663    if (const OverflowingBinaryOperator *OBO =
664        dyn_cast<OverflowingBinaryOperator>(NarrowBO)) {
665      if (OBO->hasNoUnsignedWrap()) WideBO->setHasNoUnsignedWrap();
666      if (OBO->hasNoSignedWrap()) WideBO->setHasNoSignedWrap();
667    }
668    return WideBO;
669  }
670  llvm_unreachable(0);
671}
672
673/// HoistStep - Attempt to hoist an IV increment above a potential use.
674///
675/// To successfully hoist, two criteria must be met:
676/// - IncV operands dominate InsertPos and
677/// - InsertPos dominates IncV
678///
679/// Meeting the second condition means that we don't need to check all of IncV's
680/// existing uses (it's moving up in the domtree).
681///
682/// This does not yet recursively hoist the operands, although that would
683/// not be difficult.
684static bool HoistStep(Instruction *IncV, Instruction *InsertPos,
685                      const DominatorTree *DT)
686{
687  if (DT->dominates(IncV, InsertPos))
688    return true;
689
690  if (!DT->dominates(InsertPos->getParent(), IncV->getParent()))
691    return false;
692
693  if (IncV->mayHaveSideEffects())
694    return false;
695
696  // Attempt to hoist IncV
697  for (User::op_iterator OI = IncV->op_begin(), OE = IncV->op_end();
698       OI != OE; ++OI) {
699    Instruction *OInst = dyn_cast<Instruction>(OI);
700    if (OInst && !DT->dominates(OInst, InsertPos))
701      return false;
702  }
703  IncV->moveBefore(InsertPos);
704  return true;
705}
706
707/// WidenIVUse - Determine whether an individual user of the narrow IV can be
708/// widened. If so, return the wide clone of the user.
709Instruction *WidenIV::WidenIVUse(Use &NarrowDefUse, Instruction *NarrowDef,
710                                 Instruction *WideDef) {
711  Instruction *NarrowUse = cast<Instruction>(NarrowDefUse.getUser());
712
713  // Stop traversing the def-use chain at inner-loop phis or post-loop phis.
714  if (isa<PHINode>(NarrowUse) && LI->getLoopFor(NarrowUse->getParent()) != L)
715    return 0;
716
717  // Our raison d'etre! Eliminate sign and zero extension.
718  if (IsSigned ? isa<SExtInst>(NarrowUse) : isa<ZExtInst>(NarrowUse)) {
719    Value *NewDef = WideDef;
720    if (NarrowUse->getType() != WideType) {
721      unsigned CastWidth = SE->getTypeSizeInBits(NarrowUse->getType());
722      unsigned IVWidth = SE->getTypeSizeInBits(WideType);
723      if (CastWidth < IVWidth) {
724        // The cast isn't as wide as the IV, so insert a Trunc.
725        IRBuilder<> Builder(NarrowDefUse);
726        NewDef = Builder.CreateTrunc(WideDef, NarrowUse->getType());
727      }
728      else {
729        // A wider extend was hidden behind a narrower one. This may induce
730        // another round of IV widening in which the intermediate IV becomes
731        // dead. It should be very rare.
732        DEBUG(dbgs() << "INDVARS: New IV " << *WidePhi
733              << " not wide enough to subsume " << *NarrowUse << "\n");
734        NarrowUse->replaceUsesOfWith(NarrowDef, WideDef);
735        NewDef = NarrowUse;
736      }
737    }
738    if (NewDef != NarrowUse) {
739      DEBUG(dbgs() << "INDVARS: eliminating " << *NarrowUse
740            << " replaced by " << *WideDef << "\n");
741      ++NumElimExt;
742      NarrowUse->replaceAllUsesWith(NewDef);
743      DeadInsts.push_back(NarrowUse);
744    }
745    // Now that the extend is gone, we want to expose it's uses for potential
746    // further simplification. We don't need to directly inform SimplifyIVUsers
747    // of the new users, because their parent IV will be processed later as a
748    // new loop phi. If we preserved IVUsers analysis, we would also want to
749    // push the uses of WideDef here.
750
751    // No further widening is needed. The deceased [sz]ext had done it for us.
752    return 0;
753  }
754
755  // Does this user itself evaluate to a recurrence after widening?
756  const SCEVAddRecExpr *WideAddRec = 0;
757  if (SE->isSCEVable(NarrowUse->getType())) {
758    const SCEV *NarrowExpr = SE->getSCEV(NarrowUse);
759    if (SE->getTypeSizeInBits(NarrowExpr->getType())
760        >= SE->getTypeSizeInBits(WideType)) {
761      // NarrowUse implicitly widens its operand. e.g. a gep with a narrow
762      // index. We have already extended the operand, so we're done.
763      return 0;
764    }
765    const SCEV *WideExpr = IsSigned ?
766      SE->getSignExtendExpr(NarrowExpr, WideType) :
767      SE->getZeroExtendExpr(NarrowExpr, WideType);
768
769    // Only widen past values that evaluate to a recurrence in the same loop.
770    const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(WideExpr);
771    if (AddRec && AddRec->getLoop() == L)
772      WideAddRec = AddRec;
773  }
774  if (!WideAddRec) {
775    // This user does not evaluate to a recurence after widening, so don't
776    // follow it. Instead insert a Trunc to kill off the original use,
777    // eventually isolating the original narrow IV so it can be removed.
778    IRBuilder<> Builder(NarrowDefUse);
779    Value *Trunc = Builder.CreateTrunc(WideDef, NarrowDef->getType());
780    NarrowUse->replaceUsesOfWith(NarrowDef, Trunc);
781    return 0;
782  }
783  // We assume that block terminators are not SCEVable. We wouldn't want to
784  // insert a Trunc after a terminator if there happens to be a critical edge.
785  assert(NarrowUse != NarrowUse->getParent()->getTerminator() &&
786         "SCEV is not expected to evaluate a block terminator");
787
788  // Reuse the IV increment that SCEVExpander created as long as it dominates
789  // NarrowUse.
790  Instruction *WideUse = 0;
791  if (WideAddRec == WideIncExpr && HoistStep(WideInc, NarrowUse, DT)) {
792    WideUse = WideInc;
793  }
794  else {
795    WideUse = CloneIVUser(NarrowUse, NarrowDef, WideDef);
796    if (!WideUse)
797      return 0;
798  }
799  // Evaluation of WideAddRec ensured that the narrow expression could be
800  // extended outside the loop without overflow. This suggests that the wide use
801  // evaluates to the same expression as the extended narrow use, but doesn't
802  // absolutely guarantee it. Hence the following failsafe check. In rare cases
803  // where it fails, we simply throw away the newly created wide use.
