IndVarSimplify.cpp revision 931e345e76e75391d2a7c96530e305f802b5429d
1//===- IndVarSimplify.cpp - Induction Variable Elimination ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This transformation analyzes and transforms the induction variables (and
11// computations derived from them) into simpler forms suitable for subsequent
12// analysis and transformation.
13//
14// This transformation makes the following changes to each loop with an
15// identifiable induction variable:
16//   1. All loops are transformed to have a SINGLE canonical induction variable
17//      which starts at zero and steps by one.
18//   2. The canonical induction variable is guaranteed to be the first PHI node
19//      in the loop header block.
20//   3. The canonical induction variable is guaranteed to be in a wide enough
21//      type so that IV expressions need not be (directly) zero-extended or
22//      sign-extended.
23//   4. Any pointer arithmetic recurrences are raised to use array subscripts.
24//
25// If the trip count of a loop is computable, this pass also makes the following
26// changes:
27//   1. The exit condition for the loop is canonicalized to compare the
28//      induction value against the exit value.  This turns loops like:
29//        'for (i = 7; i*i < 1000; ++i)' into 'for (i = 0; i != 25; ++i)'
30//   2. Any use outside of the loop of an expression derived from the indvar
31//      is changed to compute the derived value outside of the loop, eliminating
32//      the dependence on the exit value of the induction variable.  If the only
33//      purpose of the loop is to compute the exit value of some derived
34//      expression, this transformation will make the loop dead.
35//
36// This transformation should be followed by strength reduction after all of the
37// desired loop transformations have been performed.
38//
39//===----------------------------------------------------------------------===//
40
41#define DEBUG_TYPE "indvars"
42#include "llvm/Transforms/Scalar.h"
43#include "llvm/BasicBlock.h"
44#include "llvm/Constants.h"
45#include "llvm/Instructions.h"
46#include "llvm/IntrinsicInst.h"
47#include "llvm/LLVMContext.h"
48#include "llvm/Type.h"
49#include "llvm/Analysis/Dominators.h"
50#include "llvm/Analysis/IVUsers.h"
51#include "llvm/Analysis/ScalarEvolutionExpander.h"
52#include "llvm/Analysis/LoopInfo.h"
53#include "llvm/Analysis/LoopPass.h"
54#include "llvm/Support/CFG.h"
55#include "llvm/Support/CommandLine.h"
56#include "llvm/Support/Debug.h"
57#include "llvm/Support/raw_ostream.h"
58#include "llvm/Transforms/Utils/Local.h"
59#include "llvm/Transforms/Utils/BasicBlockUtils.h"
60#include "llvm/ADT/SmallVector.h"
61#include "llvm/ADT/Statistic.h"
62#include "llvm/ADT/STLExtras.h"
63using namespace llvm;
64
65STATISTIC(NumRemoved , "Number of aux indvars removed");
66STATISTIC(NumInserted, "Number of canonical indvars added");
67STATISTIC(NumReplaced, "Number of exit values replaced");
68STATISTIC(NumLFTR    , "Number of loop exit tests replaced");
69
70namespace {
71  class IndVarSimplify : public LoopPass {
72    IVUsers         *IU;
73    LoopInfo        *LI;
74    ScalarEvolution *SE;
75    DominatorTree   *DT;
76    bool Changed;
77  public:
78
79    static char ID; // Pass identification, replacement for typeid
80    IndVarSimplify() : LoopPass(&ID) {}
81
82    virtual bool runOnLoop(Loop *L, LPPassManager &LPM);
83
84    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
85      AU.addRequired<DominatorTree>();
86      AU.addRequired<LoopInfo>();
87      AU.addRequired<ScalarEvolution>();
88      AU.addRequiredID(LoopSimplifyID);
89      AU.addRequiredID(LCSSAID);
90      AU.addRequired<IVUsers>();
91      AU.addPreserved<ScalarEvolution>();
92      AU.addPreservedID(LoopSimplifyID);
93      AU.addPreservedID(LCSSAID);
94      AU.addPreserved<IVUsers>();
95      AU.setPreservesCFG();
96    }
97
98  private:
99
100    void EliminateIVComparisons();
101    void RewriteNonIntegerIVs(Loop *L);
102
103    ICmpInst *LinearFunctionTestReplace(Loop *L, const SCEV *BackedgeTakenCount,
104                                   Value *IndVar,
105                                   BasicBlock *ExitingBlock,
106                                   BranchInst *BI,
107                                   SCEVExpander &Rewriter);
108    void RewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter);
109
110    void RewriteIVExpressions(Loop *L, SCEVExpander &Rewriter);
111
112    void SinkUnusedInvariants(Loop *L);
113
114    void HandleFloatingPointIV(Loop *L, PHINode *PH);
115  };
116}
117
118char IndVarSimplify::ID = 0;
119static RegisterPass<IndVarSimplify>
120X("indvars", "Canonicalize Induction Variables");
121
122Pass *llvm::createIndVarSimplifyPass() {
123  return new IndVarSimplify();
124}
125
126/// LinearFunctionTestReplace - This method rewrites the exit condition of the
127/// loop to be a canonical != comparison against the incremented loop induction
128/// variable.  This pass is able to rewrite the exit tests of any loop where the
129/// SCEV analysis can determine a loop-invariant trip count of the loop, which
130/// is actually a much broader range than just linear tests.
