IndVarSimplify.cpp revision 5ee99979065d75605d150d7e567e4351024aae8f
1//===- IndVarSimplify.cpp - Induction Variable Elimination ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This transformation analyzes and transforms the induction variables (and
11// computations derived from them) into simpler forms suitable for subsequent
12// analysis and transformation.
13//
14// This transformation makes the following changes to each loop with an
15// identifiable induction variable:
16//   1. All loops are transformed to have a SINGLE canonical induction variable
17//      which starts at zero and steps by one.
18//   2. The canonical induction variable is guaranteed to be the first PHI node
19//      in the loop header block.
20//   3. Any pointer arithmetic recurrences are raised to use array subscripts.
21//
22// If the trip count of a loop is computable, this pass also makes the following
23// changes:
24//   1. The exit condition for the loop is canonicalized to compare the
25//      induction value against the exit value.  This turns loops like:
26//        'for (i = 7; i*i < 1000; ++i)' into 'for (i = 0; i != 25; ++i)'
27//   2. Any use outside of the loop of an expression derived from the indvar
28//      is changed to compute the derived value outside of the loop, eliminating
29//      the dependence on the exit value of the induction variable.  If the only
30//      purpose of the loop is to compute the exit value of some derived
31//      expression, this transformation will make the loop dead.
32//
33// This transformation should be followed by strength reduction after all of the
34// desired loop transformations have been performed.  Additionally, on targets
35// where it is profitable, the loop could be transformed to count down to zero
36// (the "do loop" optimization).
37//
38//===----------------------------------------------------------------------===//
39
40#define DEBUG_TYPE "indvars"
41#include "llvm/Transforms/Scalar.h"
42#include "llvm/BasicBlock.h"
43#include "llvm/Constants.h"
44#include "llvm/Instructions.h"
45#include "llvm/Type.h"
46#include "llvm/Analysis/ScalarEvolutionExpander.h"
47#include "llvm/Analysis/LoopInfo.h"
48#include "llvm/Analysis/LoopPass.h"
49#include "llvm/Support/CFG.h"
50#include "llvm/Support/Compiler.h"
51#include "llvm/Support/Debug.h"
52#include "llvm/Support/GetElementPtrTypeIterator.h"
53#include "llvm/Transforms/Utils/Local.h"
54#include "llvm/Support/CommandLine.h"
55#include "llvm/ADT/SmallVector.h"
56#include "llvm/ADT/Statistic.h"
57using namespace llvm;
58
59STATISTIC(NumRemoved , "Number of aux indvars removed");
60STATISTIC(NumPointer , "Number of pointer indvars promoted");
61STATISTIC(NumInserted, "Number of canonical indvars added");
62STATISTIC(NumReplaced, "Number of exit values replaced");
63STATISTIC(NumLFTR    , "Number of loop exit tests replaced");
64
65namespace {
66  class VISIBILITY_HIDDEN IndVarSimplify : public LoopPass {
67    LoopInfo        *LI;
68    ScalarEvolution *SE;
69    bool Changed;
70  public:
71
72   bool runOnLoop(Loop *L, LPPassManager &LPM);
73   bool doInitialization(Loop *L, LPPassManager &LPM);
74   virtual void getAnalysisUsage(AnalysisUsage &AU) const {
75     AU.addRequiredID(LCSSAID);
76     AU.addRequiredID(LoopSimplifyID);
77     AU.addRequired<ScalarEvolution>();
78     AU.addRequired<LoopInfo>();
79     AU.addPreservedID(LoopSimplifyID);
80     AU.addPreservedID(LCSSAID);
81     AU.setPreservesCFG();
82   }
83
84  private:
85
86    void EliminatePointerRecurrence(PHINode *PN, BasicBlock *Preheader,
87                                    std::set<Instruction*> &DeadInsts);
88    Instruction *LinearFunctionTestReplace(Loop *L, SCEV *IterationCount,
89                                           SCEVExpander &RW);
90    void RewriteLoopExitValues(Loop *L);
91
92    void DeleteTriviallyDeadInstructions(std::set<Instruction*> &Insts);
93  };
94  RegisterPass<IndVarSimplify> X("indvars", "Canonicalize Induction Variables");
95}
96
97LoopPass *llvm::createIndVarSimplifyPass() {
98  return new IndVarSimplify();
99}
100
101/// DeleteTriviallyDeadInstructions - If any of the instructions is the
102/// specified set are trivially dead, delete them and see if this makes any of
103/// their operands subsequently dead.
