IndVarSimplify.cpp revision 6e0ce24e0ca8b0dc05872b9b4cec3a18972bee40
1//===- IndVarSimplify.cpp - Induction Variable Elimination ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This transformation analyzes and transforms the induction variables (and
11// computations derived from them) into simpler forms suitable for subsequent
12// analysis and transformation.
13//
14// This transformation makes the following changes to each loop with an
15// identifiable induction variable:
16//   1. All loops are transformed to have a SINGLE canonical induction variable
17//      which starts at zero and steps by one.
18//   2. The canonical induction variable is guaranteed to be the first PHI node
19//      in the loop header block.
20//   3. The canonical induction variable is guaranteed to be in a wide enough
21//      type so that IV expressions need not be (directly) zero-extended or
22//      sign-extended.
23//   4. Any pointer arithmetic recurrences are raised to use array subscripts.
24//
25// If the trip count of a loop is computable, this pass also makes the following
26// changes:
27//   1. The exit condition for the loop is canonicalized to compare the
28//      induction value against the exit value.  This turns loops like:
29//        'for (i = 7; i*i < 1000; ++i)' into 'for (i = 0; i != 25; ++i)'
30//   2. Any use outside of the loop of an expression derived from the indvar
31//      is changed to compute the derived value outside of the loop, eliminating
32//      the dependence on the exit value of the induction variable.  If the only
33//      purpose of the loop is to compute the exit value of some derived
34//      expression, this transformation will make the loop dead.
35//
36// This transformation should be followed by strength reduction after all of the
37// desired loop transformations have been performed.
38//
39//===----------------------------------------------------------------------===//
40
41#define DEBUG_TYPE "indvars"
42#include "llvm/Transforms/Scalar.h"
43#include "llvm/BasicBlock.h"
44#include "llvm/Constants.h"
45#include "llvm/Instructions.h"
46#include "llvm/IntrinsicInst.h"
47#include "llvm/LLVMContext.h"
48#include "llvm/Type.h"
49#include "llvm/Analysis/Dominators.h"
50#include "llvm/Analysis/IVUsers.h"
51#include "llvm/Analysis/ScalarEvolutionExpander.h"
52#include "llvm/Analysis/LoopInfo.h"
53#include "llvm/Analysis/LoopPass.h"
54#include "llvm/Support/CFG.h"
55#include "llvm/Support/CommandLine.h"
56#include "llvm/Support/Debug.h"
57#include "llvm/Support/raw_ostream.h"
58#include "llvm/Transforms/Utils/Local.h"
59#include "llvm/Transforms/Utils/BasicBlockUtils.h"
60#include "llvm/Target/TargetData.h"
61#include "llvm/ADT/SmallVector.h"
62#include "llvm/ADT/Statistic.h"
63#include "llvm/ADT/STLExtras.h"
64using namespace llvm;
65
66STATISTIC(NumRemoved     , "Number of aux indvars removed");
67STATISTIC(NumWidened     , "Number of indvars widened");
68STATISTIC(NumInserted    , "Number of canonical indvars added");
69STATISTIC(NumReplaced    , "Number of exit values replaced");
70STATISTIC(NumLFTR        , "Number of loop exit tests replaced");
71STATISTIC(NumElimIdentity, "Number of IV identities eliminated");
72STATISTIC(NumElimExt     , "Number of IV sign/zero extends eliminated");
73STATISTIC(NumElimRem     , "Number of IV remainder operations eliminated");
74STATISTIC(NumElimCmp     , "Number of IV comparisons eliminated");
75
76static cl::opt<bool> DisableIVRewrite(
77  "disable-iv-rewrite", cl::Hidden,
78  cl::desc("Disable canonical induction variable rewriting"));
79
80namespace {
81  class IndVarSimplify : public LoopPass {
82    IVUsers         *IU;
83    LoopInfo        *LI;
84    ScalarEvolution *SE;
85    DominatorTree   *DT;
86    TargetData      *TD;
87
88    SmallVector<WeakVH, 16> DeadInsts;
89    bool Changed;
90  public:
91
92    static char ID; // Pass identification, replacement for typeid
93    IndVarSimplify() : LoopPass(ID), IU(0), LI(0), SE(0), DT(0), TD(0),
94                       Changed(false) {
95      initializeIndVarSimplifyPass(*PassRegistry::getPassRegistry());
96    }
97
98    virtual bool runOnLoop(Loop *L, LPPassManager &LPM);
99
100    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
101      AU.addRequired<DominatorTree>();
102      AU.addRequired<LoopInfo>();
103      AU.addRequired<ScalarEvolution>();
104      AU.addRequiredID(LoopSimplifyID);
105      AU.addRequiredID(LCSSAID);
106      if (!DisableIVRewrite)
107        AU.addRequired<IVUsers>();
108      AU.addPreserved<ScalarEvolution>();
109      AU.addPreservedID(LoopSimplifyID);
110      AU.addPreservedID(LCSSAID);
111      if (!DisableIVRewrite)
112        AU.addPreserved<IVUsers>();
113      AU.setPreservesCFG();
114    }
115
116  private:
117    bool isValidRewrite(Value *FromVal, Value *ToVal);
118
119    void SimplifyIVUsers(SCEVExpander &Rewriter);
120    void SimplifyIVUsersNoRewrite(Loop *L, SCEVExpander &Rewriter);
121
122    bool EliminateIVUser(Instruction *UseInst, Instruction *IVOperand);
123    void EliminateIVComparison(ICmpInst *ICmp, Value *IVOperand);
124    void EliminateIVRemainder(BinaryOperator *Rem,
125                              Value *IVOperand,
126                              bool IsSigned);
127    bool isSimpleIVUser(Instruction *I, const Loop *L);
128    void RewriteNonIntegerIVs(Loop *L);
129
130    ICmpInst *LinearFunctionTestReplace(Loop *L, const SCEV *BackedgeTakenCount,
131                                        PHINode *IndVar,
132                                        SCEVExpander &Rewriter);
133
134    void RewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter);
135
136    void RewriteIVExpressions(Loop *L, SCEVExpander &Rewriter);
137
138    void SinkUnusedInvariants(Loop *L);
139
140    void HandleFloatingPointIV(Loop *L, PHINode *PH);
141  };
142}
143
144char IndVarSimplify::ID = 0;
145INITIALIZE_PASS_BEGIN(IndVarSimplify, "indvars",
146                "Induction Variable Simplification", false, false)
147INITIALIZE_PASS_DEPENDENCY(DominatorTree)
148INITIALIZE_PASS_DEPENDENCY(LoopInfo)
149INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
150INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
151INITIALIZE_PASS_DEPENDENCY(LCSSA)
152INITIALIZE_PASS_DEPENDENCY(IVUsers)
153INITIALIZE_PASS_END(IndVarSimplify, "indvars",
154                "Induction Variable Simplification", false, false)
155
156Pass *llvm::createIndVarSimplifyPass() {
157  return new IndVarSimplify();
158}
159
160/// isValidRewrite - Return true if the SCEV expansion generated by the
161/// rewriter can replace the original value. SCEV guarantees that it
162/// produces the same value, but the way it is produced may be illegal IR.
163/// Ideally, this function will only be called for verification.
164bool IndVarSimplify::isValidRewrite(Value *FromVal, Value *ToVal) {
165  // If an SCEV expression subsumed multiple pointers, its expansion could
166  // reassociate the GEP changing the base pointer. This is illegal because the
167  // final address produced by a GEP chain must be inbounds relative to its
168  // underlying object. Otherwise basic alias analysis, among other things,
169  // could fail in a dangerous way. Ultimately, SCEV will be improved to avoid
170  // producing an expression involving multiple pointers. Until then, we must
171  // bail out here.
172  //
173  // Retrieve the pointer operand of the GEP. Don't use GetUnderlyingObject
174  // because it understands lcssa phis while SCEV does not.
175  Value *FromPtr = FromVal;
176  Value *ToPtr = ToVal;
177  if (GEPOperator *GEP = dyn_cast<GEPOperator>(FromVal)) {
178    FromPtr = GEP->getPointerOperand();
179  }
180  if (GEPOperator *GEP = dyn_cast<GEPOperator>(ToVal)) {
181    ToPtr = GEP->getPointerOperand();
182  }
183  if (FromPtr != FromVal || ToPtr != ToVal) {
184    // Quickly check the common case
185    if (FromPtr == ToPtr)
186      return true;
187
188    // SCEV may have rewritten an expression that produces the GEP's pointer
189    // operand. That's ok as long as the pointer operand has the same base
190    // pointer. Unlike GetUnderlyingObject(), getPointerBase() will find the
191    // base of a recurrence. This handles the case in which SCEV expansion
192    // converts a pointer type recurrence into a nonrecurrent pointer base
193    // indexed by an integer recurrence.
194    const SCEV *FromBase = SE->getPointerBase(SE->getSCEV(FromPtr));
195    const SCEV *ToBase = SE->getPointerBase(SE->getSCEV(ToPtr));
196    if (FromBase == ToBase)
197      return true;
198
199    DEBUG(dbgs() << "INDVARS: GEP rewrite bail out "
200          << *FromBase << " != " << *ToBase << "\n");
201
202    return false;
203  }
204  return true;
205}
206
207/// canExpandBackedgeTakenCount - Return true if this loop's backedge taken
208/// count expression can be safely and cheaply expanded into an instruction
209/// sequence that can be used by LinearFunctionTestReplace.
210static bool canExpandBackedgeTakenCount(Loop *L, ScalarEvolution *SE) {
211  const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L);
212  if (isa<SCEVCouldNotCompute>(BackedgeTakenCount) ||
213      BackedgeTakenCount->isZero())
214    return false;
215
216  if (!L->getExitingBlock())
217    return false;
218
219  // Can't rewrite non-branch yet.
