IndVarSimplify.cpp revision 7137909128e6447c556b2713a60cd8e62f823612
1//===- IndVarSimplify.cpp - Induction Variable Elimination ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This transformation analyzes and transforms the induction variables (and
11// computations derived from them) into simpler forms suitable for subsequent
12// analysis and transformation.
13//
14// If the trip count of a loop is computable, this pass also makes the following
15// changes:
16//   1. The exit condition for the loop is canonicalized to compare the
17//      induction value against the exit value.  This turns loops like:
18//        'for (i = 7; i*i < 1000; ++i)' into 'for (i = 0; i != 25; ++i)'
19//   2. Any use outside of the loop of an expression derived from the indvar
20//      is changed to compute the derived value outside of the loop, eliminating
21//      the dependence on the exit value of the induction variable.  If the only
22//      purpose of the loop is to compute the exit value of some derived
23//      expression, this transformation will make the loop dead.
24//
25//===----------------------------------------------------------------------===//
26
27#define DEBUG_TYPE "indvars"
28#include "llvm/Transforms/Scalar.h"
29#include "llvm/ADT/DenseMap.h"
30#include "llvm/ADT/SmallVector.h"
31#include "llvm/ADT/Statistic.h"
32#include "llvm/Analysis/Dominators.h"
33#include "llvm/Analysis/LoopInfo.h"
34#include "llvm/Analysis/LoopPass.h"
35#include "llvm/Analysis/ScalarEvolutionExpander.h"
36#include "llvm/IR/BasicBlock.h"
37#include "llvm/IR/Constants.h"
38#include "llvm/IR/DataLayout.h"
39#include "llvm/IR/Instructions.h"
40#include "llvm/IR/IntrinsicInst.h"
41#include "llvm/IR/LLVMContext.h"
42#include "llvm/IR/Type.h"
43#include "llvm/Support/CFG.h"
44#include "llvm/Support/CommandLine.h"
45#include "llvm/Support/Debug.h"
46#include "llvm/Support/raw_ostream.h"
47#include "llvm/Target/TargetLibraryInfo.h"
48#include "llvm/Transforms/Utils/BasicBlockUtils.h"
49#include "llvm/Transforms/Utils/Local.h"
50#include "llvm/Transforms/Utils/SimplifyIndVar.h"
51using namespace llvm;
52
53STATISTIC(NumWidened     , "Number of indvars widened");
54STATISTIC(NumReplaced    , "Number of exit values replaced");
55STATISTIC(NumLFTR        , "Number of loop exit tests replaced");
56STATISTIC(NumElimExt     , "Number of IV sign/zero extends eliminated");
57STATISTIC(NumElimIV      , "Number of congruent IVs eliminated");
58
59// Trip count verification can be enabled by default under NDEBUG if we
60// implement a strong expression equivalence checker in SCEV. Until then, we
61// use the verify-indvars flag, which may assert in some cases.
62static cl::opt<bool> VerifyIndvars(
63  "verify-indvars", cl::Hidden,
64  cl::desc("Verify the ScalarEvolution result after running indvars"));
65
66namespace {
67  class IndVarSimplify : public LoopPass {
68    LoopInfo        *LI;
69    ScalarEvolution *SE;
70    DominatorTree   *DT;
71    DataLayout      *TD;
72    TargetLibraryInfo *TLI;
73
74    SmallVector<WeakVH, 16> DeadInsts;
75    bool Changed;
76  public:
77
78    static char ID; // Pass identification, replacement for typeid
79    IndVarSimplify() : LoopPass(ID), LI(0), SE(0), DT(0), TD(0),
80                       Changed(false) {
81      initializeIndVarSimplifyPass(*PassRegistry::getPassRegistry());
82    }
83
84    virtual bool runOnLoop(Loop *L, LPPassManager &LPM);
85
86    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
87      AU.addRequired<DominatorTree>();
88      AU.addRequired<LoopInfo>();
89      AU.addRequired<ScalarEvolution>();
90      AU.addRequiredID(LoopSimplifyID);
91      AU.addRequiredID(LCSSAID);
92      AU.addPreserved<ScalarEvolution>();
93      AU.addPreservedID(LoopSimplifyID);
94      AU.addPreservedID(LCSSAID);
95      AU.setPreservesCFG();
96    }
97
98  private:
99    virtual void releaseMemory() {
100      DeadInsts.clear();
101    }
102
103    bool isValidRewrite(Value *FromVal, Value *ToVal);
104
105    void HandleFloatingPointIV(Loop *L, PHINode *PH);
106    void RewriteNonIntegerIVs(Loop *L);
107
108    void SimplifyAndExtend(Loop *L, SCEVExpander &Rewriter, LPPassManager &LPM);
109
110    void RewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter);
111
112    Value *LinearFunctionTestReplace(Loop *L, const SCEV *BackedgeTakenCount,
113                                     PHINode *IndVar, SCEVExpander &Rewriter);
114
115    void SinkUnusedInvariants(Loop *L);
116  };
117}
118
119char IndVarSimplify::ID = 0;
120INITIALIZE_PASS_BEGIN(IndVarSimplify, "indvars",
121                "Induction Variable Simplification", false, false)
122INITIALIZE_PASS_DEPENDENCY(DominatorTree)
123INITIALIZE_PASS_DEPENDENCY(LoopInfo)
124INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
125INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
126INITIALIZE_PASS_DEPENDENCY(LCSSA)
127INITIALIZE_PASS_END(IndVarSimplify, "indvars",
128                "Induction Variable Simplification", false, false)
129
130Pass *llvm::createIndVarSimplifyPass() {
131  return new IndVarSimplify();
132}
133
134/// isValidRewrite - Return true if the SCEV expansion generated by the
135/// rewriter can replace the original value. SCEV guarantees that it
136/// produces the same value, but the way it is produced may be illegal IR.
137/// Ideally, this function will only be called for verification.
138bool IndVarSimplify::isValidRewrite(Value *FromVal, Value *ToVal) {
139  // If an SCEV expression subsumed multiple pointers, its expansion could
140  // reassociate the GEP changing the base pointer. This is illegal because the
141  // final address produced by a GEP chain must be inbounds relative to its
142  // underlying object. Otherwise basic alias analysis, among other things,
143  // could fail in a dangerous way. Ultimately, SCEV will be improved to avoid
144  // producing an expression involving multiple pointers. Until then, we must
145  // bail out here.
146  //
147  // Retrieve the pointer operand of the GEP. Don't use GetUnderlyingObject
148  // because it understands lcssa phis while SCEV does not.
149  Value *FromPtr = FromVal;
150  Value *ToPtr = ToVal;
151  if (GEPOperator *GEP = dyn_cast<GEPOperator>(FromVal)) {
152    FromPtr = GEP->getPointerOperand();
153  }
154  if (GEPOperator *GEP = dyn_cast<GEPOperator>(ToVal)) {
155    ToPtr = GEP->getPointerOperand();
156  }
157  if (FromPtr != FromVal || ToPtr != ToVal) {
158    // Quickly check the common case
159    if (FromPtr == ToPtr)
160      return true;
161
162    // SCEV may have rewritten an expression that produces the GEP's pointer
163    // operand. That's ok as long as the pointer operand has the same base
164    // pointer. Unlike GetUnderlyingObject(), getPointerBase() will find the
165    // base of a recurrence. This handles the case in which SCEV expansion
166    // converts a pointer type recurrence into a nonrecurrent pointer base
167    // indexed by an integer recurrence.
168
169    // If the GEP base pointer is a vector of pointers, abort.
170    if (!FromPtr->getType()->isPointerTy() || !ToPtr->getType()->isPointerTy())
171      return false;
172
173    const SCEV *FromBase = SE->getPointerBase(SE->getSCEV(FromPtr));
174    const SCEV *ToBase = SE->getPointerBase(SE->getSCEV(ToPtr));
175    if (FromBase == ToBase)
176      return true;
177
178    DEBUG(dbgs() << "INDVARS: GEP rewrite bail out "
179          << *FromBase << " != " << *ToBase << "\n");
180
181    return false;
182  }
183  return true;
184}
185
186/// Determine the insertion point for this user. By default, insert immediately
187/// before the user. SCEVExpander or LICM will hoist loop invariants out of the
188/// loop. For PHI nodes, there may be multiple uses, so compute the nearest
189/// common dominator for the incoming blocks.
190static Instruction *getInsertPointForUses(Instruction *User, Value *Def,
191                                          DominatorTree *DT) {
192  PHINode *PHI = dyn_cast<PHINode>(User);
193  if (!PHI)
194    return User;
195
196  Instruction *InsertPt = 0;
197  for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i) {
198    if (PHI->getIncomingValue(i) != Def)
199      continue;
200
201    BasicBlock *InsertBB = PHI->getIncomingBlock(i);
202    if (!InsertPt) {
203      InsertPt = InsertBB->getTerminator();
204      continue;
205    }
206    InsertBB = DT->findNearestCommonDominator(InsertPt->getParent(), InsertBB);
207    InsertPt = InsertBB->getTerminator();
208  }
209  assert(InsertPt && "Missing phi operand");
210  assert((!isa<Instruction>(Def) ||
211          DT->dominates(cast<Instruction>(Def), InsertPt)) &&
212         "def does not dominate all uses");
213  return InsertPt;
214}
215
216//===----------------------------------------------------------------------===//
217// RewriteNonIntegerIVs and helpers. Prefer integer IVs.
218//===----------------------------------------------------------------------===//
219
220/// ConvertToSInt - Convert APF to an integer, if possible.
221static bool ConvertToSInt(const APFloat &APF, int64_t &IntVal) {
222  bool isExact = false;
223  // See if we can convert this to an int64_t
224  uint64_t UIntVal;
225  if (APF.convertToInteger(&UIntVal, 64, true, APFloat::rmTowardZero,
226                           &isExact) != APFloat::opOK || !isExact)
227    return false;
228  IntVal = UIntVal;
229  return true;
230}
231
232/// HandleFloatingPointIV - If the loop has floating induction variable
233/// then insert corresponding integer induction variable if possible.
234/// For example,
235/// for(double i = 0; i < 10000; ++i)
236///   bar(i)
237/// is converted into
238/// for(int i = 0; i < 10000; ++i)
239///   bar((double)i);
240///
241void IndVarSimplify::HandleFloatingPointIV(Loop *L, PHINode *PN) {
242  unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0));
243  unsigned BackEdge     = IncomingEdge^1;
244
245  // Check incoming value.
