IndVarSimplify.cpp revision c30a38f34bdfecb99ce49e3ffa479039c9bf0209
1//===- IndVarSimplify.cpp - Induction Variable Elimination ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This transformation analyzes and transforms the induction variables (and
11// computations derived from them) into simpler forms suitable for subsequent
12// analysis and transformation.
13//
14// This transformation makes the following changes to each loop with an
15// identifiable induction variable:
16//   1. All loops are transformed to have a SINGLE canonical induction variable
17//      which starts at zero and steps by one.
18//   2. The canonical induction variable is guaranteed to be the first PHI node
19//      in the loop header block.
20//   3. The canonical induction variable is guaranteed to be in a wide enough
21//      type so that IV expressions need not be (directly) zero-extended or
22//      sign-extended.
23//   4. Any pointer arithmetic recurrences are raised to use array subscripts.
24//
25// If the trip count of a loop is computable, this pass also makes the following
26// changes:
27//   1. The exit condition for the loop is canonicalized to compare the
28//      induction value against the exit value.  This turns loops like:
29//        'for (i = 7; i*i < 1000; ++i)' into 'for (i = 0; i != 25; ++i)'
30//   2. Any use outside of the loop of an expression derived from the indvar
31//      is changed to compute the derived value outside of the loop, eliminating
32//      the dependence on the exit value of the induction variable.  If the only
33//      purpose of the loop is to compute the exit value of some derived
34//      expression, this transformation will make the loop dead.
35//
36// This transformation should be followed by strength reduction after all of the
37// desired loop transformations have been performed.
38//
39//===----------------------------------------------------------------------===//
40
41#define DEBUG_TYPE "indvars"
42#include "llvm/Transforms/Scalar.h"
43#include "llvm/BasicBlock.h"
44#include "llvm/Constants.h"
45#include "llvm/Instructions.h"
46#include "llvm/IntrinsicInst.h"
47#include "llvm/LLVMContext.h"
48#include "llvm/Type.h"
49#include "llvm/Analysis/Dominators.h"
50#include "llvm/Analysis/IVUsers.h"
51#include "llvm/Analysis/ScalarEvolutionExpander.h"
52#include "llvm/Analysis/LoopInfo.h"
53#include "llvm/Analysis/LoopPass.h"
54#include "llvm/Support/CFG.h"
55#include "llvm/Support/CommandLine.h"
56#include "llvm/Support/Debug.h"
57#include "llvm/Support/raw_ostream.h"
58#include "llvm/Transforms/Utils/Local.h"
59#include "llvm/Transforms/Utils/BasicBlockUtils.h"
60#include "llvm/Target/TargetData.h"
61#include "llvm/ADT/DenseMap.h"
62#include "llvm/ADT/SmallVector.h"
63#include "llvm/ADT/Statistic.h"
64#include "llvm/ADT/STLExtras.h"
65using namespace llvm;
66
67STATISTIC(NumRemoved     , "Number of aux indvars removed");
68STATISTIC(NumWidened     , "Number of indvars widened");
69STATISTIC(NumInserted    , "Number of canonical indvars added");
70STATISTIC(NumReplaced    , "Number of exit values replaced");
71STATISTIC(NumLFTR        , "Number of loop exit tests replaced");
72STATISTIC(NumElimIdentity, "Number of IV identities eliminated");
73STATISTIC(NumElimExt     , "Number of IV sign/zero extends eliminated");
74STATISTIC(NumElimRem     , "Number of IV remainder operations eliminated");
75STATISTIC(NumElimCmp     , "Number of IV comparisons eliminated");
76STATISTIC(NumElimIV      , "Number of congruent IVs eliminated");
77
78static cl::opt<bool> DisableIVRewrite(
79  "disable-iv-rewrite", cl::Hidden,
80  cl::desc("Disable canonical induction variable rewriting"));
81
82// Temporary flag for use with -disable-iv-rewrite to force a canonical IV for
83// LFTR purposes.
84static cl::opt<bool> ForceLFTR(
85  "force-lftr", cl::Hidden,
86  cl::desc("Enable forced linear function test replacement"));
87
88namespace {
89  class IndVarSimplify : public LoopPass {
90    IVUsers         *IU;
91    LoopInfo        *LI;
92    ScalarEvolution *SE;
93    DominatorTree   *DT;
94    TargetData      *TD;
95
96    SmallVector<WeakVH, 16> DeadInsts;
97    bool Changed;
98  public:
99
100    static char ID; // Pass identification, replacement for typeid
101    IndVarSimplify() : LoopPass(ID), IU(0), LI(0), SE(0), DT(0), TD(0),
102                       Changed(false) {
103      initializeIndVarSimplifyPass(*PassRegistry::getPassRegistry());
104    }
105
106    virtual bool runOnLoop(Loop *L, LPPassManager &LPM);
107
108    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
109      AU.addRequired<DominatorTree>();
110      AU.addRequired<LoopInfo>();
111      AU.addRequired<ScalarEvolution>();
112      AU.addRequiredID(LoopSimplifyID);
113      AU.addRequiredID(LCSSAID);
114      if (!DisableIVRewrite)
115        AU.addRequired<IVUsers>();
116      AU.addPreserved<ScalarEvolution>();
117      AU.addPreservedID(LoopSimplifyID);
118      AU.addPreservedID(LCSSAID);
119      if (!DisableIVRewrite)
120        AU.addPreserved<IVUsers>();
121      AU.setPreservesCFG();
122    }
123
124  private:
125    virtual void releaseMemory() {
126      DeadInsts.clear();
127    }
128
129    bool isValidRewrite(Value *FromVal, Value *ToVal);
130
131    void HandleFloatingPointIV(Loop *L, PHINode *PH);
132    void RewriteNonIntegerIVs(Loop *L);
133
134    void RewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter);
135
136    void SimplifyIVUsers(SCEVExpander &Rewriter);
137    void SimplifyIVUsersNoRewrite(Loop *L, SCEVExpander &Rewriter);
138
139    bool EliminateIVUser(Instruction *UseInst, Instruction *IVOperand);
140    void EliminateIVComparison(ICmpInst *ICmp, Value *IVOperand);
141    void EliminateIVRemainder(BinaryOperator *Rem,
142                              Value *IVOperand,
143                              bool IsSigned);
144
145    void SimplifyCongruentIVs(Loop *L);
146
147    void RewriteIVExpressions(Loop *L, SCEVExpander &Rewriter);
148
149    Value *LinearFunctionTestReplace(Loop *L, const SCEV *BackedgeTakenCount,
150                                     PHINode *IndVar, SCEVExpander &Rewriter);
151
152    void SinkUnusedInvariants(Loop *L);
153  };
154}
155
156char IndVarSimplify::ID = 0;
157INITIALIZE_PASS_BEGIN(IndVarSimplify, "indvars",
158                "Induction Variable Simplification", false, false)
159INITIALIZE_PASS_DEPENDENCY(DominatorTree)
160INITIALIZE_PASS_DEPENDENCY(LoopInfo)
161INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
162INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
163INITIALIZE_PASS_DEPENDENCY(LCSSA)
164INITIALIZE_PASS_DEPENDENCY(IVUsers)
165INITIALIZE_PASS_END(IndVarSimplify, "indvars",
166                "Induction Variable Simplification", false, false)
167
168Pass *llvm::createIndVarSimplifyPass() {
169  return new IndVarSimplify();
170}
171
172/// isValidRewrite - Return true if the SCEV expansion generated by the
173/// rewriter can replace the original value. SCEV guarantees that it
174/// produces the same value, but the way it is produced may be illegal IR.
175/// Ideally, this function will only be called for verification.
176bool IndVarSimplify::isValidRewrite(Value *FromVal, Value *ToVal) {
177  // If an SCEV expression subsumed multiple pointers, its expansion could
178  // reassociate the GEP changing the base pointer. This is illegal because the
179  // final address produced by a GEP chain must be inbounds relative to its
180  // underlying object. Otherwise basic alias analysis, among other things,
181  // could fail in a dangerous way. Ultimately, SCEV will be improved to avoid
182  // producing an expression involving multiple pointers. Until then, we must
183  // bail out here.
184  //
185  // Retrieve the pointer operand of the GEP. Don't use GetUnderlyingObject
186  // because it understands lcssa phis while SCEV does not.
187  Value *FromPtr = FromVal;
188  Value *ToPtr = ToVal;
189  if (GEPOperator *GEP = dyn_cast<GEPOperator>(FromVal)) {
190    FromPtr = GEP->getPointerOperand();
191  }
192  if (GEPOperator *GEP = dyn_cast<GEPOperator>(ToVal)) {
193    ToPtr = GEP->getPointerOperand();
194  }
195  if (FromPtr != FromVal || ToPtr != ToVal) {
196    // Quickly check the common case
197    if (FromPtr == ToPtr)
198      return true;
199
200    // SCEV may have rewritten an expression that produces the GEP's pointer
201    // operand. That's ok as long as the pointer operand has the same base
202    // pointer. Unlike GetUnderlyingObject(), getPointerBase() will find the
203    // base of a recurrence. This handles the case in which SCEV expansion
204    // converts a pointer type recurrence into a nonrecurrent pointer base
205    // indexed by an integer recurrence.
206    const SCEV *FromBase = SE->getPointerBase(SE->getSCEV(FromPtr));
207    const SCEV *ToBase = SE->getPointerBase(SE->getSCEV(ToPtr));
208    if (FromBase == ToBase)
209      return true;
210
211    DEBUG(dbgs() << "INDVARS: GEP rewrite bail out "
212          << *FromBase << " != " << *ToBase << "\n");
213
214    return false;
215  }
216  return true;
217}
218
219/// Determine the insertion point for this user. By default, insert immediately
220/// before the user. SCEVExpander or LICM will hoist loop invariants out of the
221/// loop. For PHI nodes, there may be multiple uses, so compute the nearest
222/// common dominator for the incoming blocks.
223static Instruction *getInsertPointForUses(Instruction *User, Value *Def,
224                                          DominatorTree *DT) {
225  PHINode *PHI = dyn_cast<PHINode>(User);
226  if (!PHI)
227    return User;
228
229  Instruction *InsertPt = 0;
230  for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i) {
231    if (PHI->getIncomingValue(i) != Def)
232      continue;
233
234    BasicBlock *InsertBB = PHI->getIncomingBlock(i);
235    if (!InsertPt) {
236      InsertPt = InsertBB->getTerminator();
237      continue;
238    }
239    InsertBB = DT->findNearestCommonDominator(InsertPt->getParent(), InsertBB);
240    InsertPt = InsertBB->getTerminator();
241  }
242  assert(InsertPt && "Missing phi operand");
243  assert((!isa<Instruction>(Def) ||
244          DT->dominates(cast<Instruction>(Def), InsertPt)) &&
245         "def does not dominate all uses");
246  return InsertPt;
247}
248
249//===----------------------------------------------------------------------===//
250// RewriteNonIntegerIVs and helpers. Prefer integer IVs.
251//===----------------------------------------------------------------------===//
252
253/// ConvertToSInt - Convert APF to an integer, if possible.
254static bool ConvertToSInt(const APFloat &APF, int64_t &IntVal) {
255  bool isExact = false;
256  if (&APF.getSemantics() == &APFloat::PPCDoubleDouble)
257    return false;
258  // See if we can convert this to an int64_t
259  uint64_t UIntVal;
260  if (APF.convertToInteger(&UIntVal, 64, true, APFloat::rmTowardZero,
261                           &isExact) != APFloat::opOK || !isExact)
262    return false;
263  IntVal = UIntVal;
264  return true;
265}
266
267/// HandleFloatingPointIV - If the loop has floating induction variable
268/// then insert corresponding integer induction variable if possible.
269/// For example,
270/// for(double i = 0; i < 10000; ++i)
271///   bar(i)
272/// is converted into
273/// for(int i = 0; i < 10000; ++i)
274///   bar((double)i);
275///
276void IndVarSimplify::HandleFloatingPointIV(Loop *L, PHINode *PN) {
277  unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0));
278  unsigned BackEdge     = IncomingEdge^1;
279
280  // Check incoming value.
281  ConstantFP *InitValueVal =
282    dyn_cast<ConstantFP>(PN->getIncomingValue(IncomingEdge));
283
284  int64_t InitValue;
285  if (!InitValueVal || !ConvertToSInt(InitValueVal->getValueAPF(), InitValue))
286    return;
287
288  // Check IV increment. Reject this PN if increment operation is not
289  // an add or increment value can not be represented by an integer.