220  BranchInst *BI = dyn_cast<BranchInst>(L->getExitingBlock()->getTerminator());
221  if (!BI)
222    return false;
223
224  // Special case: If the backedge-taken count is a UDiv, it's very likely a
225  // UDiv that ScalarEvolution produced in order to compute a precise
226  // expression, rather than a UDiv from the user's code. If we can't find a
227  // UDiv in the code with some simple searching, assume the former and forego
228  // rewriting the loop.
229  if (isa<SCEVUDivExpr>(BackedgeTakenCount)) {
230    ICmpInst *OrigCond = dyn_cast<ICmpInst>(BI->getCondition());
231    if (!OrigCond) return false;
232    const SCEV *R = SE->getSCEV(OrigCond->getOperand(1));
233    R = SE->getMinusSCEV(R, SE->getConstant(R->getType(), 1));
234    if (R != BackedgeTakenCount) {
235      const SCEV *L = SE->getSCEV(OrigCond->getOperand(0));
236      L = SE->getMinusSCEV(L, SE->getConstant(L->getType(), 1));
237      if (L != BackedgeTakenCount)
238        return false;
239    }
240  }
241  return true;
242}
243
244/// getBackedgeIVType - Get the widest type used by the loop test after peeking
245/// through Truncs.
246///
247/// TODO: Unnecessary once LinearFunctionTestReplace is removed.
248static const Type *getBackedgeIVType(Loop *L) {
249  if (!L->getExitingBlock())
250    return 0;
251
252  // Can't rewrite non-branch yet.
253  BranchInst *BI = dyn_cast<BranchInst>(L->getExitingBlock()->getTerminator());
254  if (!BI)
255    return 0;
256
257  ICmpInst *Cond = dyn_cast<ICmpInst>(BI->getCondition());
258  if (!Cond)
259    return 0;
260
261  const Type *Ty = 0;
262  for(User::op_iterator OI = Cond->op_begin(), OE = Cond->op_end();
263      OI != OE; ++OI) {
264    assert((!Ty || Ty == (*OI)->getType()) && "bad icmp operand types");
265    TruncInst *Trunc = dyn_cast<TruncInst>(*OI);
266    if (!Trunc)
267      continue;
268
269    return Trunc->getSrcTy();
270  }
271  return Ty;
272}
273
274/// LinearFunctionTestReplace - This method rewrites the exit condition of the
275/// loop to be a canonical != comparison against the incremented loop induction
276/// variable.  This pass is able to rewrite the exit tests of any loop where the
277/// SCEV analysis can determine a loop-invariant trip count of the loop, which
278/// is actually a much broader range than just linear tests.
279ICmpInst *IndVarSimplify::
280LinearFunctionTestReplace(Loop *L,
281                          const SCEV *BackedgeTakenCount,
282                          PHINode *IndVar,
283                          SCEVExpander &Rewriter) {
284  assert(canExpandBackedgeTakenCount(L, SE) && "precondition");
285  BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator());
286
287  // If the exiting block is not the same as the backedge block, we must compare
288  // against the preincremented value, otherwise we prefer to compare against
289  // the post-incremented value.
290  Value *CmpIndVar;
291  const SCEV *RHS = BackedgeTakenCount;
292  if (L->getExitingBlock() == L->getLoopLatch()) {
293    // Add one to the "backedge-taken" count to get the trip count.
294    // If this addition may overflow, we have to be more pessimistic and
295    // cast the induction variable before doing the add.
296    const SCEV *Zero = SE->getConstant(BackedgeTakenCount->getType(), 0);
297    const SCEV *N =
298      SE->getAddExpr(BackedgeTakenCount,
299                     SE->getConstant(BackedgeTakenCount->getType(), 1));
300    if ((isa<SCEVConstant>(N) && !N->isZero()) ||
301        SE->isLoopEntryGuardedByCond(L, ICmpInst::ICMP_NE, N, Zero)) {
302      // No overflow. Cast the sum.
303      RHS = SE->getTruncateOrZeroExtend(N, IndVar->getType());
304    } else {
305      // Potential overflow. Cast before doing the add.
306      RHS = SE->getTruncateOrZeroExtend(BackedgeTakenCount,
307                                        IndVar->getType());
308      RHS = SE->getAddExpr(RHS,
309                           SE->getConstant(IndVar->getType(), 1));
310    }
311
312    // The BackedgeTaken expression contains the number of times that the
313    // backedge branches to the loop header.  This is one less than the
314    // number of times the loop executes, so use the incremented indvar.
315    CmpIndVar = IndVar->getIncomingValueForBlock(L->getExitingBlock());
316  } else {
317    // We have to use the preincremented value...
318    RHS = SE->getTruncateOrZeroExtend(BackedgeTakenCount,
319                                      IndVar->getType());
320    CmpIndVar = IndVar;
321  }
322
323  // Expand the code for the iteration count.
324  assert(SE->isLoopInvariant(RHS, L) &&
325         "Computed iteration count is not loop invariant!");
326  Value *ExitCnt = Rewriter.expandCodeFor(RHS, IndVar->getType(), BI);
327
328  // Insert a new icmp_ne or icmp_eq instruction before the branch.
329  ICmpInst::Predicate Opcode;
330  if (L->contains(BI->getSuccessor(0)))
331    Opcode = ICmpInst::ICMP_NE;
332  else
333    Opcode = ICmpInst::ICMP_EQ;
334
335  DEBUG(dbgs() << "INDVARS: Rewriting loop exit condition to:\n"
336               << "      LHS:" << *CmpIndVar << '\n'
337               << "       op:\t"
338               << (Opcode == ICmpInst::ICMP_NE ? "!=" : "==") << "\n"
339               << "      RHS:\t" << *RHS << "\n");
340
341  ICmpInst *Cond = new ICmpInst(BI, Opcode, CmpIndVar, ExitCnt, "exitcond");
342
343  Value *OrigCond = BI->getCondition();
344  // It's tempting to use replaceAllUsesWith here to fully replace the old
345  // comparison, but that's not immediately safe, since users of the old
346  // comparison may not be dominated by the new comparison. Instead, just
347  // update the branch to use the new comparison; in the common case this
348  // will make old comparison dead.
349  BI->setCondition(Cond);
350  DeadInsts.push_back(OrigCond);
351
352  ++NumLFTR;
353  Changed = true;
354  return Cond;
355}
356
357/// RewriteLoopExitValues - Check to see if this loop has a computable
358/// loop-invariant execution count.  If so, this means that we can compute the
359/// final value of any expressions that are recurrent in the loop, and
360/// substitute the exit values from the loop into any instructions outside of
361/// the loop that use the final values of the current expressions.
362///
363/// This is mostly redundant with the regular IndVarSimplify activities that
364/// happen later, except that it's more powerful in some cases, because it's
365/// able to brute-force evaluate arbitrary instructions as long as they have
366/// constant operands at the beginning of the loop.
367void IndVarSimplify::RewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter) {
368  // Verify the input to the pass in already in LCSSA form.
369  assert(L->isLCSSAForm(*DT));
370
371  SmallVector<BasicBlock*, 8> ExitBlocks;
372  L->getUniqueExitBlocks(ExitBlocks);
373
374  // Find all values that are computed inside the loop, but used outside of it.
375  // Because of LCSSA, these values will only occur in LCSSA PHI Nodes.  Scan
376  // the exit blocks of the loop to find them.
377  for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
378    BasicBlock *ExitBB = ExitBlocks[i];
379
380    // If there are no PHI nodes in this exit block, then no values defined
381    // inside the loop are used on this path, skip it.
382    PHINode *PN = dyn_cast<PHINode>(ExitBB->begin());
383    if (!PN) continue;
384
385    unsigned NumPreds = PN->getNumIncomingValues();
386
387    // Iterate over all of the PHI nodes.
388    BasicBlock::iterator BBI = ExitBB->begin();
389    while ((PN = dyn_cast<PHINode>(BBI++))) {
390      if (PN->use_empty())
391        continue; // dead use, don't replace it
392
393      // SCEV only supports integer expressions for now.
394      if (!PN->getType()->isIntegerTy() && !PN->getType()->isPointerTy())
395        continue;
396
397      // It's necessary to tell ScalarEvolution about this explicitly so that
398      // it can walk the def-use list and forget all SCEVs, as it may not be
399      // watching the PHI itself. Once the new exit value is in place, there
400      // may not be a def-use connection between the loop and every instruction
401      // which got a SCEVAddRecExpr for that loop.
402      SE->forgetValue(PN);
403
404      // Iterate over all of the values in all the PHI nodes.
405      for (unsigned i = 0; i != NumPreds; ++i) {
406        // If the value being merged in is not integer or is not defined
407        // in the loop, skip it.
408        Value *InVal = PN->getIncomingValue(i);
409        if (!isa<Instruction>(InVal))
410          continue;
411
412        // If this pred is for a subloop, not L itself, skip it.
413        if (LI->getLoopFor(PN->getIncomingBlock(i)) != L)
414          continue; // The Block is in a subloop, skip it.
415
416        // Check that InVal is defined in the loop.
417        Instruction *Inst = cast<Instruction>(InVal);
418        if (!L->contains(Inst))
419          continue;
420
421        // Okay, this instruction has a user outside of the current loop
422        // and varies predictably *inside* the loop.  Evaluate the value it
423        // contains when the loop exits, if possible.
424        const SCEV *ExitValue = SE->getSCEVAtScope(Inst, L->getParentLoop());
425        if (!SE->isLoopInvariant(ExitValue, L))
426          continue;
427
428        Value *ExitVal = Rewriter.expandCodeFor(ExitValue, PN->getType(), Inst);
429
430        DEBUG(dbgs() << "INDVARS: RLEV: AfterLoopVal = " << *ExitVal << '\n'
431                     << "  LoopVal = " << *Inst << "\n");
432
433        if (!isValidRewrite(Inst, ExitVal)) {
434          DeadInsts.push_back(ExitVal);
435          continue;
436        }
437        Changed = true;
438        ++NumReplaced;
439
440        PN->setIncomingValue(i, ExitVal);
441
442        // If this instruction is dead now, delete it.