104void IndVarSimplify::
105DeleteTriviallyDeadInstructions(std::set<Instruction*> &Insts) {
106  while (!Insts.empty()) {
107    Instruction *I = *Insts.begin();
108    Insts.erase(Insts.begin());
109    if (isInstructionTriviallyDead(I)) {
110      for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
111        if (Instruction *U = dyn_cast<Instruction>(I->getOperand(i)))
112          Insts.insert(U);
113      SE->deleteInstructionFromRecords(I);
114      DOUT << "INDVARS: Deleting: " << *I;
115      I->eraseFromParent();
116      Changed = true;
117    }
118  }
119}
120
121
122/// EliminatePointerRecurrence - Check to see if this is a trivial GEP pointer
123/// recurrence.  If so, change it into an integer recurrence, permitting
124/// analysis by the SCEV routines.
125void IndVarSimplify::EliminatePointerRecurrence(PHINode *PN,
126                                                BasicBlock *Preheader,
127                                            std::set<Instruction*> &DeadInsts) {
128  assert(PN->getNumIncomingValues() == 2 && "Noncanonicalized loop!");
129  unsigned PreheaderIdx = PN->getBasicBlockIndex(Preheader);
130  unsigned BackedgeIdx = PreheaderIdx^1;
131  if (GetElementPtrInst *GEPI =
132          dyn_cast<GetElementPtrInst>(PN->getIncomingValue(BackedgeIdx)))
133    if (GEPI->getOperand(0) == PN) {
134      assert(GEPI->getNumOperands() == 2 && "GEP types must match!");
135      DOUT << "INDVARS: Eliminating pointer recurrence: " << *GEPI;
136
137      // Okay, we found a pointer recurrence.  Transform this pointer
138      // recurrence into an integer recurrence.  Compute the value that gets
139      // added to the pointer at every iteration.
140      Value *AddedVal = GEPI->getOperand(1);
141
142      // Insert a new integer PHI node into the top of the block.
143      PHINode *NewPhi = new PHINode(AddedVal->getType(),
144                                    PN->getName()+".rec", PN);
145      NewPhi->addIncoming(Constant::getNullValue(NewPhi->getType()), Preheader);
146
147      // Create the new add instruction.
148      Value *NewAdd = BinaryOperator::createAdd(NewPhi, AddedVal,
149                                                GEPI->getName()+".rec", GEPI);
150      NewPhi->addIncoming(NewAdd, PN->getIncomingBlock(BackedgeIdx));
151
152      // Update the existing GEP to use the recurrence.
153      GEPI->setOperand(0, PN->getIncomingValue(PreheaderIdx));
154
155      // Update the GEP to use the new recurrence we just inserted.
156      GEPI->setOperand(1, NewAdd);
157
158      // If the incoming value is a constant expr GEP, try peeling out the array
159      // 0 index if possible to make things simpler.
160      if (ConstantExpr *CE = dyn_cast<ConstantExpr>(GEPI->getOperand(0)))
161        if (CE->getOpcode() == Instruction::GetElementPtr) {
162          unsigned NumOps = CE->getNumOperands();
163          assert(NumOps > 1 && "CE folding didn't work!");
164          if (CE->getOperand(NumOps-1)->isNullValue()) {
165            // Check to make sure the last index really is an array index.
166            gep_type_iterator GTI = gep_type_begin(CE);
167            for (unsigned i = 1, e = CE->getNumOperands()-1;
168                 i != e; ++i, ++GTI)
169              /*empty*/;
170            if (isa<SequentialType>(*GTI)) {
171              // Pull the last index out of the constant expr GEP.
172              SmallVector<Value*, 8> CEIdxs(CE->op_begin()+1, CE->op_end()-1);
173              Constant *NCE = ConstantExpr::getGetElementPtr(CE->getOperand(0),
174                                                             &CEIdxs[0],
175                                                             CEIdxs.size());
176              GetElementPtrInst *NGEPI = new GetElementPtrInst(
177                  NCE, Constant::getNullValue(Type::Int32Ty), NewAdd,
178                  GEPI->getName(), GEPI);
179              GEPI->replaceAllUsesWith(NGEPI);
180              GEPI->eraseFromParent();
181              GEPI = NGEPI;
182            }
183          }
184        }
185
186
187      // Finally, if there are any other users of the PHI node, we must
188      // insert a new GEP instruction that uses the pre-incremented version
189      // of the induction amount.