290  BinaryOperator *Incr =
291    dyn_cast<BinaryOperator>(PN->getIncomingValue(BackEdge));
292  if (Incr == 0 || Incr->getOpcode() != Instruction::FAdd) return;
293
294  // If this is not an add of the PHI with a constantfp, or if the constant fp
295  // is not an integer, bail out.
296  ConstantFP *IncValueVal = dyn_cast<ConstantFP>(Incr->getOperand(1));
297  int64_t IncValue;
298  if (IncValueVal == 0 || Incr->getOperand(0) != PN ||
299      !ConvertToSInt(IncValueVal->getValueAPF(), IncValue))
300    return;
301
302  // Check Incr uses. One user is PN and the other user is an exit condition
303  // used by the conditional terminator.
304  Value::use_iterator IncrUse = Incr->use_begin();
305  Instruction *U1 = cast<Instruction>(*IncrUse++);
306  if (IncrUse == Incr->use_end()) return;
307  Instruction *U2 = cast<Instruction>(*IncrUse++);
308  if (IncrUse != Incr->use_end()) return;
309
310  // Find exit condition, which is an fcmp.  If it doesn't exist, or if it isn't
311  // only used by a branch, we can't transform it.
312  FCmpInst *Compare = dyn_cast<FCmpInst>(U1);
313  if (!Compare)
314    Compare = dyn_cast<FCmpInst>(U2);
315  if (Compare == 0 || !Compare->hasOneUse() ||
316      !isa<BranchInst>(Compare->use_back()))
317    return;
318
319  BranchInst *TheBr = cast<BranchInst>(Compare->use_back());
320
321  // We need to verify that the branch actually controls the iteration count
322  // of the loop.  If not, the new IV can overflow and no one will notice.
323  // The branch block must be in the loop and one of the successors must be out
324  // of the loop.
325  assert(TheBr->isConditional() && "Can't use fcmp if not conditional");
326  if (!L->contains(TheBr->getParent()) ||
327      (L->contains(TheBr->getSuccessor(0)) &&
328       L->contains(TheBr->getSuccessor(1))))
329    return;
330
331
332  // If it isn't a comparison with an integer-as-fp (the exit value), we can't
333  // transform it.
334  ConstantFP *ExitValueVal = dyn_cast<ConstantFP>(Compare->getOperand(1));
335  int64_t ExitValue;
336  if (ExitValueVal == 0 ||
337      !ConvertToSInt(ExitValueVal->getValueAPF(), ExitValue))
338    return;
339
340  // Find new predicate for integer comparison.
341  CmpInst::Predicate NewPred = CmpInst::BAD_ICMP_PREDICATE;
342  switch (Compare->getPredicate()) {
343  default: return;  // Unknown comparison.
344  case CmpInst::FCMP_OEQ:
345  case CmpInst::FCMP_UEQ: NewPred = CmpInst::ICMP_EQ; break;
346  case CmpInst::FCMP_ONE:
347  case CmpInst::FCMP_UNE: NewPred = CmpInst::ICMP_NE; break;
348  case CmpInst::FCMP_OGT:
349  case CmpInst::FCMP_UGT: NewPred = CmpInst::ICMP_SGT; break;
350  case CmpInst::FCMP_OGE:
351  case CmpInst::FCMP_UGE: NewPred = CmpInst::ICMP_SGE; break;
352  case CmpInst::FCMP_OLT:
353  case CmpInst::FCMP_ULT: NewPred = CmpInst::ICMP_SLT; break;
354  case CmpInst::FCMP_OLE:
355  case CmpInst::FCMP_ULE: NewPred = CmpInst::ICMP_SLE; break;
356  }
357
358  // We convert the floating point induction variable to a signed i32 value if
359  // we can.  This is only safe if the comparison will not overflow in a way
360  // that won't be trapped by the integer equivalent operations.  Check for this
361  // now.
362  // TODO: We could use i64 if it is native and the range requires it.
363
364  // The start/stride/exit values must all fit in signed i32.
365  if (!isInt<32>(InitValue) || !isInt<32>(IncValue) || !isInt<32>(ExitValue))
366    return;
367
368  // If not actually striding (add x, 0.0), avoid touching the code.
369  if (IncValue == 0)
370    return;
371
372  // Positive and negative strides have different safety conditions.
373  if (IncValue > 0) {
374    // If we have a positive stride, we require the init to be less than the
375    // exit value and an equality or less than comparison.
376    if (InitValue >= ExitValue ||
377        NewPred == CmpInst::ICMP_SGT || NewPred == CmpInst::ICMP_SGE)
378      return;
379
380    uint32_t Range = uint32_t(ExitValue-InitValue);
381    if (NewPred == CmpInst::ICMP_SLE) {
382      // Normalize SLE -> SLT, check for infinite loop.
383      if (++Range == 0) return;  // Range overflows.
384    }
385
386    unsigned Leftover = Range % uint32_t(IncValue);
387
388    // If this is an equality comparison, we require that the strided value
389    // exactly land on the exit value, otherwise the IV condition will wrap
390    // around and do things the fp IV wouldn't.
391    if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) &&
392        Leftover != 0)
393      return;
394
395    // If the stride would wrap around the i32 before exiting, we can't
396    // transform the IV.
397    if (Leftover != 0 && int32_t(ExitValue+IncValue) < ExitValue)
398      return;
399
400  } else {
401    // If we have a negative stride, we require the init to be greater than the
402    // exit value and an equality or greater than comparison.
403    if (InitValue >= ExitValue ||
404        NewPred == CmpInst::ICMP_SLT || NewPred == CmpInst::ICMP_SLE)
405      return;
406
407    uint32_t Range = uint32_t(InitValue-ExitValue);
408    if (NewPred == CmpInst::ICMP_SGE) {
409      // Normalize SGE -> SGT, check for infinite loop.
410      if (++Range == 0) return;  // Range overflows.
411    }
412
413    unsigned Leftover = Range % uint32_t(-IncValue);
414
415    // If this is an equality comparison, we require that the strided value
416    // exactly land on the exit value, otherwise the IV condition will wrap
417    // around and do things the fp IV wouldn't.
418    if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) &&
419        Leftover != 0)
420      return;
421
422    // If the stride would wrap around the i32 before exiting, we can't
423    // transform the IV.
424    if (Leftover != 0 && int32_t(ExitValue+IncValue) > ExitValue)
425      return;
426  }
427
428  IntegerType *Int32Ty = Type::getInt32Ty(PN->getContext());
429
430  // Insert new integer induction variable.
431  PHINode *NewPHI = PHINode::Create(Int32Ty, 2, PN->getName()+".int", PN);
432  NewPHI->addIncoming(ConstantInt::get(Int32Ty, InitValue),
433                      PN->getIncomingBlock(IncomingEdge));
434
435  Value *NewAdd =
436    BinaryOperator::CreateAdd(NewPHI, ConstantInt::get(Int32Ty, IncValue),
437                              Incr->getName()+".int", Incr);
438  NewPHI->addIncoming(NewAdd, PN->getIncomingBlock(BackEdge));
439
440  ICmpInst *NewCompare = new ICmpInst(TheBr, NewPred, NewAdd,
441                                      ConstantInt::get(Int32Ty, ExitValue),
442                                      Compare->getName());
443
444  // In the following deletions, PN may become dead and may be deleted.
445  // Use a WeakVH to observe whether this happens.
446  WeakVH WeakPH = PN;
447
448  // Delete the old floating point exit comparison.  The branch starts using the
449  // new comparison.
450  NewCompare->takeName(Compare);
451  Compare->replaceAllUsesWith(NewCompare);
452  RecursivelyDeleteTriviallyDeadInstructions(Compare);
453
454  // Delete the old floating point increment.
455  Incr->replaceAllUsesWith(UndefValue::get(Incr->getType()));
456  RecursivelyDeleteTriviallyDeadInstructions(Incr);
457
458  // If the FP induction variable still has uses, this is because something else
459  // in the loop uses its value.  In order to canonicalize the induction
460  // variable, we chose to eliminate the IV and rewrite it in terms of an
461  // int->fp cast.
462  //
463  // We give preference to sitofp over uitofp because it is faster on most
464  // platforms.
465  if (WeakPH) {
466    Value *Conv = new SIToFPInst(NewPHI, PN->getType(), "indvar.conv",
467                                 PN->getParent()->getFirstNonPHI());
468    PN->replaceAllUsesWith(Conv);
469    RecursivelyDeleteTriviallyDeadInstructions(PN);
470  }
471
472  // Add a new IVUsers entry for the newly-created integer PHI.
473  if (IU)
474    IU->AddUsersIfInteresting(NewPHI);
475}
476
477void IndVarSimplify::RewriteNonIntegerIVs(Loop *L) {
478  // First step.  Check to see if there are any floating-point recurrences.
479  // If there are, change them into integer recurrences, permitting analysis by
480  // the SCEV routines.
481  //
482  BasicBlock *Header = L->getHeader();
483
484  SmallVector<WeakVH, 8> PHIs;
485  for (BasicBlock::iterator I = Header->begin();
486       PHINode *PN = dyn_cast<PHINode>(I); ++I)
487    PHIs.push_back(PN);
488
489  for (unsigned i = 0, e = PHIs.size(); i != e; ++i)
490    if (PHINode *PN = dyn_cast_or_null<PHINode>(&*PHIs[i]))
491      HandleFloatingPointIV(L, PN);
492
493  // If the loop previously had floating-point IV, ScalarEvolution
494  // may not have been able to compute a trip count. Now that we've done some
495  // re-writing, the trip count may be computable.
496  if (Changed)
497    SE->forgetLoop(L);
498}
499
500//===----------------------------------------------------------------------===//
501// RewriteLoopExitValues - Optimize IV users outside the loop.
502// As a side effect, reduces the amount of IV processing within the loop.
503//===----------------------------------------------------------------------===//
504
505/// RewriteLoopExitValues - Check to see if this loop has a computable
506/// loop-invariant execution count.  If so, this means that we can compute the
507/// final value of any expressions that are recurrent in the loop, and
508/// substitute the exit values from the loop into any instructions outside of
509/// the loop that use the final values of the current expressions.
510///
511/// This is mostly redundant with the regular IndVarSimplify activities that
512/// happen later, except that it's more powerful in some cases, because it's
513/// able to brute-force evaluate arbitrary instructions as long as they have
514/// constant operands at the beginning of the loop.
515void IndVarSimplify::RewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter) {
516  // Verify the input to the pass in already in LCSSA form.
517  assert(L->isLCSSAForm(*DT));
518
519  SmallVector<BasicBlock*, 8> ExitBlocks;
520  L->getUniqueExitBlocks(ExitBlocks);
521
522  // Find all values that are computed inside the loop, but used outside of it.
523  // Because of LCSSA, these values will only occur in LCSSA PHI Nodes.  Scan
524  // the exit blocks of the loop to find them.
525  for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
526    BasicBlock *ExitBB = ExitBlocks[i];
527
528    // If there are no PHI nodes in this exit block, then no values defined
529    // inside the loop are used on this path, skip it.
530    PHINode *PN = dyn_cast<PHINode>(ExitBB->begin());
531    if (!PN) continue;
532
533    unsigned NumPreds = PN->getNumIncomingValues();
534
535    // Iterate over all of the PHI nodes.
536    BasicBlock::iterator BBI = ExitBB->begin();
537    while ((PN = dyn_cast<PHINode>(BBI++))) {
538      if (PN->use_empty())
539        continue; // dead use, don't replace it
540
541      // SCEV only supports integer expressions for now.
542      if (!PN->getType()->isIntegerTy() && !PN->getType()->isPointerTy())
543        continue;
544
545      // It's necessary to tell ScalarEvolution about this explicitly so that
546      // it can walk the def-use list and forget all SCEVs, as it may not be
547      // watching the PHI itself. Once the new exit value is in place, there
548      // may not be a def-use connection between the loop and every instruction
549      // which got a SCEVAddRecExpr for that loop.
550      SE->forgetValue(PN);
551
552      // Iterate over all of the values in all the PHI nodes.
553      for (unsigned i = 0; i != NumPreds; ++i) {
554        // If the value being merged in is not integer or is not defined
555        // in the loop, skip it.
556        Value *InVal = PN->getIncomingValue(i);
557        if (!isa<Instruction>(InVal))
558          continue;
559
560        // If this pred is for a subloop, not L itself, skip it.