804  if (WideAddRec != SE->getSCEV(WideUse)) {
805    DEBUG(dbgs() << "Wide use expression mismatch: " << *WideUse
806          << ": " << *SE->getSCEV(WideUse) << " != " << *WideAddRec << "\n");
807    DeadInsts.push_back(WideUse);
808    return 0;
809  }
810
811  // Returning WideUse pushes it on the worklist.
812  return WideUse;
813}
814
815/// pushNarrowIVUsers - Add eligible users of NarrowDef to NarrowIVUsers.
816///
817void WidenIV::pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef) {
818  for (Value::use_iterator UI = NarrowDef->use_begin(),
819         UE = NarrowDef->use_end(); UI != UE; ++UI) {
820    Use &U = UI.getUse();
821
822    // Handle data flow merges and bizarre phi cycles.
823    if (!Widened.insert(cast<Instruction>(U.getUser())))
824      continue;
825
826    NarrowIVUsers.push_back(std::make_pair(&UI.getUse(), WideDef));
827  }
828}
829
830/// CreateWideIV - Process a single induction variable. First use the
831/// SCEVExpander to create a wide induction variable that evaluates to the same
832/// recurrence as the original narrow IV. Then use a worklist to forward
833/// traverse the narrow IV's def-use chain. After WidenIVUse has processed all
834/// interesting IV users, the narrow IV will be isolated for removal by
835/// DeleteDeadPHIs.
836///
837/// It would be simpler to delete uses as they are processed, but we must avoid
838/// invalidating SCEV expressions.
839///
840PHINode *WidenIV::CreateWideIV(SCEVExpander &Rewriter) {
841  // Is this phi an induction variable?
842  const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(OrigPhi));
843  if (!AddRec)
844    return NULL;
845
846  // Widen the induction variable expression.
847  const SCEV *WideIVExpr = IsSigned ?
848    SE->getSignExtendExpr(AddRec, WideType) :
849    SE->getZeroExtendExpr(AddRec, WideType);
850
851  assert(SE->getEffectiveSCEVType(WideIVExpr->getType()) == WideType &&
852         "Expect the new IV expression to preserve its type");
853
854  // Can the IV be extended outside the loop without overflow?
855  AddRec = dyn_cast<SCEVAddRecExpr>(WideIVExpr);
856  if (!AddRec || AddRec->getLoop() != L)
857    return NULL;
858
859  // An AddRec must have loop-invariant operands. Since this AddRec is
860  // materialized by a loop header phi, the expression cannot have any post-loop
861  // operands, so they must dominate the loop header.
862  assert(SE->properlyDominates(AddRec->getStart(), L->getHeader()) &&
863         SE->properlyDominates(AddRec->getStepRecurrence(*SE), L->getHeader())
864         && "Loop header phi recurrence inputs do not dominate the loop");
865
866  // The rewriter provides a value for the desired IV expression. This may
867  // either find an existing phi or materialize a new one. Either way, we
868  // expect a well-formed cyclic phi-with-increments. i.e. any operand not part
869  // of the phi-SCC dominates the loop entry.
870  Instruction *InsertPt = L->getHeader()->begin();
871  WidePhi = cast<PHINode>(Rewriter.expandCodeFor(AddRec, WideType, InsertPt));
872
873  // Remembering the WideIV increment generated by SCEVExpander allows
874  // WidenIVUse to reuse it when widening the narrow IV's increment. We don't
875  // employ a general reuse mechanism because the call above is the only call to
876  // SCEVExpander. Henceforth, we produce 1-to-1 narrow to wide uses.
877  if (BasicBlock *LatchBlock = L->getLoopLatch()) {
878    WideInc =
879      cast<Instruction>(WidePhi->getIncomingValueForBlock(LatchBlock));
880    WideIncExpr = SE->getSCEV(WideInc);
881  }
882
883  DEBUG(dbgs() << "Wide IV: " << *WidePhi << "\n");
884  ++NumWidened;
885
886  // Traverse the def-use chain using a worklist starting at the original IV.
887  assert(Widened.empty() && NarrowIVUsers.empty() && "expect initial state" );
888
889  Widened.insert(OrigPhi);
890  pushNarrowIVUsers(OrigPhi, WidePhi);
891
892  while (!NarrowIVUsers.empty()) {
893    Use *UsePtr;
894    Instruction *WideDef;
895    tie(UsePtr, WideDef) = NarrowIVUsers.pop_back_val();
896    Use &NarrowDefUse = *UsePtr;
897
898    // Process a def-use edge. This may replace the use, so don't hold a
899    // use_iterator across it.
900    Instruction *NarrowDef = cast<Instruction>(NarrowDefUse.get());
901    Instruction *WideUse = WidenIVUse(NarrowDefUse, NarrowDef, WideDef);
902
903    // Follow all def-use edges from the previous narrow use.
904    if (WideUse)
905      pushNarrowIVUsers(cast<Instruction>(NarrowDefUse.getUser()), WideUse);
906
907    // WidenIVUse may have removed the def-use edge.
908    if (NarrowDef->use_empty())
909      DeadInsts.push_back(NarrowDef);
910  }
911  return WidePhi;
912}
913
914void IndVarSimplify::EliminateIVComparison(ICmpInst *ICmp, Value *IVOperand) {
915  unsigned IVOperIdx = 0;
916  ICmpInst::Predicate Pred = ICmp->getPredicate();
917  if (IVOperand != ICmp->getOperand(0)) {
918    // Swapped
919    assert(IVOperand == ICmp->getOperand(1) && "Can't find IVOperand");
920    IVOperIdx = 1;
921    Pred = ICmpInst::getSwappedPredicate(Pred);
922  }
923
924  // Get the SCEVs for the ICmp operands.
925  const SCEV *S = SE->getSCEV(ICmp->getOperand(IVOperIdx));
926  const SCEV *X = SE->getSCEV(ICmp->getOperand(1 - IVOperIdx));
927
928  // Simplify unnecessary loops away.