443        RecursivelyDeleteTriviallyDeadInstructions(Inst);
444
445        if (NumPreds == 1) {
446          // Completely replace a single-pred PHI. This is safe, because the
447          // NewVal won't be variant in the loop, so we don't need an LCSSA phi
448          // node anymore.
449          PN->replaceAllUsesWith(ExitVal);
450          RecursivelyDeleteTriviallyDeadInstructions(PN);
451        }
452      }
453      if (NumPreds != 1) {
454        // Clone the PHI and delete the original one. This lets IVUsers and
455        // any other maps purge the original user from their records.
456        PHINode *NewPN = cast<PHINode>(PN->clone());
457        NewPN->takeName(PN);
458        NewPN->insertBefore(PN);
459        PN->replaceAllUsesWith(NewPN);
460        PN->eraseFromParent();
461      }
462    }
463  }
464
465  // The insertion point instruction may have been deleted; clear it out
466  // so that the rewriter doesn't trip over it later.
467  Rewriter.clearInsertPoint();
468}
469
470void IndVarSimplify::RewriteNonIntegerIVs(Loop *L) {
471  // First step.  Check to see if there are any floating-point recurrences.
472  // If there are, change them into integer recurrences, permitting analysis by
473  // the SCEV routines.
474  //
475  BasicBlock *Header = L->getHeader();
476
477  SmallVector<WeakVH, 8> PHIs;
478  for (BasicBlock::iterator I = Header->begin();
479       PHINode *PN = dyn_cast<PHINode>(I); ++I)
480    PHIs.push_back(PN);
481
482  for (unsigned i = 0, e = PHIs.size(); i != e; ++i)
483    if (PHINode *PN = dyn_cast_or_null<PHINode>(&*PHIs[i]))
484      HandleFloatingPointIV(L, PN);
485
486  // If the loop previously had floating-point IV, ScalarEvolution
487  // may not have been able to compute a trip count. Now that we've done some
488  // re-writing, the trip count may be computable.
489  if (Changed)
490    SE->forgetLoop(L);
491}
492
493/// SimplifyIVUsers - Iteratively perform simplification on IVUsers within this
494/// loop. IVUsers is treated as a worklist. Each successive simplification may
495/// push more users which may themselves be candidates for simplification.
496///
497/// This is the old approach to IV simplification to be replaced by
498/// SimplifyIVUsersNoRewrite.
499///
500void IndVarSimplify::SimplifyIVUsers(SCEVExpander &Rewriter) {
501  // Each round of simplification involves a round of eliminating operations
502  // followed by a round of widening IVs. A single IVUsers worklist is used
503  // across all rounds. The inner loop advances the user. If widening exposes
504  // more uses, then another pass through the outer loop is triggered.
505  for (IVUsers::iterator I = IU->begin(); I != IU->end(); ++I) {
506    Instruction *UseInst = I->getUser();
507    Value *IVOperand = I->getOperandValToReplace();
508
509    if (ICmpInst *ICmp = dyn_cast<ICmpInst>(UseInst)) {
510      EliminateIVComparison(ICmp, IVOperand);
511      continue;
512    }
513    if (BinaryOperator *Rem = dyn_cast<BinaryOperator>(UseInst)) {
514      bool IsSigned = Rem->getOpcode() == Instruction::SRem;
515      if (IsSigned || Rem->getOpcode() == Instruction::URem) {
516        EliminateIVRemainder(Rem, IVOperand, IsSigned);
517        continue;
518      }
519    }
520  }
521}
522
523namespace {
524  // Collect information about induction variables that are used by sign/zero
525  // extend operations. This information is recorded by CollectExtend and
526  // provides the input to WidenIV.
527  struct WideIVInfo {
528    const Type *WidestNativeType; // Widest integer type created [sz]ext
529    bool IsSigned;                // Was an sext user seen before a zext?
530
531    WideIVInfo() : WidestNativeType(0), IsSigned(false) {}
532  };
533}
534
535/// CollectExtend - Update information about the induction variable that is
536/// extended by this sign or zero extend operation. This is used to determine
537/// the final width of the IV before actually widening it.
538static void CollectExtend(CastInst *Cast, bool IsSigned, WideIVInfo &WI,
539                          ScalarEvolution *SE, const TargetData *TD) {
540  const Type *Ty = Cast->getType();
541  uint64_t Width = SE->getTypeSizeInBits(Ty);
542  if (TD && !TD->isLegalInteger(Width))
543    return;
544
545  if (!WI.WidestNativeType) {
546    WI.WidestNativeType = SE->getEffectiveSCEVType(Ty);
547    WI.IsSigned = IsSigned;
548    return;
549  }
550
551  // We extend the IV to satisfy the sign of its first user, arbitrarily.
552  if (WI.IsSigned != IsSigned)
553    return;
554
555  if (Width > SE->getTypeSizeInBits(WI.WidestNativeType))
556    WI.WidestNativeType = SE->getEffectiveSCEVType(Ty);
557}
558
559namespace {
560/// WidenIV - The goal of this transform is to remove sign and zero extends
561/// without creating any new induction variables. To do this, it creates a new
562/// phi of the wider type and redirects all users, either removing extends or
563/// inserting truncs whenever we stop propagating the type.
564///
565class WidenIV {
566  // Parameters
567  PHINode *OrigPhi;
568  const Type *WideType;
569  bool IsSigned;
570
571  // Context
572  LoopInfo        *LI;
573  Loop            *L;
574  ScalarEvolution *SE;
575  DominatorTree   *DT;
576
577  // Result
578  PHINode *WidePhi;
579  Instruction *WideInc;
580  const SCEV *WideIncExpr;
581  SmallVectorImpl<WeakVH> &DeadInsts;
582
583  SmallPtrSet<Instruction*,16> Widened;
584
585public:
586  WidenIV(PHINode *PN, const WideIVInfo &WI, LoopInfo *LInfo,
587          ScalarEvolution *SEv, DominatorTree *DTree,
588          SmallVectorImpl<WeakVH> &DI) :
589    OrigPhi(PN),
590    WideType(WI.WidestNativeType),
591    IsSigned(WI.IsSigned),
592    LI(LInfo),
593    L(LI->getLoopFor(OrigPhi->getParent())),
594    SE(SEv),
595    DT(DTree),
596    WidePhi(0),
597    WideInc(0),
598    WideIncExpr(0),
599    DeadInsts(DI) {
600    assert(L->getHeader() == OrigPhi->getParent() && "Phi must be an IV");
601  }
602
603  PHINode *CreateWideIV(SCEVExpander &Rewriter);
604
605protected:
606  Instruction *CloneIVUser(Instruction *NarrowUse,
607                           Instruction *NarrowDef,
608                           Instruction *WideDef);
609
610  const SCEVAddRecExpr *GetWideRecurrence(Instruction *NarrowUse);
611
612  Instruction *WidenIVUse(Use &NarrowDefUse, Instruction *NarrowDef,
613                          Instruction *WideDef);
614};
615} // anonymous namespace
616
617static Value *getExtend( Value *NarrowOper, const Type *WideType,
618                               bool IsSigned, IRBuilder<> &Builder) {
619  return IsSigned ? Builder.CreateSExt(NarrowOper, WideType) :
620                    Builder.CreateZExt(NarrowOper, WideType);
621}
622
623/// CloneIVUser - Instantiate a wide operation to replace a narrow
624/// operation. This only needs to handle operations that can evaluation to
625/// SCEVAddRec. It can safely return 0 for any operation we decide not to clone.
626Instruction *WidenIV::CloneIVUser(Instruction *NarrowUse,
627                                  Instruction *NarrowDef,
628                                  Instruction *WideDef) {
629  unsigned Opcode = NarrowUse->getOpcode();
630  switch (Opcode) {
631  default:
632    return 0;
633  case Instruction::Add:
634  case Instruction::Mul:
635  case Instruction::UDiv:
636  case Instruction::Sub:
637  case Instruction::And:
638  case Instruction::Or:
639  case Instruction::Xor:
640  case Instruction::Shl:
641  case Instruction::LShr:
642  case Instruction::AShr:
643    DEBUG(dbgs() << "Cloning IVUser: " << *NarrowUse << "\n");
644
645    IRBuilder<> Builder(NarrowUse);
646
647    // Replace NarrowDef operands with WideDef. Otherwise, we don't know
648    // anything about the narrow operand yet so must insert a [sz]ext. It is
649    // probably loop invariant and will be folded or hoisted. If it actually
650    // comes from a widened IV, it should be removed during a future call to
651    // WidenIVUse.
652    Value *LHS = (NarrowUse->getOperand(0) == NarrowDef) ? WideDef :
653      getExtend(NarrowUse->getOperand(0), WideType, IsSigned, Builder);
654    Value *RHS = (NarrowUse->getOperand(1) == NarrowDef) ? WideDef :
655      getExtend(NarrowUse->getOperand(1), WideType, IsSigned, Builder);
656
657    BinaryOperator *NarrowBO = cast<BinaryOperator>(NarrowUse);
658    BinaryOperator *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(),
659                                                    LHS, RHS,
660                                                    NarrowBO->getName());
661    Builder.Insert(WideBO);
662    if (const OverflowingBinaryOperator *OBO =
663        dyn_cast<OverflowingBinaryOperator>(NarrowBO)) {
664      if (OBO->hasNoUnsignedWrap()) WideBO->setHasNoUnsignedWrap();
665      if (OBO->hasNoSignedWrap()) WideBO->setHasNoSignedWrap();
666    }
667    return WideBO;
668  }
669  llvm_unreachable(0);
670}
671
672// GetWideRecurrence - Is this instruction potentially interesting from IVUsers'
673// perspective after widening it's type? In other words, can the extend be
674// safely hoisted out of the loop with SCEV reducing the value to a recurrence
675// on the same loop. If so, return the sign or zero extended
676// recurrence. Otherwise return NULL.