246  ConstantFP *InitValueVal =
247    dyn_cast<ConstantFP>(PN->getIncomingValue(IncomingEdge));
248
249  int64_t InitValue;
250  if (!InitValueVal || !ConvertToSInt(InitValueVal->getValueAPF(), InitValue))
251    return;
252
253  // Check IV increment. Reject this PN if increment operation is not
254  // an add or increment value can not be represented by an integer.
255  BinaryOperator *Incr =
256    dyn_cast<BinaryOperator>(PN->getIncomingValue(BackEdge));
257  if (Incr == 0 || Incr->getOpcode() != Instruction::FAdd) return;
258
259  // If this is not an add of the PHI with a constantfp, or if the constant fp
260  // is not an integer, bail out.
261  ConstantFP *IncValueVal = dyn_cast<ConstantFP>(Incr->getOperand(1));
262  int64_t IncValue;
263  if (IncValueVal == 0 || Incr->getOperand(0) != PN ||
264      !ConvertToSInt(IncValueVal->getValueAPF(), IncValue))
265    return;
266
267  // Check Incr uses. One user is PN and the other user is an exit condition
268  // used by the conditional terminator.
269  Value::use_iterator IncrUse = Incr->use_begin();
270  Instruction *U1 = cast<Instruction>(*IncrUse++);
271  if (IncrUse == Incr->use_end()) return;
272  Instruction *U2 = cast<Instruction>(*IncrUse++);
273  if (IncrUse != Incr->use_end()) return;
274
275  // Find exit condition, which is an fcmp.  If it doesn't exist, or if it isn't
276  // only used by a branch, we can't transform it.
277  FCmpInst *Compare = dyn_cast<FCmpInst>(U1);
278  if (!Compare)
279    Compare = dyn_cast<FCmpInst>(U2);
280  if (Compare == 0 || !Compare->hasOneUse() ||
281      !isa<BranchInst>(Compare->use_back()))
282    return;
283
284  BranchInst *TheBr = cast<BranchInst>(Compare->use_back());
285
286  // We need to verify that the branch actually controls the iteration count
287  // of the loop.  If not, the new IV can overflow and no one will notice.
288  // The branch block must be in the loop and one of the successors must be out
289  // of the loop.
290  assert(TheBr->isConditional() && "Can't use fcmp if not conditional");
291  if (!L->contains(TheBr->getParent()) ||
292      (L->contains(TheBr->getSuccessor(0)) &&
293       L->contains(TheBr->getSuccessor(1))))
294    return;
295
296
297  // If it isn't a comparison with an integer-as-fp (the exit value), we can't
298  // transform it.
299  ConstantFP *ExitValueVal = dyn_cast<ConstantFP>(Compare->getOperand(1));
300  int64_t ExitValue;
301  if (ExitValueVal == 0 ||
302      !ConvertToSInt(ExitValueVal->getValueAPF(), ExitValue))
303    return;
304
305  // Find new predicate for integer comparison.
306  CmpInst::Predicate NewPred = CmpInst::BAD_ICMP_PREDICATE;
307  switch (Compare->getPredicate()) {
308  default: return;  // Unknown comparison.
309  case CmpInst::FCMP_OEQ:
310  case CmpInst::FCMP_UEQ: NewPred = CmpInst::ICMP_EQ; break;
311  case CmpInst::FCMP_ONE:
312  case CmpInst::FCMP_UNE: NewPred = CmpInst::ICMP_NE; break;
313  case CmpInst::FCMP_OGT:
314  case CmpInst::FCMP_UGT: NewPred = CmpInst::ICMP_SGT; break;
315  case CmpInst::FCMP_OGE:
316  case CmpInst::FCMP_UGE: NewPred = CmpInst::ICMP_SGE; break;
317  case CmpInst::FCMP_OLT:
318  case CmpInst::FCMP_ULT: NewPred = CmpInst::ICMP_SLT; break;
319  case CmpInst::FCMP_OLE:
320  case CmpInst::FCMP_ULE: NewPred = CmpInst::ICMP_SLE; break;
321  }
322
323  // We convert the floating point induction variable to a signed i32 value if
324  // we can.  This is only safe if the comparison will not overflow in a way
325  // that won't be trapped by the integer equivalent operations.  Check for this
326  // now.
327  // TODO: We could use i64 if it is native and the range requires it.
328
329  // The start/stride/exit values must all fit in signed i32.
330  if (!isInt<32>(InitValue) || !isInt<32>(IncValue) || !isInt<32>(ExitValue))
331    return;
332
333  // If not actually striding (add x, 0.0), avoid touching the code.
334  if (IncValue == 0)
335    return;
336
337  // Positive and negative strides have different safety conditions.
338  if (IncValue > 0) {
339    // If we have a positive stride, we require the init to be less than the
340    // exit value.
341    if (InitValue >= ExitValue)
342      return;
343
344    uint32_t Range = uint32_t(ExitValue-InitValue);
345    // Check for infinite loop, either:
346    // while (i <= Exit) or until (i > Exit)
347    if (NewPred == CmpInst::ICMP_SLE || NewPred == CmpInst::ICMP_SGT) {
348      if (++Range == 0) return;  // Range overflows.
349    }
350
351    unsigned Leftover = Range % uint32_t(IncValue);
352
353    // If this is an equality comparison, we require that the strided value
354    // exactly land on the exit value, otherwise the IV condition will wrap
355    // around and do things the fp IV wouldn't.
356    if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) &&
357        Leftover != 0)
358      return;
359
360    // If the stride would wrap around the i32 before exiting, we can't
361    // transform the IV.
362    if (Leftover != 0 && int32_t(ExitValue+IncValue) < ExitValue)
363      return;
364
365  } else {
366    // If we have a negative stride, we require the init to be greater than the
367    // exit value.
368    if (InitValue <= ExitValue)
369      return;
370
371    uint32_t Range = uint32_t(InitValue-ExitValue);
372    // Check for infinite loop, either:
373    // while (i >= Exit) or until (i < Exit)
374    if (NewPred == CmpInst::ICMP_SGE || NewPred == CmpInst::ICMP_SLT) {
375      if (++Range == 0) return;  // Range overflows.
376    }
377
378    unsigned Leftover = Range % uint32_t(-IncValue);
379
380    // If this is an equality comparison, we require that the strided value
381    // exactly land on the exit value, otherwise the IV condition will wrap
382    // around and do things the fp IV wouldn't.
383    if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) &&
384        Leftover != 0)
385      return;
386
387    // If the stride would wrap around the i32 before exiting, we can't
388    // transform the IV.
389    if (Leftover != 0 && int32_t(ExitValue+IncValue) > ExitValue)
390      return;
391  }
392
393  IntegerType *Int32Ty = Type::getInt32Ty(PN->getContext());
394
395  // Insert new integer induction variable.
396  PHINode *NewPHI = PHINode::Create(Int32Ty, 2, PN->getName()+".int", PN);
397  NewPHI->addIncoming(ConstantInt::get(Int32Ty, InitValue),
398                      PN->getIncomingBlock(IncomingEdge));
399
400  Value *NewAdd =
401    BinaryOperator::CreateAdd(NewPHI, ConstantInt::get(Int32Ty, IncValue),
402                              Incr->getName()+".int", Incr);
403  NewPHI->addIncoming(NewAdd, PN->getIncomingBlock(BackEdge));
404
405  ICmpInst *NewCompare = new ICmpInst(TheBr, NewPred, NewAdd,
406                                      ConstantInt::get(Int32Ty, ExitValue),
407                                      Compare->getName());
408
409  // In the following deletions, PN may become dead and may be deleted.
410  // Use a WeakVH to observe whether this happens.
411  WeakVH WeakPH = PN;
412
413  // Delete the old floating point exit comparison.  The branch starts using the
414  // new comparison.
415  NewCompare->takeName(Compare);
416  Compare->replaceAllUsesWith(NewCompare);
417  RecursivelyDeleteTriviallyDeadInstructions(Compare, TLI);
418
419  // Delete the old floating point increment.
420  Incr->replaceAllUsesWith(UndefValue::get(Incr->getType()));
421  RecursivelyDeleteTriviallyDeadInstructions(Incr, TLI);
422
423  // If the FP induction variable still has uses, this is because something else
424  // in the loop uses its value.  In order to canonicalize the induction
425  // variable, we chose to eliminate the IV and rewrite it in terms of an
426  // int->fp cast.
427  //
428  // We give preference to sitofp over uitofp because it is faster on most
429  // platforms.
430  if (WeakPH) {
431    Value *Conv = new SIToFPInst(NewPHI, PN->getType(), "indvar.conv",
432                                 PN->getParent()->getFirstInsertionPt());
433    PN->replaceAllUsesWith(Conv);
434    RecursivelyDeleteTriviallyDeadInstructions(PN, TLI);
435  }
436  Changed = true;
437}
438
439void IndVarSimplify::RewriteNonIntegerIVs(Loop *L) {
440  // First step.  Check to see if there are any floating-point recurrences.
441  // If there are, change them into integer recurrences, permitting analysis by
442  // the SCEV routines.
443  //
444  BasicBlock *Header = L->getHeader();
445
446  SmallVector<WeakVH, 8> PHIs;
447  for (BasicBlock::iterator I = Header->begin();
448       PHINode *PN = dyn_cast<PHINode>(I); ++I)
449    PHIs.push_back(PN);
450
451  for (unsigned i = 0, e = PHIs.size(); i != e; ++i)
452    if (PHINode *PN = dyn_cast_or_null<PHINode>(&*PHIs[i]))
453      HandleFloatingPointIV(L, PN);
454
455  // If the loop previously had floating-point IV, ScalarEvolution
456  // may not have been able to compute a trip count. Now that we've done some
457  // re-writing, the trip count may be computable.
458  if (Changed)
459    SE->forgetLoop(L);
460}
461
462//===----------------------------------------------------------------------===//
463// RewriteLoopExitValues - Optimize IV users outside the loop.
464// As a side effect, reduces the amount of IV processing within the loop.
465//===----------------------------------------------------------------------===//
466
467/// RewriteLoopExitValues - Check to see if this loop has a computable
468/// loop-invariant execution count.  If so, this means that we can compute the
469/// final value of any expressions that are recurrent in the loop, and
470/// substitute the exit values from the loop into any instructions outside of
471/// the loop that use the final values of the current expressions.