929  const Loop *ICmpLoop = LI->getLoopFor(ICmp->getParent());
930  S = SE->getSCEVAtScope(S, ICmpLoop);
931  X = SE->getSCEVAtScope(X, ICmpLoop);
932
933  // If the condition is always true or always false, replace it with
934  // a constant value.
935  if (SE->isKnownPredicate(Pred, S, X))
936    ICmp->replaceAllUsesWith(ConstantInt::getTrue(ICmp->getContext()));
937  else if (SE->isKnownPredicate(ICmpInst::getInversePredicate(Pred), S, X))
938    ICmp->replaceAllUsesWith(ConstantInt::getFalse(ICmp->getContext()));
939  else
940    return;
941
942  DEBUG(dbgs() << "INDVARS: Eliminated comparison: " << *ICmp << '\n');
943  ++NumElimCmp;
944  Changed = true;
945  DeadInsts.push_back(ICmp);
946}
947
948void IndVarSimplify::EliminateIVRemainder(BinaryOperator *Rem,
949                                          Value *IVOperand,
950                                          bool IsSigned) {
951  // We're only interested in the case where we know something about
952  // the numerator.
953  if (IVOperand != Rem->getOperand(0))
954    return;
955
956  // Get the SCEVs for the ICmp operands.
957  const SCEV *S = SE->getSCEV(Rem->getOperand(0));
958  const SCEV *X = SE->getSCEV(Rem->getOperand(1));
959
960  // Simplify unnecessary loops away.
961  const Loop *ICmpLoop = LI->getLoopFor(Rem->getParent());
962  S = SE->getSCEVAtScope(S, ICmpLoop);
963  X = SE->getSCEVAtScope(X, ICmpLoop);
964
965  // i % n  -->  i  if i is in [0,n).
966  if ((!IsSigned || SE->isKnownNonNegative(S)) &&
967      SE->isKnownPredicate(IsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT,
968                           S, X))
969    Rem->replaceAllUsesWith(Rem->getOperand(0));
970  else {
971    // (i+1) % n  -->  (i+1)==n?0:(i+1)  if i is in [0,n).
972    const SCEV *LessOne =
973      SE->getMinusSCEV(S, SE->getConstant(S->getType(), 1));
974    if (IsSigned && !SE->isKnownNonNegative(LessOne))
975      return;
976
977    if (!SE->isKnownPredicate(IsSigned ?
978                              ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT,
979                              LessOne, X))
980      return;
981
982    ICmpInst *ICmp = new ICmpInst(Rem, ICmpInst::ICMP_EQ,
983                                  Rem->getOperand(0), Rem->getOperand(1),
984                                  "tmp");
985    SelectInst *Sel =
986      SelectInst::Create(ICmp,
987                         ConstantInt::get(Rem->getType(), 0),
988                         Rem->getOperand(0), "tmp", Rem);
989    Rem->replaceAllUsesWith(Sel);
990  }
991
992  // Inform IVUsers about the new users.
993  if (IU) {
994    if (Instruction *I = dyn_cast<Instruction>(Rem->getOperand(0)))
995      IU->AddUsersIfInteresting(I);
996  }
997  DEBUG(dbgs() << "INDVARS: Simplified rem: " << *Rem << '\n');
998  ++NumElimRem;
999  Changed = true;
1000  DeadInsts.push_back(Rem);
1001}
1002
1003/// EliminateIVUser - Eliminate an operation that consumes a simple IV and has
1004/// no observable side-effect given the range of IV values.
1005bool IndVarSimplify::EliminateIVUser(Instruction *UseInst,
1006                                     Instruction *IVOperand) {
1007  if (ICmpInst *ICmp = dyn_cast<ICmpInst>(UseInst)) {
1008    EliminateIVComparison(ICmp, IVOperand);
1009    return true;
1010  }
1011  if (BinaryOperator *Rem = dyn_cast<BinaryOperator>(UseInst)) {
1012    bool IsSigned = Rem->getOpcode() == Instruction::SRem;
1013    if (IsSigned || Rem->getOpcode() == Instruction::URem) {
1014      EliminateIVRemainder(Rem, IVOperand, IsSigned);
1015      return true;
1016    }
1017  }
1018
1019  // Eliminate any operation that SCEV can prove is an identity function.
1020  if (!SE->isSCEVable(UseInst->getType()) ||
1021      (UseInst->getType() != IVOperand->getType()) ||
1022      (SE->getSCEV(UseInst) != SE->getSCEV(IVOperand)))
1023    return false;
1024
1025  DEBUG(dbgs() << "INDVARS: Eliminated identity: " << *UseInst << '\n');
1026
1027  UseInst->replaceAllUsesWith(IVOperand);
1028  ++NumElimIdentity;
1029  Changed = true;
1030  DeadInsts.push_back(UseInst);
1031  return true;
1032}
1033
1034/// pushIVUsers - Add all uses of Def to the current IV's worklist.
1035///
1036static void pushIVUsers(
1037  Instruction *Def,
1038  SmallPtrSet<Instruction*,16> &Simplified,
1039  SmallVectorImpl< std::pair<Instruction*,Instruction*> > &SimpleIVUsers) {
1040
1041  for (Value::use_iterator UI = Def->use_begin(), E = Def->use_end();
1042       UI != E; ++UI) {
1043    Instruction *User = cast<Instruction>(*UI);
1044
1045    // Avoid infinite or exponential worklist processing.
1046    // Also ensure unique worklist users.
1047    // If Def is a LoopPhi, it may not be in the Simplified set, so check for
1048    // self edges first.
1049    if (User != Def && Simplified.insert(User))
1050      SimpleIVUsers.push_back(std::make_pair(User, Def));
1051  }
1052}
1053
1054/// isSimpleIVUser - Return true if this instruction generates a simple SCEV
1055/// expression in terms of that IV.
1056///
1057/// This is similar to IVUsers' isInsteresting() but processes each instruction
1058/// non-recursively when the operand is already known to be a simpleIVUser.
1059///
1060bool IndVarSimplify::isSimpleIVUser(Instruction *I, const Loop *L) {
1061  if (!SE->isSCEVable(I->getType()))
1062    return false;
1063
1064  // Get the symbolic expression for this instruction.
1065  const SCEV *S = SE->getSCEV(I);
1066
1067  // We assume that terminators are not SCEVable.
1068  assert((!S || I != I->getParent()->getTerminator()) &&
1069         "can't fold terminators");
1070
1071  // Only consider affine recurrences.