131ICmpInst *IndVarSimplify::LinearFunctionTestReplace(Loop *L,
132                                   const SCEV *BackedgeTakenCount,
133                                   Value *IndVar,
134                                   BasicBlock *ExitingBlock,
135                                   BranchInst *BI,
136                                   SCEVExpander &Rewriter) {
137  // If the exiting block is not the same as the backedge block, we must compare
138  // against the preincremented value, otherwise we prefer to compare against
139  // the post-incremented value.
140  Value *CmpIndVar;
141  const SCEV *RHS = BackedgeTakenCount;
142  if (ExitingBlock == L->getLoopLatch()) {
143    // Add one to the "backedge-taken" count to get the trip count.
144    // If this addition may overflow, we have to be more pessimistic and
145    // cast the induction variable before doing the add.
146    const SCEV *Zero = SE->getIntegerSCEV(0, BackedgeTakenCount->getType());
147    const SCEV *N =
148      SE->getAddExpr(BackedgeTakenCount,
149                     SE->getIntegerSCEV(1, BackedgeTakenCount->getType()));
150    if ((isa<SCEVConstant>(N) && !N->isZero()) ||
151        SE->isLoopEntryGuardedByCond(L, ICmpInst::ICMP_NE, N, Zero)) {
152      // No overflow. Cast the sum.
153      RHS = SE->getTruncateOrZeroExtend(N, IndVar->getType());
154    } else {
155      // Potential overflow. Cast before doing the add.
156      RHS = SE->getTruncateOrZeroExtend(BackedgeTakenCount,
157                                        IndVar->getType());
158      RHS = SE->getAddExpr(RHS,
159                           SE->getIntegerSCEV(1, IndVar->getType()));
160    }
161
162    // The BackedgeTaken expression contains the number of times that the
163    // backedge branches to the loop header.  This is one less than the
164    // number of times the loop executes, so use the incremented indvar.
165    CmpIndVar = L->getCanonicalInductionVariableIncrement();
166  } else {
167    // We have to use the preincremented value...
168    RHS = SE->getTruncateOrZeroExtend(BackedgeTakenCount,
169                                      IndVar->getType());
170    CmpIndVar = IndVar;
171  }
172
173  // Expand the code for the iteration count.
174  assert(RHS->isLoopInvariant(L) &&
175         "Computed iteration count is not loop invariant!");
176  Value *ExitCnt = Rewriter.expandCodeFor(RHS, IndVar->getType(), BI);
177
178  // Insert a new icmp_ne or icmp_eq instruction before the branch.
179  ICmpInst::Predicate Opcode;
180  if (L->contains(BI->getSuccessor(0)))
181    Opcode = ICmpInst::ICMP_NE;
182  else
183    Opcode = ICmpInst::ICMP_EQ;
184
185  DEBUG(dbgs() << "INDVARS: Rewriting loop exit condition to:\n"
186               << "      LHS:" << *CmpIndVar << '\n'
187               << "       op:\t"
188               << (Opcode == ICmpInst::ICMP_NE ? "!=" : "==") << "\n"
189               << "      RHS:\t" << *RHS << "\n");
190
191  ICmpInst *Cond = new ICmpInst(BI, Opcode, CmpIndVar, ExitCnt, "exitcond");
192
193  Value *OrigCond = BI->getCondition();
194  // It's tempting to use replaceAllUsesWith here to fully replace the old
195  // comparison, but that's not immediately safe, since users of the old
196  // comparison may not be dominated by the new comparison. Instead, just
197  // update the branch to use the new comparison; in the common case this
198  // will make old comparison dead.
199  BI->setCondition(Cond);
200  RecursivelyDeleteTriviallyDeadInstructions(OrigCond);
201
202  ++NumLFTR;
203  Changed = true;
204  return Cond;
205}
206
207/// RewriteLoopExitValues - Check to see if this loop has a computable
208/// loop-invariant execution count.  If so, this means that we can compute the
209/// final value of any expressions that are recurrent in the loop, and
210/// substitute the exit values from the loop into any instructions outside of
211/// the loop that use the final values of the current expressions.
212///
213/// This is mostly redundant with the regular IndVarSimplify activities that
214/// happen later, except that it's more powerful in some cases, because it's
215/// able to brute-force evaluate arbitrary instructions as long as they have
216/// constant operands at the beginning of the loop.
217void IndVarSimplify::RewriteLoopExitValues(Loop *L,
218                                           SCEVExpander &Rewriter) {
219  // Verify the input to the pass in already in LCSSA form.
220  assert(L->isLCSSAForm(*DT));
221
222  SmallVector<BasicBlock*, 8> ExitBlocks;
223  L->getUniqueExitBlocks(ExitBlocks);
224
225  // Find all values that are computed inside the loop, but used outside of it.
226  // Because of LCSSA, these values will only occur in LCSSA PHI Nodes.  Scan
227  // the exit blocks of the loop to find them.
