IndVarSimplify.cpp revision ae73dc1448d25b02cabc7c64c86c64371453dda8
1//===- IndVarSimplify.cpp - Induction Variable Elimination ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This transformation analyzes and transforms the induction variables (and
11// computations derived from them) into simpler forms suitable for subsequent
12// analysis and transformation.
13//
14// This transformation makes the following changes to each loop with an
15// identifiable induction variable:
16//   1. All loops are transformed to have a SINGLE canonical induction variable
17//      which starts at zero and steps by one.
18//   2. The canonical induction variable is guaranteed to be the first PHI node
19//      in the loop header block.
20//   3. Any pointer arithmetic recurrences are raised to use array subscripts.
21//
22// If the trip count of a loop is computable, this pass also makes the following
23// changes:
24//   1. The exit condition for the loop is canonicalized to compare the
25//      induction value against the exit value.  This turns loops like:
26//        'for (i = 7; i*i < 1000; ++i)' into 'for (i = 0; i != 25; ++i)'
27//   2. Any use outside of the loop of an expression derived from the indvar
28//      is changed to compute the derived value outside of the loop, eliminating
29//      the dependence on the exit value of the induction variable.  If the only
30//      purpose of the loop is to compute the exit value of some derived
31//      expression, this transformation will make the loop dead.
32//
33// This transformation should be followed by strength reduction after all of the
34// desired loop transformations have been performed.  Additionally, on targets
35// where it is profitable, the loop could be transformed to count down to zero
36// (the "do loop" optimization).
37//
38//===----------------------------------------------------------------------===//
39
40#define DEBUG_TYPE "indvars"
41#include "llvm/Transforms/Scalar.h"
42#include "llvm/BasicBlock.h"
43#include "llvm/Constants.h"
44#include "llvm/Instructions.h"
45#include "llvm/Type.h"
46#include "llvm/Analysis/ScalarEvolutionExpander.h"
47#include "llvm/Analysis/LoopInfo.h"
48#include "llvm/Analysis/LoopPass.h"
49#include "llvm/Support/CFG.h"
50#include "llvm/Support/Compiler.h"
51#include "llvm/Support/Debug.h"
52#include "llvm/Support/GetElementPtrTypeIterator.h"
53#include "llvm/Transforms/Utils/Local.h"
54#include "llvm/Support/CommandLine.h"
55#include "llvm/ADT/SmallVector.h"
56#include "llvm/ADT/Statistic.h"
57using namespace llvm;
58
59STATISTIC(NumRemoved , "Number of aux indvars removed");
60STATISTIC(NumPointer , "Number of pointer indvars promoted");
61STATISTIC(NumInserted, "Number of canonical indvars added");
62STATISTIC(NumReplaced, "Number of exit values replaced");
63STATISTIC(NumLFTR    , "Number of loop exit tests replaced");
64
65namespace {
66  class VISIBILITY_HIDDEN IndVarSimplify : public LoopPass {
67    LoopInfo        *LI;
68    ScalarEvolution *SE;
69    bool Changed;
70  public:
71
72   static char ID; // Pass identification, replacement for typeid
73   IndVarSimplify() : LoopPass(&ID) {}
74
75   bool runOnLoop(Loop *L, LPPassManager &LPM);
76   bool doInitialization(Loop *L, LPPassManager &LPM);
77   virtual void getAnalysisUsage(AnalysisUsage &AU) const {
78     AU.addRequired<ScalarEvolution>();
79     AU.addRequiredID(LCSSAID);
80     AU.addRequiredID(LoopSimplifyID);
81     AU.addRequired<LoopInfo>();
82     AU.addPreservedID(LoopSimplifyID);
83     AU.addPreservedID(LCSSAID);
84     AU.setPreservesCFG();
85   }
86
87  private:
88
89    void EliminatePointerRecurrence(PHINode *PN, BasicBlock *Preheader,
90                                    std::set<Instruction*> &DeadInsts);
91    Instruction *LinearFunctionTestReplace(Loop *L, SCEV *IterationCount,
92                                           SCEVExpander &RW);
93    void RewriteLoopExitValues(Loop *L, SCEV *IterationCount);
94
95    void DeleteTriviallyDeadInstructions(std::set<Instruction*> &Insts);
96  };
97}
98
99char IndVarSimplify::ID = 0;
100static RegisterPass<IndVarSimplify>
101X("indvars", "Canonicalize Induction Variables");
102
103LoopPass *llvm::createIndVarSimplifyPass() {
104  return new IndVarSimplify();
105}
106
107/// DeleteTriviallyDeadInstructions - If any of the instructions is the
108/// specified set are trivially dead, delete them and see if this makes any of
109/// their operands subsequently dead.