1072  const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S);
1073  if (AR && AR->getLoop() == L)
1074    return true;
1075
1076  return false;
1077}
1078
1079/// SimplifyIVUsersNoRewrite - Iteratively perform simplification on a worklist
1080/// of IV users. Each successive simplification may push more users which may
1081/// themselves be candidates for simplification.
1082///
1083/// The "NoRewrite" algorithm does not require IVUsers analysis. Instead, it
1084/// simplifies instructions in-place during analysis. Rather than rewriting
1085/// induction variables bottom-up from their users, it transforms a chain of
1086/// IVUsers top-down, updating the IR only when it encouters a clear
1087/// optimization opportunitiy. A SCEVExpander "Rewriter" instance is still
1088/// needed, but only used to generate a new IV (phi) of wider type for sign/zero
1089/// extend elimination.
1090///
1091/// Once DisableIVRewrite is default, LSR will be the only client of IVUsers.
1092///
1093void IndVarSimplify::SimplifyIVUsersNoRewrite(Loop *L, SCEVExpander &Rewriter) {
1094  std::map<PHINode *, WideIVInfo> WideIVMap;
1095
1096  SmallVector<PHINode*, 8> LoopPhis;
1097  for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
1098    LoopPhis.push_back(cast<PHINode>(I));
1099  }
1100  // Each round of simplification iterates through the SimplifyIVUsers worklist
1101  // for all current phis, then determines whether any IVs can be
1102  // widened. Widening adds new phis to LoopPhis, inducing another round of
1103  // simplification on the wide IVs.
1104  while (!LoopPhis.empty()) {
1105    // Evaluate as many IV expressions as possible before widening any IVs. This
1106    // forces SCEV to set no-wrap flags before evaluating sign/zero
1107    // extension. The first time SCEV attempts to normalize sign/zero extension,
1108    // the result becomes final. So for the most predictable results, we delay
1109    // evaluation of sign/zero extend evaluation until needed, and avoid running
1110    // other SCEV based analysis prior to SimplifyIVUsersNoRewrite.
1111    do {
1112      PHINode *CurrIV = LoopPhis.pop_back_val();
1113
1114      // Information about sign/zero extensions of CurrIV.
1115      WideIVInfo WI;
1116
1117      // Instructions processed by SimplifyIVUsers for CurrIV.
1118      SmallPtrSet<Instruction*,16> Simplified;
1119
1120      // Use-def pairs if IVUsers waiting to be processed for CurrIV.
1121      SmallVector<std::pair<Instruction*, Instruction*>, 8> SimpleIVUsers;
1122
1123      // Push users of the current LoopPhi. In rare cases, pushIVUsers may be
1124      // called multiple times for the same LoopPhi. This is the proper thing to
1125      // do for loop header phis that use each other.
1126      pushIVUsers(CurrIV, Simplified, SimpleIVUsers);
1127
1128      while (!SimpleIVUsers.empty()) {
1129        Instruction *UseInst, *Operand;
1130        tie(UseInst, Operand) = SimpleIVUsers.pop_back_val();
1131        // Bypass back edges to avoid extra work.
1132        if (UseInst == CurrIV) continue;
1133
1134        if (EliminateIVUser(UseInst, Operand)) {
1135          pushIVUsers(Operand, Simplified, SimpleIVUsers);
1136          continue;
1137        }
1138        if (CastInst *Cast = dyn_cast<CastInst>(UseInst)) {
1139          bool IsSigned = Cast->getOpcode() == Instruction::SExt;
1140          if (IsSigned || Cast->getOpcode() == Instruction::ZExt) {
1141            CollectExtend(Cast, IsSigned, WI, SE, TD);
1142          }
1143          continue;
1144        }
1145        if (isSimpleIVUser(UseInst, L)) {
1146          pushIVUsers(UseInst, Simplified, SimpleIVUsers);
1147        }
1148      }
1149      if (WI.WidestNativeType) {
1150        WideIVMap[CurrIV] = WI;
1151      }
1152    } while(!LoopPhis.empty());
1153
1154    for (std::map<PHINode *, WideIVInfo>::const_iterator I = WideIVMap.begin(),
1155           E = WideIVMap.end(); I != E; ++I) {
1156      WidenIV Widener(I->first, I->second, LI, SE, DT, DeadInsts);
1157      if (PHINode *WidePhi = Widener.CreateWideIV(Rewriter)) {
1158        Changed = true;
1159        LoopPhis.push_back(WidePhi);
1160      }
1161    }
1162    WideIVMap.clear();
1163  }
1164}
1165
1166bool IndVarSimplify::runOnLoop(Loop *L, LPPassManager &LPM) {
1167  // If LoopSimplify form is not available, stay out of trouble. Some notes:
1168  //  - LSR currently only supports LoopSimplify-form loops. Indvars'
1169  //    canonicalization can be a pessimization without LSR to "clean up"
1170  //    afterwards.
1171  //  - We depend on having a preheader; in particular,
1172  //    Loop::getCanonicalInductionVariable only supports loops with preheaders,
1173  //    and we're in trouble if we can't find the induction variable even when
1174  //    we've manually inserted one.
1175  if (!L->isLoopSimplifyForm())
1176    return false;
1177
1178  if (!DisableIVRewrite)
1179    IU = &getAnalysis<IVUsers>();
1180  LI = &getAnalysis<LoopInfo>();
1181  SE = &getAnalysis<ScalarEvolution>();
1182  DT = &getAnalysis<DominatorTree>();
1183  TD = getAnalysisIfAvailable<TargetData>();
1184
1185  DeadInsts.clear();
1186  Changed = false;
1187
1188  // If there are any floating-point recurrences, attempt to
1189  // transform them to use integer recurrences.
1190  RewriteNonIntegerIVs(L);
1191
1192  const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L);
1193
1194  // Create a rewriter object which we'll use to transform the code with.
1195  SCEVExpander Rewriter(*SE, "indvars");
1196
1197  // Eliminate redundant IV users.
1198  //
1199  // Simplification works best when run before other consumers of SCEV. We
1200  // attempt to avoid evaluating SCEVs for sign/zero extend operations until
1201  // other expressions involving loop IVs have been evaluated. This helps SCEV
1202  // set no-wrap flags before normalizing sign/zero extension.
1203  if (DisableIVRewrite) {
1204    Rewriter.disableCanonicalMode();
1205    SimplifyIVUsersNoRewrite(L, Rewriter);
1206  }
1207
1208  // Check to see if this loop has a computable loop-invariant execution count.