561        if (LI->getLoopFor(PN->getIncomingBlock(i)) != L)
562          continue; // The Block is in a subloop, skip it.
563
564        // Check that InVal is defined in the loop.
565        Instruction *Inst = cast<Instruction>(InVal);
566        if (!L->contains(Inst))
567          continue;
568
569        // Okay, this instruction has a user outside of the current loop
570        // and varies predictably *inside* the loop.  Evaluate the value it
571        // contains when the loop exits, if possible.
572        const SCEV *ExitValue = SE->getSCEVAtScope(Inst, L->getParentLoop());
573        if (!SE->isLoopInvariant(ExitValue, L))
574          continue;
575
576        Value *ExitVal = Rewriter.expandCodeFor(ExitValue, PN->getType(), Inst);
577
578        DEBUG(dbgs() << "INDVARS: RLEV: AfterLoopVal = " << *ExitVal << '\n'
579                     << "  LoopVal = " << *Inst << "\n");
580
581        if (!isValidRewrite(Inst, ExitVal)) {
582          DeadInsts.push_back(ExitVal);
583          continue;
584        }
585        Changed = true;
586        ++NumReplaced;
587
588        PN->setIncomingValue(i, ExitVal);
589
590        // If this instruction is dead now, delete it.
591        RecursivelyDeleteTriviallyDeadInstructions(Inst);
592
593        if (NumPreds == 1) {
594          // Completely replace a single-pred PHI. This is safe, because the
595          // NewVal won't be variant in the loop, so we don't need an LCSSA phi
596          // node anymore.
597          PN->replaceAllUsesWith(ExitVal);
598          RecursivelyDeleteTriviallyDeadInstructions(PN);
599        }
600      }
601      if (NumPreds != 1) {
602        // Clone the PHI and delete the original one. This lets IVUsers and
603        // any other maps purge the original user from their records.
604        PHINode *NewPN = cast<PHINode>(PN->clone());
605        NewPN->takeName(PN);
606        NewPN->insertBefore(PN);
607        PN->replaceAllUsesWith(NewPN);
608        PN->eraseFromParent();
609      }
610    }
611  }
612
613  // The insertion point instruction may have been deleted; clear it out
614  // so that the rewriter doesn't trip over it later.
615  Rewriter.clearInsertPoint();
616}
617
618//===----------------------------------------------------------------------===//
619//  Rewrite IV users based on a canonical IV.
620//  To be replaced by -disable-iv-rewrite.
621//===----------------------------------------------------------------------===//
622
623/// SimplifyIVUsers - Iteratively perform simplification on IVUsers within this
624/// loop. IVUsers is treated as a worklist. Each successive simplification may
625/// push more users which may themselves be candidates for simplification.
626///
627/// This is the old approach to IV simplification to be replaced by
628/// SimplifyIVUsersNoRewrite.
629///
630void IndVarSimplify::SimplifyIVUsers(SCEVExpander &Rewriter) {
631  // Each round of simplification involves a round of eliminating operations
632  // followed by a round of widening IVs. A single IVUsers worklist is used
633  // across all rounds. The inner loop advances the user. If widening exposes
634  // more uses, then another pass through the outer loop is triggered.
635  for (IVUsers::iterator I = IU->begin(); I != IU->end(); ++I) {
636    Instruction *UseInst = I->getUser();
637    Value *IVOperand = I->getOperandValToReplace();
638
639    if (ICmpInst *ICmp = dyn_cast<ICmpInst>(UseInst)) {
640      EliminateIVComparison(ICmp, IVOperand);
641      continue;
642    }
643    if (BinaryOperator *Rem = dyn_cast<BinaryOperator>(UseInst)) {
644      bool IsSigned = Rem->getOpcode() == Instruction::SRem;
645      if (IsSigned || Rem->getOpcode() == Instruction::URem) {
646        EliminateIVRemainder(Rem, IVOperand, IsSigned);
647        continue;
648      }
649    }
650  }
651}
652
653// FIXME: It is an extremely bad idea to indvar substitute anything more
654// complex than affine induction variables.  Doing so will put expensive
655// polynomial evaluations inside of the loop, and the str reduction pass
656// currently can only reduce affine polynomials.  For now just disable
657// indvar subst on anything more complex than an affine addrec, unless
658// it can be expanded to a trivial value.
659static bool isSafe(const SCEV *S, const Loop *L, ScalarEvolution *SE) {
660  // Loop-invariant values are safe.
661  if (SE->isLoopInvariant(S, L)) return true;
662
663  // Affine addrecs are safe. Non-affine are not, because LSR doesn't know how
664  // to transform them into efficient code.
665  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
666    return AR->isAffine();
667
668  // An add is safe it all its operands are safe.
669  if (const SCEVCommutativeExpr *Commutative = dyn_cast<SCEVCommutativeExpr>(S)) {
670    for (SCEVCommutativeExpr::op_iterator I = Commutative->op_begin(),
671         E = Commutative->op_end(); I != E; ++I)
672      if (!isSafe(*I, L, SE)) return false;
673    return true;
674  }
675
676  // A cast is safe if its operand is.
677  if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S))
678    return isSafe(C->getOperand(), L, SE);
679
680  // A udiv is safe if its operands are.
681  if (const SCEVUDivExpr *UD = dyn_cast<SCEVUDivExpr>(S))
682    return isSafe(UD->getLHS(), L, SE) &&
683           isSafe(UD->getRHS(), L, SE);
684
685  // SCEVUnknown is always safe.
686  if (isa<SCEVUnknown>(S))
687    return true;
688
689  // Nothing else is safe.
690  return false;
691}
692
693void IndVarSimplify::RewriteIVExpressions(Loop *L, SCEVExpander &Rewriter) {
694  // Rewrite all induction variable expressions in terms of the canonical
695  // induction variable.
696  //
697  // If there were induction variables of other sizes or offsets, manually
698  // add the offsets to the primary induction variable and cast, avoiding
699  // the need for the code evaluation methods to insert induction variables
700  // of different sizes.
701  for (IVUsers::iterator UI = IU->begin(), E = IU->end(); UI != E; ++UI) {
702    Value *Op = UI->getOperandValToReplace();
703    Type *UseTy = Op->getType();
704    Instruction *User = UI->getUser();
705
706    // Compute the final addrec to expand into code.
707    const SCEV *AR = IU->getReplacementExpr(*UI);
708
709    // Evaluate the expression out of the loop, if possible.
710    if (!L->contains(UI->getUser())) {
711      const SCEV *ExitVal = SE->getSCEVAtScope(AR, L->getParentLoop());
712      if (SE->isLoopInvariant(ExitVal, L))
713        AR = ExitVal;
714    }
715
716    // FIXME: It is an extremely bad idea to indvar substitute anything more
717    // complex than affine induction variables.  Doing so will put expensive
718    // polynomial evaluations inside of the loop, and the str reduction pass
719    // currently can only reduce affine polynomials.  For now just disable
720    // indvar subst on anything more complex than an affine addrec, unless
721    // it can be expanded to a trivial value.
722    if (!isSafe(AR, L, SE))
723      continue;
724
725    // Determine the insertion point for this user. By default, insert
726    // immediately before the user. The SCEVExpander class will automatically
727    // hoist loop invariants out of the loop. For PHI nodes, there may be
728    // multiple uses, so compute the nearest common dominator for the
729    // incoming blocks.
730    Instruction *InsertPt = getInsertPointForUses(User, Op, DT);
731
732    // Now expand it into actual Instructions and patch it into place.
733    Value *NewVal = Rewriter.expandCodeFor(AR, UseTy, InsertPt);
734
735    DEBUG(dbgs() << "INDVARS: Rewrote IV '" << *AR << "' " << *Op << '\n'
736                 << "   into = " << *NewVal << "\n");
737
738    if (!isValidRewrite(Op, NewVal)) {
739      DeadInsts.push_back(NewVal);
740      continue;
741    }
742    // Inform ScalarEvolution that this value is changing. The change doesn't
743    // affect its value, but it does potentially affect which use lists the
744    // value will be on after the replacement, which affects ScalarEvolution's
745    // ability to walk use lists and drop dangling pointers when a value is
746    // deleted.
747    SE->forgetValue(User);
748
749    // Patch the new value into place.
750    if (Op->hasName())
751      NewVal->takeName(Op);
752    if (Instruction *NewValI = dyn_cast<Instruction>(NewVal))
753      NewValI->setDebugLoc(User->getDebugLoc());
754    User->replaceUsesOfWith(Op, NewVal);
755    UI->setOperandValToReplace(NewVal);
756
757    ++NumRemoved;
758    Changed = true;
759
760    // The old value may be dead now.
761    DeadInsts.push_back(Op);
762  }
763}
764
765//===----------------------------------------------------------------------===//
766//  IV Widening - Extend the width of an IV to cover its widest uses.
767//===----------------------------------------------------------------------===//
768
769namespace {
770  // Collect information about induction variables that are used by sign/zero
771  // extend operations. This information is recorded by CollectExtend and
772  // provides the input to WidenIV.
773  struct WideIVInfo {
774    Type *WidestNativeType; // Widest integer type created [sz]ext
775    bool IsSigned;                // Was an sext user seen before a zext?
776
777    WideIVInfo() : WidestNativeType(0), IsSigned(false) {}
778  };
779}
780
781/// CollectExtend - Update information about the induction variable that is
782/// extended by this sign or zero extend operation. This is used to determine
783/// the final width of the IV before actually widening it.
784static void CollectExtend(CastInst *Cast, bool IsSigned, WideIVInfo &WI,
785                          ScalarEvolution *SE, const TargetData *TD) {
786  Type *Ty = Cast->getType();
787  uint64_t Width = SE->getTypeSizeInBits(Ty);
788  if (TD && !TD->isLegalInteger(Width))
789    return;
790
791  if (!WI.WidestNativeType) {
792    WI.WidestNativeType = SE->getEffectiveSCEVType(Ty);
793    WI.IsSigned = IsSigned;
794    return;
795  }
796
797  // We extend the IV to satisfy the sign of its first user, arbitrarily.
798  if (WI.IsSigned != IsSigned)
799    return;
800
801  if (Width > SE->getTypeSizeInBits(WI.WidestNativeType))
802    WI.WidestNativeType = SE->getEffectiveSCEVType(Ty);
803}
804
805namespace {
806
807/// NarrowIVDefUse - Record a link in the Narrow IV def-use chain along with the
808/// WideIV that computes the same value as the Narrow IV def.  This avoids
809/// caching Use* pointers.
810struct NarrowIVDefUse {
811  Instruction *NarrowDef;
812  Instruction *NarrowUse;
813  Instruction *WideDef;
814
815  NarrowIVDefUse(): NarrowDef(0), NarrowUse(0), WideDef(0) {}
816
817  NarrowIVDefUse(Instruction *ND, Instruction *NU, Instruction *WD):
818    NarrowDef(ND), NarrowUse(NU), WideDef(WD) {}
819};
820
821/// WidenIV - The goal of this transform is to remove sign and zero extends
822/// without creating any new induction variables. To do this, it creates a new
823/// phi of the wider type and redirects all users, either removing extends or
824/// inserting truncs whenever we stop propagating the type.
825///
826class WidenIV {
827  // Parameters
828  PHINode *OrigPhi;
829  Type *WideType;
830  bool IsSigned;
831
832  // Context
833  LoopInfo        *LI;
834  Loop            *L;
835  ScalarEvolution *SE;
836  DominatorTree   *DT;
837
838  // Result
839  PHINode *WidePhi;
840  Instruction *WideInc;
841  const SCEV *WideIncExpr;
842  SmallVectorImpl<WeakVH> &DeadInsts;
843
844  SmallPtrSet<Instruction*,16> Widened;
845  SmallVector<NarrowIVDefUse, 8> NarrowIVUsers;
846
847public:
848  WidenIV(PHINode *PN, const WideIVInfo &WI, LoopInfo *LInfo,
849          ScalarEvolution *SEv, DominatorTree *DTree,
850          SmallVectorImpl<WeakVH> &DI) :
851    OrigPhi(PN),
852    WideType(WI.WidestNativeType),
853    IsSigned(WI.IsSigned),
854    LI(LInfo),
855    L(LI->getLoopFor(OrigPhi->getParent())),
856    SE(SEv),
857    DT(DTree),
858    WidePhi(0),
859    WideInc(0),
860    WideIncExpr(0),
861    DeadInsts(DI) {
862    assert(L->getHeader() == OrigPhi->getParent() && "Phi must be an IV");
863  }
864
865  PHINode *CreateWideIV(SCEVExpander &Rewriter);
866
867protected:
868  Instruction *CloneIVUser(NarrowIVDefUse DU);
869
870  const SCEVAddRecExpr *GetWideRecurrence(Instruction *NarrowUse);
871
872  Instruction *WidenIVUse(NarrowIVDefUse DU);
873
874  void pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef);
875};
876} // anonymous namespace
877
878static Value *getExtend( Value *NarrowOper, Type *WideType,
879                               bool IsSigned, IRBuilder<> &Builder) {
880  return IsSigned ? Builder.CreateSExt(NarrowOper, WideType) :
881                    Builder.CreateZExt(NarrowOper, WideType);
882}
883
884/// CloneIVUser - Instantiate a wide operation to replace a narrow
885/// operation. This only needs to handle operations that can evaluation to
886/// SCEVAddRec. It can safely return 0 for any operation we decide not to clone.