110void IndVarSimplify::
111DeleteTriviallyDeadInstructions(std::set<Instruction*> &Insts) {
112  while (!Insts.empty()) {
113    Instruction *I = *Insts.begin();
114    Insts.erase(Insts.begin());
115    if (isInstructionTriviallyDead(I)) {
116      for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
117        if (Instruction *U = dyn_cast<Instruction>(I->getOperand(i)))
118          Insts.insert(U);
119      SE->deleteValueFromRecords(I);
120      DOUT << "INDVARS: Deleting: " << *I;
121      I->eraseFromParent();
122      Changed = true;
123    }
124  }
125}
126
127
128/// EliminatePointerRecurrence - Check to see if this is a trivial GEP pointer
129/// recurrence.  If so, change it into an integer recurrence, permitting
130/// analysis by the SCEV routines.
131void IndVarSimplify::EliminatePointerRecurrence(PHINode *PN,
132                                                BasicBlock *Preheader,
133                                            std::set<Instruction*> &DeadInsts) {
134  assert(PN->getNumIncomingValues() == 2 && "Noncanonicalized loop!");
135  unsigned PreheaderIdx = PN->getBasicBlockIndex(Preheader);
136  unsigned BackedgeIdx = PreheaderIdx^1;
137  if (GetElementPtrInst *GEPI =
138          dyn_cast<GetElementPtrInst>(PN->getIncomingValue(BackedgeIdx)))
139    if (GEPI->getOperand(0) == PN) {
140      assert(GEPI->getNumOperands() == 2 && "GEP types must match!");
141      DOUT << "INDVARS: Eliminating pointer recurrence: " << *GEPI;
142
143      // Okay, we found a pointer recurrence.  Transform this pointer
144      // recurrence into an integer recurrence.  Compute the value that gets
145      // added to the pointer at every iteration.
146      Value *AddedVal = GEPI->getOperand(1);
147
148      // Insert a new integer PHI node into the top of the block.
149      PHINode *NewPhi = PHINode::Create(AddedVal->getType(),
150                                        PN->getName()+".rec", PN);
151      NewPhi->addIncoming(Constant::getNullValue(NewPhi->getType()), Preheader);
152
153      // Create the new add instruction.
154      Value *NewAdd = BinaryOperator::CreateAdd(NewPhi, AddedVal,
155                                                GEPI->getName()+".rec", GEPI);
156      NewPhi->addIncoming(NewAdd, PN->getIncomingBlock(BackedgeIdx));
157
158      // Update the existing GEP to use the recurrence.
159      GEPI->setOperand(0, PN->getIncomingValue(PreheaderIdx));
160
161      // Update the GEP to use the new recurrence we just inserted.
162      GEPI->setOperand(1, NewAdd);
163
164      // If the incoming value is a constant expr GEP, try peeling out the array
165      // 0 index if possible to make things simpler.
166      if (ConstantExpr *CE = dyn_cast<ConstantExpr>(GEPI->getOperand(0)))
167        if (CE->getOpcode() == Instruction::GetElementPtr) {
168          unsigned NumOps = CE->getNumOperands();
169          assert(NumOps > 1 && "CE folding didn't work!");
170          if (CE->getOperand(NumOps-1)->isNullValue()) {
171            // Check to make sure the last index really is an array index.