472///
473/// This is mostly redundant with the regular IndVarSimplify activities that
474/// happen later, except that it's more powerful in some cases, because it's
475/// able to brute-force evaluate arbitrary instructions as long as they have
476/// constant operands at the beginning of the loop.
477void IndVarSimplify::RewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter) {
478  // Verify the input to the pass in already in LCSSA form.
479  assert(L->isLCSSAForm(*DT));
480
481  SmallVector<BasicBlock*, 8> ExitBlocks;
482  L->getUniqueExitBlocks(ExitBlocks);
483
484  // Find all values that are computed inside the loop, but used outside of it.
485  // Because of LCSSA, these values will only occur in LCSSA PHI Nodes.  Scan
486  // the exit blocks of the loop to find them.
487  for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
488    BasicBlock *ExitBB = ExitBlocks[i];
489
490    // If there are no PHI nodes in this exit block, then no values defined
491    // inside the loop are used on this path, skip it.
492    PHINode *PN = dyn_cast<PHINode>(ExitBB->begin());
493    if (!PN) continue;
494
495    unsigned NumPreds = PN->getNumIncomingValues();
496
497    // Iterate over all of the PHI nodes.
498    BasicBlock::iterator BBI = ExitBB->begin();
499    while ((PN = dyn_cast<PHINode>(BBI++))) {
500      if (PN->use_empty())
501        continue; // dead use, don't replace it
502
503      // SCEV only supports integer expressions for now.
504      if (!PN->getType()->isIntegerTy() && !PN->getType()->isPointerTy())
505        continue;
506
507      // It's necessary to tell ScalarEvolution about this explicitly so that
508      // it can walk the def-use list and forget all SCEVs, as it may not be
509      // watching the PHI itself. Once the new exit value is in place, there
510      // may not be a def-use connection between the loop and every instruction
511      // which got a SCEVAddRecExpr for that loop.
512      SE->forgetValue(PN);
513
514      // Iterate over all of the values in all the PHI nodes.
515      for (unsigned i = 0; i != NumPreds; ++i) {
516        // If the value being merged in is not integer or is not defined
517        // in the loop, skip it.
518        Value *InVal = PN->getIncomingValue(i);
519        if (!isa<Instruction>(InVal))
520          continue;
521
522        // If this pred is for a subloop, not L itself, skip it.
523        if (LI->getLoopFor(PN->getIncomingBlock(i)) != L)
524          continue; // The Block is in a subloop, skip it.
525
526        // Check that InVal is defined in the loop.
527        Instruction *Inst = cast<Instruction>(InVal);
528        if (!L->contains(Inst))
529          continue;
530
531        // Okay, this instruction has a user outside of the current loop
532        // and varies predictably *inside* the loop.  Evaluate the value it
533        // contains when the loop exits, if possible.
534        const SCEV *ExitValue = SE->getSCEVAtScope(Inst, L->getParentLoop());
535        if (!SE->isLoopInvariant(ExitValue, L) || !isSafeToExpand(ExitValue))
536          continue;
537
538        // Computing the value outside of the loop brings no benefit if :
539        //  - it is definitely used inside the loop in a way which can not be
540        //    optimized away.
541        //  - no use outside of the loop can take advantage of hoisting the
542        //    computation out of the loop
543        if (ExitValue->getSCEVType()>=scMulExpr) {
544          unsigned NumHardInternalUses = 0;
545          unsigned NumSoftExternalUses = 0;
546          unsigned NumUses = 0;
547          for (Value::use_iterator IB=Inst->use_begin(), IE=Inst->use_end();
548               IB!=IE && NumUses<=6 ; ++IB) {
549            Instruction *UseInstr = cast<Instruction>(*IB);
550            unsigned Opc = UseInstr->getOpcode();
551            NumUses++;
552            if (L->contains(UseInstr)) {
553              if (Opc == Instruction::Call || Opc == Instruction::Ret)
554                NumHardInternalUses++;
555            } else {
556              if (Opc == Instruction::PHI) {
557                // Do not count the Phi as a use. LCSSA may have inserted
558                // plenty of trivial ones.
559                NumUses--;
560                for (Value::use_iterator PB=UseInstr->use_begin(),
561                                         PE=UseInstr->use_end();
562                     PB!=PE && NumUses<=6 ; ++PB, ++NumUses) {
563                  unsigned PhiOpc = cast<Instruction>(*PB)->getOpcode();
564                  if (PhiOpc != Instruction::Call && PhiOpc != Instruction::Ret)
565                    NumSoftExternalUses++;
566                }
567                continue;
568              }
569              if (Opc != Instruction::Call && Opc != Instruction::Ret)
570                NumSoftExternalUses++;
571            }
572          }
573          if (NumUses <= 6 && NumHardInternalUses && !NumSoftExternalUses)
574            continue;
575        }
576
577        Value *ExitVal = Rewriter.expandCodeFor(ExitValue, PN->getType(), Inst);
578
579        DEBUG(dbgs() << "INDVARS: RLEV: AfterLoopVal = " << *ExitVal << '\n'
580                     << "  LoopVal = " << *Inst << "\n");
581
582        if (!isValidRewrite(Inst, ExitVal)) {
583          DeadInsts.push_back(ExitVal);
584          continue;
585        }
586        Changed = true;
587        ++NumReplaced;
588
589        PN->setIncomingValue(i, ExitVal);
590
591        // If this instruction is dead now, delete it. Don't do it now to avoid
592        // invalidating iterators.
593        if (isInstructionTriviallyDead(Inst, TLI))
594          DeadInsts.push_back(Inst);
595
596        if (NumPreds == 1) {
597          // Completely replace a single-pred PHI. This is safe, because the
598          // NewVal won't be variant in the loop, so we don't need an LCSSA phi
599          // node anymore.
600          PN->replaceAllUsesWith(ExitVal);
601          PN->eraseFromParent();
602        }
603      }
604      if (NumPreds != 1) {
605        // Clone the PHI and delete the original one. This lets IVUsers and
606        // any other maps purge the original user from their records.
607        PHINode *NewPN = cast<PHINode>(PN->clone());
608        NewPN->takeName(PN);
609        NewPN->insertBefore(PN);
610        PN->replaceAllUsesWith(NewPN);
611        PN->eraseFromParent();
612      }
613    }
614  }
615
616  // The insertion point instruction may have been deleted; clear it out
617  // so that the rewriter doesn't trip over it later.
618  Rewriter.clearInsertPoint();
619}
620
621//===----------------------------------------------------------------------===//
622//  IV Widening - Extend the width of an IV to cover its widest uses.
623//===----------------------------------------------------------------------===//
624
625namespace {
626  // Collect information about induction variables that are used by sign/zero
627  // extend operations. This information is recorded by CollectExtend and
628  // provides the input to WidenIV.
629  struct WideIVInfo {
630    PHINode *NarrowIV;
631    Type *WidestNativeType; // Widest integer type created [sz]ext
632    bool IsSigned;          // Was an sext user seen before a zext?
633
634    WideIVInfo() : NarrowIV(0), WidestNativeType(0), IsSigned(false) {}
635  };
636
637  class WideIVVisitor : public IVVisitor {
638    ScalarEvolution *SE;
639    const DataLayout *TD;
640
641  public:
642    WideIVInfo WI;
643
644    WideIVVisitor(PHINode *NarrowIV, ScalarEvolution *SCEV,
645                  const DataLayout *TData) :
646      SE(SCEV), TD(TData) { WI.NarrowIV = NarrowIV; }
647
648    // Implement the interface used by simplifyUsersOfIV.
649    virtual void visitCast(CastInst *Cast);
650  };
651}
652
653/// visitCast - Update information about the induction variable that is
654/// extended by this sign or zero extend operation. This is used to determine
655/// the final width of the IV before actually widening it.
656void WideIVVisitor::visitCast(CastInst *Cast) {
657  bool IsSigned = Cast->getOpcode() == Instruction::SExt;
658  if (!IsSigned && Cast->getOpcode() != Instruction::ZExt)
659    return;
660
661  Type *Ty = Cast->getType();
662  uint64_t Width = SE->getTypeSizeInBits(Ty);
663  if (TD && !TD->isLegalInteger(Width))
664    return;
665
666  if (!WI.WidestNativeType) {
667    WI.WidestNativeType = SE->getEffectiveSCEVType(Ty);
668    WI.IsSigned = IsSigned;
669    return;
670  }
671
672  // We extend the IV to satisfy the sign of its first user, arbitrarily.
673  if (WI.IsSigned != IsSigned)
674    return;
675
676  if (Width > SE->getTypeSizeInBits(WI.WidestNativeType))
677    WI.WidestNativeType = SE->getEffectiveSCEVType(Ty);
678}
679
680namespace {
681
682/// NarrowIVDefUse - Record a link in the Narrow IV def-use chain along with the
683/// WideIV that computes the same value as the Narrow IV def.  This avoids
684/// caching Use* pointers.
685struct NarrowIVDefUse {
686  Instruction *NarrowDef;
687  Instruction *NarrowUse;
688  Instruction *WideDef;
689
690  NarrowIVDefUse(): NarrowDef(0), NarrowUse(0), WideDef(0) {}
691
692  NarrowIVDefUse(Instruction *ND, Instruction *NU, Instruction *WD):
693    NarrowDef(ND), NarrowUse(NU), WideDef(WD) {}
694};
695
696/// WidenIV - The goal of this transform is to remove sign and zero extends
697/// without creating any new induction variables. To do this, it creates a new
698/// phi of the wider type and redirects all users, either removing extends or
699/// inserting truncs whenever we stop propagating the type.