887Instruction *WidenIV::CloneIVUser(NarrowIVDefUse DU) {
888  unsigned Opcode = DU.NarrowUse->getOpcode();
889  switch (Opcode) {
890  default:
891    return 0;
892  case Instruction::Add:
893  case Instruction::Mul:
894  case Instruction::UDiv:
895  case Instruction::Sub:
896  case Instruction::And:
897  case Instruction::Or:
898  case Instruction::Xor:
899  case Instruction::Shl:
900  case Instruction::LShr:
901  case Instruction::AShr:
902    DEBUG(dbgs() << "Cloning IVUser: " << *DU.NarrowUse << "\n");
903
904    IRBuilder<> Builder(DU.NarrowUse);
905
906    // Replace NarrowDef operands with WideDef. Otherwise, we don't know
907    // anything about the narrow operand yet so must insert a [sz]ext. It is
908    // probably loop invariant and will be folded or hoisted. If it actually
909    // comes from a widened IV, it should be removed during a future call to
910    // WidenIVUse.
911    Value *LHS = (DU.NarrowUse->getOperand(0) == DU.NarrowDef) ? DU.WideDef :
912      getExtend(DU.NarrowUse->getOperand(0), WideType, IsSigned, Builder);
913    Value *RHS = (DU.NarrowUse->getOperand(1) == DU.NarrowDef) ? DU.WideDef :
914      getExtend(DU.NarrowUse->getOperand(1), WideType, IsSigned, Builder);
915
916    BinaryOperator *NarrowBO = cast<BinaryOperator>(DU.NarrowUse);
917    BinaryOperator *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(),
918                                                    LHS, RHS,
919                                                    NarrowBO->getName());
920    Builder.Insert(WideBO);
921    if (const OverflowingBinaryOperator *OBO =
922        dyn_cast<OverflowingBinaryOperator>(NarrowBO)) {
923      if (OBO->hasNoUnsignedWrap()) WideBO->setHasNoUnsignedWrap();
924      if (OBO->hasNoSignedWrap()) WideBO->setHasNoSignedWrap();
925    }
926    return WideBO;
927  }
928  llvm_unreachable(0);
929}
930
931/// HoistStep - Attempt to hoist an IV increment above a potential use.
932///
933/// To successfully hoist, two criteria must be met:
934/// - IncV operands dominate InsertPos and
935/// - InsertPos dominates IncV
936///
937/// Meeting the second condition means that we don't need to check all of IncV's
938/// existing uses (it's moving up in the domtree).
939///
940/// This does not yet recursively hoist the operands, although that would
941/// not be difficult.
942static bool HoistStep(Instruction *IncV, Instruction *InsertPos,
943                      const DominatorTree *DT)
944{
945  if (DT->dominates(IncV, InsertPos))
946    return true;
947
948  if (!DT->dominates(InsertPos->getParent(), IncV->getParent()))
949    return false;
950
951  if (IncV->mayHaveSideEffects())
952    return false;
953
954  // Attempt to hoist IncV
955  for (User::op_iterator OI = IncV->op_begin(), OE = IncV->op_end();
956       OI != OE; ++OI) {
957    Instruction *OInst = dyn_cast<Instruction>(OI);
958    if (OInst && !DT->dominates(OInst, InsertPos))
959      return false;
960  }
961  IncV->moveBefore(InsertPos);
962  return true;
963}
964
965// GetWideRecurrence - Is this instruction potentially interesting from IVUsers'
966// perspective after widening it's type? In other words, can the extend be
967// safely hoisted out of the loop with SCEV reducing the value to a recurrence
968// on the same loop. If so, return the sign or zero extended
969// recurrence. Otherwise return NULL.
970const SCEVAddRecExpr *WidenIV::GetWideRecurrence(Instruction *NarrowUse) {
971  if (!SE->isSCEVable(NarrowUse->getType()))
972    return 0;
973
974  const SCEV *NarrowExpr = SE->getSCEV(NarrowUse);
975  if (SE->getTypeSizeInBits(NarrowExpr->getType())
976      >= SE->getTypeSizeInBits(WideType)) {
977    // NarrowUse implicitly widens its operand. e.g. a gep with a narrow
978    // index. So don't follow this use.
979    return 0;
980  }
981
982  const SCEV *WideExpr = IsSigned ?
983    SE->getSignExtendExpr(NarrowExpr, WideType) :
984    SE->getZeroExtendExpr(NarrowExpr, WideType);
985  const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(WideExpr);
986  if (!AddRec || AddRec->getLoop() != L)
987    return 0;
988
989  return AddRec;
990}
991
992/// WidenIVUse - Determine whether an individual user of the narrow IV can be
993/// widened. If so, return the wide clone of the user.
994Instruction *WidenIV::WidenIVUse(NarrowIVDefUse DU) {
995
996  // Stop traversing the def-use chain at inner-loop phis or post-loop phis.
997  if (isa<PHINode>(DU.NarrowUse) &&
998      LI->getLoopFor(DU.NarrowUse->getParent()) != L)
999    return 0;
1000
1001  // Our raison d'etre! Eliminate sign and zero extension.
1002  if (IsSigned ? isa<SExtInst>(DU.NarrowUse) : isa<ZExtInst>(DU.NarrowUse)) {
1003    Value *NewDef = DU.WideDef;
1004    if (DU.NarrowUse->getType() != WideType) {
1005      unsigned CastWidth = SE->getTypeSizeInBits(DU.NarrowUse->getType());
1006      unsigned IVWidth = SE->getTypeSizeInBits(WideType);
1007      if (CastWidth < IVWidth) {
1008        // The cast isn't as wide as the IV, so insert a Trunc.
1009        IRBuilder<> Builder(DU.NarrowUse);
1010        NewDef = Builder.CreateTrunc(DU.WideDef, DU.NarrowUse->getType());
1011      }
1012      else {
1013        // A wider extend was hidden behind a narrower one. This may induce
1014        // another round of IV widening in which the intermediate IV becomes
1015        // dead. It should be very rare.
1016        DEBUG(dbgs() << "INDVARS: New IV " << *WidePhi
1017              << " not wide enough to subsume " << *DU.NarrowUse << "\n");
1018        DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef);
1019        NewDef = DU.NarrowUse;
1020      }
1021    }
1022    if (NewDef != DU.NarrowUse) {
1023      DEBUG(dbgs() << "INDVARS: eliminating " << *DU.NarrowUse
1024            << " replaced by " << *DU.WideDef << "\n");
1025      ++NumElimExt;
1026      DU.NarrowUse->replaceAllUsesWith(NewDef);
1027      DeadInsts.push_back(DU.NarrowUse);
1028    }
1029    // Now that the extend is gone, we want to expose it's uses for potential
1030    // further simplification. We don't need to directly inform SimplifyIVUsers
1031    // of the new users, because their parent IV will be processed later as a
1032    // new loop phi. If we preserved IVUsers analysis, we would also want to
1033    // push the uses of WideDef here.
1034
1035    // No further widening is needed. The deceased [sz]ext had done it for us.
1036    return 0;
1037  }
1038
1039  // Does this user itself evaluate to a recurrence after widening?
1040  const SCEVAddRecExpr *WideAddRec = GetWideRecurrence(DU.NarrowUse);
1041  if (!WideAddRec) {
1042    // This user does not evaluate to a recurence after widening, so don't
1043    // follow it. Instead insert a Trunc to kill off the original use,
1044    // eventually isolating the original narrow IV so it can be removed.
1045    IRBuilder<> Builder(getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT));
1046    Value *Trunc = Builder.CreateTrunc(DU.WideDef, DU.NarrowDef->getType());
1047    DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, Trunc);
1048    return 0;
1049  }
1050  // Assume block terminators cannot evaluate to a recurrence. We can't to
1051  // insert a Trunc after a terminator if there happens to be a critical edge.
1052  assert(DU.NarrowUse != DU.NarrowUse->getParent()->getTerminator() &&
1053         "SCEV is not expected to evaluate a block terminator");
1054
1055  // Reuse the IV increment that SCEVExpander created as long as it dominates
1056  // NarrowUse.
1057  Instruction *WideUse = 0;
1058  if (WideAddRec == WideIncExpr && HoistStep(WideInc, DU.NarrowUse, DT)) {
1059    WideUse = WideInc;
1060  }
1061  else {
1062    WideUse = CloneIVUser(DU);
1063    if (!WideUse)
1064      return 0;
1065  }
1066  // Evaluation of WideAddRec ensured that the narrow expression could be
1067  // extended outside the loop without overflow. This suggests that the wide use
1068  // evaluates to the same expression as the extended narrow use, but doesn't
1069  // absolutely guarantee it. Hence the following failsafe check. In rare cases
1070  // where it fails, we simply throw away the newly created wide use.
1071  if (WideAddRec != SE->getSCEV(WideUse)) {
1072    DEBUG(dbgs() << "Wide use expression mismatch: " << *WideUse
1073          << ": " << *SE->getSCEV(WideUse) << " != " << *WideAddRec << "\n");
1074    DeadInsts.push_back(WideUse);
1075    return 0;
1076  }
1077
1078  // Returning WideUse pushes it on the worklist.
1079  return WideUse;
1080}
1081
1082/// pushNarrowIVUsers - Add eligible users of NarrowDef to NarrowIVUsers.
1083///
1084void WidenIV::pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef) {
1085  for (Value::use_iterator UI = NarrowDef->use_begin(),
1086         UE = NarrowDef->use_end(); UI != UE; ++UI) {
1087    Instruction *NarrowUse = cast<Instruction>(*UI);
1088
1089    // Handle data flow merges and bizarre phi cycles.
1090    if (!Widened.insert(NarrowUse))
1091      continue;
1092
1093    NarrowIVUsers.push_back(NarrowIVDefUse(NarrowDef, NarrowUse, WideDef));
1094  }
1095}
1096
1097/// CreateWideIV - Process a single induction variable. First use the
1098/// SCEVExpander to create a wide induction variable that evaluates to the same
1099/// recurrence as the original narrow IV. Then use a worklist to forward
1100/// traverse the narrow IV's def-use chain. After WidenIVUse has processed all
1101/// interesting IV users, the narrow IV will be isolated for removal by
1102/// DeleteDeadPHIs.
1103///
1104/// It would be simpler to delete uses as they are processed, but we must avoid
1105/// invalidating SCEV expressions.
1106///
1107PHINode *WidenIV::CreateWideIV(SCEVExpander &Rewriter) {
1108  // Is this phi an induction variable?
1109  const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(OrigPhi));
1110  if (!AddRec)
1111    return NULL;
1112
1113  // Widen the induction variable expression.
1114  const SCEV *WideIVExpr = IsSigned ?
1115    SE->getSignExtendExpr(AddRec, WideType) :
1116    SE->getZeroExtendExpr(AddRec, WideType);
1117
1118  assert(SE->getEffectiveSCEVType(WideIVExpr->getType()) == WideType &&
1119         "Expect the new IV expression to preserve its type");
1120
1121  // Can the IV be extended outside the loop without overflow?
1122  AddRec = dyn_cast<SCEVAddRecExpr>(WideIVExpr);
1123  if (!AddRec || AddRec->getLoop() != L)
1124    return NULL;
1125
1126  // An AddRec must have loop-invariant operands. Since this AddRec is
1127  // materialized by a loop header phi, the expression cannot have any post-loop
1128  // operands, so they must dominate the loop header.