172            gep_type_iterator GTI = gep_type_begin(CE);
173            for (unsigned i = 1, e = CE->getNumOperands()-1;
174                 i != e; ++i, ++GTI)
175              /*empty*/;
176            if (isa<SequentialType>(*GTI)) {
177              // Pull the last index out of the constant expr GEP.
178              SmallVector<Value*, 8> CEIdxs(CE->op_begin()+1, CE->op_end()-1);
179              Constant *NCE = ConstantExpr::getGetElementPtr(CE->getOperand(0),
180                                                             &CEIdxs[0],
181                                                             CEIdxs.size());
182              Value *Idx[2];
183              Idx[0] = Constant::getNullValue(Type::Int32Ty);
184              Idx[1] = NewAdd;
185              GetElementPtrInst *NGEPI = GetElementPtrInst::Create(
186                  NCE, Idx, Idx + 2,
187                  GEPI->getName(), GEPI);
188              SE->deleteValueFromRecords(GEPI);
189              GEPI->replaceAllUsesWith(NGEPI);
190              GEPI->eraseFromParent();
191              GEPI = NGEPI;
192            }
193          }
194        }
195
196
197      // Finally, if there are any other users of the PHI node, we must
198      // insert a new GEP instruction that uses the pre-incremented version
199      // of the induction amount.
200      if (!PN->use_empty()) {
201        BasicBlock::iterator InsertPos = PN; ++InsertPos;
202        while (isa<PHINode>(InsertPos)) ++InsertPos;
203        Value *PreInc =
204          GetElementPtrInst::Create(PN->getIncomingValue(PreheaderIdx),
205                                    NewPhi, "", InsertPos);
206        PreInc->takeName(PN);
207        PN->replaceAllUsesWith(PreInc);
208      }
209
210      // Delete the old PHI for sure, and the GEP if its otherwise unused.
211      DeadInsts.insert(PN);
212
213      ++NumPointer;
214      Changed = true;
215    }
216}
217
218/// LinearFunctionTestReplace - This method rewrites the exit condition of the
219/// loop to be a canonical != comparison against the incremented loop induction
220/// variable.  This pass is able to rewrite the exit tests of any loop where the
221/// SCEV analysis can determine a loop-invariant trip count of the loop, which
222/// is actually a much broader range than just linear tests.
223///
224/// This method returns a "potentially dead" instruction whose computation chain
225/// should be deleted when convenient.
226Instruction *IndVarSimplify::LinearFunctionTestReplace(Loop *L,
227                                                       SCEV *IterationCount,
228                                                       SCEVExpander &RW) {
229  // Find the exit block for the loop.  We can currently only handle loops with
230  // a single exit.
231  SmallVector<BasicBlock*, 8> ExitBlocks;
232  L->getExitBlocks(ExitBlocks);
233  if (ExitBlocks.size() != 1) return 0;
234  BasicBlock *ExitBlock = ExitBlocks[0];
235
236  // Make sure there is only one predecessor block in the loop.
237  BasicBlock *ExitingBlock = 0;
238  for (pred_iterator PI = pred_begin(ExitBlock), PE = pred_end(ExitBlock);
239       PI != PE; ++PI)
240    if (L->contains(*PI)) {
241      if (ExitingBlock == 0)
242        ExitingBlock = *PI;
243      else
244        return 0;  // Multiple exits from loop to this block.
245    }
246  assert(ExitingBlock && "Loop info is broken");
247
248  if (!isa<BranchInst>(ExitingBlock->getTerminator()))
249    return 0;  // Can't rewrite non-branch yet
250  BranchInst *BI = cast<BranchInst>(ExitingBlock->getTerminator());
251  assert(BI->isConditional() && "Must be conditional to be part of loop!");
252
253  Instruction *PotentiallyDeadInst = dyn_cast<Instruction>(BI->getCondition());
254
255  // If the exiting block is not the same as the backedge block, we must compare
256  // against the preincremented value, otherwise we prefer to compare against
257  // the post-incremented value.