677const SCEVAddRecExpr *WidenIV::GetWideRecurrence(Instruction *NarrowUse) {
678  if (!SE->isSCEVable(NarrowUse->getType()))
679    return 0;
680
681  const SCEV *NarrowExpr = SE->getSCEV(NarrowUse);
682  const SCEV *WideExpr = IsSigned ?
683    SE->getSignExtendExpr(NarrowExpr, WideType) :
684    SE->getZeroExtendExpr(NarrowExpr, WideType);
685  const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(WideExpr);
686  if (!AddRec || AddRec->getLoop() != L)
687    return 0;
688
689  return AddRec;
690}
691
692/// HoistStep - Attempt to hoist an IV increment above a potential use.
693///
694/// To successfully hoist, two criteria must be met:
695/// - IncV operands dominate InsertPos and
696/// - InsertPos dominates IncV
697///
698/// Meeting the second condition means that we don't need to check all of IncV's
699/// existing uses (it's moving up in the domtree).
700///
701/// This does not yet recursively hoist the operands, although that would
702/// not be difficult.
703static bool HoistStep(Instruction *IncV, Instruction *InsertPos,
704                      const DominatorTree *DT)
705{
706  if (DT->dominates(IncV, InsertPos))
707    return true;
708
709  if (!DT->dominates(InsertPos->getParent(), IncV->getParent()))
710    return false;
711
712  if (IncV->mayHaveSideEffects())
713    return false;
714
715  // Attempt to hoist IncV
716  for (User::op_iterator OI = IncV->op_begin(), OE = IncV->op_end();
717       OI != OE; ++OI) {
718    Instruction *OInst = dyn_cast<Instruction>(OI);
719    if (OInst && !DT->dominates(OInst, InsertPos))
720      return false;
721  }
722  IncV->moveBefore(InsertPos);
723  return true;
724}
725
726/// WidenIVUse - Determine whether an individual user of the narrow IV can be
727/// widened. If so, return the wide clone of the user.
728Instruction *WidenIV::WidenIVUse(Use &NarrowDefUse, Instruction *NarrowDef,
729                                 Instruction *WideDef) {
730  Instruction *NarrowUse = cast<Instruction>(NarrowDefUse.getUser());
731
732  // To be consistent with IVUsers, stop traversing the def-use chain at
733  // inner-loop phis or post-loop phis.
734  if (isa<PHINode>(NarrowUse) && LI->getLoopFor(NarrowUse->getParent()) != L)
735    return 0;
736
737  // Handle data flow merges and bizarre phi cycles.
738  if (!Widened.insert(NarrowUse))
739    return 0;
740
741  // Our raison d'etre! Eliminate sign and zero extension.
742  if (IsSigned ? isa<SExtInst>(NarrowUse) : isa<ZExtInst>(NarrowUse)) {
743    Value *NewDef = WideDef;
744    if (NarrowUse->getType() != WideType) {
745      unsigned CastWidth = SE->getTypeSizeInBits(NarrowUse->getType());
746      unsigned IVWidth = SE->getTypeSizeInBits(WideType);
747      if (CastWidth < IVWidth) {
748        // The cast isn't as wide as the IV, so insert a Trunc.
749        IRBuilder<> Builder(NarrowDefUse);
750        NewDef = Builder.CreateTrunc(WideDef, NarrowUse->getType());
751      }
752      else {
753        // A wider extend was hidden behind a narrower one. This may induce
754        // another round of IV widening in which the intermediate IV becomes
755        // dead. It should be very rare.
756        DEBUG(dbgs() << "INDVARS: New IV " << *WidePhi
757              << " not wide enough to subsume " << *NarrowUse << "\n");
758        NarrowUse->replaceUsesOfWith(NarrowDef, WideDef);
759        NewDef = NarrowUse;
760      }
761    }
762    if (NewDef != NarrowUse) {
763      DEBUG(dbgs() << "INDVARS: eliminating " << *NarrowUse
764            << " replaced by " << *WideDef << "\n");
765      ++NumElimExt;
766      NarrowUse->replaceAllUsesWith(NewDef);
767      DeadInsts.push_back(NarrowUse);
768    }
769    // Now that the extend is gone, we want to expose it's uses for potential
770    // further simplification. We don't need to directly inform SimplifyIVUsers
771    // of the new users, because their parent IV will be processed later as a
772    // new loop phi. If we preserved IVUsers analysis, we would also want to
773    // push the uses of WideDef here.
774
775    // No further widening is needed. The deceased [sz]ext had done it for us.
776    return 0;
777  }
778  const SCEVAddRecExpr *WideAddRec = GetWideRecurrence(NarrowUse);
779  if (!WideAddRec) {
780    // This user does not evaluate to a recurence after widening, so don't
781    // follow it. Instead insert a Trunc to kill off the original use,
782    // eventually isolating the original narrow IV so it can be removed.
783    IRBuilder<> Builder(NarrowDefUse);
784    Value *Trunc = Builder.CreateTrunc(WideDef, NarrowDef->getType());
785    NarrowUse->replaceUsesOfWith(NarrowDef, Trunc);
786    return 0;
787  }
788  // We assume that block terminators are not SCEVable.
789  assert(NarrowUse != NarrowUse->getParent()->getTerminator() &&
790         "can't split terminators");
791
792  // Reuse the IV increment that SCEVExpander created as long as it dominates
793  // NarrowUse.
794  Instruction *WideUse = 0;
795  if (WideAddRec == WideIncExpr && HoistStep(WideInc, NarrowUse, DT)) {
796    WideUse = WideInc;
797  }
798  else {
799    WideUse = CloneIVUser(NarrowUse, NarrowDef, WideDef);
800    if (!WideUse)
801      return 0;
802  }
803  // GetWideRecurrence ensured that the narrow expression could be extended
804  // outside the loop without overflow. This suggests that the wide use
805  // evaluates to the same expression as the extended narrow use, but doesn't
806  // absolutely guarantee it. Hence the following failsafe check. In rare cases
807  // where it fails, we simply throw away the newly created wide use.
808  if (WideAddRec != SE->getSCEV(WideUse)) {
809    DEBUG(dbgs() << "Wide use expression mismatch: " << *WideUse
810          << ": " << *SE->getSCEV(WideUse) << " != " << *WideAddRec << "\n");
811    DeadInsts.push_back(WideUse);
812    return 0;
813  }
814
815  // Returning WideUse pushes it on the worklist.
816  return WideUse;
817}
818
819/// CreateWideIV - Process a single induction variable. First use the
820/// SCEVExpander to create a wide induction variable that evaluates to the same
821/// recurrence as the original narrow IV. Then use a worklist to forward
822/// traverse the narrow IV's def-use chain. After WidenIVUse has processed all
823/// interesting IV users, the narrow IV will be isolated for removal by
824/// DeleteDeadPHIs.
825///
826/// It would be simpler to delete uses as they are processed, but we must avoid
827/// invalidating SCEV expressions.
828///
829PHINode *WidenIV::CreateWideIV(SCEVExpander &Rewriter) {
830  // Is this phi an induction variable?
831  const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(OrigPhi));
832  if (!AddRec)
833    return NULL;
834
835  // Widen the induction variable expression.
836  const SCEV *WideIVExpr = IsSigned ?
837    SE->getSignExtendExpr(AddRec, WideType) :
838    SE->getZeroExtendExpr(AddRec, WideType);
839
840  assert(SE->getEffectiveSCEVType(WideIVExpr->getType()) == WideType &&
841         "Expect the new IV expression to preserve its type");
842
843  // Can the IV be extended outside the loop without overflow?
844  AddRec = dyn_cast<SCEVAddRecExpr>(WideIVExpr);
845  if (!AddRec || AddRec->getLoop() != L)
846    return NULL;
847
848  // An AddRec must have loop-invariant operands. Since this AddRec is
849  // materialized by a loop header phi, the expression cannot have any post-loop
850  // operands, so they must dominate the loop header.
851  assert(SE->properlyDominates(AddRec->getStart(), L->getHeader()) &&
852         SE->properlyDominates(AddRec->getStepRecurrence(*SE), L->getHeader())
853         && "Loop header phi recurrence inputs do not dominate the loop");
854
855  // The rewriter provides a value for the desired IV expression. This may
856  // either find an existing phi or materialize a new one. Either way, we
857  // expect a well-formed cyclic phi-with-increments. i.e. any operand not part
858  // of the phi-SCC dominates the loop entry.
859  Instruction *InsertPt = L->getHeader()->begin();
860  WidePhi = cast<PHINode>(Rewriter.expandCodeFor(AddRec, WideType, InsertPt));
861
862  // Remembering the WideIV increment generated by SCEVExpander allows
863  // WidenIVUse to reuse it when widening the narrow IV's increment. We don't
864  // employ a general reuse mechanism because the call above is the only call to
865  // SCEVExpander. Henceforth, we produce 1-to-1 narrow to wide uses.
866  if (BasicBlock *LatchBlock = L->getLoopLatch()) {
867    WideInc =
868      cast<Instruction>(WidePhi->getIncomingValueForBlock(LatchBlock));
869    WideIncExpr = SE->getSCEV(WideInc);
870  }
871
872  DEBUG(dbgs() << "Wide IV: " << *WidePhi << "\n");
873  ++NumWidened;
874
875  // Traverse the def-use chain using a worklist starting at the original IV.
876  assert(Widened.empty() && "expect initial state" );
877
878  // Each worklist entry has a Narrow def-use link and Wide def.
879  SmallVector<std::pair<Use *, Instruction *>, 8> NarrowIVUsers;
880  for (Value::use_iterator UI = OrigPhi->use_begin(),
881         UE = OrigPhi->use_end(); UI != UE; ++UI) {
882    NarrowIVUsers.push_back(std::make_pair(&UI.getUse(), WidePhi));
883  }
884  while (!NarrowIVUsers.empty()) {
885    Use *UsePtr;
886    Instruction *WideDef;
887    tie(UsePtr, WideDef) = NarrowIVUsers.pop_back_val();
888    Use &NarrowDefUse = *UsePtr;
889
890    // Process a def-use edge. This may replace the use, so don't hold a
891    // use_iterator across it.