1129  assert(SE->properlyDominates(AddRec->getStart(), L->getHeader()) &&
1130         SE->properlyDominates(AddRec->getStepRecurrence(*SE), L->getHeader())
1131         && "Loop header phi recurrence inputs do not dominate the loop");
1132
1133  // The rewriter provides a value for the desired IV expression. This may
1134  // either find an existing phi or materialize a new one. Either way, we
1135  // expect a well-formed cyclic phi-with-increments. i.e. any operand not part
1136  // of the phi-SCC dominates the loop entry.
1137  Instruction *InsertPt = L->getHeader()->begin();
1138  WidePhi = cast<PHINode>(Rewriter.expandCodeFor(AddRec, WideType, InsertPt));
1139
1140  // Remembering the WideIV increment generated by SCEVExpander allows
1141  // WidenIVUse to reuse it when widening the narrow IV's increment. We don't
1142  // employ a general reuse mechanism because the call above is the only call to
1143  // SCEVExpander. Henceforth, we produce 1-to-1 narrow to wide uses.
1144  if (BasicBlock *LatchBlock = L->getLoopLatch()) {
1145    WideInc =
1146      cast<Instruction>(WidePhi->getIncomingValueForBlock(LatchBlock));
1147    WideIncExpr = SE->getSCEV(WideInc);
1148  }
1149
1150  DEBUG(dbgs() << "Wide IV: " << *WidePhi << "\n");
1151  ++NumWidened;
1152
1153  // Traverse the def-use chain using a worklist starting at the original IV.
1154  assert(Widened.empty() && NarrowIVUsers.empty() && "expect initial state" );
1155
1156  Widened.insert(OrigPhi);
1157  pushNarrowIVUsers(OrigPhi, WidePhi);
1158
1159  while (!NarrowIVUsers.empty()) {
1160    NarrowIVDefUse DU = NarrowIVUsers.pop_back_val();
1161
1162    // Process a def-use edge. This may replace the use, so don't hold a
1163    // use_iterator across it.
1164    Instruction *WideUse = WidenIVUse(DU);
1165
1166    // Follow all def-use edges from the previous narrow use.
1167    if (WideUse)
1168      pushNarrowIVUsers(DU.NarrowUse, WideUse);
1169
1170    // WidenIVUse may have removed the def-use edge.
1171    if (DU.NarrowDef->use_empty())
1172      DeadInsts.push_back(DU.NarrowDef);
1173  }
1174  return WidePhi;
1175}
1176
1177//===----------------------------------------------------------------------===//
1178//  Simplification of IV users based on SCEV evaluation.
1179//===----------------------------------------------------------------------===//
1180
1181void IndVarSimplify::EliminateIVComparison(ICmpInst *ICmp, Value *IVOperand) {
1182  unsigned IVOperIdx = 0;
1183  ICmpInst::Predicate Pred = ICmp->getPredicate();
1184  if (IVOperand != ICmp->getOperand(0)) {
1185    // Swapped
1186    assert(IVOperand == ICmp->getOperand(1) && "Can't find IVOperand");
1187    IVOperIdx = 1;
1188    Pred = ICmpInst::getSwappedPredicate(Pred);
1189  }
1190
1191  // Get the SCEVs for the ICmp operands.
1192  const SCEV *S = SE->getSCEV(ICmp->getOperand(IVOperIdx));
1193  const SCEV *X = SE->getSCEV(ICmp->getOperand(1 - IVOperIdx));
1194
1195  // Simplify unnecessary loops away.
1196  const Loop *ICmpLoop = LI->getLoopFor(ICmp->getParent());
1197  S = SE->getSCEVAtScope(S, ICmpLoop);
1198  X = SE->getSCEVAtScope(X, ICmpLoop);
1199
1200  // If the condition is always true or always false, replace it with
1201  // a constant value.
1202  if (SE->isKnownPredicate(Pred, S, X))
1203    ICmp->replaceAllUsesWith(ConstantInt::getTrue(ICmp->getContext()));
1204  else if (SE->isKnownPredicate(ICmpInst::getInversePredicate(Pred), S, X))
1205    ICmp->replaceAllUsesWith(ConstantInt::getFalse(ICmp->getContext()));
1206  else
1207    return;
1208
1209  DEBUG(dbgs() << "INDVARS: Eliminated comparison: " << *ICmp << '\n');
1210  ++NumElimCmp;
1211  Changed = true;
1212  DeadInsts.push_back(ICmp);
1213}
1214
1215void IndVarSimplify::EliminateIVRemainder(BinaryOperator *Rem,
1216                                          Value *IVOperand,
1217                                          bool IsSigned) {
1218  // We're only interested in the case where we know something about
1219  // the numerator.
1220  if (IVOperand != Rem->getOperand(0))
1221    return;
1222
1223  // Get the SCEVs for the ICmp operands.
1224  const SCEV *S = SE->getSCEV(Rem->getOperand(0));
1225  const SCEV *X = SE->getSCEV(Rem->getOperand(1));
1226
1227  // Simplify unnecessary loops away.
1228  const Loop *ICmpLoop = LI->getLoopFor(Rem->getParent());
1229  S = SE->getSCEVAtScope(S, ICmpLoop);
1230  X = SE->getSCEVAtScope(X, ICmpLoop);
1231
1232  // i % n  -->  i  if i is in [0,n).
1233  if ((!IsSigned || SE->isKnownNonNegative(S)) &&
1234      SE->isKnownPredicate(IsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT,
1235                           S, X))
1236    Rem->replaceAllUsesWith(Rem->getOperand(0));
1237  else {
1238    // (i+1) % n  -->  (i+1)==n?0:(i+1)  if i is in [0,n).
1239    const SCEV *LessOne =
1240      SE->getMinusSCEV(S, SE->getConstant(S->getType(), 1));
1241    if (IsSigned && !SE->isKnownNonNegative(LessOne))
1242      return;
1243
1244    if (!SE->isKnownPredicate(IsSigned ?
1245                              ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT,
1246                              LessOne, X))
1247      return;
1248
1249    ICmpInst *ICmp = new ICmpInst(Rem, ICmpInst::ICMP_EQ,
1250                                  Rem->getOperand(0), Rem->getOperand(1),
1251                                  "tmp");
1252    SelectInst *Sel =
1253      SelectInst::Create(ICmp,
1254                         ConstantInt::get(Rem->getType(), 0),
1255                         Rem->getOperand(0), "tmp", Rem);
1256    Rem->replaceAllUsesWith(Sel);
1257  }
1258
1259  // Inform IVUsers about the new users.
1260  if (IU) {
1261    if (Instruction *I = dyn_cast<Instruction>(Rem->getOperand(0)))
1262      IU->AddUsersIfInteresting(I);
1263  }
1264  DEBUG(dbgs() << "INDVARS: Simplified rem: " << *Rem << '\n');
1265  ++NumElimRem;
1266  Changed = true;
1267  DeadInsts.push_back(Rem);
1268}
1269
1270/// EliminateIVUser - Eliminate an operation that consumes a simple IV and has
1271/// no observable side-effect given the range of IV values.
1272bool IndVarSimplify::EliminateIVUser(Instruction *UseInst,
1273                                     Instruction *IVOperand) {
1274  if (ICmpInst *ICmp = dyn_cast<ICmpInst>(UseInst)) {
1275    EliminateIVComparison(ICmp, IVOperand);
1276    return true;
1277  }
1278  if (BinaryOperator *Rem = dyn_cast<BinaryOperator>(UseInst)) {
1279    bool IsSigned = Rem->getOpcode() == Instruction::SRem;
1280    if (IsSigned || Rem->getOpcode() == Instruction::URem) {
1281      EliminateIVRemainder(Rem, IVOperand, IsSigned);
1282      return true;
1283    }
1284  }
1285
1286  // Eliminate any operation that SCEV can prove is an identity function.
1287  if (!SE->isSCEVable(UseInst->getType()) ||
1288      (UseInst->getType() != IVOperand->getType()) ||
1289      (SE->getSCEV(UseInst) != SE->getSCEV(IVOperand)))
1290    return false;
1291
1292  DEBUG(dbgs() << "INDVARS: Eliminated identity: " << *UseInst << '\n');
1293
1294  UseInst->replaceAllUsesWith(IVOperand);
1295  ++NumElimIdentity;
1296  Changed = true;
1297  DeadInsts.push_back(UseInst);
1298  return true;
1299}
1300
1301/// pushIVUsers - Add all uses of Def to the current IV's worklist.
1302///
1303static void pushIVUsers(
1304  Instruction *Def,
1305  SmallPtrSet<Instruction*,16> &Simplified,
1306  SmallVectorImpl< std::pair<Instruction*,Instruction*> > &SimpleIVUsers) {
1307
1308  for (Value::use_iterator UI = Def->use_begin(), E = Def->use_end();
1309       UI != E; ++UI) {
1310    Instruction *User = cast<Instruction>(*UI);
1311
1312    // Avoid infinite or exponential worklist processing.
1313    // Also ensure unique worklist users.
1314    // If Def is a LoopPhi, it may not be in the Simplified set, so check for
1315    // self edges first.
1316    if (User != Def && Simplified.insert(User))
1317      SimpleIVUsers.push_back(std::make_pair(User, Def));
1318  }
1319}
1320
1321/// isSimpleIVUser - Return true if this instruction generates a simple SCEV
1322/// expression in terms of that IV.
1323///
1324/// This is similar to IVUsers' isInsteresting() but processes each instruction
1325/// non-recursively when the operand is already known to be a simpleIVUser.
1326///
1327static bool isSimpleIVUser(Instruction *I, const Loop *L, ScalarEvolution *SE) {
1328  if (!SE->isSCEVable(I->getType()))
1329    return false;
1330
1331  // Get the symbolic expression for this instruction.
1332  const SCEV *S = SE->getSCEV(I);
1333
1334  // Only consider affine recurrences.
1335  const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S);
1336  if (AR && AR->getLoop() == L)
1337    return true;
1338
1339  return false;
1340}
1341
1342/// SimplifyIVUsersNoRewrite - Iteratively perform simplification on a worklist
1343/// of IV users. Each successive simplification may push more users which may
1344/// themselves be candidates for simplification.
1345///
1346/// The "NoRewrite" algorithm does not require IVUsers analysis. Instead, it
1347/// simplifies instructions in-place during analysis. Rather than rewriting
1348/// induction variables bottom-up from their users, it transforms a chain of
1349/// IVUsers top-down, updating the IR only when it encouters a clear
1350/// optimization opportunitiy. A SCEVExpander "Rewriter" instance is still
1351/// needed, but only used to generate a new IV (phi) of wider type for sign/zero
1352/// extend elimination.
1353///
1354/// Once DisableIVRewrite is default, LSR will be the only client of IVUsers.
1355///
1356void IndVarSimplify::SimplifyIVUsersNoRewrite(Loop *L, SCEVExpander &Rewriter) {
1357  std::map<PHINode *, WideIVInfo> WideIVMap;
1358
1359  SmallVector<PHINode*, 8> LoopPhis;
1360  for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
1361    LoopPhis.push_back(cast<PHINode>(I));
1362  }
1363  // Each round of simplification iterates through the SimplifyIVUsers worklist
1364  // for all current phis, then determines whether any IVs can be
1365  // widened. Widening adds new phis to LoopPhis, inducing another round of
1366  // simplification on the wide IVs.
1367  while (!LoopPhis.empty()) {
1368    // Evaluate as many IV expressions as possible before widening any IVs. This
1369    // forces SCEV to set no-wrap flags before evaluating sign/zero
1370    // extension. The first time SCEV attempts to normalize sign/zero extension,
1371    // the result becomes final. So for the most predictable results, we delay
1372    // evaluation of sign/zero extend evaluation until needed, and avoid running
1373    // other SCEV based analysis prior to SimplifyIVUsersNoRewrite.
1374    do {
1375      PHINode *CurrIV = LoopPhis.pop_back_val();
1376
1377      // Information about sign/zero extensions of CurrIV.
1378      WideIVInfo WI;
1379
1380      // Instructions processed by SimplifyIVUsers for CurrIV.
1381      SmallPtrSet<Instruction*,16> Simplified;
1382
1383      // Use-def pairs if IV users waiting to be processed for CurrIV.