700///
701class WidenIV {
702  // Parameters
703  PHINode *OrigPhi;
704  Type *WideType;
705  bool IsSigned;
706
707  // Context
708  LoopInfo        *LI;
709  Loop            *L;
710  ScalarEvolution *SE;
711  DominatorTree   *DT;
712
713  // Result
714  PHINode *WidePhi;
715  Instruction *WideInc;
716  const SCEV *WideIncExpr;
717  SmallVectorImpl<WeakVH> &DeadInsts;
718
719  SmallPtrSet<Instruction*,16> Widened;
720  SmallVector<NarrowIVDefUse, 8> NarrowIVUsers;
721
722public:
723  WidenIV(const WideIVInfo &WI, LoopInfo *LInfo,
724          ScalarEvolution *SEv, DominatorTree *DTree,
725          SmallVectorImpl<WeakVH> &DI) :
726    OrigPhi(WI.NarrowIV),
727    WideType(WI.WidestNativeType),
728    IsSigned(WI.IsSigned),
729    LI(LInfo),
730    L(LI->getLoopFor(OrigPhi->getParent())),
731    SE(SEv),
732    DT(DTree),
733    WidePhi(0),
734    WideInc(0),
735    WideIncExpr(0),
736    DeadInsts(DI) {
737    assert(L->getHeader() == OrigPhi->getParent() && "Phi must be an IV");
738  }
739
740  PHINode *CreateWideIV(SCEVExpander &Rewriter);
741
742protected:
743  Value *getExtend(Value *NarrowOper, Type *WideType, bool IsSigned,
744                   Instruction *Use);
745
746  Instruction *CloneIVUser(NarrowIVDefUse DU);
747
748  const SCEVAddRecExpr *GetWideRecurrence(Instruction *NarrowUse);
749
750  const SCEVAddRecExpr* GetExtendedOperandRecurrence(NarrowIVDefUse DU);
751
752  Instruction *WidenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter);
753
754  void pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef);
755};
756} // anonymous namespace
757
758/// isLoopInvariant - Perform a quick domtree based check for loop invariance
759/// assuming that V is used within the loop. LoopInfo::isLoopInvariant() seems
760/// gratuitous for this purpose.
761static bool isLoopInvariant(Value *V, const Loop *L, const DominatorTree *DT) {
762  Instruction *Inst = dyn_cast<Instruction>(V);
763  if (!Inst)
764    return true;
765
766  return DT->properlyDominates(Inst->getParent(), L->getHeader());
767}
768
769Value *WidenIV::getExtend(Value *NarrowOper, Type *WideType, bool IsSigned,
770                          Instruction *Use) {
771  // Set the debug location and conservative insertion point.
772  IRBuilder<> Builder(Use);
773  // Hoist the insertion point into loop preheaders as far as possible.
774  for (const Loop *L = LI->getLoopFor(Use->getParent());
775       L && L->getLoopPreheader() && isLoopInvariant(NarrowOper, L, DT);
776       L = L->getParentLoop())
777    Builder.SetInsertPoint(L->getLoopPreheader()->getTerminator());
778
779  return IsSigned ? Builder.CreateSExt(NarrowOper, WideType) :
780                    Builder.CreateZExt(NarrowOper, WideType);
781}
782
783/// CloneIVUser - Instantiate a wide operation to replace a narrow
784/// operation. This only needs to handle operations that can evaluation to
785/// SCEVAddRec. It can safely return 0 for any operation we decide not to clone.
786Instruction *WidenIV::CloneIVUser(NarrowIVDefUse DU) {
787  unsigned Opcode = DU.NarrowUse->getOpcode();
788  switch (Opcode) {
789  default:
790    return 0;
791  case Instruction::Add:
792  case Instruction::Mul:
793  case Instruction::UDiv:
794  case Instruction::Sub:
795  case Instruction::And:
796  case Instruction::Or:
797  case Instruction::Xor:
798  case Instruction::Shl:
799  case Instruction::LShr:
800  case Instruction::AShr:
801    DEBUG(dbgs() << "Cloning IVUser: " << *DU.NarrowUse << "\n");
802
803    // Replace NarrowDef operands with WideDef. Otherwise, we don't know
804    // anything about the narrow operand yet so must insert a [sz]ext. It is
805    // probably loop invariant and will be folded or hoisted. If it actually
806    // comes from a widened IV, it should be removed during a future call to
807    // WidenIVUse.
808    Value *LHS = (DU.NarrowUse->getOperand(0) == DU.NarrowDef) ? DU.WideDef :
809      getExtend(DU.NarrowUse->getOperand(0), WideType, IsSigned, DU.NarrowUse);
810    Value *RHS = (DU.NarrowUse->getOperand(1) == DU.NarrowDef) ? DU.WideDef :
811      getExtend(DU.NarrowUse->getOperand(1), WideType, IsSigned, DU.NarrowUse);
812
813    BinaryOperator *NarrowBO = cast<BinaryOperator>(DU.NarrowUse);
814    BinaryOperator *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(),
815                                                    LHS, RHS,
816                                                    NarrowBO->getName());
817    IRBuilder<> Builder(DU.NarrowUse);
818    Builder.Insert(WideBO);
819    if (const OverflowingBinaryOperator *OBO =
820        dyn_cast<OverflowingBinaryOperator>(NarrowBO)) {
821      if (OBO->hasNoUnsignedWrap()) WideBO->setHasNoUnsignedWrap();
822      if (OBO->hasNoSignedWrap()) WideBO->setHasNoSignedWrap();
823    }
824    return WideBO;
825  }
826}
827
828/// No-wrap operations can transfer sign extension of their result to their
829/// operands. Generate the SCEV value for the widened operation without
830/// actually modifying the IR yet. If the expression after extending the
831/// operands is an AddRec for this loop, return it.
832const SCEVAddRecExpr* WidenIV::GetExtendedOperandRecurrence(NarrowIVDefUse DU) {
833  // Handle the common case of add<nsw/nuw>
834  if (DU.NarrowUse->getOpcode() != Instruction::Add)
835    return 0;
836
837  // One operand (NarrowDef) has already been extended to WideDef. Now determine
838  // if extending the other will lead to a recurrence.
839  unsigned ExtendOperIdx = DU.NarrowUse->getOperand(0) == DU.NarrowDef ? 1 : 0;
840  assert(DU.NarrowUse->getOperand(1-ExtendOperIdx) == DU.NarrowDef && "bad DU");
841
842  const SCEV *ExtendOperExpr = 0;
843  const OverflowingBinaryOperator *OBO =
844    cast<OverflowingBinaryOperator>(DU.NarrowUse);
845  if (IsSigned && OBO->hasNoSignedWrap())
846    ExtendOperExpr = SE->getSignExtendExpr(
847      SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType);
848  else if(!IsSigned && OBO->hasNoUnsignedWrap())
849    ExtendOperExpr = SE->getZeroExtendExpr(
850      SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType);
851  else
852    return 0;
853
854  // When creating this AddExpr, don't apply the current operations NSW or NUW
855  // flags. This instruction may be guarded by control flow that the no-wrap
856  // behavior depends on. Non-control-equivalent instructions can be mapped to
857  // the same SCEV expression, and it would be incorrect to transfer NSW/NUW
858  // semantics to those operations.
859  const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(
860    SE->getAddExpr(SE->getSCEV(DU.WideDef), ExtendOperExpr));
861
862  if (!AddRec || AddRec->getLoop() != L)
863    return 0;
864  return AddRec;
865}
866
867/// GetWideRecurrence - Is this instruction potentially interesting from
868/// IVUsers' perspective after widening it's type? In other words, can the
869/// extend be safely hoisted out of the loop with SCEV reducing the value to a
870/// recurrence on the same loop. If so, return the sign or zero extended
871/// recurrence. Otherwise return NULL.
872const SCEVAddRecExpr *WidenIV::GetWideRecurrence(Instruction *NarrowUse) {
873  if (!SE->isSCEVable(NarrowUse->getType()))
874    return 0;
875
876  const SCEV *NarrowExpr = SE->getSCEV(NarrowUse);
877  if (SE->getTypeSizeInBits(NarrowExpr->getType())
878      >= SE->getTypeSizeInBits(WideType)) {
879    // NarrowUse implicitly widens its operand. e.g. a gep with a narrow
880    // index. So don't follow this use.
881    return 0;
882  }
883
884  const SCEV *WideExpr = IsSigned ?
885    SE->getSignExtendExpr(NarrowExpr, WideType) :
886    SE->getZeroExtendExpr(NarrowExpr, WideType);
887  const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(WideExpr);
888  if (!AddRec || AddRec->getLoop() != L)
889    return 0;
890  return AddRec;
891}
892
893/// WidenIVUse - Determine whether an individual user of the narrow IV can be
894/// widened. If so, return the wide clone of the user.
895Instruction *WidenIV::WidenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter) {
896
897  // Stop traversing the def-use chain at inner-loop phis or post-loop phis.
898  if (isa<PHINode>(DU.NarrowUse) &&
899      LI->getLoopFor(DU.NarrowUse->getParent()) != L)
900    return 0;
901
902  // Our raison d'etre! Eliminate sign and zero extension.
903  if (IsSigned ? isa<SExtInst>(DU.NarrowUse) : isa<ZExtInst>(DU.NarrowUse)) {
904    Value *NewDef = DU.WideDef;
905    if (DU.NarrowUse->getType() != WideType) {
906      unsigned CastWidth = SE->getTypeSizeInBits(DU.NarrowUse->getType());
907      unsigned IVWidth = SE->getTypeSizeInBits(WideType);
908      if (CastWidth < IVWidth) {
909        // The cast isn't as wide as the IV, so insert a Trunc.
910        IRBuilder<> Builder(DU.NarrowUse);
911        NewDef = Builder.CreateTrunc(DU.WideDef, DU.NarrowUse->getType());
912      }
913      else {
914        // A wider extend was hidden behind a narrower one. This may induce
915        // another round of IV widening in which the intermediate IV becomes
916        // dead. It should be very rare.
917        DEBUG(dbgs() << "INDVARS: New IV " << *WidePhi
918              << " not wide enough to subsume " << *DU.NarrowUse << "\n");
919        DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef);
920        NewDef = DU.NarrowUse;
921      }
922    }
923    if (NewDef != DU.NarrowUse) {
924      DEBUG(dbgs() << "INDVARS: eliminating " << *DU.NarrowUse
925            << " replaced by " << *DU.WideDef << "\n");
926      ++NumElimExt;
927      DU.NarrowUse->replaceAllUsesWith(NewDef);
928      DeadInsts.push_back(DU.NarrowUse);
929    }
930    // Now that the extend is gone, we want to expose it's uses for potential
931    // further simplification. We don't need to directly inform SimplifyIVUsers
932    // of the new users, because their parent IV will be processed later as a
933    // new loop phi. If we preserved IVUsers analysis, we would also want to
934    // push the uses of WideDef here.
935
936    // No further widening is needed. The deceased [sz]ext had done it for us.
937    return 0;
938  }
939
940  // Does this user itself evaluate to a recurrence after widening?
941  const SCEVAddRecExpr *WideAddRec = GetWideRecurrence(DU.NarrowUse);
942  if (!WideAddRec) {
943      WideAddRec = GetExtendedOperandRecurrence(DU);
944  }
945  if (!WideAddRec) {
946    // This user does not evaluate to a recurence after widening, so don't
947    // follow it. Instead insert a Trunc to kill off the original use,
948    // eventually isolating the original narrow IV so it can be removed.