190      if (!PN->use_empty()) {
191        BasicBlock::iterator InsertPos = PN; ++InsertPos;
192        while (isa<PHINode>(InsertPos)) ++InsertPos;
193        Value *PreInc =
194          new GetElementPtrInst(PN->getIncomingValue(PreheaderIdx),
195                                NewPhi, "", InsertPos);
196        PreInc->takeName(PN);
197        PN->replaceAllUsesWith(PreInc);
198      }
199
200      // Delete the old PHI for sure, and the GEP if its otherwise unused.
201      DeadInsts.insert(PN);
202
203      ++NumPointer;
204      Changed = true;
205    }
206}
207
208/// LinearFunctionTestReplace - This method rewrites the exit condition of the
209/// loop to be a canonical != comparison against the incremented loop induction
210/// variable.  This pass is able to rewrite the exit tests of any loop where the
211/// SCEV analysis can determine a loop-invariant trip count of the loop, which
212/// is actually a much broader range than just linear tests.
213///
214/// This method returns a "potentially dead" instruction whose computation chain
215/// should be deleted when convenient.
216Instruction *IndVarSimplify::LinearFunctionTestReplace(Loop *L,
217                                                       SCEV *IterationCount,
218                                                       SCEVExpander &RW) {
219  // Find the exit block for the loop.  We can currently only handle loops with
220  // a single exit.
221  std::vector<BasicBlock*> ExitBlocks;
222  L->getExitBlocks(ExitBlocks);
223  if (ExitBlocks.size() != 1) return 0;
224  BasicBlock *ExitBlock = ExitBlocks[0];
225
226  // Make sure there is only one predecessor block in the loop.
227  BasicBlock *ExitingBlock = 0;
228  for (pred_iterator PI = pred_begin(ExitBlock), PE = pred_end(ExitBlock);
229       PI != PE; ++PI)
230    if (L->contains(*PI)) {
231      if (ExitingBlock == 0)
232        ExitingBlock = *PI;
233      else
234        return 0;  // Multiple exits from loop to this block.
235    }
236  assert(ExitingBlock && "Loop info is broken");
237
238  if (!isa<BranchInst>(ExitingBlock->getTerminator()))
239    return 0;  // Can't rewrite non-branch yet
240  BranchInst *BI = cast<BranchInst>(ExitingBlock->getTerminator());
241  assert(BI->isConditional() && "Must be conditional to be part of loop!");
242
243  Instruction *PotentiallyDeadInst = dyn_cast<Instruction>(BI->getCondition());
244
245  // If the exiting block is not the same as the backedge block, we must compare
246  // against the preincremented value, otherwise we prefer to compare against
247  // the post-incremented value.
248  BasicBlock *Header = L->getHeader();
249  pred_iterator HPI = pred_begin(Header);
250  assert(HPI != pred_end(Header) && "Loop with zero preds???");
251  if (!L->contains(*HPI)) ++HPI;
252  assert(HPI != pred_end(Header) && L->contains(*HPI) &&
253         "No backedge in loop?");
254
255  SCEVHandle TripCount = IterationCount;
256  Value *IndVar;
257  if (*HPI == ExitingBlock) {
258    // The IterationCount expression contains the number of times that the
259    // backedge actually branches to the loop header.  This is one less than the
260    // number of times the loop executes, so add one to it.
261    Constant *OneC = ConstantInt::get(IterationCount->getType(), 1);
262    TripCount = SCEVAddExpr::get(IterationCount, SCEVUnknown::get(OneC));
263    IndVar = L->getCanonicalInductionVariableIncrement();
264  } else {
265    // We have to use the preincremented value...
266    IndVar = L->getCanonicalInductionVariable();
267  }
268
269  DOUT << "INDVARS: LFTR: TripCount = " << *TripCount
270       << "  IndVar = " << *IndVar << "\n";
271
272  // Expand the code for the iteration count into the preheader of the loop.
273  BasicBlock *Preheader = L->getLoopPreheader();
274  Value *ExitCnt = RW.expandCodeFor(TripCount, Preheader->getTerminator(),
275                                    IndVar->getType());
276
277  // Insert a new icmp_ne or icmp_eq instruction before the branch.