258  BasicBlock *Header = L->getHeader();
259  pred_iterator HPI = pred_begin(Header);
260  assert(HPI != pred_end(Header) && "Loop with zero preds???");
261  if (!L->contains(*HPI)) ++HPI;
262  assert(HPI != pred_end(Header) && L->contains(*HPI) &&
263         "No backedge in loop?");
264
265  SCEVHandle TripCount = IterationCount;
266  Value *IndVar;
267  if (*HPI == ExitingBlock) {
268    // The IterationCount expression contains the number of times that the
269    // backedge actually branches to the loop header.  This is one less than the
270    // number of times the loop executes, so add one to it.
271    ConstantInt *OneC = ConstantInt::get(IterationCount->getType(), 1);
272    TripCount = SE->getAddExpr(IterationCount, SE->getConstant(OneC));
273    IndVar = L->getCanonicalInductionVariableIncrement();
274  } else {
275    // We have to use the preincremented value...
276    IndVar = L->getCanonicalInductionVariable();
277  }
278
279  DOUT << "INDVARS: LFTR: TripCount = " << *TripCount
280       << "  IndVar = " << *IndVar << "\n";
281
282  // Expand the code for the iteration count into the preheader of the loop.
283  BasicBlock *Preheader = L->getLoopPreheader();
284  Value *ExitCnt = RW.expandCodeFor(TripCount, Preheader->getTerminator());
285
286  // Insert a new icmp_ne or icmp_eq instruction before the branch.
287  ICmpInst::Predicate Opcode;
288  if (L->contains(BI->getSuccessor(0)))
289    Opcode = ICmpInst::ICMP_NE;
290  else
291    Opcode = ICmpInst::ICMP_EQ;
292
293  Value *Cond = new ICmpInst(Opcode, IndVar, ExitCnt, "exitcond", BI);
294  BI->setCondition(Cond);
295  ++NumLFTR;
296  Changed = true;
297  return PotentiallyDeadInst;
298}
299
300
301/// RewriteLoopExitValues - Check to see if this loop has a computable
302/// loop-invariant execution count.  If so, this means that we can compute the
303/// final value of any expressions that are recurrent in the loop, and
304/// substitute the exit values from the loop into any instructions outside of
305/// the loop that use the final values of the current expressions.
306void IndVarSimplify::RewriteLoopExitValues(Loop *L, SCEV *IterationCount) {
307  BasicBlock *Preheader = L->getLoopPreheader();
308
309  // Scan all of the instructions in the loop, looking at those that have
310  // extra-loop users and which are recurrences.
311  SCEVExpander Rewriter(*SE, *LI);
312
313  // We insert the code into the preheader of the loop if the loop contains
314  // multiple exit blocks, or in the exit block if there is exactly one.
315  BasicBlock *BlockToInsertInto;
316  SmallVector<BasicBlock*, 8> ExitBlocks;
317  L->getUniqueExitBlocks(ExitBlocks);
318  if (ExitBlocks.size() == 1)
319    BlockToInsertInto = ExitBlocks[0];
320  else
321    BlockToInsertInto = Preheader;
322  BasicBlock::iterator InsertPt = BlockToInsertInto->getFirstNonPHI();
323
324  bool HasConstantItCount = isa<SCEVConstant>(IterationCount);
325
326  std::set<Instruction*> InstructionsToDelete;
327  std::map<Instruction*, Value*> ExitValues;
328
329  // Find all values that are computed inside the loop, but used outside of it.
330  // Because of LCSSA, these values will only occur in LCSSA PHI Nodes.  Scan
331  // the exit blocks of the loop to find them.