228  for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
229    BasicBlock *ExitBB = ExitBlocks[i];
230
231    // If there are no PHI nodes in this exit block, then no values defined
232    // inside the loop are used on this path, skip it.
233    PHINode *PN = dyn_cast<PHINode>(ExitBB->begin());
234    if (!PN) continue;
235
236    unsigned NumPreds = PN->getNumIncomingValues();
237
238    // Iterate over all of the PHI nodes.
239    BasicBlock::iterator BBI = ExitBB->begin();
240    while ((PN = dyn_cast<PHINode>(BBI++))) {
241      if (PN->use_empty())
242        continue; // dead use, don't replace it
243
244      // SCEV only supports integer expressions for now.
245      if (!PN->getType()->isIntegerTy() && !PN->getType()->isPointerTy())
246        continue;
247
248      // It's necessary to tell ScalarEvolution about this explicitly so that
249      // it can walk the def-use list and forget all SCEVs, as it may not be
250      // watching the PHI itself. Once the new exit value is in place, there
251      // may not be a def-use connection between the loop and every instruction
252      // which got a SCEVAddRecExpr for that loop.
253      SE->forgetValue(PN);
254
255      // Iterate over all of the values in all the PHI nodes.
256      for (unsigned i = 0; i != NumPreds; ++i) {
257        // If the value being merged in is not integer or is not defined
258        // in the loop, skip it.
259        Value *InVal = PN->getIncomingValue(i);
260        if (!isa<Instruction>(InVal))
261          continue;
262
263        // If this pred is for a subloop, not L itself, skip it.
264        if (LI->getLoopFor(PN->getIncomingBlock(i)) != L)
265          continue; // The Block is in a subloop, skip it.
266
267        // Check that InVal is defined in the loop.
268        Instruction *Inst = cast<Instruction>(InVal);
269        if (!L->contains(Inst))
270          continue;
271
272        // Okay, this instruction has a user outside of the current loop
273        // and varies predictably *inside* the loop.  Evaluate the value it
274        // contains when the loop exits, if possible.
275        const SCEV *ExitValue = SE->getSCEVAtScope(Inst, L->getParentLoop());
276        if (!ExitValue->isLoopInvariant(L))
277          continue;
278
279        Changed = true;
280        ++NumReplaced;
281
282        Value *ExitVal = Rewriter.expandCodeFor(ExitValue, PN->getType(), Inst);
283
284        DEBUG(dbgs() << "INDVARS: RLEV: AfterLoopVal = " << *ExitVal << '\n'
285                     << "  LoopVal = " << *Inst << "\n");
286
287        PN->setIncomingValue(i, ExitVal);
288
289        // If this instruction is dead now, delete it.
290        RecursivelyDeleteTriviallyDeadInstructions(Inst);
291
292        if (NumPreds == 1) {
293          // Completely replace a single-pred PHI. This is safe, because the
294          // NewVal won't be variant in the loop, so we don't need an LCSSA phi
295          // node anymore.
296          PN->replaceAllUsesWith(ExitVal);
297          RecursivelyDeleteTriviallyDeadInstructions(PN);
298        }
299      }
300      if (NumPreds != 1) {
301        // Clone the PHI and delete the original one. This lets IVUsers and
302        // any other maps purge the original user from their records.
303        PHINode *NewPN = cast<PHINode>(PN->clone());
304        NewPN->takeName(PN);
305        NewPN->insertBefore(PN);
306        PN->replaceAllUsesWith(NewPN);
307        PN->eraseFromParent();
308      }
309    }
310  }
311
312  // The insertion point instruction may have been deleted; clear it out
313  // so that the rewriter doesn't trip over it later.
314  Rewriter.clearInsertPoint();
315}
316
317void IndVarSimplify::RewriteNonIntegerIVs(Loop *L) {
318  // First step.  Check to see if there are any floating-point recurrences.
319  // If there are, change them into integer recurrences, permitting analysis by
320  // the SCEV routines.
321  //
322  BasicBlock *Header    = L->getHeader();
323
324  SmallVector<WeakVH, 8> PHIs;
325  for (BasicBlock::iterator I = Header->begin();
326       PHINode *PN = dyn_cast<PHINode>(I); ++I)
327    PHIs.push_back(PN);
328
329  for (unsigned i = 0, e = PHIs.size(); i != e; ++i)
330    if (PHINode *PN = dyn_cast_or_null<PHINode>(PHIs[i]))
331      HandleFloatingPointIV(L, PN);
332
333  // If the loop previously had floating-point IV, ScalarEvolution
334  // may not have been able to compute a trip count. Now that we've done some
335  // re-writing, the trip count may be computable.
336  if (Changed)
337    SE->forgetLoop(L);
338}
339
340void IndVarSimplify::EliminateIVComparisons() {
341  // Look for ICmp users.
342  for (IVUsers::iterator I = IU->begin(), E = IU->end(); I != E;) {
343    IVStrideUse &UI = *I++;
344    ICmpInst *ICmp = dyn_cast<ICmpInst>(UI.getUser());
345    if (!ICmp) continue;
346
347    bool Swapped = UI.getOperandValToReplace() == ICmp->getOperand(1);
348    ICmpInst::Predicate Pred = ICmp->getPredicate();
349    if (Swapped) Pred = ICmpInst::getSwappedPredicate(Pred);
350
351    // Get the SCEVs for the ICmp operands.