1384      SmallVector<std::pair<Instruction*, Instruction*>, 8> SimpleIVUsers;
1385
1386      // Push users of the current LoopPhi. In rare cases, pushIVUsers may be
1387      // called multiple times for the same LoopPhi. This is the proper thing to
1388      // do for loop header phis that use each other.
1389      pushIVUsers(CurrIV, Simplified, SimpleIVUsers);
1390
1391      while (!SimpleIVUsers.empty()) {
1392        std::pair<Instruction*, Instruction*> Use =SimpleIVUsers.pop_back_val();
1393        // Bypass back edges to avoid extra work.
1394        if (Use.first == CurrIV) continue;
1395
1396        if (EliminateIVUser(Use.first, Use.second)) {
1397          pushIVUsers(Use.second, Simplified, SimpleIVUsers);
1398          continue;
1399        }
1400        if (CastInst *Cast = dyn_cast<CastInst>(Use.first)) {
1401          bool IsSigned = Cast->getOpcode() == Instruction::SExt;
1402          if (IsSigned || Cast->getOpcode() == Instruction::ZExt) {
1403            CollectExtend(Cast, IsSigned, WI, SE, TD);
1404          }
1405          continue;
1406        }
1407        if (isSimpleIVUser(Use.first, L, SE)) {
1408          pushIVUsers(Use.first, Simplified, SimpleIVUsers);
1409        }
1410      }
1411      if (WI.WidestNativeType) {
1412        WideIVMap[CurrIV] = WI;
1413      }
1414    } while(!LoopPhis.empty());
1415
1416    for (std::map<PHINode *, WideIVInfo>::const_iterator I = WideIVMap.begin(),
1417           E = WideIVMap.end(); I != E; ++I) {
1418      WidenIV Widener(I->first, I->second, LI, SE, DT, DeadInsts);
1419      if (PHINode *WidePhi = Widener.CreateWideIV(Rewriter)) {
1420        Changed = true;
1421        LoopPhis.push_back(WidePhi);
1422      }
1423    }
1424    WideIVMap.clear();
1425  }
1426}
1427
1428/// SimplifyCongruentIVs - Check for congruent phis in this loop header and
1429/// populate ExprToIVMap for use later.
1430///
1431void IndVarSimplify::SimplifyCongruentIVs(Loop *L) {
1432  DenseMap<const SCEV *, PHINode *> ExprToIVMap;
1433  for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
1434    PHINode *Phi = cast<PHINode>(I);
1435    if (!SE->isSCEVable(Phi->getType()))
1436      continue;
1437
1438    const SCEV *S = SE->getSCEV(Phi);
1439    std::pair<DenseMap<const SCEV *, PHINode *>::const_iterator, bool> Tmp =
1440      ExprToIVMap.insert(std::make_pair(S, Phi));
1441    if (Tmp.second)
1442      continue;
1443    PHINode *OrigPhi = Tmp.first->second;
1444
1445    // If one phi derives from the other via GEPs, types may differ.
1446    if (OrigPhi->getType() != Phi->getType())
1447      continue;
1448
1449    // Replacing the congruent phi is sufficient because acyclic redundancy
1450    // elimination, CSE/GVN, should handle the rest. However, once SCEV proves
1451    // that a phi is congruent, it's almost certain to be the head of an IV
1452    // user cycle that is isomorphic with the original phi. So it's worth
1453    // eagerly cleaning up the common case of a single IV increment.
1454    if (BasicBlock *LatchBlock = L->getLoopLatch()) {
1455      Instruction *OrigInc =
1456        cast<Instruction>(OrigPhi->getIncomingValueForBlock(LatchBlock));
1457      Instruction *IsomorphicInc =
1458        cast<Instruction>(Phi->getIncomingValueForBlock(LatchBlock));
1459      if (OrigInc != IsomorphicInc &&
1460          OrigInc->getType() == IsomorphicInc->getType() &&
1461          SE->getSCEV(OrigInc) == SE->getSCEV(IsomorphicInc) &&
1462          HoistStep(OrigInc, IsomorphicInc, DT)) {
1463        DEBUG(dbgs() << "INDVARS: Eliminated congruent iv.inc: "
1464              << *IsomorphicInc << '\n');
1465        IsomorphicInc->replaceAllUsesWith(OrigInc);
1466        DeadInsts.push_back(IsomorphicInc);
1467      }
1468    }
1469    DEBUG(dbgs() << "INDVARS: Eliminated congruent iv: " << *Phi << '\n');
1470    ++NumElimIV;
1471    Phi->replaceAllUsesWith(OrigPhi);
1472    DeadInsts.push_back(Phi);
1473  }
1474}
1475
1476//===----------------------------------------------------------------------===//
1477//  LinearFunctionTestReplace and its kin. Rewrite the loop exit condition.
1478//===----------------------------------------------------------------------===//
1479
1480// Check for expressions that ScalarEvolution generates to compute
1481// BackedgeTakenInfo. If these expressions have not been reduced, then expanding
1482// them may incur additional cost (albeit in the loop preheader).
1483static bool isHighCostExpansion(const SCEV *S, BranchInst *BI,
1484                                ScalarEvolution *SE) {
1485  // If the backedge-taken count is a UDiv, it's very likely a UDiv that
1486  // ScalarEvolution's HowFarToZero or HowManyLessThans produced to compute a
1487  // precise expression, rather than a UDiv from the user's code. If we can't
1488  // find a UDiv in the code with some simple searching, assume the former and
1489  // forego rewriting the loop.
1490  if (isa<SCEVUDivExpr>(S)) {
1491    ICmpInst *OrigCond = dyn_cast<ICmpInst>(BI->getCondition());
1492    if (!OrigCond) return true;
1493    const SCEV *R = SE->getSCEV(OrigCond->getOperand(1));
1494    R = SE->getMinusSCEV(R, SE->getConstant(R->getType(), 1));
1495    if (R != S) {
1496      const SCEV *L = SE->getSCEV(OrigCond->getOperand(0));
1497      L = SE->getMinusSCEV(L, SE->getConstant(L->getType(), 1));
1498      if (L != S)
1499        return true;
1500    }
1501  }
1502
1503  if (!DisableIVRewrite || ForceLFTR)
1504    return false;
1505
1506  // Recurse past add expressions, which commonly occur in the
1507  // BackedgeTakenCount. They may already exist in program code, and if not,
1508  // they are not too expensive rematerialize.
1509  if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
1510    for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
1511         I != E; ++I) {
1512      if (isHighCostExpansion(*I, BI, SE))
1513        return true;
1514    }
1515    return false;
1516  }
1517
1518  // HowManyLessThans uses a Max expression whenever the loop is not guarded by
1519  // the exit condition.
1520  if (isa<SCEVSMaxExpr>(S) || isa<SCEVUMaxExpr>(S))
1521    return true;
1522
1523  // If we haven't recognized an expensive SCEV patter, assume its an expression
1524  // produced by program code.
1525  return false;
1526}
1527
1528/// canExpandBackedgeTakenCount - Return true if this loop's backedge taken
1529/// count expression can be safely and cheaply expanded into an instruction
1530/// sequence that can be used by LinearFunctionTestReplace.
1531static bool canExpandBackedgeTakenCount(Loop *L, ScalarEvolution *SE) {
1532  const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L);
1533  if (isa<SCEVCouldNotCompute>(BackedgeTakenCount) ||
1534      BackedgeTakenCount->isZero())
1535    return false;
1536
1537  if (!L->getExitingBlock())
1538    return false;
1539
1540  // Can't rewrite non-branch yet.
1541  BranchInst *BI = dyn_cast<BranchInst>(L->getExitingBlock()->getTerminator());
1542  if (!BI)
1543    return false;
1544
1545  if (isHighCostExpansion(BackedgeTakenCount, BI, SE))
1546    return false;
1547
1548  return true;
1549}
1550
1551/// getBackedgeIVType - Get the widest type used by the loop test after peeking
1552/// through Truncs.
1553///
1554/// TODO: Unnecessary when ForceLFTR is removed.
1555static Type *getBackedgeIVType(Loop *L) {
1556  if (!L->getExitingBlock())
1557    return 0;
1558
1559  // Can't rewrite non-branch yet.
1560  BranchInst *BI = dyn_cast<BranchInst>(L->getExitingBlock()->getTerminator());
1561  if (!BI)
1562    return 0;
1563
1564  ICmpInst *Cond = dyn_cast<ICmpInst>(BI->getCondition());
1565  if (!Cond)
1566    return 0;
1567
1568  Type *Ty = 0;
1569  for(User::op_iterator OI = Cond->op_begin(), OE = Cond->op_end();
1570      OI != OE; ++OI) {
1571    assert((!Ty || Ty == (*OI)->getType()) && "bad icmp operand types");
1572    TruncInst *Trunc = dyn_cast<TruncInst>(*OI);
1573    if (!Trunc)
1574      continue;
1575
1576    return Trunc->getSrcTy();
1577  }
1578  return Ty;
1579}
1580
1581/// isLoopInvariant - Perform a quick domtree based check for loop invariance
1582/// assuming that V is used within the loop. LoopInfo::isLoopInvariant() seems
1583/// gratuitous for this purpose.
1584static bool isLoopInvariant(Value *V, Loop *L, DominatorTree *DT) {
1585  Instruction *Inst = dyn_cast<Instruction>(V);
1586  if (!Inst)
1587    return true;
1588
1589  return DT->properlyDominates(Inst->getParent(), L->getHeader());
1590}
1591
1592/// getLoopPhiForCounter - Return the loop header phi IFF IncV adds a loop
1593/// invariant value to the phi.
1594static PHINode *getLoopPhiForCounter(Value *IncV, Loop *L, DominatorTree *DT) {
1595  Instruction *IncI = dyn_cast<Instruction>(IncV);
1596  if (!IncI)
1597    return 0;
1598
1599  switch (IncI->getOpcode()) {
1600  case Instruction::Add:
1601  case Instruction::Sub:
1602    break;
1603  case Instruction::GetElementPtr:
1604    // An IV counter must preserve its type.
1605    if (IncI->getNumOperands() == 2)
1606      break;
1607  default:
1608    return 0;
1609  }
1610
1611  PHINode *Phi = dyn_cast<PHINode>(IncI->getOperand(0));
1612  if (Phi && Phi->getParent() == L->getHeader()) {
1613    if (isLoopInvariant(IncI->getOperand(1), L, DT))
1614      return Phi;
1615    return 0;
1616  }
1617  if (IncI->getOpcode() == Instruction::GetElementPtr)
1618    return 0;
1619
1620  // Allow add/sub to be commuted.
1621  Phi = dyn_cast<PHINode>(IncI->getOperand(1));
1622  if (Phi && Phi->getParent() == L->getHeader()) {
1623    if (isLoopInvariant(IncI->getOperand(0), L, DT))
1624      return Phi;
1625  }
1626  return 0;
1627}
1628
1629/// needsLFTR - LinearFunctionTestReplace policy. Return true unless we can show
1630/// that the current exit test is already sufficiently canonical.
1631static bool needsLFTR(Loop *L, DominatorTree *DT) {
1632  assert(L->getExitingBlock() && "expected loop exit");
1633
1634  BasicBlock *LatchBlock = L->getLoopLatch();
1635  // Don't bother with LFTR if the loop is not properly simplified.
1636  if (!LatchBlock)
1637    return false;
1638
1639  BranchInst *BI = dyn_cast<BranchInst>(L->getExitingBlock()->getTerminator());
1640  assert(BI && "expected exit branch");
1641
1642  // Do LFTR to simplify the exit condition to an ICMP.
1643  ICmpInst *Cond = dyn_cast<ICmpInst>(BI->getCondition());
1644  if (!Cond)
1645    return true;
1646
1647  // Do LFTR to simplify the exit ICMP to EQ/NE
1648  ICmpInst::Predicate Pred = Cond->getPredicate();
1649  if (Pred != ICmpInst::ICMP_NE && Pred != ICmpInst::ICMP_EQ)
1650    return true;
1651
1652  // Look for a loop invariant RHS
1653  Value *LHS = Cond->getOperand(0);
1654  Value *RHS = Cond->getOperand(1);
1655  if (!isLoopInvariant(RHS, L, DT)) {
1656    if (!isLoopInvariant(LHS, L, DT))
1657      return true;
1658    std::swap(LHS, RHS);
1659  }
1660  // Look for a simple IV counter LHS
1661  PHINode *Phi = dyn_cast<PHINode>(LHS);
1662  if (!Phi)
1663    Phi = getLoopPhiForCounter(LHS, L, DT);
1664
1665  if (!Phi)
1666    return true;
1667
1668  // Do LFTR if the exit condition's IV is *not* a simple counter.