332  for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
333    BasicBlock *ExitBB = ExitBlocks[i];
334
335    // If there are no PHI nodes in this exit block, then no values defined
336    // inside the loop are used on this path, skip it.
337    PHINode *PN = dyn_cast<PHINode>(ExitBB->begin());
338    if (!PN) continue;
339
340    unsigned NumPreds = PN->getNumIncomingValues();
341
342    // Iterate over all of the PHI nodes.
343    BasicBlock::iterator BBI = ExitBB->begin();
344    while ((PN = dyn_cast<PHINode>(BBI++))) {
345
346      // Iterate over all of the values in all the PHI nodes.
347      for (unsigned i = 0; i != NumPreds; ++i) {
348        // If the value being merged in is not integer or is not defined
349        // in the loop, skip it.
350        Value *InVal = PN->getIncomingValue(i);
351        if (!isa<Instruction>(InVal) ||
352            // SCEV only supports integer expressions for now.
353            !isa<IntegerType>(InVal->getType()))
354          continue;
355
356        // If this pred is for a subloop, not L itself, skip it.
357        if (LI->getLoopFor(PN->getIncomingBlock(i)) != L)
358          continue; // The Block is in a subloop, skip it.
359
360        // Check that InVal is defined in the loop.
361        Instruction *Inst = cast<Instruction>(InVal);
362        if (!L->contains(Inst->getParent()))
363          continue;
364
365        // We require that this value either have a computable evolution or that
366        // the loop have a constant iteration count.  In the case where the loop
367        // has a constant iteration count, we can sometimes force evaluation of
368        // the exit value through brute force.
369        SCEVHandle SH = SE->getSCEV(Inst);
370        if (!SH->hasComputableLoopEvolution(L) && !HasConstantItCount)
371          continue;          // Cannot get exit evolution for the loop value.
372
373        // Okay, this instruction has a user outside of the current loop
374        // and varies predictably *inside* the loop.  Evaluate the value it
375        // contains when the loop exits, if possible.
376        SCEVHandle ExitValue = SE->getSCEVAtScope(Inst, L->getParentLoop());
377        if (isa<SCEVCouldNotCompute>(ExitValue) ||
378            !ExitValue->isLoopInvariant(L))
379          continue;
380
381        Changed = true;
382        ++NumReplaced;
383
384        // See if we already computed the exit value for the instruction, if so,
385        // just reuse it.
386        Value *&ExitVal = ExitValues[Inst];
387        if (!ExitVal)
388          ExitVal = Rewriter.expandCodeFor(ExitValue, InsertPt);
389
390        DOUT << "INDVARS: RLEV: AfterLoopVal = " << *ExitVal
391             << "  LoopVal = " << *Inst << "\n";
392
393        PN->setIncomingValue(i, ExitVal);
394
395        // If this instruction is dead now, schedule it to be removed.
396        if (Inst->use_empty())
397          InstructionsToDelete.insert(Inst);
398
399        // See if this is a single-entry LCSSA PHI node.  If so, we can (and
400        // have to) remove
401        // the PHI entirely.  This is safe, because the NewVal won't be variant
402        // in the loop, so we don't need an LCSSA phi node anymore.
403        if (NumPreds == 1) {
404          SE->deleteValueFromRecords(PN);
405          PN->replaceAllUsesWith(ExitVal);
406          PN->eraseFromParent();
407          break;
408        }
409      }
410    }
411  }
412
413  DeleteTriviallyDeadInstructions(InstructionsToDelete);
414}
415
416bool IndVarSimplify::doInitialization(Loop *L, LPPassManager &LPM) {
417
418  Changed = false;
419  // First step.  Check to see if there are any trivial GEP pointer recurrences.
420  // If there are, change them into integer recurrences, permitting analysis by
421  // the SCEV routines.