278  ICmpInst::Predicate Opcode;
279  if (L->contains(BI->getSuccessor(0)))
280    Opcode = ICmpInst::ICMP_NE;
281  else
282    Opcode = ICmpInst::ICMP_EQ;
283
284  Value *Cond = new ICmpInst(Opcode, IndVar, ExitCnt, "exitcond", BI);
285  BI->setCondition(Cond);
286  ++NumLFTR;
287  Changed = true;
288  return PotentiallyDeadInst;
289}
290
291
292/// RewriteLoopExitValues - Check to see if this loop has a computable
293/// loop-invariant execution count.  If so, this means that we can compute the
294/// final value of any expressions that are recurrent in the loop, and
295/// substitute the exit values from the loop into any instructions outside of
296/// the loop that use the final values of the current expressions.
297void IndVarSimplify::RewriteLoopExitValues(Loop *L) {
298  BasicBlock *Preheader = L->getLoopPreheader();
299
300  // Scan all of the instructions in the loop, looking at those that have
301  // extra-loop users and which are recurrences.
302  SCEVExpander Rewriter(*SE, *LI);
303
304  // We insert the code into the preheader of the loop if the loop contains
305  // multiple exit blocks, or in the exit block if there is exactly one.
306  BasicBlock *BlockToInsertInto;
307  std::vector<BasicBlock*> ExitBlocks;
308  L->getUniqueExitBlocks(ExitBlocks);
309  if (ExitBlocks.size() == 1)
310    BlockToInsertInto = ExitBlocks[0];
311  else
312    BlockToInsertInto = Preheader;
313  BasicBlock::iterator InsertPt = BlockToInsertInto->begin();
314  while (isa<PHINode>(InsertPt)) ++InsertPt;
315
316  bool HasConstantItCount = isa<SCEVConstant>(SE->getIterationCount(L));
317
318  std::set<Instruction*> InstructionsToDelete;
319  std::map<Instruction*, Value*> ExitValues;
320
321  // Find all values that are computed inside the loop, but used outside of it.
322  // Because of LCSSA, these values will only occur in LCSSA PHI Nodes.  Scan
323  // the exit blocks of the loop to find them.
324  for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
325    BasicBlock *ExitBB = ExitBlocks[i];
326
327    // If there are no PHI nodes in this exit block, then no values defined
328    // inside the loop are used on this path, skip it.
329    PHINode *PN = dyn_cast<PHINode>(ExitBB->begin());
330    if (!PN) continue;
331
332    unsigned NumPreds = PN->getNumIncomingValues();
333
334    // Iterate over all of the PHI nodes.
335    BasicBlock::iterator BBI = ExitBB->begin();
336    while ((PN = dyn_cast<PHINode>(BBI++))) {
337
338      // Iterate over all of the values in all the PHI nodes.
339      for (unsigned i = 0; i != NumPreds; ++i) {
340        // If the value being merged in is not integer or is not defined
341        // in the loop, skip it.
342        Value *InVal = PN->getIncomingValue(i);
343        if (!isa<Instruction>(InVal) ||
344            // SCEV only supports integer expressions for now.
345            !isa<IntegerType>(InVal->getType()))
346          continue;
347
348        // If this pred is for a subloop, not L itself, skip it.
349        if (LI->getLoopFor(PN->getIncomingBlock(i)) != L)
350          continue; // The Block is in a subloop, skip it.
351
352        // Check that InVal is defined in the loop.
353        Instruction *Inst = cast<Instruction>(InVal);
354        if (!L->contains(Inst->getParent()))
355          continue;
356
357        // We require that this value either have a computable evolution or that
358        // the loop have a constant iteration count.  In the case where the loop
359        // has a constant iteration count, we can sometimes force evaluation of
360        // the exit value through brute force.
361        SCEVHandle SH = SE->getSCEV(Inst);
362        if (!SH->hasComputableLoopEvolution(L) && !HasConstantItCount)
363          continue;          // Cannot get exit evolution for the loop value.
364
365        // Okay, this instruction has a user outside of the current loop
366        // and varies predictably *inside* the loop.  Evaluate the value it
367        // contains when the loop exits, if possible.
368        SCEVHandle ExitValue = SE->getSCEVAtScope(Inst, L->getParentLoop());
369        if (isa<SCEVCouldNotCompute>(ExitValue) ||
370            !ExitValue->isLoopInvariant(L))
371          continue;
372
373        Changed = true;
374        ++NumReplaced;
375
376        // See if we already computed the exit value for the instruction, if so,
377        // just reuse it.
378        Value *&ExitVal = ExitValues[Inst];
379        if (!ExitVal)
380          ExitVal = Rewriter.expandCodeFor(ExitValue, InsertPt,Inst->getType());
381
382        DOUT << "INDVARS: RLEV: AfterLoopVal = " << *ExitVal
383             << "  LoopVal = " << *Inst << "\n";
384
385        PN->setIncomingValue(i, ExitVal);
386
387        // If this instruction is dead now, schedule it to be removed.