892    Instruction *NarrowDef = cast<Instruction>(NarrowDefUse.get());
893    Instruction *WideUse = WidenIVUse(NarrowDefUse, NarrowDef, WideDef);
894
895    // Follow all def-use edges from the previous narrow use.
896    if (WideUse) {
897      for (Value::use_iterator UI = NarrowDefUse.getUser()->use_begin(),
898             UE = NarrowDefUse.getUser()->use_end(); UI != UE; ++UI) {
899        NarrowIVUsers.push_back(std::make_pair(&UI.getUse(), WideUse));
900      }
901    }
902    // WidenIVUse may have removed the def-use edge.
903    if (NarrowDef->use_empty())
904      DeadInsts.push_back(NarrowDef);
905  }
906  return WidePhi;
907}
908
909void IndVarSimplify::EliminateIVComparison(ICmpInst *ICmp, Value *IVOperand) {
910  unsigned IVOperIdx = 0;
911  ICmpInst::Predicate Pred = ICmp->getPredicate();
912  if (IVOperand != ICmp->getOperand(0)) {
913    // Swapped
914    assert(IVOperand == ICmp->getOperand(1) && "Can't find IVOperand");
915    IVOperIdx = 1;
916    Pred = ICmpInst::getSwappedPredicate(Pred);
917  }
918
919  // Get the SCEVs for the ICmp operands.
920  const SCEV *S = SE->getSCEV(ICmp->getOperand(IVOperIdx));
921  const SCEV *X = SE->getSCEV(ICmp->getOperand(1 - IVOperIdx));
922
923  // Simplify unnecessary loops away.
924  const Loop *ICmpLoop = LI->getLoopFor(ICmp->getParent());
925  S = SE->getSCEVAtScope(S, ICmpLoop);
926  X = SE->getSCEVAtScope(X, ICmpLoop);
927
928  // If the condition is always true or always false, replace it with
929  // a constant value.
930  if (SE->isKnownPredicate(Pred, S, X))
931    ICmp->replaceAllUsesWith(ConstantInt::getTrue(ICmp->getContext()));
932  else if (SE->isKnownPredicate(ICmpInst::getInversePredicate(Pred), S, X))
933    ICmp->replaceAllUsesWith(ConstantInt::getFalse(ICmp->getContext()));
934  else
935    return;
936
937  DEBUG(dbgs() << "INDVARS: Eliminated comparison: " << *ICmp << '\n');
938  ++NumElimCmp;
939  Changed = true;
940  DeadInsts.push_back(ICmp);
941}
942
943void IndVarSimplify::EliminateIVRemainder(BinaryOperator *Rem,
944                                          Value *IVOperand,
945                                          bool IsSigned) {
946  // We're only interested in the case where we know something about
947  // the numerator.
948  if (IVOperand != Rem->getOperand(0))
949    return;
950
951  // Get the SCEVs for the ICmp operands.
952  const SCEV *S = SE->getSCEV(Rem->getOperand(0));
953  const SCEV *X = SE->getSCEV(Rem->getOperand(1));
954
955  // Simplify unnecessary loops away.
956  const Loop *ICmpLoop = LI->getLoopFor(Rem->getParent());
957  S = SE->getSCEVAtScope(S, ICmpLoop);
958  X = SE->getSCEVAtScope(X, ICmpLoop);
959
960  // i % n  -->  i  if i is in [0,n).
961  if ((!IsSigned || SE->isKnownNonNegative(S)) &&
962      SE->isKnownPredicate(IsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT,
963                           S, X))
964    Rem->replaceAllUsesWith(Rem->getOperand(0));
965  else {
966    // (i+1) % n  -->  (i+1)==n?0:(i+1)  if i is in [0,n).
967    const SCEV *LessOne =
968      SE->getMinusSCEV(S, SE->getConstant(S->getType(), 1));
969    if (IsSigned && !SE->isKnownNonNegative(LessOne))
970      return;
971
972    if (!SE->isKnownPredicate(IsSigned ?
973                              ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT,
974                              LessOne, X))
975      return;
976
977    ICmpInst *ICmp = new ICmpInst(Rem, ICmpInst::ICMP_EQ,
978                                  Rem->getOperand(0), Rem->getOperand(1),
979                                  "tmp");
980    SelectInst *Sel =
981      SelectInst::Create(ICmp,
982                         ConstantInt::get(Rem->getType(), 0),
983                         Rem->getOperand(0), "tmp", Rem);
984    Rem->replaceAllUsesWith(Sel);
985  }
986
987  // Inform IVUsers about the new users.
988  if (IU) {
989    if (Instruction *I = dyn_cast<Instruction>(Rem->getOperand(0)))
990      IU->AddUsersIfInteresting(I);
991  }
992  DEBUG(dbgs() << "INDVARS: Simplified rem: " << *Rem << '\n');
993  ++NumElimRem;
994  Changed = true;
995  DeadInsts.push_back(Rem);
996}
997
998/// EliminateIVUser - Eliminate an operation that consumes a simple IV and has
999/// no observable side-effect given the range of IV values.
1000bool IndVarSimplify::EliminateIVUser(Instruction *UseInst,
1001                                     Instruction *IVOperand) {
1002  if (ICmpInst *ICmp = dyn_cast<ICmpInst>(UseInst)) {
1003    EliminateIVComparison(ICmp, IVOperand);
1004    return true;
1005  }
1006  if (BinaryOperator *Rem = dyn_cast<BinaryOperator>(UseInst)) {
1007    bool IsSigned = Rem->getOpcode() == Instruction::SRem;
1008    if (IsSigned || Rem->getOpcode() == Instruction::URem) {
1009      EliminateIVRemainder(Rem, IVOperand, IsSigned);
1010      return true;
1011    }
1012  }
1013
1014  // Eliminate any operation that SCEV can prove is an identity function.
1015  if (!SE->isSCEVable(UseInst->getType()) ||
1016      (UseInst->getType() != IVOperand->getType()) ||
1017      (SE->getSCEV(UseInst) != SE->getSCEV(IVOperand)))
1018    return false;
1019
1020  DEBUG(dbgs() << "INDVARS: Eliminated identity: " << *UseInst << '\n');
1021
1022  UseInst->replaceAllUsesWith(IVOperand);
1023  ++NumElimIdentity;
1024  Changed = true;
1025  DeadInsts.push_back(UseInst);
1026  return true;
1027}
1028
1029/// pushIVUsers - Add all uses of Def to the current IV's worklist.
1030///
1031static void pushIVUsers(
1032  Instruction *Def,
1033  SmallPtrSet<Instruction*,16> &Simplified,
1034  SmallVectorImpl< std::pair<Instruction*,Instruction*> > &SimpleIVUsers) {
1035
1036  for (Value::use_iterator UI = Def->use_begin(), E = Def->use_end();
1037       UI != E; ++UI) {
1038    Instruction *User = cast<Instruction>(*UI);
1039
1040    // Avoid infinite or exponential worklist processing.
1041    // Also ensure unique worklist users.
1042    // If Def is a LoopPhi, it may not be in the Simplified set, so check for
1043    // self edges first.
1044    if (User != Def && Simplified.insert(User))
1045      SimpleIVUsers.push_back(std::make_pair(User, Def));
1046  }
1047}
1048
1049/// isSimpleIVUser - Return true if this instruction generates a simple SCEV
1050/// expression in terms of that IV.
1051///
1052/// This is similar to IVUsers' isInsteresting() but processes each instruction
1053/// non-recursively when the operand is already known to be a simpleIVUser.
1054///
1055bool IndVarSimplify::isSimpleIVUser(Instruction *I, const Loop *L) {
1056  if (!SE->isSCEVable(I->getType()))
1057    return false;
1058
1059  // Get the symbolic expression for this instruction.
1060  const SCEV *S = SE->getSCEV(I);
1061
1062  // We assume that terminators are not SCEVable.
1063  assert((!S || I != I->getParent()->getTerminator()) &&
1064         "can't fold terminators");
1065
1066  // Only consider affine recurrences.
1067  const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S);
1068  if (AR && AR->getLoop() == L)
1069    return true;
1070
1071  return false;
1072}
1073
1074/// SimplifyIVUsersNoRewrite - Iteratively perform simplification on a worklist
1075/// of IV users. Each successive simplification may push more users which may
1076/// themselves be candidates for simplification.
1077///
1078/// The "NoRewrite" algorithm does not require IVUsers analysis. Instead, it
1079/// simplifies instructions in-place during analysis. Rather than rewriting
1080/// induction variables bottom-up from their users, it transforms a chain of
1081/// IVUsers top-down, updating the IR only when it encouters a clear
1082/// optimization opportunitiy. A SCEVExpander "Rewriter" instance is still
1083/// needed, but only used to generate a new IV (phi) of wider type for sign/zero
1084/// extend elimination.
1085///
1086/// Once DisableIVRewrite is default, LSR will be the only client of IVUsers.
1087///
1088void IndVarSimplify::SimplifyIVUsersNoRewrite(Loop *L, SCEVExpander &Rewriter) {
1089  std::map<PHINode *, WideIVInfo> WideIVMap;
1090
1091  SmallVector<PHINode*, 8> LoopPhis;
1092  for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
1093    LoopPhis.push_back(cast<PHINode>(I));
1094  }
1095  // Each round of simplification iterates through the SimplifyIVUsers worklist
1096  // for all current phis, then determines whether any IVs can be
1097  // widened. Widening adds new phis to LoopPhis, inducing another round of
1098  // simplification on the wide IVs.
1099  while (!LoopPhis.empty()) {
1100    // Evaluate as many IV expressions as possible before widening any IVs. This
1101    // forces SCEV to set no-wrap flags before evaluating sign/zero
1102    // extension. The first time SCEV attempts to normalize sign/zero extension,
1103    // the result becomes final. So for the most predictable results, we delay
1104    // evaluation of sign/zero extend evaluation until needed, and avoid running
1105    // other SCEV based analysis prior to SimplifyIVUsersNoRewrite.