1669  Value *IncV = Phi->getIncomingValueForBlock(L->getLoopLatch());
1670  return Phi != getLoopPhiForCounter(IncV, L, DT);
1671}
1672
1673/// AlmostDeadIV - Return true if this IV has any uses other than the (soon to
1674/// be rewritten) loop exit test.
1675static bool AlmostDeadIV(PHINode *Phi, BasicBlock *LatchBlock, Value *Cond) {
1676  int LatchIdx = Phi->getBasicBlockIndex(LatchBlock);
1677  Value *IncV = Phi->getIncomingValue(LatchIdx);
1678
1679  for (Value::use_iterator UI = Phi->use_begin(), UE = Phi->use_end();
1680       UI != UE; ++UI) {
1681    if (*UI != Cond && *UI != IncV) return false;
1682  }
1683
1684  for (Value::use_iterator UI = IncV->use_begin(), UE = IncV->use_end();
1685       UI != UE; ++UI) {
1686    if (*UI != Cond && *UI != Phi) return false;
1687  }
1688  return true;
1689}
1690
1691/// FindLoopCounter - Find an affine IV in canonical form.
1692///
1693/// FIXME: Accept -1 stride and set IVLimit = IVInit - BECount
1694///
1695/// FIXME: Accept non-unit stride as long as SCEV can reduce BECount * Stride.
1696/// This is difficult in general for SCEV because of potential overflow. But we
1697/// could at least handle constant BECounts.
1698static PHINode *
1699FindLoopCounter(Loop *L, const SCEV *BECount,
1700                ScalarEvolution *SE, DominatorTree *DT, const TargetData *TD) {
1701  // I'm not sure how BECount could be a pointer type, but we definitely don't
1702  // want to LFTR that.
1703  if (BECount->getType()->isPointerTy())
1704    return 0;
1705
1706  uint64_t BCWidth = SE->getTypeSizeInBits(BECount->getType());
1707
1708  Value *Cond =
1709    cast<BranchInst>(L->getExitingBlock()->getTerminator())->getCondition();
1710
1711  // Loop over all of the PHI nodes, looking for a simple counter.
1712  PHINode *BestPhi = 0;
1713  const SCEV *BestInit = 0;
1714  BasicBlock *LatchBlock = L->getLoopLatch();
1715  assert(LatchBlock && "needsLFTR should guarantee a loop latch");
1716
1717  for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
1718    PHINode *Phi = cast<PHINode>(I);
1719    if (!SE->isSCEVable(Phi->getType()))
1720      continue;
1721
1722    const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Phi));
1723    if (!AR || AR->getLoop() != L || !AR->isAffine())
1724      continue;
1725
1726    // AR may be a pointer type, while BECount is an integer type.
1727    // AR may be wider than BECount. With eq/ne tests overflow is immaterial.
1728    // AR may not be a narrower type, or we may never exit.
1729    uint64_t PhiWidth = SE->getTypeSizeInBits(AR->getType());
1730    if (PhiWidth < BCWidth || (TD && !TD->isLegalInteger(PhiWidth)))
1731      continue;
1732
1733    const SCEV *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*SE));
1734    if (!Step || !Step->isOne())
1735      continue;
1736
1737    int LatchIdx = Phi->getBasicBlockIndex(LatchBlock);
1738    Value *IncV = Phi->getIncomingValue(LatchIdx);
1739    if (getLoopPhiForCounter(IncV, L, DT) != Phi)
1740      continue;
1741
1742    const SCEV *Init = AR->getStart();
1743
1744    if (BestPhi && !AlmostDeadIV(BestPhi, LatchBlock, Cond)) {
1745      // Don't force a live loop counter if another IV can be used.
1746      if (AlmostDeadIV(Phi, LatchBlock, Cond))
1747        continue;
1748
1749      // Prefer to count-from-zero. This is a more "canonical" counter form. It
1750      // also prefers integer to pointer IVs.
1751      if (BestInit->isZero() != Init->isZero()) {
1752        if (BestInit->isZero())
1753          continue;
1754      }
1755      // If two IVs both count from zero or both count from nonzero then the
1756      // narrower is likely a dead phi that has been widened. Use the wider phi
1757      // to allow the other to be eliminated.
1758      if (PhiWidth <= SE->getTypeSizeInBits(BestPhi->getType()))
1759        continue;
1760    }
1761    BestPhi = Phi;
1762    BestInit = Init;
1763  }
1764  return BestPhi;
1765}
1766
1767/// LinearFunctionTestReplace - This method rewrites the exit condition of the
1768/// loop to be a canonical != comparison against the incremented loop induction
1769/// variable.  This pass is able to rewrite the exit tests of any loop where the
1770/// SCEV analysis can determine a loop-invariant trip count of the loop, which
1771/// is actually a much broader range than just linear tests.
1772Value *IndVarSimplify::
1773LinearFunctionTestReplace(Loop *L,
1774                          const SCEV *BackedgeTakenCount,
1775                          PHINode *IndVar,
1776                          SCEVExpander &Rewriter) {
1777  assert(canExpandBackedgeTakenCount(L, SE) && "precondition");
1778  BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator());
1779
1780  // In DisableIVRewrite mode, IndVar is not necessarily a canonical IV. In this
1781  // mode, LFTR can ignore IV overflow and truncate to the width of
1782  // BECount. This avoids materializing the add(zext(add)) expression.
1783  Type *CntTy = DisableIVRewrite ?
1784    BackedgeTakenCount->getType() : IndVar->getType();
1785
1786  const SCEV *IVLimit = BackedgeTakenCount;
1787
1788  // If the exiting block is not the same as the backedge block, we must compare
1789  // against the preincremented value, otherwise we prefer to compare against
1790  // the post-incremented value.
1791  Value *CmpIndVar;
1792  if (L->getExitingBlock() == L->getLoopLatch()) {
1793    // Add one to the "backedge-taken" count to get the trip count.
1794    // If this addition may overflow, we have to be more pessimistic and
1795    // cast the induction variable before doing the add.
1796    const SCEV *N =
1797      SE->getAddExpr(IVLimit, SE->getConstant(IVLimit->getType(), 1));
1798    if (CntTy == IVLimit->getType())
1799      IVLimit = N;
1800    else {
1801      const SCEV *Zero = SE->getConstant(IVLimit->getType(), 0);
1802      if ((isa<SCEVConstant>(N) && !N->isZero()) ||
1803          SE->isLoopEntryGuardedByCond(L, ICmpInst::ICMP_NE, N, Zero)) {
1804        // No overflow. Cast the sum.
1805        IVLimit = SE->getTruncateOrZeroExtend(N, CntTy);
1806      } else {
1807        // Potential overflow. Cast before doing the add.
1808        IVLimit = SE->getTruncateOrZeroExtend(IVLimit, CntTy);
1809        IVLimit = SE->getAddExpr(IVLimit, SE->getConstant(CntTy, 1));
1810      }
1811    }
1812    // The BackedgeTaken expression contains the number of times that the
1813    // backedge branches to the loop header.  This is one less than the
1814    // number of times the loop executes, so use the incremented indvar.
1815    CmpIndVar = IndVar->getIncomingValueForBlock(L->getExitingBlock());
1816  } else {
1817    // We have to use the preincremented value...
1818    IVLimit = SE->getTruncateOrZeroExtend(IVLimit, CntTy);
1819    CmpIndVar = IndVar;
1820  }
1821
1822  // For unit stride, IVLimit = Start + BECount with 2's complement overflow.
1823  // So for, non-zero start compute the IVLimit here.
1824  bool isPtrIV = false;
1825  Type *CmpTy = CntTy;
1826  const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(IndVar));
1827  assert(AR && AR->getLoop() == L && AR->isAffine() && "bad loop counter");
1828  if (!AR->getStart()->isZero()) {
1829    assert(AR->getStepRecurrence(*SE)->isOne() && "only handles unit stride");
1830    const SCEV *IVInit = AR->getStart();
1831
1832    // For pointer types, sign extend BECount in order to materialize a GEP.
1833    // Note that for DisableIVRewrite, we never run SCEVExpander on a
1834    // pointer type, because we must preserve the existing GEPs. Instead we
1835    // directly generate a GEP later.
1836    if (IVInit->getType()->isPointerTy()) {
1837      isPtrIV = true;
1838      CmpTy = SE->getEffectiveSCEVType(IVInit->getType());
1839      IVLimit = SE->getTruncateOrSignExtend(IVLimit, CmpTy);
1840    }
1841    // For integer types, truncate the IV before computing IVInit + BECount.
1842    else {
1843      if (SE->getTypeSizeInBits(IVInit->getType())
1844          > SE->getTypeSizeInBits(CmpTy))
1845        IVInit = SE->getTruncateExpr(IVInit, CmpTy);
1846
1847      IVLimit = SE->getAddExpr(IVInit, IVLimit);
1848    }
1849  }
1850  // Expand the code for the iteration count.
1851  IRBuilder<> Builder(BI);
1852
1853  assert(SE->isLoopInvariant(IVLimit, L) &&
1854         "Computed iteration count is not loop invariant!");
1855  Value *ExitCnt = Rewriter.expandCodeFor(IVLimit, CmpTy, BI);
1856
1857  // Create a gep for IVInit + IVLimit from on an existing pointer base.
1858  assert(isPtrIV == IndVar->getType()->isPointerTy() &&
1859         "IndVar type must match IVInit type");
1860  if (isPtrIV) {
1861      Value *IVStart = IndVar->getIncomingValueForBlock(L->getLoopPreheader());
1862      assert(AR->getStart() == SE->getSCEV(IVStart) && "bad loop counter");
1863      assert(SE->getSizeOfExpr(
1864               cast<PointerType>(IVStart->getType())->getElementType())->isOne()
1865             && "unit stride pointer IV must be i8*");
1866
1867      Builder.SetInsertPoint(L->getLoopPreheader()->getTerminator());
1868      ExitCnt = Builder.CreateGEP(IVStart, ExitCnt, "lftr.limit");
1869      Builder.SetInsertPoint(BI);
1870  }
1871
1872  // Insert a new icmp_ne or icmp_eq instruction before the branch.
1873  ICmpInst::Predicate P;
1874  if (L->contains(BI->getSuccessor(0)))
1875    P = ICmpInst::ICMP_NE;
1876  else
1877    P = ICmpInst::ICMP_EQ;
1878
1879  DEBUG(dbgs() << "INDVARS: Rewriting loop exit condition to:\n"
1880               << "      LHS:" << *CmpIndVar << '\n'
1881               << "       op:\t"
1882               << (P == ICmpInst::ICMP_NE ? "!=" : "==") << "\n"
1883               << "      RHS:\t" << *ExitCnt << "\n"
1884               << "     Expr:\t" << *IVLimit << "\n");
1885
1886  if (SE->getTypeSizeInBits(CmpIndVar->getType())
1887      > SE->getTypeSizeInBits(CmpTy)) {
1888    CmpIndVar = Builder.CreateTrunc(CmpIndVar, CmpTy, "lftr.wideiv");
1889  }
1890
1891  Value *Cond = Builder.CreateICmp(P, CmpIndVar, ExitCnt, "exitcond");
1892  Value *OrigCond = BI->getCondition();
1893  // It's tempting to use replaceAllUsesWith here to fully replace the old
1894  // comparison, but that's not immediately safe, since users of the old
1895  // comparison may not be dominated by the new comparison. Instead, just
1896  // update the branch to use the new comparison; in the common case this
1897  // will make old comparison dead.
1898  BI->setCondition(Cond);
1899  DeadInsts.push_back(OrigCond);
1900
1901  ++NumLFTR;
1902  Changed = true;
1903  return Cond;
1904}
1905
1906//===----------------------------------------------------------------------===//
1907//  SinkUnusedInvariants. A late subpass to cleanup loop preheaders.
1908//===----------------------------------------------------------------------===//
1909
1910/// If there's a single exit block, sink any loop-invariant values that
1911/// were defined in the preheader but not used inside the loop into the
1912/// exit block to reduce register pressure in the loop.