352    const SCEV *S = IU->getReplacementExpr(UI);
353    const SCEV *X = SE->getSCEV(ICmp->getOperand(!Swapped));
354
355    // Simplify unnecessary loops away.
356    const Loop *ICmpLoop = LI->getLoopFor(ICmp->getParent());
357    S = SE->getSCEVAtScope(S, ICmpLoop);
358    X = SE->getSCEVAtScope(X, ICmpLoop);
359
360    // If the condition is always true or always false, replace it with
361    // a constant value.
362    if (SE->isKnownPredicate(Pred, S, X))
363      ICmp->replaceAllUsesWith(ConstantInt::getTrue(ICmp->getContext()));
364    else if (SE->isKnownPredicate(ICmpInst::getInversePredicate(Pred), S, X))
365      ICmp->replaceAllUsesWith(ConstantInt::getFalse(ICmp->getContext()));
366    else
367      continue;
368
369    DEBUG(dbgs() << "INDVARS: Eliminated comparison: " << *ICmp << '\n');
370    ICmp->eraseFromParent();
371  }
372}
373
374bool IndVarSimplify::runOnLoop(Loop *L, LPPassManager &LPM) {
375  IU = &getAnalysis<IVUsers>();
376  LI = &getAnalysis<LoopInfo>();
377  SE = &getAnalysis<ScalarEvolution>();
378  DT = &getAnalysis<DominatorTree>();
379  Changed = false;
380
381  // If there are any floating-point recurrences, attempt to
382  // transform them to use integer recurrences.
383  RewriteNonIntegerIVs(L);
384
385  BasicBlock *ExitingBlock = L->getExitingBlock(); // may be null
386  const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L);
387
388  // Create a rewriter object which we'll use to transform the code with.
389  SCEVExpander Rewriter(*SE);
390
391  // Check to see if this loop has a computable loop-invariant execution count.
392  // If so, this means that we can compute the final value of any expressions
393  // that are recurrent in the loop, and substitute the exit values from the
394  // loop into any instructions outside of the loop that use the final values of
395  // the current expressions.
396  //
397  if (!isa<SCEVCouldNotCompute>(BackedgeTakenCount))
398    RewriteLoopExitValues(L, Rewriter);
399
400  // Compute the type of the largest recurrence expression, and decide whether
401  // a canonical induction variable should be inserted.
402  const Type *LargestType = 0;
403  bool NeedCannIV = false;
404  if (!isa<SCEVCouldNotCompute>(BackedgeTakenCount)) {
405    LargestType = BackedgeTakenCount->getType();
406    LargestType = SE->getEffectiveSCEVType(LargestType);
407    // If we have a known trip count and a single exit block, we'll be
408    // rewriting the loop exit test condition below, which requires a
409    // canonical induction variable.
410    if (ExitingBlock)
411      NeedCannIV = true;
412  }
413  for (IVUsers::const_iterator I = IU->begin(), E = IU->end(); I != E; ++I) {
414    const Type *Ty =
415      SE->getEffectiveSCEVType(I->getOperandValToReplace()->getType());
416    if (!LargestType ||
417        SE->getTypeSizeInBits(Ty) >
418          SE->getTypeSizeInBits(LargestType))
419      LargestType = Ty;
420    NeedCannIV = true;
421  }
422
423  // Now that we know the largest of the induction variable expressions
424  // in this loop, insert a canonical induction variable of the largest size.
425  Value *IndVar = 0;
426  if (NeedCannIV) {
427    // Check to see if the loop already has any canonical-looking induction
428    // variables. If any are present and wider than the planned canonical
429    // induction variable, temporarily remove them, so that the Rewriter
430    // doesn't attempt to reuse them.
431    SmallVector<PHINode *, 2> OldCannIVs;
432    while (PHINode *OldCannIV = L->getCanonicalInductionVariable()) {
433      if (SE->getTypeSizeInBits(OldCannIV->getType()) >
434          SE->getTypeSizeInBits(LargestType))
435        OldCannIV->removeFromParent();
436      else
437        break;
438      OldCannIVs.push_back(OldCannIV);
439    }
440
441    IndVar = Rewriter.getOrInsertCanonicalInductionVariable(L, LargestType);
442
443    ++NumInserted;
444    Changed = true;
445    DEBUG(dbgs() << "INDVARS: New CanIV: " << *IndVar << '\n');
446
447    // Now that the official induction variable is established, reinsert
448    // any old canonical-looking variables after it so that the IR remains
449    // consistent. They will be deleted as part of the dead-PHI deletion at
450    // the end of the pass.
451    while (!OldCannIVs.empty()) {
452      PHINode *OldCannIV = OldCannIVs.pop_back_val();
453      OldCannIV->insertBefore(L->getHeader()->getFirstNonPHI());
454    }
455  }
456
457  // If we have a trip count expression, rewrite the loop's exit condition
458  // using it.  We can currently only handle loops with a single exit.