949    IRBuilder<> Builder(getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT));
950    Value *Trunc = Builder.CreateTrunc(DU.WideDef, DU.NarrowDef->getType());
951    DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, Trunc);
952    return 0;
953  }
954  // Assume block terminators cannot evaluate to a recurrence. We can't to
955  // insert a Trunc after a terminator if there happens to be a critical edge.
956  assert(DU.NarrowUse != DU.NarrowUse->getParent()->getTerminator() &&
957         "SCEV is not expected to evaluate a block terminator");
958
959  // Reuse the IV increment that SCEVExpander created as long as it dominates
960  // NarrowUse.
961  Instruction *WideUse = 0;
962  if (WideAddRec == WideIncExpr
963      && Rewriter.hoistIVInc(WideInc, DU.NarrowUse))
964    WideUse = WideInc;
965  else {
966    WideUse = CloneIVUser(DU);
967    if (!WideUse)
968      return 0;
969  }
970  // Evaluation of WideAddRec ensured that the narrow expression could be
971  // extended outside the loop without overflow. This suggests that the wide use
972  // evaluates to the same expression as the extended narrow use, but doesn't
973  // absolutely guarantee it. Hence the following failsafe check. In rare cases
974  // where it fails, we simply throw away the newly created wide use.
975  if (WideAddRec != SE->getSCEV(WideUse)) {
976    DEBUG(dbgs() << "Wide use expression mismatch: " << *WideUse
977          << ": " << *SE->getSCEV(WideUse) << " != " << *WideAddRec << "\n");
978    DeadInsts.push_back(WideUse);
979    return 0;
980  }
981
982  // Returning WideUse pushes it on the worklist.
983  return WideUse;
984}
985
986/// pushNarrowIVUsers - Add eligible users of NarrowDef to NarrowIVUsers.
987///
988void WidenIV::pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef) {
989  for (Value::use_iterator UI = NarrowDef->use_begin(),
990         UE = NarrowDef->use_end(); UI != UE; ++UI) {
991    Instruction *NarrowUse = cast<Instruction>(*UI);
992
993    // Handle data flow merges and bizarre phi cycles.
994    if (!Widened.insert(NarrowUse))
995      continue;
996
997    NarrowIVUsers.push_back(NarrowIVDefUse(NarrowDef, NarrowUse, WideDef));
998  }
999}
1000
1001/// CreateWideIV - Process a single induction variable. First use the
1002/// SCEVExpander to create a wide induction variable that evaluates to the same
1003/// recurrence as the original narrow IV. Then use a worklist to forward
1004/// traverse the narrow IV's def-use chain. After WidenIVUse has processed all
1005/// interesting IV users, the narrow IV will be isolated for removal by
1006/// DeleteDeadPHIs.
1007///
1008/// It would be simpler to delete uses as they are processed, but we must avoid
1009/// invalidating SCEV expressions.
1010///
1011PHINode *WidenIV::CreateWideIV(SCEVExpander &Rewriter) {
1012  // Is this phi an induction variable?
1013  const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(OrigPhi));
1014  if (!AddRec)
1015    return NULL;
1016
1017  // Widen the induction variable expression.
1018  const SCEV *WideIVExpr = IsSigned ?
1019    SE->getSignExtendExpr(AddRec, WideType) :
1020    SE->getZeroExtendExpr(AddRec, WideType);
1021
1022  assert(SE->getEffectiveSCEVType(WideIVExpr->getType()) == WideType &&
1023         "Expect the new IV expression to preserve its type");
1024
1025  // Can the IV be extended outside the loop without overflow?
1026  AddRec = dyn_cast<SCEVAddRecExpr>(WideIVExpr);
1027  if (!AddRec || AddRec->getLoop() != L)
1028    return NULL;
1029
1030  // An AddRec must have loop-invariant operands. Since this AddRec is
1031  // materialized by a loop header phi, the expression cannot have any post-loop
1032  // operands, so they must dominate the loop header.
1033  assert(SE->properlyDominates(AddRec->getStart(), L->getHeader()) &&
1034         SE->properlyDominates(AddRec->getStepRecurrence(*SE), L->getHeader())
1035         && "Loop header phi recurrence inputs do not dominate the loop");
1036
1037  // The rewriter provides a value for the desired IV expression. This may
1038  // either find an existing phi or materialize a new one. Either way, we
1039  // expect a well-formed cyclic phi-with-increments. i.e. any operand not part
1040  // of the phi-SCC dominates the loop entry.
1041  Instruction *InsertPt = L->getHeader()->begin();
1042  WidePhi = cast<PHINode>(Rewriter.expandCodeFor(AddRec, WideType, InsertPt));
1043
1044  // Remembering the WideIV increment generated by SCEVExpander allows
1045  // WidenIVUse to reuse it when widening the narrow IV's increment. We don't
1046  // employ a general reuse mechanism because the call above is the only call to
1047  // SCEVExpander. Henceforth, we produce 1-to-1 narrow to wide uses.
1048  if (BasicBlock *LatchBlock = L->getLoopLatch()) {
1049    WideInc =
1050      cast<Instruction>(WidePhi->getIncomingValueForBlock(LatchBlock));
1051    WideIncExpr = SE->getSCEV(WideInc);
1052  }
1053
1054  DEBUG(dbgs() << "Wide IV: " << *WidePhi << "\n");
1055  ++NumWidened;
1056
1057  // Traverse the def-use chain using a worklist starting at the original IV.
1058  assert(Widened.empty() && NarrowIVUsers.empty() && "expect initial state" );
1059
1060  Widened.insert(OrigPhi);
1061  pushNarrowIVUsers(OrigPhi, WidePhi);
1062
1063  while (!NarrowIVUsers.empty()) {
1064    NarrowIVDefUse DU = NarrowIVUsers.pop_back_val();
1065
1066    // Process a def-use edge. This may replace the use, so don't hold a
1067    // use_iterator across it.
1068    Instruction *WideUse = WidenIVUse(DU, Rewriter);
1069
1070    // Follow all def-use edges from the previous narrow use.
1071    if (WideUse)
1072      pushNarrowIVUsers(DU.NarrowUse, WideUse);
1073
1074    // WidenIVUse may have removed the def-use edge.
1075    if (DU.NarrowDef->use_empty())
1076      DeadInsts.push_back(DU.NarrowDef);
1077  }
1078  return WidePhi;
1079}
1080
1081//===----------------------------------------------------------------------===//
1082//  Simplification of IV users based on SCEV evaluation.
1083//===----------------------------------------------------------------------===//
1084
1085
1086/// SimplifyAndExtend - Iteratively perform simplification on a worklist of IV
1087/// users. Each successive simplification may push more users which may
1088/// themselves be candidates for simplification.
1089///
1090/// Sign/Zero extend elimination is interleaved with IV simplification.
1091///
1092void IndVarSimplify::SimplifyAndExtend(Loop *L,
1093                                       SCEVExpander &Rewriter,
1094                                       LPPassManager &LPM) {
1095  SmallVector<WideIVInfo, 8> WideIVs;
1096
1097  SmallVector<PHINode*, 8> LoopPhis;
1098  for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
1099    LoopPhis.push_back(cast<PHINode>(I));
1100  }
1101  // Each round of simplification iterates through the SimplifyIVUsers worklist
1102  // for all current phis, then determines whether any IVs can be
1103  // widened. Widening adds new phis to LoopPhis, inducing another round of
1104  // simplification on the wide IVs.
1105  while (!LoopPhis.empty()) {
1106    // Evaluate as many IV expressions as possible before widening any IVs. This
1107    // forces SCEV to set no-wrap flags before evaluating sign/zero
1108    // extension. The first time SCEV attempts to normalize sign/zero extension,
1109    // the result becomes final. So for the most predictable results, we delay
1110    // evaluation of sign/zero extend evaluation until needed, and avoid running
1111    // other SCEV based analysis prior to SimplifyAndExtend.
1112    do {
1113      PHINode *CurrIV = LoopPhis.pop_back_val();
1114
1115      // Information about sign/zero extensions of CurrIV.
1116      WideIVVisitor WIV(CurrIV, SE, TD);
1117
1118      Changed |= simplifyUsersOfIV(CurrIV, SE, &LPM, DeadInsts, &WIV);
1119
1120      if (WIV.WI.WidestNativeType) {
1121        WideIVs.push_back(WIV.WI);
1122      }
1123    } while(!LoopPhis.empty());
1124
1125    for (; !WideIVs.empty(); WideIVs.pop_back()) {
1126      WidenIV Widener(WideIVs.back(), LI, SE, DT, DeadInsts);
1127      if (PHINode *WidePhi = Widener.CreateWideIV(Rewriter)) {
1128        Changed = true;
1129        LoopPhis.push_back(WidePhi);
1130      }
1131    }
1132  }
1133}
1134
1135//===----------------------------------------------------------------------===//
1136//  LinearFunctionTestReplace and its kin. Rewrite the loop exit condition.
1137//===----------------------------------------------------------------------===//
1138
1139/// Check for expressions that ScalarEvolution generates to compute
1140/// BackedgeTakenInfo. If these expressions have not been reduced, then
1141/// expanding them may incur additional cost (albeit in the loop preheader).
1142static bool isHighCostExpansion(const SCEV *S, BranchInst *BI,
1143                                SmallPtrSet<const SCEV*, 8> &Processed,
1144                                ScalarEvolution *SE) {
1145  if (!Processed.insert(S))
1146    return false;
1147
1148  // If the backedge-taken count is a UDiv, it's very likely a UDiv that
1149  // ScalarEvolution's HowFarToZero or HowManyLessThans produced to compute a
1150  // precise expression, rather than a UDiv from the user's code. If we can't
1151  // find a UDiv in the code with some simple searching, assume the former and
1152  // forego rewriting the loop.
1153  if (isa<SCEVUDivExpr>(S)) {
1154    ICmpInst *OrigCond = dyn_cast<ICmpInst>(BI->getCondition());
1155    if (!OrigCond) return true;
1156    const SCEV *R = SE->getSCEV(OrigCond->getOperand(1));
1157    R = SE->getMinusSCEV(R, SE->getConstant(R->getType(), 1));
1158    if (R != S) {
1159      const SCEV *L = SE->getSCEV(OrigCond->getOperand(0));
1160      L = SE->getMinusSCEV(L, SE->getConstant(L->getType(), 1));
1161      if (L != S)
1162        return true;
1163    }
1164  }
1165
1166  // Recurse past add expressions, which commonly occur in the
1167  // BackedgeTakenCount. They may already exist in program code, and if not,
1168  // they are not too expensive rematerialize.