1913void IndVarSimplify::SinkUnusedInvariants(Loop *L) {
1914  BasicBlock *ExitBlock = L->getExitBlock();
1915  if (!ExitBlock) return;
1916
1917  BasicBlock *Preheader = L->getLoopPreheader();
1918  if (!Preheader) return;
1919
1920  Instruction *InsertPt = ExitBlock->getFirstNonPHI();
1921  BasicBlock::iterator I = Preheader->getTerminator();
1922  while (I != Preheader->begin()) {
1923    --I;
1924    // New instructions were inserted at the end of the preheader.
1925    if (isa<PHINode>(I))
1926      break;
1927
1928    // Don't move instructions which might have side effects, since the side
1929    // effects need to complete before instructions inside the loop.  Also don't
1930    // move instructions which might read memory, since the loop may modify
1931    // memory. Note that it's okay if the instruction might have undefined
1932    // behavior: LoopSimplify guarantees that the preheader dominates the exit
1933    // block.
1934    if (I->mayHaveSideEffects() || I->mayReadFromMemory())
1935      continue;
1936
1937    // Skip debug info intrinsics.
1938    if (isa<DbgInfoIntrinsic>(I))
1939      continue;
1940
1941    // Don't sink static AllocaInsts out of the entry block, which would
1942    // turn them into dynamic allocas!
1943    if (AllocaInst *AI = dyn_cast<AllocaInst>(I))
1944      if (AI->isStaticAlloca())
1945        continue;
1946
1947    // Determine if there is a use in or before the loop (direct or
1948    // otherwise).
1949    bool UsedInLoop = false;
1950    for (Value::use_iterator UI = I->use_begin(), UE = I->use_end();
1951         UI != UE; ++UI) {
1952      User *U = *UI;
1953      BasicBlock *UseBB = cast<Instruction>(U)->getParent();
1954      if (PHINode *P = dyn_cast<PHINode>(U)) {
1955        unsigned i =
1956          PHINode::getIncomingValueNumForOperand(UI.getOperandNo());
1957        UseBB = P->getIncomingBlock(i);
1958      }
1959      if (UseBB == Preheader || L->contains(UseBB)) {
1960        UsedInLoop = true;
1961        break;
1962      }
1963    }
1964
1965    // If there is, the def must remain in the preheader.
1966    if (UsedInLoop)
1967      continue;
1968
1969    // Otherwise, sink it to the exit block.
1970    Instruction *ToMove = I;
1971    bool Done = false;
1972
1973    if (I != Preheader->begin()) {
1974      // Skip debug info intrinsics.
1975      do {
1976        --I;
1977      } while (isa<DbgInfoIntrinsic>(I) && I != Preheader->begin());
1978
1979      if (isa<DbgInfoIntrinsic>(I) && I == Preheader->begin())
1980        Done = true;
1981    } else {
1982      Done = true;
1983    }
1984
1985    ToMove->moveBefore(InsertPt);
1986    if (Done) break;
1987    InsertPt = ToMove;
1988  }
1989}
1990
1991//===----------------------------------------------------------------------===//
1992//  IndVarSimplify driver. Manage several subpasses of IV simplification.
1993//===----------------------------------------------------------------------===//
1994
1995bool IndVarSimplify::runOnLoop(Loop *L, LPPassManager &LPM) {
1996  // If LoopSimplify form is not available, stay out of trouble. Some notes:
1997  //  - LSR currently only supports LoopSimplify-form loops. Indvars'
1998  //    canonicalization can be a pessimization without LSR to "clean up"
1999  //    afterwards.
2000  //  - We depend on having a preheader; in particular,
2001  //    Loop::getCanonicalInductionVariable only supports loops with preheaders,
2002  //    and we're in trouble if we can't find the induction variable even when
2003  //    we've manually inserted one.
2004  if (!L->isLoopSimplifyForm())
2005    return false;
2006
2007  if (!DisableIVRewrite)
2008    IU = &getAnalysis<IVUsers>();
2009  LI = &getAnalysis<LoopInfo>();
2010  SE = &getAnalysis<ScalarEvolution>();
2011  DT = &getAnalysis<DominatorTree>();
2012  TD = getAnalysisIfAvailable<TargetData>();
2013
2014  DeadInsts.clear();
2015  Changed = false;
2016
2017  // If there are any floating-point recurrences, attempt to
2018  // transform them to use integer recurrences.
2019  RewriteNonIntegerIVs(L);
2020
2021  const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L);
2022
2023  // Create a rewriter object which we'll use to transform the code with.
2024  SCEVExpander Rewriter(*SE, "indvars");
2025
2026  // Eliminate redundant IV users.
2027  //
2028  // Simplification works best when run before other consumers of SCEV. We
2029  // attempt to avoid evaluating SCEVs for sign/zero extend operations until
2030  // other expressions involving loop IVs have been evaluated. This helps SCEV
2031  // set no-wrap flags before normalizing sign/zero extension.
2032  if (DisableIVRewrite) {
2033    Rewriter.disableCanonicalMode();
2034    SimplifyIVUsersNoRewrite(L, Rewriter);
2035  }
2036
2037  // Check to see if this loop has a computable loop-invariant execution count.
2038  // If so, this means that we can compute the final value of any expressions
2039  // that are recurrent in the loop, and substitute the exit values from the
2040  // loop into any instructions outside of the loop that use the final values of
2041  // the current expressions.
2042  //
2043  if (!isa<SCEVCouldNotCompute>(BackedgeTakenCount))
2044    RewriteLoopExitValues(L, Rewriter);
2045
2046  // Eliminate redundant IV users.
2047  if (!DisableIVRewrite)
2048    SimplifyIVUsers(Rewriter);
2049
2050  // Eliminate redundant IV cycles.
2051  if (DisableIVRewrite)
2052    SimplifyCongruentIVs(L);
2053
2054  // Compute the type of the largest recurrence expression, and decide whether
2055  // a canonical induction variable should be inserted.
2056  Type *LargestType = 0;
2057  bool NeedCannIV = false;
2058  bool ReuseIVForExit = DisableIVRewrite && !ForceLFTR;
2059  bool ExpandBECount = canExpandBackedgeTakenCount(L, SE);
2060  if (ExpandBECount && !ReuseIVForExit) {
2061    // If we have a known trip count and a single exit block, we'll be
2062    // rewriting the loop exit test condition below, which requires a
2063    // canonical induction variable.
2064    NeedCannIV = true;
2065    Type *Ty = BackedgeTakenCount->getType();
2066    if (DisableIVRewrite) {
2067      // In this mode, SimplifyIVUsers may have already widened the IV used by
2068      // the backedge test and inserted a Trunc on the compare's operand. Get
2069      // the wider type to avoid creating a redundant narrow IV only used by the
2070      // loop test.
2071      LargestType = getBackedgeIVType(L);
2072    }
2073    if (!LargestType ||
2074        SE->getTypeSizeInBits(Ty) >
2075        SE->getTypeSizeInBits(LargestType))
2076      LargestType = SE->getEffectiveSCEVType(Ty);
2077  }
2078  if (!DisableIVRewrite) {
2079    for (IVUsers::const_iterator I = IU->begin(), E = IU->end(); I != E; ++I) {
2080      NeedCannIV = true;
2081      Type *Ty =
2082        SE->getEffectiveSCEVType(I->getOperandValToReplace()->getType());
2083      if (!LargestType ||
2084          SE->getTypeSizeInBits(Ty) >
2085          SE->getTypeSizeInBits(LargestType))
2086        LargestType = Ty;
2087    }
2088  }
2089
2090  // Now that we know the largest of the induction variable expressions
2091  // in this loop, insert a canonical induction variable of the largest size.
2092  PHINode *IndVar = 0;
2093  if (NeedCannIV) {
2094    // Check to see if the loop already has any canonical-looking induction
2095    // variables. If any are present and wider than the planned canonical
2096    // induction variable, temporarily remove them, so that the Rewriter
2097    // doesn't attempt to reuse them.
2098    SmallVector<PHINode *, 2> OldCannIVs;
2099    while (PHINode *OldCannIV = L->getCanonicalInductionVariable()) {
2100      if (SE->getTypeSizeInBits(OldCannIV->getType()) >
2101          SE->getTypeSizeInBits(LargestType))
2102        OldCannIV->removeFromParent();
2103      else
2104        break;
2105      OldCannIVs.push_back(OldCannIV);
2106    }
2107
2108    IndVar = Rewriter.getOrInsertCanonicalInductionVariable(L, LargestType);
2109
2110    ++NumInserted;
2111    Changed = true;
2112    DEBUG(dbgs() << "INDVARS: New CanIV: " << *IndVar << '\n');
2113
2114    // Now that the official induction variable is established, reinsert
2115    // any old canonical-looking variables after it so that the IR remains
2116    // consistent. They will be deleted as part of the dead-PHI deletion at
2117    // the end of the pass.
2118    while (!OldCannIVs.empty()) {
2119      PHINode *OldCannIV = OldCannIVs.pop_back_val();
2120      OldCannIV->insertBefore(L->getHeader()->getFirstNonPHI());
2121    }
2122  }
2123  else if (ExpandBECount && ReuseIVForExit && needsLFTR(L, DT)) {
2124    IndVar = FindLoopCounter(L, BackedgeTakenCount, SE, DT, TD);
2125  }
2126  // If we have a trip count expression, rewrite the loop's exit condition
2127  // using it.  We can currently only handle loops with a single exit.
2128  Value *NewICmp = 0;
2129  if (ExpandBECount && IndVar) {
2130    // Check preconditions for proper SCEVExpander operation. SCEV does not
2131    // express SCEVExpander's dependencies, such as LoopSimplify. Instead any
2132    // pass that uses the SCEVExpander must do it. This does not work well for
2133    // loop passes because SCEVExpander makes assumptions about all loops, while
2134    // LoopPassManager only forces the current loop to be simplified.
2135    //
2136    // FIXME: SCEV expansion has no way to bail out, so the caller must
2137    // explicitly check any assumptions made by SCEV. Brittle.
2138    const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(BackedgeTakenCount);
2139    if (!AR || AR->getLoop()->getLoopPreheader())
2140      NewICmp =
2141        LinearFunctionTestReplace(L, BackedgeTakenCount, IndVar, Rewriter);
2142  }
2143  // Rewrite IV-derived expressions.
2144  if (!DisableIVRewrite)
2145    RewriteIVExpressions(L, Rewriter);
2146
2147  // Clear the rewriter cache, because values that are in the rewriter's cache
2148  // can be deleted in the loop below, causing the AssertingVH in the cache to
2149  // trigger.
2150  Rewriter.clear();
2151
2152  // Now that we're done iterating through lists, clean up any instructions
2153  // which are now dead.
2154  while (!DeadInsts.empty())
2155    if (Instruction *Inst =
2156          dyn_cast_or_null<Instruction>(&*DeadInsts.pop_back_val()))
2157      RecursivelyDeleteTriviallyDeadInstructions(Inst);
2158
2159  // The Rewriter may not be used from this point on.
2160
2161  // Loop-invariant instructions in the preheader that aren't used in the
2162  // loop may be sunk below the loop to reduce register pressure.
2163  SinkUnusedInvariants(L);
2164
2165  // For completeness, inform IVUsers of the IV use in the newly-created
2166  // loop exit test instruction.
2167  if (IU && NewICmp) {
2168    ICmpInst *NewICmpInst = dyn_cast<ICmpInst>(NewICmp);
2169    if (NewICmpInst)
2170      IU->AddUsersIfInteresting(cast<Instruction>(NewICmpInst->getOperand(0)));
2171  }
2172  // Clean up dead instructions.
2173  Changed |= DeleteDeadPHIs(L->getHeader());
2174  // Check a post-condition.
2175  assert(L->isLCSSAForm(*DT) &&
2176         "Indvars did not leave the loop in lcssa form!");
2177
2178  // Verify that LFTR, and any other change have not interfered with SCEV's
2179  // ability to compute trip count.
2180#ifndef NDEBUG
2181  if (DisableIVRewrite && !isa<SCEVCouldNotCompute>(BackedgeTakenCount)) {
2182    SE->forgetLoop(L);
2183    const SCEV *NewBECount = SE->getBackedgeTakenCount(L);
2184    if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) <
2185        SE->getTypeSizeInBits(NewBECount->getType()))
2186      NewBECount = SE->getTruncateOrNoop(NewBECount,
2187                                         BackedgeTakenCount->getType());
2188    else
2189      BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount,
2190                                                 NewBECount->getType());
2191    assert(BackedgeTakenCount == NewBECount && "indvars must preserve SCEV");
2192  }
2193#endif
2194
2195  return Changed;
2196}
2197