1106    do {
1107      PHINode *CurrIV = LoopPhis.pop_back_val();
1108
1109      // Information about sign/zero extensions of CurrIV.
1110      WideIVInfo WI;
1111
1112      // Instructions processed by SimplifyIVUsers for CurrIV.
1113      SmallPtrSet<Instruction*,16> Simplified;
1114
1115      // Use-def pairs if IVUsers waiting to be processed for CurrIV.
1116      SmallVector<std::pair<Instruction*, Instruction*>, 8> SimpleIVUsers;
1117
1118      // Push users of the current LoopPhi. In rare cases, pushIVUsers may be
1119      // called multiple times for the same LoopPhi. This is the proper thing to
1120      // do for loop header phis that use each other.
1121      pushIVUsers(CurrIV, Simplified, SimpleIVUsers);
1122
1123      while (!SimpleIVUsers.empty()) {
1124        Instruction *UseInst, *Operand;
1125        tie(UseInst, Operand) = SimpleIVUsers.pop_back_val();
1126        // Bypass back edges to avoid extra work.
1127        if (UseInst == CurrIV) continue;
1128
1129        if (EliminateIVUser(UseInst, Operand)) {
1130          pushIVUsers(Operand, Simplified, SimpleIVUsers);
1131          continue;
1132        }
1133        if (CastInst *Cast = dyn_cast<CastInst>(UseInst)) {
1134          bool IsSigned = Cast->getOpcode() == Instruction::SExt;
1135          if (IsSigned || Cast->getOpcode() == Instruction::ZExt) {
1136            CollectExtend(Cast, IsSigned, WI, SE, TD);
1137          }
1138          continue;
1139        }
1140        if (isSimpleIVUser(UseInst, L)) {
1141          pushIVUsers(UseInst, Simplified, SimpleIVUsers);
1142        }
1143      }
1144      if (WI.WidestNativeType) {
1145        WideIVMap[CurrIV] = WI;
1146      }
1147    } while(!LoopPhis.empty());
1148
1149    for (std::map<PHINode *, WideIVInfo>::const_iterator I = WideIVMap.begin(),
1150           E = WideIVMap.end(); I != E; ++I) {
1151      WidenIV Widener(I->first, I->second, LI, SE, DT, DeadInsts);
1152      if (PHINode *WidePhi = Widener.CreateWideIV(Rewriter)) {
1153        Changed = true;
1154        LoopPhis.push_back(WidePhi);
1155      }
1156    }
1157    WideIVMap.clear();
1158  }
1159}
1160
1161bool IndVarSimplify::runOnLoop(Loop *L, LPPassManager &LPM) {
1162  // If LoopSimplify form is not available, stay out of trouble. Some notes:
1163  //  - LSR currently only supports LoopSimplify-form loops. Indvars'
1164  //    canonicalization can be a pessimization without LSR to "clean up"
1165  //    afterwards.
1166  //  - We depend on having a preheader; in particular,
1167  //    Loop::getCanonicalInductionVariable only supports loops with preheaders,
1168  //    and we're in trouble if we can't find the induction variable even when
1169  //    we've manually inserted one.
1170  if (!L->isLoopSimplifyForm())
1171    return false;
1172
1173  if (!DisableIVRewrite)
1174    IU = &getAnalysis<IVUsers>();
1175  LI = &getAnalysis<LoopInfo>();
1176  SE = &getAnalysis<ScalarEvolution>();
1177  DT = &getAnalysis<DominatorTree>();
1178  TD = getAnalysisIfAvailable<TargetData>();
1179
1180  DeadInsts.clear();
1181  Changed = false;
1182
1183  // If there are any floating-point recurrences, attempt to
1184  // transform them to use integer recurrences.
1185  RewriteNonIntegerIVs(L);
1186
1187  const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L);
1188
1189  // Create a rewriter object which we'll use to transform the code with.
1190  SCEVExpander Rewriter(*SE, "indvars");
1191
1192  // Eliminate redundant IV users.
1193  //
1194  // Simplification works best when run before other consumers of SCEV. We
1195  // attempt to avoid evaluating SCEVs for sign/zero extend operations until
1196  // other expressions involving loop IVs have been evaluated. This helps SCEV
1197  // set no-wrap flags before normalizing sign/zero extension.
1198  if (DisableIVRewrite) {
1199    Rewriter.disableCanonicalMode();
1200    SimplifyIVUsersNoRewrite(L, Rewriter);
1201  }
1202
1203  // Check to see if this loop has a computable loop-invariant execution count.
1204  // If so, this means that we can compute the final value of any expressions
1205  // that are recurrent in the loop, and substitute the exit values from the
1206  // loop into any instructions outside of the loop that use the final values of
1207  // the current expressions.
1208  //
1209  if (!isa<SCEVCouldNotCompute>(BackedgeTakenCount))
1210    RewriteLoopExitValues(L, Rewriter);
1211
1212  // Eliminate redundant IV users.
1213  if (!DisableIVRewrite)
1214    SimplifyIVUsers(Rewriter);
1215
1216  // Compute the type of the largest recurrence expression, and decide whether
1217  // a canonical induction variable should be inserted.
1218  const Type *LargestType = 0;
1219  bool NeedCannIV = false;
1220  bool ExpandBECount = canExpandBackedgeTakenCount(L, SE);
1221  if (ExpandBECount) {
1222    // If we have a known trip count and a single exit block, we'll be
1223    // rewriting the loop exit test condition below, which requires a
1224    // canonical induction variable.
1225    NeedCannIV = true;
1226    const Type *Ty = BackedgeTakenCount->getType();
1227    if (DisableIVRewrite) {
1228      // In this mode, SimplifyIVUsers may have already widened the IV used by
1229      // the backedge test and inserted a Trunc on the compare's operand. Get
1230      // the wider type to avoid creating a redundant narrow IV only used by the
1231      // loop test.
1232      LargestType = getBackedgeIVType(L);
1233    }
1234    if (!LargestType ||
1235        SE->getTypeSizeInBits(Ty) >
1236        SE->getTypeSizeInBits(LargestType))
1237      LargestType = SE->getEffectiveSCEVType(Ty);
1238  }
1239  if (!DisableIVRewrite) {
1240    for (IVUsers::const_iterator I = IU->begin(), E = IU->end(); I != E; ++I) {
1241      NeedCannIV = true;
1242      const Type *Ty =
1243        SE->getEffectiveSCEVType(I->getOperandValToReplace()->getType());
1244      if (!LargestType ||
1245          SE->getTypeSizeInBits(Ty) >
1246          SE->getTypeSizeInBits(LargestType))
1247        LargestType = Ty;
1248    }
1249  }
1250
1251  // Now that we know the largest of the induction variable expressions
1252  // in this loop, insert a canonical induction variable of the largest size.
1253  PHINode *IndVar = 0;
1254  if (NeedCannIV) {
1255    // Check to see if the loop already has any canonical-looking induction
1256    // variables. If any are present and wider than the planned canonical
1257    // induction variable, temporarily remove them, so that the Rewriter
1258    // doesn't attempt to reuse them.
1259    SmallVector<PHINode *, 2> OldCannIVs;
1260    while (PHINode *OldCannIV = L->getCanonicalInductionVariable()) {
1261      if (SE->getTypeSizeInBits(OldCannIV->getType()) >
1262          SE->getTypeSizeInBits(LargestType))
1263        OldCannIV->removeFromParent();
1264      else
1265        break;
1266      OldCannIVs.push_back(OldCannIV);
1267    }
1268
1269    IndVar = Rewriter.getOrInsertCanonicalInductionVariable(L, LargestType);
1270
1271    ++NumInserted;
1272    Changed = true;
1273    DEBUG(dbgs() << "INDVARS: New CanIV: " << *IndVar << '\n');
1274
1275    // Now that the official induction variable is established, reinsert
1276    // any old canonical-looking variables after it so that the IR remains
1277    // consistent. They will be deleted as part of the dead-PHI deletion at
1278    // the end of the pass.
1279    while (!OldCannIVs.empty()) {
1280      PHINode *OldCannIV = OldCannIVs.pop_back_val();
1281      OldCannIV->insertBefore(L->getHeader()->getFirstNonPHI());
1282    }
1283  }
1284
1285  // If we have a trip count expression, rewrite the loop's exit condition
1286  // using it.  We can currently only handle loops with a single exit.
1287  ICmpInst *NewICmp = 0;
1288  if (ExpandBECount) {
1289    assert(canExpandBackedgeTakenCount(L, SE) &&
1290           "canonical IV disrupted BackedgeTaken expansion");
1291    assert(NeedCannIV &&
1292           "LinearFunctionTestReplace requires a canonical induction variable");
1293    NewICmp = LinearFunctionTestReplace(L, BackedgeTakenCount, IndVar,
1294                                        Rewriter);
1295  }
1296  // Rewrite IV-derived expressions.
1297  if (!DisableIVRewrite)
1298    RewriteIVExpressions(L, Rewriter);
1299
1300  // Clear the rewriter cache, because values that are in the rewriter's cache
1301  // can be deleted in the loop below, causing the AssertingVH in the cache to
1302  // trigger.
1303  Rewriter.clear();
1304
1305  // Now that we're done iterating through lists, clean up any instructions
1306  // which are now dead.
1307  while (!DeadInsts.empty())
1308    if (Instruction *Inst =
1309          dyn_cast_or_null<Instruction>(&*DeadInsts.pop_back_val()))
1310      RecursivelyDeleteTriviallyDeadInstructions(Inst);
1311
1312  // The Rewriter may not be used from this point on.
1313
1314  // Loop-invariant instructions in the preheader that aren't used in the
1315  // loop may be sunk below the loop to reduce register pressure.