388        if (Inst->use_empty())
389          InstructionsToDelete.insert(Inst);
390
391        // See if this is a single-entry LCSSA PHI node.  If so, we can (and
392        // have to) remove
393        // the PHI entirely.  This is safe, because the NewVal won't be variant
394        // in the loop, so we don't need an LCSSA phi node anymore.
395        if (NumPreds == 1) {
396          PN->replaceAllUsesWith(ExitVal);
397          PN->eraseFromParent();
398          break;
399        }
400      }
401    }
402  }
403
404  DeleteTriviallyDeadInstructions(InstructionsToDelete);
405}
406
407bool IndVarSimplify::doInitialization(Loop *L, LPPassManager &LPM) {
408
409  Changed = false;
410  // First step.  Check to see if there are any trivial GEP pointer recurrences.
411  // If there are, change them into integer recurrences, permitting analysis by
412  // the SCEV routines.
413  //
414  BasicBlock *Header    = L->getHeader();
415  BasicBlock *Preheader = L->getLoopPreheader();
416  SE = &LPM.getAnalysis<ScalarEvolution>();
417
418  std::set<Instruction*> DeadInsts;
419  for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
420    PHINode *PN = cast<PHINode>(I);
421    if (isa<PointerType>(PN->getType()))
422      EliminatePointerRecurrence(PN, Preheader, DeadInsts);
423  }
424
425  if (!DeadInsts.empty())
426    DeleteTriviallyDeadInstructions(DeadInsts);
427
428  return Changed;
429}
430
431bool IndVarSimplify::runOnLoop(Loop *L, LPPassManager &LPM) {
432
433
434  LI = &getAnalysis<LoopInfo>();
435  SE = &getAnalysis<ScalarEvolution>();
436
437  Changed = false;
438  BasicBlock *Header    = L->getHeader();
439  std::set<Instruction*> DeadInsts;
440
441  // Verify the input to the pass in already in LCSSA form.
442  assert(L->isLCSSAForm());
443
444  // Check to see if this loop has a computable loop-invariant execution count.
445  // If so, this means that we can compute the final value of any expressions
446  // that are recurrent in the loop, and substitute the exit values from the
447  // loop into any instructions outside of the loop that use the final values of
448  // the current expressions.
449  //
450  SCEVHandle IterationCount = SE->getIterationCount(L);
451  if (!isa<SCEVCouldNotCompute>(IterationCount))
452    RewriteLoopExitValues(L);
453
454  // Next, analyze all of the induction variables in the loop, canonicalizing
455  // auxillary induction variables.
456  std::vector<std::pair<PHINode*, SCEVHandle> > IndVars;
457
458  for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
459    PHINode *PN = cast<PHINode>(I);
460    if (PN->getType()->isInteger()) { // FIXME: when we have fast-math, enable!
461      SCEVHandle SCEV = SE->getSCEV(PN);
462      if (SCEV->hasComputableLoopEvolution(L))
463        // FIXME: It is an extremely bad idea to indvar substitute anything more
464        // complex than affine induction variables.  Doing so will put expensive
465        // polynomial evaluations inside of the loop, and the str reduction pass
466        // currently can only reduce affine polynomials.  For now just disable
467        // indvar subst on anything more complex than an affine addrec.
468        if (SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SCEV))
469          if (AR->isAffine())
470            IndVars.push_back(std::make_pair(PN, SCEV));
471    }
472  }
473
474  // If there are no induction variables in the loop, there is nothing more to
475  // do.
476  if (IndVars.empty()) {
477    // Actually, if we know how many times the loop iterates, lets insert a
478    // canonical induction variable to help subsequent passes.
479    if (!isa<SCEVCouldNotCompute>(IterationCount)) {
480      SCEVExpander Rewriter(*SE, *LI);
481      Rewriter.getOrInsertCanonicalInductionVariable(L,
482                                                     IterationCount->getType());
483      if (Instruction *I = LinearFunctionTestReplace(L, IterationCount,
484                                                     Rewriter)) {
485        std::set<Instruction*> InstructionsToDelete;
486        InstructionsToDelete.insert(I);
487        DeleteTriviallyDeadInstructions(InstructionsToDelete);
488      }
489    }
490    return Changed;
491  }
492
493  // Compute the type of the largest recurrence expression.