459  ICmpInst *NewICmp = 0;
460  if (!isa<SCEVCouldNotCompute>(BackedgeTakenCount) &&
461      !BackedgeTakenCount->isZero() &&
462      ExitingBlock) {
463    assert(NeedCannIV &&
464           "LinearFunctionTestReplace requires a canonical induction variable");
465
466    // Can't rewrite non-branch yet.
467    if (BranchInst *BI = dyn_cast<BranchInst>(ExitingBlock->getTerminator())) {
468      // Eliminate comparisons which are always true or always false, due to
469      // the known backedge-taken count. This may include comparisons which
470      // are currently controlling (part of) the loop exit, so we can only do
471      // it when we know we're going to insert our own loop exit code.
472      EliminateIVComparisons();
473
474      // Insert new loop exit code.
475      NewICmp = LinearFunctionTestReplace(L, BackedgeTakenCount, IndVar,
476                                          ExitingBlock, BI, Rewriter);
477    }
478  }
479
480  // Rewrite IV-derived expressions. Clears the rewriter cache.
481  RewriteIVExpressions(L, Rewriter);
482
483  // The Rewriter may not be used from this point on.
484
485  // Loop-invariant instructions in the preheader that aren't used in the
486  // loop may be sunk below the loop to reduce register pressure.
487  SinkUnusedInvariants(L);
488
489  // For completeness, inform IVUsers of the IV use in the newly-created
490  // loop exit test instruction.
491  if (NewICmp)
492    IU->AddUsersIfInteresting(cast<Instruction>(NewICmp->getOperand(0)));
493
494  // Clean up dead instructions.
495  Changed |= DeleteDeadPHIs(L->getHeader());
496  // Check a post-condition.
497  assert(L->isLCSSAForm(*DT) && "Indvars did not leave the loop in lcssa form!");
498  return Changed;
499}
500
501// FIXME: It is an extremely bad idea to indvar substitute anything more
502// complex than affine induction variables.  Doing so will put expensive
503// polynomial evaluations inside of the loop, and the str reduction pass
504// currently can only reduce affine polynomials.  For now just disable
505// indvar subst on anything more complex than an affine addrec, unless
506// it can be expanded to a trivial value.
507static bool isSafe(const SCEV *S, const Loop *L) {
508  // Loop-invariant values are safe.
509  if (S->isLoopInvariant(L)) return true;
510
511  // Affine addrecs are safe. Non-affine are not, because LSR doesn't know how
512  // to transform them into efficient code.
513  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
514    return AR->isAffine();
515
516  // An add is safe it all its operands are safe.
517  if (const SCEVCommutativeExpr *Commutative = dyn_cast<SCEVCommutativeExpr>(S)) {
518    for (SCEVCommutativeExpr::op_iterator I = Commutative->op_begin(),
519         E = Commutative->op_end(); I != E; ++I)
520      if (!isSafe(*I, L)) return false;
521    return true;
522  }
523
524  // A cast is safe if its operand is.
525  if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S))
526    return isSafe(C->getOperand(), L);
527
528  // A udiv is safe if its operands are.
529  if (const SCEVUDivExpr *UD = dyn_cast<SCEVUDivExpr>(S))
530    return isSafe(UD->getLHS(), L) &&
531           isSafe(UD->getRHS(), L);
532
533  // SCEVUnknown is always safe.
534  if (isa<SCEVUnknown>(S))
535    return true;
536
537  // Nothing else is safe.
538  return false;
539}
540
541void IndVarSimplify::RewriteIVExpressions(Loop *L, SCEVExpander &Rewriter) {
542  SmallVector<WeakVH, 16> DeadInsts;
543
544  // Rewrite all induction variable expressions in terms of the canonical
545  // induction variable.
546  //
547  // If there were induction variables of other sizes or offsets, manually
548  // add the offsets to the primary induction variable and cast, avoiding
549  // the need for the code evaluation methods to insert induction variables
550  // of different sizes.
551  for (IVUsers::iterator UI = IU->begin(), E = IU->end(); UI != E; ++UI) {
552    Value *Op = UI->getOperandValToReplace();
553    const Type *UseTy = Op->getType();
554    Instruction *User = UI->getUser();
555
556    // Compute the final addrec to expand into code.
557    const SCEV *AR = IU->getReplacementExpr(*UI);
558
559    // Evaluate the expression out of the loop, if possible.
560    if (!L->contains(UI->getUser())) {
561      const SCEV *ExitVal = SE->getSCEVAtScope(AR, L->getParentLoop());
562      if (ExitVal->isLoopInvariant(L))
563        AR = ExitVal;
564    }
565
566    // FIXME: It is an extremely bad idea to indvar substitute anything more
567    // complex than affine induction variables.  Doing so will put expensive
568    // polynomial evaluations inside of the loop, and the str reduction pass
569    // currently can only reduce affine polynomials.  For now just disable
570    // indvar subst on anything more complex than an affine addrec, unless
571    // it can be expanded to a trivial value.
572    if (!isSafe(AR, L))
573      continue;
574
575    // Determine the insertion point for this user. By default, insert
576    // immediately before the user. The SCEVExpander class will automatically
577    // hoist loop invariants out of the loop. For PHI nodes, there may be
578    // multiple uses, so compute the nearest common dominator for the
579    // incoming blocks.