1209  // If so, this means that we can compute the final value of any expressions
1210  // that are recurrent in the loop, and substitute the exit values from the
1211  // loop into any instructions outside of the loop that use the final values of
1212  // the current expressions.
1213  //
1214  if (!isa<SCEVCouldNotCompute>(BackedgeTakenCount))
1215    RewriteLoopExitValues(L, Rewriter);
1216
1217  // Eliminate redundant IV users.
1218  if (!DisableIVRewrite)
1219    SimplifyIVUsers(Rewriter);
1220
1221  // Compute the type of the largest recurrence expression, and decide whether
1222  // a canonical induction variable should be inserted.
1223  const Type *LargestType = 0;
1224  bool NeedCannIV = false;
1225  bool ExpandBECount = canExpandBackedgeTakenCount(L, SE);
1226  if (ExpandBECount) {
1227    // If we have a known trip count and a single exit block, we'll be
1228    // rewriting the loop exit test condition below, which requires a
1229    // canonical induction variable.
1230    NeedCannIV = true;
1231    const Type *Ty = BackedgeTakenCount->getType();
1232    if (DisableIVRewrite) {
1233      // In this mode, SimplifyIVUsers may have already widened the IV used by
1234      // the backedge test and inserted a Trunc on the compare's operand. Get
1235      // the wider type to avoid creating a redundant narrow IV only used by the
1236      // loop test.
1237      LargestType = getBackedgeIVType(L);
1238    }
1239    if (!LargestType ||
1240        SE->getTypeSizeInBits(Ty) >
1241        SE->getTypeSizeInBits(LargestType))
1242      LargestType = SE->getEffectiveSCEVType(Ty);
1243  }
1244  if (!DisableIVRewrite) {
1245    for (IVUsers::const_iterator I = IU->begin(), E = IU->end(); I != E; ++I) {
1246      NeedCannIV = true;
1247      const Type *Ty =
1248        SE->getEffectiveSCEVType(I->getOperandValToReplace()->getType());
1249      if (!LargestType ||
1250          SE->getTypeSizeInBits(Ty) >
1251          SE->getTypeSizeInBits(LargestType))
1252        LargestType = Ty;
1253    }
1254  }
1255
1256  // Now that we know the largest of the induction variable expressions
1257  // in this loop, insert a canonical induction variable of the largest size.
1258  PHINode *IndVar = 0;
1259  if (NeedCannIV) {
1260    // Check to see if the loop already has any canonical-looking induction
1261    // variables. If any are present and wider than the planned canonical
1262    // induction variable, temporarily remove them, so that the Rewriter
1263    // doesn't attempt to reuse them.
1264    SmallVector<PHINode *, 2> OldCannIVs;
1265    while (PHINode *OldCannIV = L->getCanonicalInductionVariable()) {
1266      if (SE->getTypeSizeInBits(OldCannIV->getType()) >
1267          SE->getTypeSizeInBits(LargestType))
1268        OldCannIV->removeFromParent();
1269      else
1270        break;
1271      OldCannIVs.push_back(OldCannIV);
1272    }
1273
1274    IndVar = Rewriter.getOrInsertCanonicalInductionVariable(L, LargestType);
1275
1276    ++NumInserted;
1277    Changed = true;
1278    DEBUG(dbgs() << "INDVARS: New CanIV: " << *IndVar << '\n');
1279
1280    // Now that the official induction variable is established, reinsert
1281    // any old canonical-looking variables after it so that the IR remains
1282    // consistent. They will be deleted as part of the dead-PHI deletion at
1283    // the end of the pass.
1284    while (!OldCannIVs.empty()) {
1285      PHINode *OldCannIV = OldCannIVs.pop_back_val();
1286      OldCannIV->insertBefore(L->getHeader()->getFirstNonPHI());
1287    }
1288  }
1289
1290  // If we have a trip count expression, rewrite the loop's exit condition
1291  // using it.  We can currently only handle loops with a single exit.
1292  ICmpInst *NewICmp = 0;
1293  if (ExpandBECount) {
1294    assert(canExpandBackedgeTakenCount(L, SE) &&
1295           "canonical IV disrupted BackedgeTaken expansion");
1296    assert(NeedCannIV &&
1297           "LinearFunctionTestReplace requires a canonical induction variable");
1298    NewICmp = LinearFunctionTestReplace(L, BackedgeTakenCount, IndVar,
1299                                        Rewriter);
1300  }
1301  // Rewrite IV-derived expressions.
1302  if (!DisableIVRewrite)
1303    RewriteIVExpressions(L, Rewriter);
1304
1305  // Clear the rewriter cache, because values that are in the rewriter's cache
1306  // can be deleted in the loop below, causing the AssertingVH in the cache to
1307  // trigger.
1308  Rewriter.clear();
1309
1310  // Now that we're done iterating through lists, clean up any instructions
1311  // which are now dead.
1312  while (!DeadInsts.empty())
1313    if (Instruction *Inst =
1314          dyn_cast_or_null<Instruction>(&*DeadInsts.pop_back_val()))
1315      RecursivelyDeleteTriviallyDeadInstructions(Inst);
1316
1317  // The Rewriter may not be used from this point on.
1318
1319  // Loop-invariant instructions in the preheader that aren't used in the
1320  // loop may be sunk below the loop to reduce register pressure.
1321  SinkUnusedInvariants(L);
1322
1323  // For completeness, inform IVUsers of the IV use in the newly-created
1324  // loop exit test instruction.
1325  if (NewICmp && IU)
1326    IU->AddUsersIfInteresting(cast<Instruction>(NewICmp->getOperand(0)));
1327
1328  // Clean up dead instructions.
1329  Changed |= DeleteDeadPHIs(L->getHeader());
1330  // Check a post-condition.
1331  assert(L->isLCSSAForm(*DT) && "Indvars did not leave the loop in lcssa form!");
1332  return Changed;
1333}
1334
1335// FIXME: It is an extremely bad idea to indvar substitute anything more
1336// complex than affine induction variables.  Doing so will put expensive
1337// polynomial evaluations inside of the loop, and the str reduction pass
1338// currently can only reduce affine polynomials.  For now just disable
1339// indvar subst on anything more complex than an affine addrec, unless
1340// it can be expanded to a trivial value.