494  //
495  const Type *LargestType = IndVars[0].first->getType();
496  bool DifferingSizes = false;
497  for (unsigned i = 1, e = IndVars.size(); i != e; ++i) {
498    const Type *Ty = IndVars[i].first->getType();
499    DifferingSizes |=
500      Ty->getPrimitiveSizeInBits() != LargestType->getPrimitiveSizeInBits();
501    if (Ty->getPrimitiveSizeInBits() > LargestType->getPrimitiveSizeInBits())
502      LargestType = Ty;
503  }
504
505  // Create a rewriter object which we'll use to transform the code with.
506  SCEVExpander Rewriter(*SE, *LI);
507
508  // Now that we know the largest of of the induction variables in this loop,
509  // insert a canonical induction variable of the largest size.
510  Value *IndVar = Rewriter.getOrInsertCanonicalInductionVariable(L,LargestType);
511  ++NumInserted;
512  Changed = true;
513  DOUT << "INDVARS: New CanIV: " << *IndVar;
514
515  if (!isa<SCEVCouldNotCompute>(IterationCount))
516    if (Instruction *DI = LinearFunctionTestReplace(L, IterationCount,Rewriter))
517      DeadInsts.insert(DI);
518
519  // Now that we have a canonical induction variable, we can rewrite any
520  // recurrences in terms of the induction variable.  Start with the auxillary
521  // induction variables, and recursively rewrite any of their uses.
522  BasicBlock::iterator InsertPt = Header->begin();
523  while (isa<PHINode>(InsertPt)) ++InsertPt;
524
525  // If there were induction variables of other sizes, cast the primary
526  // induction variable to the right size for them, avoiding the need for the
527  // code evaluation methods to insert induction variables of different sizes.
528  if (DifferingSizes) {
529    SmallVector<unsigned,4> InsertedSizes;
530    InsertedSizes.push_back(LargestType->getPrimitiveSizeInBits());
531    for (unsigned i = 0, e = IndVars.size(); i != e; ++i) {
532      unsigned ithSize = IndVars[i].first->getType()->getPrimitiveSizeInBits();
533      if (std::find(InsertedSizes.begin(), InsertedSizes.end(), ithSize)
534          == InsertedSizes.end()) {
535        PHINode *PN = IndVars[i].first;
536        InsertedSizes.push_back(ithSize);
537        Instruction *New = new TruncInst(IndVar, PN->getType(), "indvar",
538                                         InsertPt);
539        Rewriter.addInsertedValue(New, SE->getSCEV(New));
540        DOUT << "INDVARS: Made trunc IV for " << *PN
541             << "   NewVal = " << *New << "\n";
542      }
543    }
544  }
545
546  // Rewrite all induction variables in terms of the canonical induction
547  // variable.
548  std::map<unsigned, Value*> InsertedSizes;
549  while (!IndVars.empty()) {
550    PHINode *PN = IndVars.back().first;
551    Value *NewVal = Rewriter.expandCodeFor(IndVars.back().second, InsertPt,
552                                           PN->getType());
553    DOUT << "INDVARS: Rewrote IV '" << *IndVars.back().second << "' " << *PN
554         << "   into = " << *NewVal << "\n";
555    NewVal->takeName(PN);
556
557    // Replace the old PHI Node with the inserted computation.
558    PN->replaceAllUsesWith(NewVal);
559    DeadInsts.insert(PN);
560    IndVars.pop_back();
561    ++NumRemoved;
562    Changed = true;
563  }
564
565#if 0
566  // Now replace all derived expressions in the loop body with simpler
567  // expressions.
568  for (unsigned i = 0, e = L->getBlocks().size(); i != e; ++i)
569    if (LI->getLoopFor(L->getBlocks()[i]) == L) {  // Not in a subloop...
570      BasicBlock *BB = L->getBlocks()[i];
571      for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
572        if (I->getType()->isInteger() &&      // Is an integer instruction
573            !I->use_empty() &&
574            !Rewriter.isInsertedInstruction(I)) {
575          SCEVHandle SH = SE->getSCEV(I);
576          Value *V = Rewriter.expandCodeFor(SH, I, I->getType());
577          if (V != I) {
578            if (isa<Instruction>(V))
579              V->takeName(I);
580            I->replaceAllUsesWith(V);
581            DeadInsts.insert(I);
582            ++NumRemoved;
583            Changed = true;
584          }
585        }
586    }
587#endif
588
589  DeleteTriviallyDeadInstructions(DeadInsts);
590
591  assert(L->isLCSSAForm());
592  return Changed;
593}
594