422  //
423  BasicBlock *Header    = L->getHeader();
424  BasicBlock *Preheader = L->getLoopPreheader();
425  SE = &LPM.getAnalysis<ScalarEvolution>();
426
427  std::set<Instruction*> DeadInsts;
428  for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
429    PHINode *PN = cast<PHINode>(I);
430    if (isa<PointerType>(PN->getType()))
431      EliminatePointerRecurrence(PN, Preheader, DeadInsts);
432  }
433
434  if (!DeadInsts.empty())
435    DeleteTriviallyDeadInstructions(DeadInsts);
436
437  return Changed;
438}
439
440bool IndVarSimplify::runOnLoop(Loop *L, LPPassManager &LPM) {
441
442
443  LI = &getAnalysis<LoopInfo>();
444  SE = &getAnalysis<ScalarEvolution>();
445
446  Changed = false;
447  BasicBlock *Header    = L->getHeader();
448  std::set<Instruction*> DeadInsts;
449
450  // Verify the input to the pass in already in LCSSA form.
451  assert(L->isLCSSAForm());
452
453  // Check to see if this loop has a computable loop-invariant execution count.
454  // If so, this means that we can compute the final value of any expressions
455  // that are recurrent in the loop, and substitute the exit values from the
456  // loop into any instructions outside of the loop that use the final values of
457  // the current expressions.
458  //
459  SCEVHandle IterationCount = SE->getIterationCount(L);
460  if (!isa<SCEVCouldNotCompute>(IterationCount))
461    RewriteLoopExitValues(L, IterationCount);
462
463  // Next, analyze all of the induction variables in the loop, canonicalizing
464  // auxillary induction variables.
465  std::vector<std::pair<PHINode*, SCEVHandle> > IndVars;
466
467  for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
468    PHINode *PN = cast<PHINode>(I);
469    if (PN->getType()->isInteger()) { // FIXME: when we have fast-math, enable!
470      SCEVHandle SCEV = SE->getSCEV(PN);
471      if (SCEV->hasComputableLoopEvolution(L))
472        // FIXME: It is an extremely bad idea to indvar substitute anything more
473        // complex than affine induction variables.  Doing so will put expensive
474        // polynomial evaluations inside of the loop, and the str reduction pass
475        // currently can only reduce affine polynomials.  For now just disable
476        // indvar subst on anything more complex than an affine addrec.
477        if (SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SCEV))
478          if (AR->isAffine())
479            IndVars.push_back(std::make_pair(PN, SCEV));
480    }
481  }
482
483  // If there are no induction variables in the loop, there is nothing more to
484  // do.
485  if (IndVars.empty()) {
486    // Actually, if we know how many times the loop iterates, lets insert a
487    // canonical induction variable to help subsequent passes.
488    if (!isa<SCEVCouldNotCompute>(IterationCount)) {
489      SCEVExpander Rewriter(*SE, *LI);
490      Rewriter.getOrInsertCanonicalInductionVariable(L,
491                                                     IterationCount->getType());
492      if (Instruction *I = LinearFunctionTestReplace(L, IterationCount,
493                                                     Rewriter)) {
494        std::set<Instruction*> InstructionsToDelete;
495        InstructionsToDelete.insert(I);
496        DeleteTriviallyDeadInstructions(InstructionsToDelete);
497      }
498    }
499    return Changed;
500  }
501
502  // Compute the type of the largest recurrence expression.
503  //
504  const Type *LargestType = IndVars[0].first->getType();
505  bool DifferingSizes = false;
506  for (unsigned i = 1, e = IndVars.size(); i != e; ++i) {
507    const Type *Ty = IndVars[i].first->getType();
508    DifferingSizes |=
509      Ty->getPrimitiveSizeInBits() != LargestType->getPrimitiveSizeInBits();
510    if (Ty->getPrimitiveSizeInBits() > LargestType->getPrimitiveSizeInBits())
511      LargestType = Ty;
512  }
513
514  // Create a rewriter object which we'll use to transform the code with.