1169  if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
1170    for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
1171         I != E; ++I) {
1172      if (isHighCostExpansion(*I, BI, Processed, SE))
1173        return true;
1174    }
1175    return false;
1176  }
1177
1178  // HowManyLessThans uses a Max expression whenever the loop is not guarded by
1179  // the exit condition.
1180  if (isa<SCEVSMaxExpr>(S) || isa<SCEVUMaxExpr>(S))
1181    return true;
1182
1183  // If we haven't recognized an expensive SCEV pattern, assume it's an
1184  // expression produced by program code.
1185  return false;
1186}
1187
1188/// canExpandBackedgeTakenCount - Return true if this loop's backedge taken
1189/// count expression can be safely and cheaply expanded into an instruction
1190/// sequence that can be used by LinearFunctionTestReplace.
1191///
1192/// TODO: This fails for pointer-type loop counters with greater than one byte
1193/// strides, consequently preventing LFTR from running. For the purpose of LFTR
1194/// we could skip this check in the case that the LFTR loop counter (chosen by
1195/// FindLoopCounter) is also pointer type. Instead, we could directly convert
1196/// the loop test to an inequality test by checking the target data's alignment
1197/// of element types (given that the initial pointer value originates from or is
1198/// used by ABI constrained operation, as opposed to inttoptr/ptrtoint).
1199/// However, we don't yet have a strong motivation for converting loop tests
1200/// into inequality tests.
1201static bool canExpandBackedgeTakenCount(Loop *L, ScalarEvolution *SE) {
1202  const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L);
1203  if (isa<SCEVCouldNotCompute>(BackedgeTakenCount) ||
1204      BackedgeTakenCount->isZero())
1205    return false;
1206
1207  if (!L->getExitingBlock())
1208    return false;
1209
1210  // Can't rewrite non-branch yet.
1211  BranchInst *BI = dyn_cast<BranchInst>(L->getExitingBlock()->getTerminator());
1212  if (!BI)
1213    return false;
1214
1215  SmallPtrSet<const SCEV*, 8> Processed;
1216  if (isHighCostExpansion(BackedgeTakenCount, BI, Processed, SE))
1217    return false;
1218
1219  return true;
1220}
1221
1222/// getLoopPhiForCounter - Return the loop header phi IFF IncV adds a loop
1223/// invariant value to the phi.
1224static PHINode *getLoopPhiForCounter(Value *IncV, Loop *L, DominatorTree *DT) {
1225  Instruction *IncI = dyn_cast<Instruction>(IncV);
1226  if (!IncI)
1227    return 0;
1228
1229  switch (IncI->getOpcode()) {
1230  case Instruction::Add:
1231  case Instruction::Sub:
1232    break;
1233  case Instruction::GetElementPtr:
1234    // An IV counter must preserve its type.
1235    if (IncI->getNumOperands() == 2)
1236      break;
1237  default:
1238    return 0;
1239  }
1240
1241  PHINode *Phi = dyn_cast<PHINode>(IncI->getOperand(0));
1242  if (Phi && Phi->getParent() == L->getHeader()) {
1243    if (isLoopInvariant(IncI->getOperand(1), L, DT))
1244      return Phi;
1245    return 0;
1246  }
1247  if (IncI->getOpcode() == Instruction::GetElementPtr)
1248    return 0;
1249
1250  // Allow add/sub to be commuted.
1251  Phi = dyn_cast<PHINode>(IncI->getOperand(1));
1252  if (Phi && Phi->getParent() == L->getHeader()) {
1253    if (isLoopInvariant(IncI->getOperand(0), L, DT))
1254      return Phi;
1255  }
1256  return 0;
1257}
1258
1259/// Return the compare guarding the loop latch, or NULL for unrecognized tests.
1260static ICmpInst *getLoopTest(Loop *L) {
1261  assert(L->getExitingBlock() && "expected loop exit");
1262
1263  BasicBlock *LatchBlock = L->getLoopLatch();
1264  // Don't bother with LFTR if the loop is not properly simplified.
1265  if (!LatchBlock)
1266    return 0;
1267
1268  BranchInst *BI = dyn_cast<BranchInst>(L->getExitingBlock()->getTerminator());
1269  assert(BI && "expected exit branch");
1270
1271  return dyn_cast<ICmpInst>(BI->getCondition());
1272}
1273
1274/// needsLFTR - LinearFunctionTestReplace policy. Return true unless we can show
1275/// that the current exit test is already sufficiently canonical.
1276static bool needsLFTR(Loop *L, DominatorTree *DT) {
1277  // Do LFTR to simplify the exit condition to an ICMP.
1278  ICmpInst *Cond = getLoopTest(L);
1279  if (!Cond)
1280    return true;
1281
1282  // Do LFTR to simplify the exit ICMP to EQ/NE
1283  ICmpInst::Predicate Pred = Cond->getPredicate();
1284  if (Pred != ICmpInst::ICMP_NE && Pred != ICmpInst::ICMP_EQ)
1285    return true;
1286
1287  // Look for a loop invariant RHS
1288  Value *LHS = Cond->getOperand(0);
1289  Value *RHS = Cond->getOperand(1);
1290  if (!isLoopInvariant(RHS, L, DT)) {
1291    if (!isLoopInvariant(LHS, L, DT))
1292      return true;
1293    std::swap(LHS, RHS);
1294  }
1295  // Look for a simple IV counter LHS
1296  PHINode *Phi = dyn_cast<PHINode>(LHS);
1297  if (!Phi)
1298    Phi = getLoopPhiForCounter(LHS, L, DT);
1299
1300  if (!Phi)
1301    return true;
1302
1303  // Do LFTR if PHI node is defined in the loop, but is *not* a counter.
1304  int Idx = Phi->getBasicBlockIndex(L->getLoopLatch());
1305  if (Idx < 0)
1306    return true;
1307
1308  // Do LFTR if the exit condition's IV is *not* a simple counter.
1309  Value *IncV = Phi->getIncomingValue(Idx);
1310  return Phi != getLoopPhiForCounter(IncV, L, DT);
1311}
1312
1313/// Recursive helper for hasConcreteDef(). Unfortunately, this currently boils
1314/// down to checking that all operands are constant and listing instructions
1315/// that may hide undef.
1316static bool hasConcreteDefImpl(Value *V, SmallPtrSet<Value*, 8> &Visited,
1317                               unsigned Depth) {
1318  if (isa<Constant>(V))
1319    return !isa<UndefValue>(V);
1320
1321  if (Depth >= 6)
1322    return false;
1323
1324  // Conservatively handle non-constant non-instructions. For example, Arguments
1325  // may be undef.
1326  Instruction *I = dyn_cast<Instruction>(V);
1327  if (!I)
1328    return false;
1329
1330  // Load and return values may be undef.
1331  if(I->mayReadFromMemory() || isa<CallInst>(I) || isa<InvokeInst>(I))
1332    return false;
1333
1334  // Optimistically handle other instructions.
1335  for (User::op_iterator OI = I->op_begin(), E = I->op_end(); OI != E; ++OI) {
1336    if (!Visited.insert(*OI))
1337      continue;
1338    if (!hasConcreteDefImpl(*OI, Visited, Depth+1))
1339      return false;
1340  }
1341  return true;
1342}
1343
1344/// Return true if the given value is concrete. We must prove that undef can
1345/// never reach it.
1346///
1347/// TODO: If we decide that this is a good approach to checking for undef, we
1348/// may factor it into a common location.
1349static bool hasConcreteDef(Value *V) {
1350  SmallPtrSet<Value*, 8> Visited;
1351  Visited.insert(V);
1352  return hasConcreteDefImpl(V, Visited, 0);
1353}
1354
1355/// AlmostDeadIV - Return true if this IV has any uses other than the (soon to
1356/// be rewritten) loop exit test.
1357static bool AlmostDeadIV(PHINode *Phi, BasicBlock *LatchBlock, Value *Cond) {
1358  int LatchIdx = Phi->getBasicBlockIndex(LatchBlock);
1359  Value *IncV = Phi->getIncomingValue(LatchIdx);
1360
1361  for (Value::use_iterator UI = Phi->use_begin(), UE = Phi->use_end();
1362       UI != UE; ++UI) {
1363    if (*UI != Cond && *UI != IncV) return false;
1364  }
1365
1366  for (Value::use_iterator UI = IncV->use_begin(), UE = IncV->use_end();
1367       UI != UE; ++UI) {
1368    if (*UI != Cond && *UI != Phi) return false;
1369  }
1370  return true;
1371}
1372
1373/// FindLoopCounter - Find an affine IV in canonical form.
1374///
1375/// BECount may be an i8* pointer type. The pointer difference is already
1376/// valid count without scaling the address stride, so it remains a pointer
1377/// expression as far as SCEV is concerned.
1378///
1379/// Currently only valid for LFTR. See the comments on hasConcreteDef below.
1380///
1381/// FIXME: Accept -1 stride and set IVLimit = IVInit - BECount
1382///
1383/// FIXME: Accept non-unit stride as long as SCEV can reduce BECount * Stride.
1384/// This is difficult in general for SCEV because of potential overflow. But we
1385/// could at least handle constant BECounts.
1386static PHINode *
1387FindLoopCounter(Loop *L, const SCEV *BECount,
1388                ScalarEvolution *SE, DominatorTree *DT, const DataLayout *TD) {
1389  uint64_t BCWidth = SE->getTypeSizeInBits(BECount->getType());
1390
1391  Value *Cond =
1392    cast<BranchInst>(L->getExitingBlock()->getTerminator())->getCondition();
1393
1394  // Loop over all of the PHI nodes, looking for a simple counter.
1395  PHINode *BestPhi = 0;
1396  const SCEV *BestInit = 0;
1397  BasicBlock *LatchBlock = L->getLoopLatch();
1398  assert(LatchBlock && "needsLFTR should guarantee a loop latch");
1399
1400  for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
1401    PHINode *Phi = cast<PHINode>(I);
1402    if (!SE->isSCEVable(Phi->getType()))
1403      continue;
1404
1405    // Avoid comparing an integer IV against a pointer Limit.