580    Instruction *InsertPt = User;
581    if (PHINode *PHI = dyn_cast<PHINode>(InsertPt))
582      for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i)
583        if (PHI->getIncomingValue(i) == Op) {
584          if (InsertPt == User)
585            InsertPt = PHI->getIncomingBlock(i)->getTerminator();
586          else
587            InsertPt =
588              DT->findNearestCommonDominator(InsertPt->getParent(),
589                                             PHI->getIncomingBlock(i))
590                    ->getTerminator();
591        }
592
593    // Now expand it into actual Instructions and patch it into place.
594    Value *NewVal = Rewriter.expandCodeFor(AR, UseTy, InsertPt);
595
596    // Inform ScalarEvolution that this value is changing. The change doesn't
597    // affect its value, but it does potentially affect which use lists the
598    // value will be on after the replacement, which affects ScalarEvolution's
599    // ability to walk use lists and drop dangling pointers when a value is
600    // deleted.
601    SE->forgetValue(User);
602
603    // Patch the new value into place.
604    if (Op->hasName())
605      NewVal->takeName(Op);
606    User->replaceUsesOfWith(Op, NewVal);
607    UI->setOperandValToReplace(NewVal);
608    DEBUG(dbgs() << "INDVARS: Rewrote IV '" << *AR << "' " << *Op << '\n'
609                 << "   into = " << *NewVal << "\n");
610    ++NumRemoved;
611    Changed = true;
612
613    // The old value may be dead now.
614    DeadInsts.push_back(Op);
615  }
616
617  // Clear the rewriter cache, because values that are in the rewriter's cache
618  // can be deleted in the loop below, causing the AssertingVH in the cache to
619  // trigger.
620  Rewriter.clear();
621  // Now that we're done iterating through lists, clean up any instructions
622  // which are now dead.
623  while (!DeadInsts.empty())
624    if (Instruction *Inst =
625          dyn_cast_or_null<Instruction>(DeadInsts.pop_back_val()))
626      RecursivelyDeleteTriviallyDeadInstructions(Inst);
627}
628
629/// If there's a single exit block, sink any loop-invariant values that
630/// were defined in the preheader but not used inside the loop into the
631/// exit block to reduce register pressure in the loop.
632void IndVarSimplify::SinkUnusedInvariants(Loop *L) {
633  BasicBlock *ExitBlock = L->getExitBlock();
634  if (!ExitBlock) return;
635
636  BasicBlock *Preheader = L->getLoopPreheader();
637  if (!Preheader) return;
638
639  Instruction *InsertPt = ExitBlock->getFirstNonPHI();
640  BasicBlock::iterator I = Preheader->getTerminator();
641  while (I != Preheader->begin()) {
642    --I;
643    // New instructions were inserted at the end of the preheader.
644    if (isa<PHINode>(I))
645      break;
646
647    // Don't move instructions which might have side effects, since the side
648    // effects need to complete before instructions inside the loop.  Also don't
649    // move instructions which might read memory, since the loop may modify
650    // memory. Note that it's okay if the instruction might have undefined
651    // behavior: LoopSimplify guarantees that the preheader dominates the exit
652    // block.
653    if (I->mayHaveSideEffects() || I->mayReadFromMemory())
654      continue;
655
656    // Skip debug info intrinsics.
657    if (isa<DbgInfoIntrinsic>(I))
658      continue;
659
660    // Don't sink static AllocaInsts out of the entry block, which would
661    // turn them into dynamic allocas!
662    if (AllocaInst *AI = dyn_cast<AllocaInst>(I))
663      if (AI->isStaticAlloca())
664        continue;
665
666    // Determine if there is a use in or before the loop (direct or
667    // otherwise).
668    bool UsedInLoop = false;
669    for (Value::use_iterator UI = I->use_begin(), UE = I->use_end();
670         UI != UE; ++UI) {
671      BasicBlock *UseBB = cast<Instruction>(UI)->getParent();
672      if (PHINode *P = dyn_cast<PHINode>(UI)) {
673        unsigned i =
674          PHINode::getIncomingValueNumForOperand(UI.getOperandNo());
675        UseBB = P->getIncomingBlock(i);
676      }
677      if (UseBB == Preheader || L->contains(UseBB)) {
678        UsedInLoop = true;
679        break;
680      }
681    }
682
683    // If there is, the def must remain in the preheader.
684    if (UsedInLoop)
685      continue;
686
687    // Otherwise, sink it to the exit block.
688    Instruction *ToMove = I;
689    bool Done = false;
690
691    if (I != Preheader->begin()) {
692      // Skip debug info intrinsics.
693      do {
694        --I;
695      } while (isa<DbgInfoIntrinsic>(I) && I != Preheader->begin());
696
697      if (isa<DbgInfoIntrinsic>(I) && I == Preheader->begin())
698        Done = true;
699    } else {
700      Done = true;
701    }
702
703    ToMove->moveBefore(InsertPt);
704    if (Done) break;
705    InsertPt = ToMove;
706  }
707}
708
709/// ConvertToSInt - Convert APF to an integer, if possible.