1341static bool isSafe(const SCEV *S, const Loop *L, ScalarEvolution *SE) {
1342  // Loop-invariant values are safe.
1343  if (SE->isLoopInvariant(S, L)) return true;
1344
1345  // Affine addrecs are safe. Non-affine are not, because LSR doesn't know how
1346  // to transform them into efficient code.
1347  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
1348    return AR->isAffine();
1349
1350  // An add is safe it all its operands are safe.
1351  if (const SCEVCommutativeExpr *Commutative = dyn_cast<SCEVCommutativeExpr>(S)) {
1352    for (SCEVCommutativeExpr::op_iterator I = Commutative->op_begin(),
1353         E = Commutative->op_end(); I != E; ++I)
1354      if (!isSafe(*I, L, SE)) return false;
1355    return true;
1356  }
1357
1358  // A cast is safe if its operand is.
1359  if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S))
1360    return isSafe(C->getOperand(), L, SE);
1361
1362  // A udiv is safe if its operands are.
1363  if (const SCEVUDivExpr *UD = dyn_cast<SCEVUDivExpr>(S))
1364    return isSafe(UD->getLHS(), L, SE) &&
1365           isSafe(UD->getRHS(), L, SE);
1366
1367  // SCEVUnknown is always safe.
1368  if (isa<SCEVUnknown>(S))
1369    return true;
1370
1371  // Nothing else is safe.
1372  return false;
1373}
1374
1375void IndVarSimplify::RewriteIVExpressions(Loop *L, SCEVExpander &Rewriter) {
1376  // Rewrite all induction variable expressions in terms of the canonical
1377  // induction variable.
1378  //
1379  // If there were induction variables of other sizes or offsets, manually
1380  // add the offsets to the primary induction variable and cast, avoiding
1381  // the need for the code evaluation methods to insert induction variables
1382  // of different sizes.
1383  for (IVUsers::iterator UI = IU->begin(), E = IU->end(); UI != E; ++UI) {
1384    Value *Op = UI->getOperandValToReplace();
1385    const Type *UseTy = Op->getType();
1386    Instruction *User = UI->getUser();
1387
1388    // Compute the final addrec to expand into code.
1389    const SCEV *AR = IU->getReplacementExpr(*UI);
1390
1391    // Evaluate the expression out of the loop, if possible.
1392    if (!L->contains(UI->getUser())) {
1393      const SCEV *ExitVal = SE->getSCEVAtScope(AR, L->getParentLoop());
1394      if (SE->isLoopInvariant(ExitVal, L))
1395        AR = ExitVal;
1396    }
1397
1398    // FIXME: It is an extremely bad idea to indvar substitute anything more
1399    // complex than affine induction variables.  Doing so will put expensive
1400    // polynomial evaluations inside of the loop, and the str reduction pass
1401    // currently can only reduce affine polynomials.  For now just disable
1402    // indvar subst on anything more complex than an affine addrec, unless
1403    // it can be expanded to a trivial value.
1404    if (!isSafe(AR, L, SE))
1405      continue;
1406
1407    // Determine the insertion point for this user. By default, insert
1408    // immediately before the user. The SCEVExpander class will automatically
1409    // hoist loop invariants out of the loop. For PHI nodes, there may be
1410    // multiple uses, so compute the nearest common dominator for the
1411    // incoming blocks.
1412    Instruction *InsertPt = User;
1413    if (PHINode *PHI = dyn_cast<PHINode>(InsertPt))
1414      for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i)
1415        if (PHI->getIncomingValue(i) == Op) {
1416          if (InsertPt == User)
1417            InsertPt = PHI->getIncomingBlock(i)->getTerminator();
1418          else
1419            InsertPt =
1420              DT->findNearestCommonDominator(InsertPt->getParent(),
1421                                             PHI->getIncomingBlock(i))
1422                    ->getTerminator();
1423        }
1424
1425    // Now expand it into actual Instructions and patch it into place.
1426    Value *NewVal = Rewriter.expandCodeFor(AR, UseTy, InsertPt);
1427
1428    DEBUG(dbgs() << "INDVARS: Rewrote IV '" << *AR << "' " << *Op << '\n'
1429                 << "   into = " << *NewVal << "\n");
1430
1431    if (!isValidRewrite(Op, NewVal)) {
1432      DeadInsts.push_back(NewVal);
1433      continue;
1434    }
1435    // Inform ScalarEvolution that this value is changing. The change doesn't
1436    // affect its value, but it does potentially affect which use lists the
1437    // value will be on after the replacement, which affects ScalarEvolution's
1438    // ability to walk use lists and drop dangling pointers when a value is
1439    // deleted.
1440    SE->forgetValue(User);
1441
1442    // Patch the new value into place.
1443    if (Op->hasName())
1444      NewVal->takeName(Op);
1445    if (Instruction *NewValI = dyn_cast<Instruction>(NewVal))
1446      NewValI->setDebugLoc(User->getDebugLoc());
1447    User->replaceUsesOfWith(Op, NewVal);
1448    UI->setOperandValToReplace(NewVal);
1449
1450    ++NumRemoved;
1451    Changed = true;
1452
1453    // The old value may be dead now.
1454    DeadInsts.push_back(Op);
1455  }
1456}
1457
1458/// If there's a single exit block, sink any loop-invariant values that
1459/// were defined in the preheader but not used inside the loop into the
1460/// exit block to reduce register pressure in the loop.
1461void IndVarSimplify::SinkUnusedInvariants(Loop *L) {
1462  BasicBlock *ExitBlock = L->getExitBlock();
1463  if (!ExitBlock) return;
1464
1465  BasicBlock *Preheader = L->getLoopPreheader();
1466  if (!Preheader) return;
1467
1468  Instruction *InsertPt = ExitBlock->getFirstNonPHI();
1469  BasicBlock::iterator I = Preheader->getTerminator();
1470  while (I != Preheader->begin()) {
1471    --I;
1472    // New instructions were inserted at the end of the preheader.
1473    if (isa<PHINode>(I))
1474      break;
1475
1476    // Don't move instructions which might have side effects, since the side
1477    // effects need to complete before instructions inside the loop.  Also don't
1478    // move instructions which might read memory, since the loop may modify
1479    // memory. Note that it's okay if the instruction might have undefined
1480    // behavior: LoopSimplify guarantees that the preheader dominates the exit
1481    // block.