1406    if (BECount->getType()->isPointerTy() && !Phi->getType()->isPointerTy())
1407      continue;
1408
1409    const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Phi));
1410    if (!AR || AR->getLoop() != L || !AR->isAffine())
1411      continue;
1412
1413    // AR may be a pointer type, while BECount is an integer type.
1414    // AR may be wider than BECount. With eq/ne tests overflow is immaterial.
1415    // AR may not be a narrower type, or we may never exit.
1416    uint64_t PhiWidth = SE->getTypeSizeInBits(AR->getType());
1417    if (PhiWidth < BCWidth || (TD && !TD->isLegalInteger(PhiWidth)))
1418      continue;
1419
1420    const SCEV *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*SE));
1421    if (!Step || !Step->isOne())
1422      continue;
1423
1424    int LatchIdx = Phi->getBasicBlockIndex(LatchBlock);
1425    Value *IncV = Phi->getIncomingValue(LatchIdx);
1426    if (getLoopPhiForCounter(IncV, L, DT) != Phi)
1427      continue;
1428
1429    // Avoid reusing a potentially undef value to compute other values that may
1430    // have originally had a concrete definition.
1431    if (!hasConcreteDef(Phi)) {
1432      // We explicitly allow unknown phis as long as they are already used by
1433      // the loop test. In this case we assume that performing LFTR could not
1434      // increase the number of undef users.
1435      if (ICmpInst *Cond = getLoopTest(L)) {
1436        if (Phi != getLoopPhiForCounter(Cond->getOperand(0), L, DT)
1437            && Phi != getLoopPhiForCounter(Cond->getOperand(1), L, DT)) {
1438          continue;
1439        }
1440      }
1441    }
1442    const SCEV *Init = AR->getStart();
1443
1444    if (BestPhi && !AlmostDeadIV(BestPhi, LatchBlock, Cond)) {
1445      // Don't force a live loop counter if another IV can be used.
1446      if (AlmostDeadIV(Phi, LatchBlock, Cond))
1447        continue;
1448
1449      // Prefer to count-from-zero. This is a more "canonical" counter form. It
1450      // also prefers integer to pointer IVs.
1451      if (BestInit->isZero() != Init->isZero()) {
1452        if (BestInit->isZero())
1453          continue;
1454      }
1455      // If two IVs both count from zero or both count from nonzero then the
1456      // narrower is likely a dead phi that has been widened. Use the wider phi
1457      // to allow the other to be eliminated.
1458      else if (PhiWidth <= SE->getTypeSizeInBits(BestPhi->getType()))
1459        continue;
1460    }
1461    BestPhi = Phi;
1462    BestInit = Init;
1463  }
1464  return BestPhi;
1465}
1466
1467/// genLoopLimit - Help LinearFunctionTestReplace by generating a value that
1468/// holds the RHS of the new loop test.
1469static Value *genLoopLimit(PHINode *IndVar, const SCEV *IVCount, Loop *L,
1470                           SCEVExpander &Rewriter, ScalarEvolution *SE) {
1471  const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(IndVar));
1472  assert(AR && AR->getLoop() == L && AR->isAffine() && "bad loop counter");
1473  const SCEV *IVInit = AR->getStart();
1474
1475  // IVInit may be a pointer while IVCount is an integer when FindLoopCounter
1476  // finds a valid pointer IV. Sign extend BECount in order to materialize a
1477  // GEP. Avoid running SCEVExpander on a new pointer value, instead reusing
1478  // the existing GEPs whenever possible.
1479  if (IndVar->getType()->isPointerTy()
1480      && !IVCount->getType()->isPointerTy()) {
1481
1482    Type *OfsTy = SE->getEffectiveSCEVType(IVInit->getType());
1483    const SCEV *IVOffset = SE->getTruncateOrSignExtend(IVCount, OfsTy);
1484
1485    // Expand the code for the iteration count.
1486    assert(SE->isLoopInvariant(IVOffset, L) &&
1487           "Computed iteration count is not loop invariant!");
1488    BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator());
1489    Value *GEPOffset = Rewriter.expandCodeFor(IVOffset, OfsTy, BI);
1490
1491    Value *GEPBase = IndVar->getIncomingValueForBlock(L->getLoopPreheader());
1492    assert(AR->getStart() == SE->getSCEV(GEPBase) && "bad loop counter");
1493    // We could handle pointer IVs other than i8*, but we need to compensate for
1494    // gep index scaling. See canExpandBackedgeTakenCount comments.
1495    assert(SE->getSizeOfExpr(
1496             cast<PointerType>(GEPBase->getType())->getElementType())->isOne()
1497           && "unit stride pointer IV must be i8*");
1498
1499    IRBuilder<> Builder(L->getLoopPreheader()->getTerminator());
1500    return Builder.CreateGEP(GEPBase, GEPOffset, "lftr.limit");
1501  }
1502  else {
1503    // In any other case, convert both IVInit and IVCount to integers before
1504    // comparing. This may result in SCEV expension of pointers, but in practice
1505    // SCEV will fold the pointer arithmetic away as such:
1506    // BECount = (IVEnd - IVInit - 1) => IVLimit = IVInit (postinc).
1507    //
1508    // Valid Cases: (1) both integers is most common; (2) both may be pointers
1509    // for simple memset-style loops; (3) IVInit is an integer and IVCount is a
1510    // pointer may occur when enable-iv-rewrite generates a canonical IV on top
1511    // of case #2.
1512
1513    const SCEV *IVLimit = 0;
1514    // For unit stride, IVCount = Start + BECount with 2's complement overflow.
1515    // For non-zero Start, compute IVCount here.
1516    if (AR->getStart()->isZero())
1517      IVLimit = IVCount;
1518    else {
1519      assert(AR->getStepRecurrence(*SE)->isOne() && "only handles unit stride");
1520      const SCEV *IVInit = AR->getStart();
1521
1522      // For integer IVs, truncate the IV before computing IVInit + BECount.
1523      if (SE->getTypeSizeInBits(IVInit->getType())
1524          > SE->getTypeSizeInBits(IVCount->getType()))
1525        IVInit = SE->getTruncateExpr(IVInit, IVCount->getType());
1526
1527      IVLimit = SE->getAddExpr(IVInit, IVCount);
1528    }
1529    // Expand the code for the iteration count.
1530    BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator());
1531    IRBuilder<> Builder(BI);
1532    assert(SE->isLoopInvariant(IVLimit, L) &&
1533           "Computed iteration count is not loop invariant!");
1534    // Ensure that we generate the same type as IndVar, or a smaller integer
1535    // type. In the presence of null pointer values, we have an integer type
1536    // SCEV expression (IVInit) for a pointer type IV value (IndVar).
1537    Type *LimitTy = IVCount->getType()->isPointerTy() ?
1538      IndVar->getType() : IVCount->getType();
1539    return Rewriter.expandCodeFor(IVLimit, LimitTy, BI);
1540  }
1541}
1542
1543/// LinearFunctionTestReplace - This method rewrites the exit condition of the
1544/// loop to be a canonical != comparison against the incremented loop induction
1545/// variable.  This pass is able to rewrite the exit tests of any loop where the
1546/// SCEV analysis can determine a loop-invariant trip count of the loop, which
1547/// is actually a much broader range than just linear tests.
1548Value *IndVarSimplify::
1549LinearFunctionTestReplace(Loop *L,
1550                          const SCEV *BackedgeTakenCount,
1551                          PHINode *IndVar,
1552                          SCEVExpander &Rewriter) {
1553  assert(canExpandBackedgeTakenCount(L, SE) && "precondition");
1554
1555  // LFTR can ignore IV overflow and truncate to the width of
1556  // BECount. This avoids materializing the add(zext(add)) expression.
1557  Type *CntTy = BackedgeTakenCount->getType();
1558
1559  // If the exiting block is the same as the backedge block, we prefer to
1560  // compare against the post-incremented value, otherwise we must compare
1561  // against the preincremented value.
1562  Value *CmpIndVar;
1563  const SCEV *IVCount;
1564  if (L->getExitingBlock() == L->getLoopLatch()) {
1565    // Add one to the "backedge-taken" count to get the trip count.
1566    // If this addition may overflow, we have to be more pessimistic and
1567    // cast the induction variable before doing the add.
1568    const SCEV *N =
1569      SE->getAddExpr(BackedgeTakenCount,
1570                     SE->getConstant(BackedgeTakenCount->getType(), 1));
1571    if (CntTy == BackedgeTakenCount->getType())
1572      IVCount = N;
1573    else {
1574      const SCEV *Zero = SE->getConstant(BackedgeTakenCount->getType(), 0);
1575      if ((isa<SCEVConstant>(N) && !N->isZero()) ||
1576          SE->isLoopEntryGuardedByCond(L, ICmpInst::ICMP_NE, N, Zero)) {
1577        // No overflow. Cast the sum.
1578        IVCount = SE->getTruncateOrZeroExtend(N, CntTy);
1579      } else {
1580        // Potential overflow. Cast before doing the add.
1581        IVCount = SE->getTruncateOrZeroExtend(BackedgeTakenCount, CntTy);
1582        IVCount = SE->getAddExpr(IVCount, SE->getConstant(CntTy, 1));
1583      }
1584    }
1585    // The BackedgeTaken expression contains the number of times that the
1586    // backedge branches to the loop header.  This is one less than the
1587    // number of times the loop executes, so use the incremented indvar.
1588    CmpIndVar = IndVar->getIncomingValueForBlock(L->getExitingBlock());
1589  } else {
1590    // We must use the preincremented value...
1591    IVCount = SE->getTruncateOrZeroExtend(BackedgeTakenCount, CntTy);
1592    CmpIndVar = IndVar;
1593  }
1594
1595  Value *ExitCnt = genLoopLimit(IndVar, IVCount, L, Rewriter, SE);
1596  assert(ExitCnt->getType()->isPointerTy() == IndVar->getType()->isPointerTy()
1597         && "genLoopLimit missed a cast");
1598
1599  // Insert a new icmp_ne or icmp_eq instruction before the branch.