710static bool ConvertToSInt(const APFloat &APF, int64_t &IntVal) {
711  bool isExact = false;
712  if (&APF.getSemantics() == &APFloat::PPCDoubleDouble)
713    return false;
714  // See if we can convert this to an int64_t
715  uint64_t UIntVal;
716  if (APF.convertToInteger(&UIntVal, 64, true, APFloat::rmTowardZero,
717                           &isExact) != APFloat::opOK || !isExact)
718    return false;
719  IntVal = UIntVal;
720  return true;
721}
722
723/// HandleFloatingPointIV - If the loop has floating induction variable
724/// then insert corresponding integer induction variable if possible.
725/// For example,
726/// for(double i = 0; i < 10000; ++i)
727///   bar(i)
728/// is converted into
729/// for(int i = 0; i < 10000; ++i)
730///   bar((double)i);
731///
732void IndVarSimplify::HandleFloatingPointIV(Loop *L, PHINode *PN) {
733  unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0));
734  unsigned BackEdge     = IncomingEdge^1;
735
736  // Check incoming value.
737  ConstantFP *InitValueVal =
738    dyn_cast<ConstantFP>(PN->getIncomingValue(IncomingEdge));
739
740  int64_t InitValue;
741  if (!InitValueVal || !ConvertToSInt(InitValueVal->getValueAPF(), InitValue))
742    return;
743
744  // Check IV increment. Reject this PN if increment operation is not
745  // an add or increment value can not be represented by an integer.
746  BinaryOperator *Incr =
747    dyn_cast<BinaryOperator>(PN->getIncomingValue(BackEdge));
748  if (Incr == 0 || Incr->getOpcode() != Instruction::FAdd) return;
749
750  // If this is not an add of the PHI with a constantfp, or if the constant fp
751  // is not an integer, bail out.
752  ConstantFP *IncValueVal = dyn_cast<ConstantFP>(Incr->getOperand(1));
753  int64_t IncValue;
754  if (IncValueVal == 0 || Incr->getOperand(0) != PN ||
755      !ConvertToSInt(IncValueVal->getValueAPF(), IncValue))
756    return;
757
758  // Check Incr uses. One user is PN and the other user is an exit condition
759  // used by the conditional terminator.
760  Value::use_iterator IncrUse = Incr->use_begin();
761  Instruction *U1 = cast<Instruction>(IncrUse++);
762  if (IncrUse == Incr->use_end()) return;
763  Instruction *U2 = cast<Instruction>(IncrUse++);
764  if (IncrUse != Incr->use_end()) return;
765
766  // Find exit condition, which is an fcmp.  If it doesn't exist, or if it isn't
767  // only used by a branch, we can't transform it.
768  FCmpInst *Compare = dyn_cast<FCmpInst>(U1);
769  if (!Compare)
770    Compare = dyn_cast<FCmpInst>(U2);
771  if (Compare == 0 || !Compare->hasOneUse() ||
772      !isa<BranchInst>(Compare->use_back()))
773    return;
774
775  BranchInst *TheBr = cast<BranchInst>(Compare->use_back());
776
777  // We need to verify that the branch actually controls the iteration count
778  // of the loop.  If not, the new IV can overflow and no one will notice.
779  // The branch block must be in the loop and one of the successors must be out
780  // of the loop.
781  assert(TheBr->isConditional() && "Can't use fcmp if not conditional");
782  if (!L->contains(TheBr->getParent()) ||
783      (L->contains(TheBr->getSuccessor(0)) &&
784       L->contains(TheBr->getSuccessor(1))))
785    return;
786
787
788  // If it isn't a comparison with an integer-as-fp (the exit value), we can't
789  // transform it.
790  ConstantFP *ExitValueVal = dyn_cast<ConstantFP>(Compare->getOperand(1));
791  int64_t ExitValue;
792  if (ExitValueVal == 0 ||
793      !ConvertToSInt(ExitValueVal->getValueAPF(), ExitValue))
794    return;
795
796  // Find new predicate for integer comparison.
797  CmpInst::Predicate NewPred = CmpInst::BAD_ICMP_PREDICATE;
798  switch (Compare->getPredicate()) {
799  default: return;  // Unknown comparison.
800  case CmpInst::FCMP_OEQ:
801  case CmpInst::FCMP_UEQ: NewPred = CmpInst::ICMP_EQ; break;
802  case CmpInst::FCMP_ONE:
803  case CmpInst::FCMP_UNE: NewPred = CmpInst::ICMP_NE; break;
804  case CmpInst::FCMP_OGT:
805  case CmpInst::FCMP_UGT: NewPred = CmpInst::ICMP_SGT; break;
806  case CmpInst::FCMP_OGE:
807  case CmpInst::FCMP_UGE: NewPred = CmpInst::ICMP_SGE; break;
808  case CmpInst::FCMP_OLT:
809  case CmpInst::FCMP_ULT: NewPred = CmpInst::ICMP_SLT; break;
810  case CmpInst::FCMP_OLE:
811  case CmpInst::FCMP_ULE: NewPred = CmpInst::ICMP_SLE; break;
812  }
813
814  // We convert the floating point induction variable to a signed i32 value if
815  // we can.  This is only safe if the comparison will not overflow in a way
816  // that won't be trapped by the integer equivalent operations.  Check for this
817  // now.