1482    if (I->mayHaveSideEffects() || I->mayReadFromMemory())
1483      continue;
1484
1485    // Skip debug info intrinsics.
1486    if (isa<DbgInfoIntrinsic>(I))
1487      continue;
1488
1489    // Don't sink static AllocaInsts out of the entry block, which would
1490    // turn them into dynamic allocas!
1491    if (AllocaInst *AI = dyn_cast<AllocaInst>(I))
1492      if (AI->isStaticAlloca())
1493        continue;
1494
1495    // Determine if there is a use in or before the loop (direct or
1496    // otherwise).
1497    bool UsedInLoop = false;
1498    for (Value::use_iterator UI = I->use_begin(), UE = I->use_end();
1499         UI != UE; ++UI) {
1500      User *U = *UI;
1501      BasicBlock *UseBB = cast<Instruction>(U)->getParent();
1502      if (PHINode *P = dyn_cast<PHINode>(U)) {
1503        unsigned i =
1504          PHINode::getIncomingValueNumForOperand(UI.getOperandNo());
1505        UseBB = P->getIncomingBlock(i);
1506      }
1507      if (UseBB == Preheader || L->contains(UseBB)) {
1508        UsedInLoop = true;
1509        break;
1510      }
1511    }
1512
1513    // If there is, the def must remain in the preheader.
1514    if (UsedInLoop)
1515      continue;
1516
1517    // Otherwise, sink it to the exit block.
1518    Instruction *ToMove = I;
1519    bool Done = false;
1520
1521    if (I != Preheader->begin()) {
1522      // Skip debug info intrinsics.
1523      do {
1524        --I;
1525      } while (isa<DbgInfoIntrinsic>(I) && I != Preheader->begin());
1526
1527      if (isa<DbgInfoIntrinsic>(I) && I == Preheader->begin())
1528        Done = true;
1529    } else {
1530      Done = true;
1531    }
1532
1533    ToMove->moveBefore(InsertPt);
1534    if (Done) break;
1535    InsertPt = ToMove;
1536  }
1537}
1538
1539/// ConvertToSInt - Convert APF to an integer, if possible.
1540static bool ConvertToSInt(const APFloat &APF, int64_t &IntVal) {
1541  bool isExact = false;
1542  if (&APF.getSemantics() == &APFloat::PPCDoubleDouble)
1543    return false;
1544  // See if we can convert this to an int64_t
1545  uint64_t UIntVal;
1546  if (APF.convertToInteger(&UIntVal, 64, true, APFloat::rmTowardZero,
1547                           &isExact) != APFloat::opOK || !isExact)
1548    return false;
1549  IntVal = UIntVal;
1550  return true;
1551}
1552
1553/// HandleFloatingPointIV - If the loop has floating induction variable
1554/// then insert corresponding integer induction variable if possible.
1555/// For example,
1556/// for(double i = 0; i < 10000; ++i)
1557///   bar(i)
1558/// is converted into
1559/// for(int i = 0; i < 10000; ++i)
1560///   bar((double)i);
1561///
1562void IndVarSimplify::HandleFloatingPointIV(Loop *L, PHINode *PN) {
1563  unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0));
1564  unsigned BackEdge     = IncomingEdge^1;
1565
1566  // Check incoming value.
1567  ConstantFP *InitValueVal =
1568    dyn_cast<ConstantFP>(PN->getIncomingValue(IncomingEdge));
1569
1570  int64_t InitValue;
1571  if (!InitValueVal || !ConvertToSInt(InitValueVal->getValueAPF(), InitValue))
1572    return;
1573
1574  // Check IV increment. Reject this PN if increment operation is not
1575  // an add or increment value can not be represented by an integer.
1576  BinaryOperator *Incr =
1577    dyn_cast<BinaryOperator>(PN->getIncomingValue(BackEdge));
1578  if (Incr == 0 || Incr->getOpcode() != Instruction::FAdd) return;
1579
1580  // If this is not an add of the PHI with a constantfp, or if the constant fp
1581  // is not an integer, bail out.
1582  ConstantFP *IncValueVal = dyn_cast<ConstantFP>(Incr->getOperand(1));
1583  int64_t IncValue;
1584  if (IncValueVal == 0 || Incr->getOperand(0) != PN ||
1585      !ConvertToSInt(IncValueVal->getValueAPF(), IncValue))
1586    return;
1587
1588  // Check Incr uses. One user is PN and the other user is an exit condition
1589  // used by the conditional terminator.
1590  Value::use_iterator IncrUse = Incr->use_begin();
1591  Instruction *U1 = cast<Instruction>(*IncrUse++);
1592  if (IncrUse == Incr->use_end()) return;
1593  Instruction *U2 = cast<Instruction>(*IncrUse++);
1594  if (IncrUse != Incr->use_end()) return;
1595
1596  // Find exit condition, which is an fcmp.  If it doesn't exist, or if it isn't
1597  // only used by a branch, we can't transform it.
1598  FCmpInst *Compare = dyn_cast<FCmpInst>(U1);
1599  if (!Compare)
1600    Compare = dyn_cast<FCmpInst>(U2);
1601  if (Compare == 0 || !Compare->hasOneUse() ||
1602      !isa<BranchInst>(Compare->use_back()))
1603    return;
1604
1605  BranchInst *TheBr = cast<BranchInst>(Compare->use_back());
1606
1607  // We need to verify that the branch actually controls the iteration count
1608  // of the loop.  If not, the new IV can overflow and no one will notice.
1609  // The branch block must be in the loop and one of the successors must be out
1610  // of the loop.
1611  assert(TheBr->isConditional() && "Can't use fcmp if not conditional");
1612  if (!L->contains(TheBr->getParent()) ||
1613      (L->contains(TheBr->getSuccessor(0)) &&
1614       L->contains(TheBr->getSuccessor(1))))
1615    return;
1616
1617
1618  // If it isn't a comparison with an integer-as-fp (the exit value), we can't
1619  // transform it.
1620  ConstantFP *ExitValueVal = dyn_cast<ConstantFP>(Compare->getOperand(1));
1621  int64_t ExitValue;
1622  if (ExitValueVal == 0 ||
1623      !ConvertToSInt(ExitValueVal->getValueAPF(), ExitValue))
1624    return;
1625
1626  // Find new predicate for integer comparison.
1627  CmpInst::Predicate NewPred = CmpInst::BAD_ICMP_PREDICATE;
1628  switch (Compare->getPredicate()) {
1629  default: return;  // Unknown comparison.