1600  BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator());
1601  ICmpInst::Predicate P;
1602  if (L->contains(BI->getSuccessor(0)))
1603    P = ICmpInst::ICMP_NE;
1604  else
1605    P = ICmpInst::ICMP_EQ;
1606
1607  DEBUG(dbgs() << "INDVARS: Rewriting loop exit condition to:\n"
1608               << "      LHS:" << *CmpIndVar << '\n'
1609               << "       op:\t"
1610               << (P == ICmpInst::ICMP_NE ? "!=" : "==") << "\n"
1611               << "      RHS:\t" << *ExitCnt << "\n"
1612               << "  IVCount:\t" << *IVCount << "\n");
1613
1614  IRBuilder<> Builder(BI);
1615  if (SE->getTypeSizeInBits(CmpIndVar->getType())
1616      > SE->getTypeSizeInBits(ExitCnt->getType())) {
1617    CmpIndVar = Builder.CreateTrunc(CmpIndVar, ExitCnt->getType(),
1618                                    "lftr.wideiv");
1619  }
1620
1621  Value *Cond = Builder.CreateICmp(P, CmpIndVar, ExitCnt, "exitcond");
1622  Value *OrigCond = BI->getCondition();
1623  // It's tempting to use replaceAllUsesWith here to fully replace the old
1624  // comparison, but that's not immediately safe, since users of the old
1625  // comparison may not be dominated by the new comparison. Instead, just
1626  // update the branch to use the new comparison; in the common case this
1627  // will make old comparison dead.
1628  BI->setCondition(Cond);
1629  DeadInsts.push_back(OrigCond);
1630
1631  ++NumLFTR;
1632  Changed = true;
1633  return Cond;
1634}
1635
1636//===----------------------------------------------------------------------===//
1637//  SinkUnusedInvariants. A late subpass to cleanup loop preheaders.
1638//===----------------------------------------------------------------------===//
1639
1640/// If there's a single exit block, sink any loop-invariant values that
1641/// were defined in the preheader but not used inside the loop into the
1642/// exit block to reduce register pressure in the loop.
1643void IndVarSimplify::SinkUnusedInvariants(Loop *L) {
1644  BasicBlock *ExitBlock = L->getExitBlock();
1645  if (!ExitBlock) return;
1646
1647  BasicBlock *Preheader = L->getLoopPreheader();
1648  if (!Preheader) return;
1649
1650  Instruction *InsertPt = ExitBlock->getFirstInsertionPt();
1651  BasicBlock::iterator I = Preheader->getTerminator();
1652  while (I != Preheader->begin()) {
1653    --I;
1654    // New instructions were inserted at the end of the preheader.
1655    if (isa<PHINode>(I))
1656      break;
1657
1658    // Don't move instructions which might have side effects, since the side
1659    // effects need to complete before instructions inside the loop.  Also don't
1660    // move instructions which might read memory, since the loop may modify
1661    // memory. Note that it's okay if the instruction might have undefined
1662    // behavior: LoopSimplify guarantees that the preheader dominates the exit
1663    // block.
1664    if (I->mayHaveSideEffects() || I->mayReadFromMemory())
1665      continue;
1666
1667    // Skip debug info intrinsics.
1668    if (isa<DbgInfoIntrinsic>(I))
1669      continue;
1670
1671    // Skip landingpad instructions.
1672    if (isa<LandingPadInst>(I))
1673      continue;
1674
1675    // Don't sink alloca: we never want to sink static alloca's out of the
1676    // entry block, and correctly sinking dynamic alloca's requires
1677    // checks for stacksave/stackrestore intrinsics.
1678    // FIXME: Refactor this check somehow?
1679    if (isa<AllocaInst>(I))
1680      continue;
1681
1682    // Determine if there is a use in or before the loop (direct or
1683    // otherwise).
1684    bool UsedInLoop = false;
1685    for (Value::use_iterator UI = I->use_begin(), UE = I->use_end();
1686         UI != UE; ++UI) {
1687      User *U = *UI;
1688      BasicBlock *UseBB = cast<Instruction>(U)->getParent();
1689      if (PHINode *P = dyn_cast<PHINode>(U)) {
1690        unsigned i =
1691          PHINode::getIncomingValueNumForOperand(UI.getOperandNo());
1692        UseBB = P->getIncomingBlock(i);
1693      }
1694      if (UseBB == Preheader || L->contains(UseBB)) {
1695        UsedInLoop = true;
1696        break;
1697      }
1698    }
1699
1700    // If there is, the def must remain in the preheader.
1701    if (UsedInLoop)
1702      continue;
1703
1704    // Otherwise, sink it to the exit block.
1705    Instruction *ToMove = I;
1706    bool Done = false;
1707
1708    if (I != Preheader->begin()) {
1709      // Skip debug info intrinsics.
1710      do {
1711        --I;
1712      } while (isa<DbgInfoIntrinsic>(I) && I != Preheader->begin());
1713
1714      if (isa<DbgInfoIntrinsic>(I) && I == Preheader->begin())
1715        Done = true;
1716    } else {
1717      Done = true;
1718    }
1719
1720    ToMove->moveBefore(InsertPt);
1721    if (Done) break;
1722    InsertPt = ToMove;
1723  }
1724}
1725
1726//===----------------------------------------------------------------------===//
1727//  IndVarSimplify driver. Manage several subpasses of IV simplification.
1728//===----------------------------------------------------------------------===//
1729
1730bool IndVarSimplify::runOnLoop(Loop *L, LPPassManager &LPM) {
1731  // If LoopSimplify form is not available, stay out of trouble. Some notes:
1732  //  - LSR currently only supports LoopSimplify-form loops. Indvars'
1733  //    canonicalization can be a pessimization without LSR to "clean up"
1734  //    afterwards.
1735  //  - We depend on having a preheader; in particular,
1736  //    Loop::getCanonicalInductionVariable only supports loops with preheaders,
1737  //    and we're in trouble if we can't find the induction variable even when
1738  //    we've manually inserted one.
1739  if (!L->isLoopSimplifyForm())
1740    return false;
1741
1742  LI = &getAnalysis<LoopInfo>();
1743  SE = &getAnalysis<ScalarEvolution>();
1744  DT = &getAnalysis<DominatorTree>();
1745  TD = getAnalysisIfAvailable<DataLayout>();
1746  TLI = getAnalysisIfAvailable<TargetLibraryInfo>();
1747
1748  DeadInsts.clear();
1749  Changed = false;
1750
1751  // If there are any floating-point recurrences, attempt to
1752  // transform them to use integer recurrences.
1753  RewriteNonIntegerIVs(L);
1754
1755  const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L);
1756
1757  // Create a rewriter object which we'll use to transform the code with.
1758  SCEVExpander Rewriter(*SE, "indvars");
1759#ifndef NDEBUG
1760  Rewriter.setDebugType(DEBUG_TYPE);
1761#endif
1762
1763  // Eliminate redundant IV users.
1764  //
1765  // Simplification works best when run before other consumers of SCEV. We
1766  // attempt to avoid evaluating SCEVs for sign/zero extend operations until
1767  // other expressions involving loop IVs have been evaluated. This helps SCEV
1768  // set no-wrap flags before normalizing sign/zero extension.
1769  Rewriter.disableCanonicalMode();
1770  SimplifyAndExtend(L, Rewriter, LPM);
1771
1772  // Check to see if this loop has a computable loop-invariant execution count.
1773  // If so, this means that we can compute the final value of any expressions
1774  // that are recurrent in the loop, and substitute the exit values from the
1775  // loop into any instructions outside of the loop that use the final values of
1776  // the current expressions.
1777  //
1778  if (!isa<SCEVCouldNotCompute>(BackedgeTakenCount))
1779    RewriteLoopExitValues(L, Rewriter);
1780
1781  // Eliminate redundant IV cycles.
1782  NumElimIV += Rewriter.replaceCongruentIVs(L, DT, DeadInsts);
1783
1784  // If we have a trip count expression, rewrite the loop's exit condition
1785  // using it.  We can currently only handle loops with a single exit.
1786  if (canExpandBackedgeTakenCount(L, SE) && needsLFTR(L, DT)) {
1787    PHINode *IndVar = FindLoopCounter(L, BackedgeTakenCount, SE, DT, TD);
1788    if (IndVar) {
1789      // Check preconditions for proper SCEVExpander operation. SCEV does not
1790      // express SCEVExpander's dependencies, such as LoopSimplify. Instead any
1791      // pass that uses the SCEVExpander must do it. This does not work well for
1792      // loop passes because SCEVExpander makes assumptions about all loops, while
1793      // LoopPassManager only forces the current loop to be simplified.
1794      //
1795      // FIXME: SCEV expansion has no way to bail out, so the caller must
1796      // explicitly check any assumptions made by SCEV. Brittle.
1797      const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(BackedgeTakenCount);
1798      if (!AR || AR->getLoop()->getLoopPreheader())
1799        (void)LinearFunctionTestReplace(L, BackedgeTakenCount, IndVar,
1800                                        Rewriter);
1801    }
1802  }
1803  // Clear the rewriter cache, because values that are in the rewriter's cache
1804  // can be deleted in the loop below, causing the AssertingVH in the cache to
1805  // trigger.
1806  Rewriter.clear();
1807
1808  // Now that we're done iterating through lists, clean up any instructions
1809  // which are now dead.
1810  while (!DeadInsts.empty())
1811    if (Instruction *Inst =
1812          dyn_cast_or_null<Instruction>(&*DeadInsts.pop_back_val()))
1813      RecursivelyDeleteTriviallyDeadInstructions(Inst, TLI);
1814
1815  // The Rewriter may not be used from this point on.
1816
1817  // Loop-invariant instructions in the preheader that aren't used in the
1818  // loop may be sunk below the loop to reduce register pressure.
1819  SinkUnusedInvariants(L);
1820
1821  // Clean up dead instructions.
1822  Changed |= DeleteDeadPHIs(L->getHeader(), TLI);
1823  // Check a post-condition.
1824  assert(L->isLCSSAForm(*DT) &&
1825         "Indvars did not leave the loop in lcssa form!");
1826
1827  // Verify that LFTR, and any other change have not interfered with SCEV's
1828  // ability to compute trip count.
1829#ifndef NDEBUG
1830  if (VerifyIndvars && !isa<SCEVCouldNotCompute>(BackedgeTakenCount)) {
1831    SE->forgetLoop(L);
1832    const SCEV *NewBECount = SE->getBackedgeTakenCount(L);
1833    if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) <
1834        SE->getTypeSizeInBits(NewBECount->getType()))
1835      NewBECount = SE->getTruncateOrNoop(NewBECount,
1836                                         BackedgeTakenCount->getType());
1837    else
1838      BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount,
1839                                                 NewBECount->getType());
1840    assert(BackedgeTakenCount == NewBECount && "indvars must preserve SCEV");
1841  }
1842#endif
1843
1844  return Changed;
1845}
1846