515  SCEVExpander Rewriter(*SE, *LI);
516
517  // Now that we know the largest of of the induction variables in this loop,
518  // insert a canonical induction variable of the largest size.
519  Value *IndVar = Rewriter.getOrInsertCanonicalInductionVariable(L,LargestType);
520  ++NumInserted;
521  Changed = true;
522  DOUT << "INDVARS: New CanIV: " << *IndVar;
523
524  if (!isa<SCEVCouldNotCompute>(IterationCount)) {
525    IterationCount = SE->getTruncateOrZeroExtend(IterationCount, LargestType);
526    if (Instruction *DI = LinearFunctionTestReplace(L, IterationCount,Rewriter))
527      DeadInsts.insert(DI);
528  }
529
530  // Now that we have a canonical induction variable, we can rewrite any
531  // recurrences in terms of the induction variable.  Start with the auxillary
532  // induction variables, and recursively rewrite any of their uses.
533  BasicBlock::iterator InsertPt = Header->getFirstNonPHI();
534
535  // If there were induction variables of other sizes, cast the primary
536  // induction variable to the right size for them, avoiding the need for the
537  // code evaluation methods to insert induction variables of different sizes.
538  if (DifferingSizes) {
539    SmallVector<unsigned,4> InsertedSizes;
540    InsertedSizes.push_back(LargestType->getPrimitiveSizeInBits());
541    for (unsigned i = 0, e = IndVars.size(); i != e; ++i) {
542      unsigned ithSize = IndVars[i].first->getType()->getPrimitiveSizeInBits();
543      if (std::find(InsertedSizes.begin(), InsertedSizes.end(), ithSize)
544          == InsertedSizes.end()) {
545        PHINode *PN = IndVars[i].first;
546        InsertedSizes.push_back(ithSize);
547        Instruction *New = new TruncInst(IndVar, PN->getType(), "indvar",
548                                         InsertPt);
549        Rewriter.addInsertedValue(New, SE->getSCEV(New));
550        DOUT << "INDVARS: Made trunc IV for " << *PN
551             << "   NewVal = " << *New << "\n";
552      }
553    }
554  }
555
556  // Rewrite all induction variables in terms of the canonical induction
557  // variable.
558  std::map<unsigned, Value*> InsertedSizes;
559  while (!IndVars.empty()) {
560    PHINode *PN = IndVars.back().first;
561    Value *NewVal = Rewriter.expandCodeFor(IndVars.back().second, InsertPt);
562    DOUT << "INDVARS: Rewrote IV '" << *IndVars.back().second << "' " << *PN
563         << "   into = " << *NewVal << "\n";
564    NewVal->takeName(PN);
565
566    // Replace the old PHI Node with the inserted computation.
567    PN->replaceAllUsesWith(NewVal);
568    DeadInsts.insert(PN);
569    IndVars.pop_back();
570    ++NumRemoved;
571    Changed = true;
572  }
573
574#if 0
575  // Now replace all derived expressions in the loop body with simpler
576  // expressions.
577  for (LoopInfo::block_iterator I = L->block_begin(), E = L->block_end();
578       I != E; ++I) {
579    BasicBlock *BB = *I;
580    if (LI->getLoopFor(BB) == L) {  // Not in a subloop...
581      for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
582        if (I->getType()->isInteger() &&      // Is an integer instruction
583            !I->use_empty() &&
584            !Rewriter.isInsertedInstruction(I)) {
585          SCEVHandle SH = SE->getSCEV(I);
586          Value *V = Rewriter.expandCodeFor(SH, I, I->getType());
587          if (V != I) {
588            if (isa<Instruction>(V))
589              V->takeName(I);
590            I->replaceAllUsesWith(V);
591            DeadInsts.insert(I);
592            ++NumRemoved;
593            Changed = true;
594          }
595        }
596    }
597  }
598#endif
599
600  DeleteTriviallyDeadInstructions(DeadInsts);
601
602  assert(L->isLCSSAForm());
603  return Changed;
604}
605