1316  SinkUnusedInvariants(L);
1317
1318  // For completeness, inform IVUsers of the IV use in the newly-created
1319  // loop exit test instruction.
1320  if (NewICmp && IU)
1321    IU->AddUsersIfInteresting(cast<Instruction>(NewICmp->getOperand(0)));
1322
1323  // Clean up dead instructions.
1324  Changed |= DeleteDeadPHIs(L->getHeader());
1325  // Check a post-condition.
1326  assert(L->isLCSSAForm(*DT) && "Indvars did not leave the loop in lcssa form!");
1327  return Changed;
1328}
1329
1330// FIXME: It is an extremely bad idea to indvar substitute anything more
1331// complex than affine induction variables.  Doing so will put expensive
1332// polynomial evaluations inside of the loop, and the str reduction pass
1333// currently can only reduce affine polynomials.  For now just disable
1334// indvar subst on anything more complex than an affine addrec, unless
1335// it can be expanded to a trivial value.
1336static bool isSafe(const SCEV *S, const Loop *L, ScalarEvolution *SE) {
1337  // Loop-invariant values are safe.
1338  if (SE->isLoopInvariant(S, L)) return true;
1339
1340  // Affine addrecs are safe. Non-affine are not, because LSR doesn't know how
1341  // to transform them into efficient code.
1342  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
1343    return AR->isAffine();
1344
1345  // An add is safe it all its operands are safe.
1346  if (const SCEVCommutativeExpr *Commutative = dyn_cast<SCEVCommutativeExpr>(S)) {
1347    for (SCEVCommutativeExpr::op_iterator I = Commutative->op_begin(),
1348         E = Commutative->op_end(); I != E; ++I)
1349      if (!isSafe(*I, L, SE)) return false;
1350    return true;
1351  }
1352
1353  // A cast is safe if its operand is.
1354  if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S))
1355    return isSafe(C->getOperand(), L, SE);
1356
1357  // A udiv is safe if its operands are.
1358  if (const SCEVUDivExpr *UD = dyn_cast<SCEVUDivExpr>(S))
1359    return isSafe(UD->getLHS(), L, SE) &&
1360           isSafe(UD->getRHS(), L, SE);
1361
1362  // SCEVUnknown is always safe.
1363  if (isa<SCEVUnknown>(S))
1364    return true;
1365
1366  // Nothing else is safe.
1367  return false;
1368}
1369
1370void IndVarSimplify::RewriteIVExpressions(Loop *L, SCEVExpander &Rewriter) {
1371  // Rewrite all induction variable expressions in terms of the canonical
1372  // induction variable.
1373  //
1374  // If there were induction variables of other sizes or offsets, manually
1375  // add the offsets to the primary induction variable and cast, avoiding
1376  // the need for the code evaluation methods to insert induction variables
1377  // of different sizes.
1378  for (IVUsers::iterator UI = IU->begin(), E = IU->end(); UI != E; ++UI) {
1379    Value *Op = UI->getOperandValToReplace();
1380    const Type *UseTy = Op->getType();
1381    Instruction *User = UI->getUser();
1382
1383    // Compute the final addrec to expand into code.
1384    const SCEV *AR = IU->getReplacementExpr(*UI);
1385
1386    // Evaluate the expression out of the loop, if possible.
1387    if (!L->contains(UI->getUser())) {
1388      const SCEV *ExitVal = SE->getSCEVAtScope(AR, L->getParentLoop());
1389      if (SE->isLoopInvariant(ExitVal, L))
1390        AR = ExitVal;
1391    }
1392
1393    // FIXME: It is an extremely bad idea to indvar substitute anything more
1394    // complex than affine induction variables.  Doing so will put expensive
1395    // polynomial evaluations inside of the loop, and the str reduction pass
1396    // currently can only reduce affine polynomials.  For now just disable
1397    // indvar subst on anything more complex than an affine addrec, unless
1398    // it can be expanded to a trivial value.
1399    if (!isSafe(AR, L, SE))
1400      continue;
1401
1402    // Determine the insertion point for this user. By default, insert
1403    // immediately before the user. The SCEVExpander class will automatically
1404    // hoist loop invariants out of the loop. For PHI nodes, there may be
1405    // multiple uses, so compute the nearest common dominator for the
1406    // incoming blocks.
1407    Instruction *InsertPt = User;
1408    if (PHINode *PHI = dyn_cast<PHINode>(InsertPt))
1409      for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i)
1410        if (PHI->getIncomingValue(i) == Op) {
1411          if (InsertPt == User)
1412            InsertPt = PHI->getIncomingBlock(i)->getTerminator();
1413          else
1414            InsertPt =
1415              DT->findNearestCommonDominator(InsertPt->getParent(),
1416                                             PHI->getIncomingBlock(i))
1417                    ->getTerminator();
1418        }
1419
1420    // Now expand it into actual Instructions and patch it into place.
1421    Value *NewVal = Rewriter.expandCodeFor(AR, UseTy, InsertPt);
1422
1423    DEBUG(dbgs() << "INDVARS: Rewrote IV '" << *AR << "' " << *Op << '\n'
1424                 << "   into = " << *NewVal << "\n");
1425
1426    if (!isValidRewrite(Op, NewVal)) {
1427      DeadInsts.push_back(NewVal);
1428      continue;
1429    }
1430    // Inform ScalarEvolution that this value is changing. The change doesn't
1431    // affect its value, but it does potentially affect which use lists the
1432    // value will be on after the replacement, which affects ScalarEvolution's
1433    // ability to walk use lists and drop dangling pointers when a value is
1434    // deleted.
1435    SE->forgetValue(User);
1436
1437    // Patch the new value into place.
1438    if (Op->hasName())
1439      NewVal->takeName(Op);
1440    if (Instruction *NewValI = dyn_cast<Instruction>(NewVal))
1441      NewValI->setDebugLoc(User->getDebugLoc());
1442    User->replaceUsesOfWith(Op, NewVal);
1443    UI->setOperandValToReplace(NewVal);
1444
1445    ++NumRemoved;
1446    Changed = true;
1447
1448    // The old value may be dead now.
1449    DeadInsts.push_back(Op);
1450  }
1451}
1452
1453/// If there's a single exit block, sink any loop-invariant values that
1454/// were defined in the preheader but not used inside the loop into the
1455/// exit block to reduce register pressure in the loop.
1456void IndVarSimplify::SinkUnusedInvariants(Loop *L) {
1457  BasicBlock *ExitBlock = L->getExitBlock();
1458  if (!ExitBlock) return;
1459
1460  BasicBlock *Preheader = L->getLoopPreheader();
1461  if (!Preheader) return;
1462
1463  Instruction *InsertPt = ExitBlock->getFirstNonPHI();
1464  BasicBlock::iterator I = Preheader->getTerminator();
1465  while (I != Preheader->begin()) {
1466    --I;
1467    // New instructions were inserted at the end of the preheader.
1468    if (isa<PHINode>(I))
1469      break;
1470
1471    // Don't move instructions which might have side effects, since the side
1472    // effects need to complete before instructions inside the loop.  Also don't
1473    // move instructions which might read memory, since the loop may modify
1474    // memory. Note that it's okay if the instruction might have undefined
1475    // behavior: LoopSimplify guarantees that the preheader dominates the exit
1476    // block.
1477    if (I->mayHaveSideEffects() || I->mayReadFromMemory())
1478      continue;
1479
1480    // Skip debug info intrinsics.
1481    if (isa<DbgInfoIntrinsic>(I))
1482      continue;
1483
1484    // Don't sink static AllocaInsts out of the entry block, which would
1485    // turn them into dynamic allocas!
1486    if (AllocaInst *AI = dyn_cast<AllocaInst>(I))
1487      if (AI->isStaticAlloca())
1488        continue;
1489
1490    // Determine if there is a use in or before the loop (direct or
1491    // otherwise).
1492    bool UsedInLoop = false;
1493    for (Value::use_iterator UI = I->use_begin(), UE = I->use_end();
1494         UI != UE; ++UI) {
1495      User *U = *UI;
1496      BasicBlock *UseBB = cast<Instruction>(U)->getParent();
1497      if (PHINode *P = dyn_cast<PHINode>(U)) {
1498        unsigned i =
1499          PHINode::getIncomingValueNumForOperand(UI.getOperandNo());
1500        UseBB = P->getIncomingBlock(i);
1501      }
1502      if (UseBB == Preheader || L->contains(UseBB)) {
1503        UsedInLoop = true;
1504        break;
1505      }
1506    }
1507
1508    // If there is, the def must remain in the preheader.
1509    if (UsedInLoop)
1510      continue;
1511
1512    // Otherwise, sink it to the exit block.
1513    Instruction *ToMove = I;
1514    bool Done = false;
1515
1516    if (I != Preheader->begin()) {
1517      // Skip debug info intrinsics.
1518      do {
1519        --I;
1520      } while (isa<DbgInfoIntrinsic>(I) && I != Preheader->begin());
1521
1522      if (isa<DbgInfoIntrinsic>(I) && I == Preheader->begin())
1523        Done = true;
1524    } else {
1525      Done = true;
1526    }
1527
1528    ToMove->moveBefore(InsertPt);
1529    if (Done) break;
1530    InsertPt = ToMove;
1531  }
1532}
1533
1534/// ConvertToSInt - Convert APF to an integer, if possible.
1535static bool ConvertToSInt(const APFloat &APF, int64_t &IntVal) {
1536  bool isExact = false;
1537  if (&APF.getSemantics() == &APFloat::PPCDoubleDouble)
1538    return false;
1539  // See if we can convert this to an int64_t
1540  uint64_t UIntVal;
1541  if (APF.convertToInteger(&UIntVal, 64, true, APFloat::rmTowardZero,
1542                           &isExact) != APFloat::opOK || !isExact)
1543    return false;
1544  IntVal = UIntVal;
1545  return true;
1546}
1547
1548/// HandleFloatingPointIV - If the loop has floating induction variable
1549/// then insert corresponding integer induction variable if possible.