1630  case CmpInst::FCMP_OEQ:
1631  case CmpInst::FCMP_UEQ: NewPred = CmpInst::ICMP_EQ; break;
1632  case CmpInst::FCMP_ONE:
1633  case CmpInst::FCMP_UNE: NewPred = CmpInst::ICMP_NE; break;
1634  case CmpInst::FCMP_OGT:
1635  case CmpInst::FCMP_UGT: NewPred = CmpInst::ICMP_SGT; break;
1636  case CmpInst::FCMP_OGE:
1637  case CmpInst::FCMP_UGE: NewPred = CmpInst::ICMP_SGE; break;
1638  case CmpInst::FCMP_OLT:
1639  case CmpInst::FCMP_ULT: NewPred = CmpInst::ICMP_SLT; break;
1640  case CmpInst::FCMP_OLE:
1641  case CmpInst::FCMP_ULE: NewPred = CmpInst::ICMP_SLE; break;
1642  }
1643
1644  // We convert the floating point induction variable to a signed i32 value if
1645  // we can.  This is only safe if the comparison will not overflow in a way
1646  // that won't be trapped by the integer equivalent operations.  Check for this
1647  // now.
1648  // TODO: We could use i64 if it is native and the range requires it.
1649
1650  // The start/stride/exit values must all fit in signed i32.
1651  if (!isInt<32>(InitValue) || !isInt<32>(IncValue) || !isInt<32>(ExitValue))
1652    return;
1653
1654  // If not actually striding (add x, 0.0), avoid touching the code.
1655  if (IncValue == 0)
1656    return;
1657
1658  // Positive and negative strides have different safety conditions.
1659  if (IncValue > 0) {
1660    // If we have a positive stride, we require the init to be less than the
1661    // exit value and an equality or less than comparison.
1662    if (InitValue >= ExitValue ||
1663        NewPred == CmpInst::ICMP_SGT || NewPred == CmpInst::ICMP_SGE)
1664      return;
1665
1666    uint32_t Range = uint32_t(ExitValue-InitValue);
1667    if (NewPred == CmpInst::ICMP_SLE) {
1668      // Normalize SLE -> SLT, check for infinite loop.
1669      if (++Range == 0) return;  // Range overflows.
1670    }
1671
1672    unsigned Leftover = Range % uint32_t(IncValue);
1673
1674    // If this is an equality comparison, we require that the strided value
1675    // exactly land on the exit value, otherwise the IV condition will wrap
1676    // around and do things the fp IV wouldn't.
1677    if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) &&
1678        Leftover != 0)
1679      return;
1680
1681    // If the stride would wrap around the i32 before exiting, we can't
1682    // transform the IV.
1683    if (Leftover != 0 && int32_t(ExitValue+IncValue) < ExitValue)
1684      return;
1685
1686  } else {
1687    // If we have a negative stride, we require the init to be greater than the
1688    // exit value and an equality or greater than comparison.
1689    if (InitValue >= ExitValue ||
1690        NewPred == CmpInst::ICMP_SLT || NewPred == CmpInst::ICMP_SLE)
1691      return;
1692
1693    uint32_t Range = uint32_t(InitValue-ExitValue);
1694    if (NewPred == CmpInst::ICMP_SGE) {
1695      // Normalize SGE -> SGT, check for infinite loop.
1696      if (++Range == 0) return;  // Range overflows.
1697    }
1698
1699    unsigned Leftover = Range % uint32_t(-IncValue);
1700
1701    // If this is an equality comparison, we require that the strided value
1702    // exactly land on the exit value, otherwise the IV condition will wrap
1703    // around and do things the fp IV wouldn't.
1704    if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) &&
1705        Leftover != 0)
1706      return;
1707
1708    // If the stride would wrap around the i32 before exiting, we can't
1709    // transform the IV.
1710    if (Leftover != 0 && int32_t(ExitValue+IncValue) > ExitValue)
1711      return;
1712  }
1713
1714  const IntegerType *Int32Ty = Type::getInt32Ty(PN->getContext());
1715
1716  // Insert new integer induction variable.
1717  PHINode *NewPHI = PHINode::Create(Int32Ty, 2, PN->getName()+".int", PN);
1718  NewPHI->addIncoming(ConstantInt::get(Int32Ty, InitValue),
1719                      PN->getIncomingBlock(IncomingEdge));
1720
1721  Value *NewAdd =
1722    BinaryOperator::CreateAdd(NewPHI, ConstantInt::get(Int32Ty, IncValue),
1723                              Incr->getName()+".int", Incr);
1724  NewPHI->addIncoming(NewAdd, PN->getIncomingBlock(BackEdge));
1725
1726  ICmpInst *NewCompare = new ICmpInst(TheBr, NewPred, NewAdd,
1727                                      ConstantInt::get(Int32Ty, ExitValue),
1728                                      Compare->getName());
1729
1730  // In the following deletions, PN may become dead and may be deleted.
1731  // Use a WeakVH to observe whether this happens.
1732  WeakVH WeakPH = PN;
1733
1734  // Delete the old floating point exit comparison.  The branch starts using the
1735  // new comparison.
1736  NewCompare->takeName(Compare);
1737  Compare->replaceAllUsesWith(NewCompare);
1738  RecursivelyDeleteTriviallyDeadInstructions(Compare);
1739
1740  // Delete the old floating point increment.
1741  Incr->replaceAllUsesWith(UndefValue::get(Incr->getType()));
1742  RecursivelyDeleteTriviallyDeadInstructions(Incr);
1743
1744  // If the FP induction variable still has uses, this is because something else
1745  // in the loop uses its value.  In order to canonicalize the induction
1746  // variable, we chose to eliminate the IV and rewrite it in terms of an
1747  // int->fp cast.
1748  //
1749  // We give preference to sitofp over uitofp because it is faster on most
1750  // platforms.
1751  if (WeakPH) {
1752    Value *Conv = new SIToFPInst(NewPHI, PN->getType(), "indvar.conv",
1753                                 PN->getParent()->getFirstNonPHI());
1754    PN->replaceAllUsesWith(Conv);
1755    RecursivelyDeleteTriviallyDeadInstructions(PN);
1756  }
1757
1758  // Add a new IVUsers entry for the newly-created integer PHI.
1759  if (IU)
1760    IU->AddUsersIfInteresting(NewPHI);
1761}
1762