818  // TODO: We could use i64 if it is native and the range requires it.
819
820  // The start/stride/exit values must all fit in signed i32.
821  if (!isInt<32>(InitValue) || !isInt<32>(IncValue) || !isInt<32>(ExitValue))
822    return;
823
824  // If not actually striding (add x, 0.0), avoid touching the code.
825  if (IncValue == 0)
826    return;
827
828  // Positive and negative strides have different safety conditions.
829  if (IncValue > 0) {
830    // If we have a positive stride, we require the init to be less than the
831    // exit value and an equality or less than comparison.
832    if (InitValue >= ExitValue ||
833        NewPred == CmpInst::ICMP_SGT || NewPred == CmpInst::ICMP_SGE)
834      return;
835
836    uint32_t Range = uint32_t(ExitValue-InitValue);
837    if (NewPred == CmpInst::ICMP_SLE) {
838      // Normalize SLE -> SLT, check for infinite loop.
839      if (++Range == 0) return;  // Range overflows.
840    }
841
842    unsigned Leftover = Range % uint32_t(IncValue);
843
844    // If this is an equality comparison, we require that the strided value
845    // exactly land on the exit value, otherwise the IV condition will wrap
846    // around and do things the fp IV wouldn't.
847    if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) &&
848        Leftover != 0)
849      return;
850
851    // If the stride would wrap around the i32 before exiting, we can't
852    // transform the IV.
853    if (Leftover != 0 && int32_t(ExitValue+IncValue) < ExitValue)
854      return;
855
856  } else {
857    // If we have a negative stride, we require the init to be greater than the
858    // exit value and an equality or greater than comparison.
859    if (InitValue >= ExitValue ||
860        NewPred == CmpInst::ICMP_SLT || NewPred == CmpInst::ICMP_SLE)
861      return;
862
863    uint32_t Range = uint32_t(InitValue-ExitValue);
864    if (NewPred == CmpInst::ICMP_SGE) {
865      // Normalize SGE -> SGT, check for infinite loop.
866      if (++Range == 0) return;  // Range overflows.
867    }
868
869    unsigned Leftover = Range % uint32_t(-IncValue);
870
871    // If this is an equality comparison, we require that the strided value
872    // exactly land on the exit value, otherwise the IV condition will wrap
873    // around and do things the fp IV wouldn't.
874    if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) &&
875        Leftover != 0)
876      return;
877
878    // If the stride would wrap around the i32 before exiting, we can't
879    // transform the IV.
880    if (Leftover != 0 && int32_t(ExitValue+IncValue) > ExitValue)
881      return;
882  }
883
884  const IntegerType *Int32Ty = Type::getInt32Ty(PN->getContext());
885
886  // Insert new integer induction variable.
887  PHINode *NewPHI = PHINode::Create(Int32Ty, PN->getName()+".int", PN);
888  NewPHI->addIncoming(ConstantInt::get(Int32Ty, InitValue),
889                      PN->getIncomingBlock(IncomingEdge));
890
891  Value *NewAdd =
892    BinaryOperator::CreateAdd(NewPHI, ConstantInt::get(Int32Ty, IncValue),
893                              Incr->getName()+".int", Incr);
894  NewPHI->addIncoming(NewAdd, PN->getIncomingBlock(BackEdge));
895
896  ICmpInst *NewCompare = new ICmpInst(TheBr, NewPred, NewAdd,
897                                      ConstantInt::get(Int32Ty, ExitValue),
898                                      Compare->getName());
899
900  // In the following deletions, PN may become dead and may be deleted.
901  // Use a WeakVH to observe whether this happens.
902  WeakVH WeakPH = PN;
903
904  // Delete the old floating point exit comparison.  The branch starts using the
905  // new comparison.
906  NewCompare->takeName(Compare);
907  Compare->replaceAllUsesWith(NewCompare);
908  RecursivelyDeleteTriviallyDeadInstructions(Compare);
909
910  // Delete the old floating point increment.
911  Incr->replaceAllUsesWith(UndefValue::get(Incr->getType()));
912  RecursivelyDeleteTriviallyDeadInstructions(Incr);
913
914  // If the FP induction variable still has uses, this is because something else
915  // in the loop uses its value.  In order to canonicalize the induction
916  // variable, we chose to eliminate the IV and rewrite it in terms of an
917  // int->fp cast.
918  //
919  // We give preference to sitofp over uitofp because it is faster on most
920  // platforms.
921  if (WeakPH) {
922    Value *Conv = new SIToFPInst(NewPHI, PN->getType(), "indvar.conv",
923                                 PN->getParent()->getFirstNonPHI());
924    PN->replaceAllUsesWith(Conv);
925    RecursivelyDeleteTriviallyDeadInstructions(PN);
926  }
927
928  // Add a new IVUsers entry for the newly-created integer PHI.
929  IU->AddUsersIfInteresting(NewPHI);
930}
931