1550/// For example,
1551/// for(double i = 0; i < 10000; ++i)
1552///   bar(i)
1553/// is converted into
1554/// for(int i = 0; i < 10000; ++i)
1555///   bar((double)i);
1556///
1557void IndVarSimplify::HandleFloatingPointIV(Loop *L, PHINode *PN) {
1558  unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0));
1559  unsigned BackEdge     = IncomingEdge^1;
1560
1561  // Check incoming value.
1562  ConstantFP *InitValueVal =
1563    dyn_cast<ConstantFP>(PN->getIncomingValue(IncomingEdge));
1564
1565  int64_t InitValue;
1566  if (!InitValueVal || !ConvertToSInt(InitValueVal->getValueAPF(), InitValue))
1567    return;
1568
1569  // Check IV increment. Reject this PN if increment operation is not
1570  // an add or increment value can not be represented by an integer.
1571  BinaryOperator *Incr =
1572    dyn_cast<BinaryOperator>(PN->getIncomingValue(BackEdge));
1573  if (Incr == 0 || Incr->getOpcode() != Instruction::FAdd) return;
1574
1575  // If this is not an add of the PHI with a constantfp, or if the constant fp
1576  // is not an integer, bail out.
1577  ConstantFP *IncValueVal = dyn_cast<ConstantFP>(Incr->getOperand(1));
1578  int64_t IncValue;
1579  if (IncValueVal == 0 || Incr->getOperand(0) != PN ||
1580      !ConvertToSInt(IncValueVal->getValueAPF(), IncValue))
1581    return;
1582
1583  // Check Incr uses. One user is PN and the other user is an exit condition
1584  // used by the conditional terminator.
1585  Value::use_iterator IncrUse = Incr->use_begin();
1586  Instruction *U1 = cast<Instruction>(*IncrUse++);
1587  if (IncrUse == Incr->use_end()) return;
1588  Instruction *U2 = cast<Instruction>(*IncrUse++);
1589  if (IncrUse != Incr->use_end()) return;
1590
1591  // Find exit condition, which is an fcmp.  If it doesn't exist, or if it isn't
1592  // only used by a branch, we can't transform it.
1593  FCmpInst *Compare = dyn_cast<FCmpInst>(U1);
1594  if (!Compare)
1595    Compare = dyn_cast<FCmpInst>(U2);
1596  if (Compare == 0 || !Compare->hasOneUse() ||
1597      !isa<BranchInst>(Compare->use_back()))
1598    return;
1599
1600  BranchInst *TheBr = cast<BranchInst>(Compare->use_back());
1601
1602  // We need to verify that the branch actually controls the iteration count
1603  // of the loop.  If not, the new IV can overflow and no one will notice.
1604  // The branch block must be in the loop and one of the successors must be out
1605  // of the loop.
1606  assert(TheBr->isConditional() && "Can't use fcmp if not conditional");
1607  if (!L->contains(TheBr->getParent()) ||
1608      (L->contains(TheBr->getSuccessor(0)) &&
1609       L->contains(TheBr->getSuccessor(1))))
1610    return;
1611
1612
1613  // If it isn't a comparison with an integer-as-fp (the exit value), we can't
1614  // transform it.
1615  ConstantFP *ExitValueVal = dyn_cast<ConstantFP>(Compare->getOperand(1));
1616  int64_t ExitValue;
1617  if (ExitValueVal == 0 ||
1618      !ConvertToSInt(ExitValueVal->getValueAPF(), ExitValue))
1619    return;
1620
1621  // Find new predicate for integer comparison.
1622  CmpInst::Predicate NewPred = CmpInst::BAD_ICMP_PREDICATE;
1623  switch (Compare->getPredicate()) {
1624  default: return;  // Unknown comparison.
1625  case CmpInst::FCMP_OEQ:
1626  case CmpInst::FCMP_UEQ: NewPred = CmpInst::ICMP_EQ; break;
1627  case CmpInst::FCMP_ONE:
1628  case CmpInst::FCMP_UNE: NewPred = CmpInst::ICMP_NE; break;
1629  case CmpInst::FCMP_OGT:
1630  case CmpInst::FCMP_UGT: NewPred = CmpInst::ICMP_SGT; break;
1631  case CmpInst::FCMP_OGE:
1632  case CmpInst::FCMP_UGE: NewPred = CmpInst::ICMP_SGE; break;
1633  case CmpInst::FCMP_OLT:
1634  case CmpInst::FCMP_ULT: NewPred = CmpInst::ICMP_SLT; break;
1635  case CmpInst::FCMP_OLE:
1636  case CmpInst::FCMP_ULE: NewPred = CmpInst::ICMP_SLE; break;
1637  }
1638
1639  // We convert the floating point induction variable to a signed i32 value if
1640  // we can.  This is only safe if the comparison will not overflow in a way
1641  // that won't be trapped by the integer equivalent operations.  Check for this
1642  // now.
1643  // TODO: We could use i64 if it is native and the range requires it.
1644
1645  // The start/stride/exit values must all fit in signed i32.
1646  if (!isInt<32>(InitValue) || !isInt<32>(IncValue) || !isInt<32>(ExitValue))
1647    return;
1648
1649  // If not actually striding (add x, 0.0), avoid touching the code.
1650  if (IncValue == 0)
1651    return;
1652
1653  // Positive and negative strides have different safety conditions.
1654  if (IncValue > 0) {
1655    // If we have a positive stride, we require the init to be less than the
1656    // exit value and an equality or less than comparison.
1657    if (InitValue >= ExitValue ||
1658        NewPred == CmpInst::ICMP_SGT || NewPred == CmpInst::ICMP_SGE)
1659      return;
1660
1661    uint32_t Range = uint32_t(ExitValue-InitValue);
1662    if (NewPred == CmpInst::ICMP_SLE) {
1663      // Normalize SLE -> SLT, check for infinite loop.
1664      if (++Range == 0) return;  // Range overflows.
1665    }
1666
1667    unsigned Leftover = Range % uint32_t(IncValue);
1668
1669    // If this is an equality comparison, we require that the strided value
1670    // exactly land on the exit value, otherwise the IV condition will wrap
1671    // around and do things the fp IV wouldn't.
1672    if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) &&
1673        Leftover != 0)
1674      return;
1675
1676    // If the stride would wrap around the i32 before exiting, we can't
1677    // transform the IV.
1678    if (Leftover != 0 && int32_t(ExitValue+IncValue) < ExitValue)
1679      return;
1680
1681  } else {
1682    // If we have a negative stride, we require the init to be greater than the
1683    // exit value and an equality or greater than comparison.
1684    if (InitValue >= ExitValue ||
1685        NewPred == CmpInst::ICMP_SLT || NewPred == CmpInst::ICMP_SLE)
1686      return;
1687
1688    uint32_t Range = uint32_t(InitValue-ExitValue);
1689    if (NewPred == CmpInst::ICMP_SGE) {
1690      // Normalize SGE -> SGT, check for infinite loop.
1691      if (++Range == 0) return;  // Range overflows.
1692    }
1693
1694    unsigned Leftover = Range % uint32_t(-IncValue);
1695
1696    // If this is an equality comparison, we require that the strided value
1697    // exactly land on the exit value, otherwise the IV condition will wrap
1698    // around and do things the fp IV wouldn't.
1699    if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) &&
1700        Leftover != 0)
1701      return;
1702
1703    // If the stride would wrap around the i32 before exiting, we can't
1704    // transform the IV.
1705    if (Leftover != 0 && int32_t(ExitValue+IncValue) > ExitValue)
1706      return;
1707  }
1708
1709  const IntegerType *Int32Ty = Type::getInt32Ty(PN->getContext());
1710
1711  // Insert new integer induction variable.
1712  PHINode *NewPHI = PHINode::Create(Int32Ty, 2, PN->getName()+".int", PN);
1713  NewPHI->addIncoming(ConstantInt::get(Int32Ty, InitValue),
1714                      PN->getIncomingBlock(IncomingEdge));
1715
1716  Value *NewAdd =
1717    BinaryOperator::CreateAdd(NewPHI, ConstantInt::get(Int32Ty, IncValue),
1718                              Incr->getName()+".int", Incr);
1719  NewPHI->addIncoming(NewAdd, PN->getIncomingBlock(BackEdge));
1720
1721  ICmpInst *NewCompare = new ICmpInst(TheBr, NewPred, NewAdd,
1722                                      ConstantInt::get(Int32Ty, ExitValue),
1723                                      Compare->getName());
1724
1725  // In the following deletions, PN may become dead and may be deleted.
1726  // Use a WeakVH to observe whether this happens.
1727  WeakVH WeakPH = PN;
1728
1729  // Delete the old floating point exit comparison.  The branch starts using the
1730  // new comparison.
1731  NewCompare->takeName(Compare);
1732  Compare->replaceAllUsesWith(NewCompare);
1733  RecursivelyDeleteTriviallyDeadInstructions(Compare);
1734
1735  // Delete the old floating point increment.
1736  Incr->replaceAllUsesWith(UndefValue::get(Incr->getType()));
1737  RecursivelyDeleteTriviallyDeadInstructions(Incr);
1738
1739  // If the FP induction variable still has uses, this is because something else
1740  // in the loop uses its value.  In order to canonicalize the induction
1741  // variable, we chose to eliminate the IV and rewrite it in terms of an
1742  // int->fp cast.
1743  //
1744  // We give preference to sitofp over uitofp because it is faster on most
1745  // platforms.
1746  if (WeakPH) {
1747    Value *Conv = new SIToFPInst(NewPHI, PN->getType(), "indvar.conv",
1748                                 PN->getParent()->getFirstNonPHI());
1749    PN->replaceAllUsesWith(Conv);
1750    RecursivelyDeleteTriviallyDeadInstructions(PN);
1751  }
1752
1753  // Add a new IVUsers entry for the newly-created integer PHI.
1754  if (IU)
1755    IU->AddUsersIfInteresting(NewPHI);
1756}
1757