IndVarSimplify.cpp revision c5ecbdc1896f1cc089372feef3191ace2f840898
1//===- IndVarSimplify.cpp - Induction Variable Elimination ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This transformation analyzes and transforms the induction variables (and
11// computations derived from them) into simpler forms suitable for subsequent
12// analysis and transformation.
13//
14// This transformation makes the following changes to each loop with an
15// identifiable induction variable:
16//   1. All loops are transformed to have a SINGLE canonical induction variable
17//      which starts at zero and steps by one.
18//   2. The canonical induction variable is guaranteed to be the first PHI node
19//      in the loop header block.
20//   3. The canonical induction variable is guaranteed to be in a wide enough
21//      type so that IV expressions need not be (directly) zero-extended or
22//      sign-extended.
23//   4. Any pointer arithmetic recurrences are raised to use array subscripts.
24//
25// If the trip count of a loop is computable, this pass also makes the following
26// changes:
27//   1. The exit condition for the loop is canonicalized to compare the
28//      induction value against the exit value.  This turns loops like:
29//        'for (i = 7; i*i < 1000; ++i)' into 'for (i = 0; i != 25; ++i)'
30//   2. Any use outside of the loop of an expression derived from the indvar
31//      is changed to compute the derived value outside of the loop, eliminating
32//      the dependence on the exit value of the induction variable.  If the only
33//      purpose of the loop is to compute the exit value of some derived
34//      expression, this transformation will make the loop dead.
35//
36// This transformation should be followed by strength reduction after all of the
37// desired loop transformations have been performed.
38//
39//===----------------------------------------------------------------------===//
40
41#define DEBUG_TYPE "indvars"
42#include "llvm/Transforms/Scalar.h"
43#include "llvm/BasicBlock.h"
44#include "llvm/Constants.h"
45#include "llvm/Instructions.h"
46#include "llvm/IntrinsicInst.h"
47#include "llvm/LLVMContext.h"
48#include "llvm/Type.h"
49#include "llvm/Analysis/Dominators.h"
50#include "llvm/Analysis/IVUsers.h"
51#include "llvm/Analysis/ScalarEvolutionExpander.h"
52#include "llvm/Analysis/LoopInfo.h"
53#include "llvm/Analysis/LoopPass.h"
54#include "llvm/Support/CFG.h"
55#include "llvm/Support/CommandLine.h"
56#include "llvm/Support/Debug.h"
57#include "llvm/Support/raw_ostream.h"
58#include "llvm/Transforms/Utils/Local.h"
59#include "llvm/Transforms/Utils/BasicBlockUtils.h"
60#include "llvm/Target/TargetData.h"
61#include "llvm/ADT/SmallVector.h"
62#include "llvm/ADT/Statistic.h"
63#include "llvm/ADT/STLExtras.h"
64using namespace llvm;
65
66STATISTIC(NumRemoved     , "Number of aux indvars removed");
67STATISTIC(NumWidened     , "Number of indvars widened");
68STATISTIC(NumInserted    , "Number of canonical indvars added");
69STATISTIC(NumReplaced    , "Number of exit values replaced");
70STATISTIC(NumLFTR        , "Number of loop exit tests replaced");
71STATISTIC(NumElimIdentity, "Number of IV identities eliminated");
72STATISTIC(NumElimExt     , "Number of IV sign/zero extends eliminated");
73STATISTIC(NumElimRem     , "Number of IV remainder operations eliminated");
74STATISTIC(NumElimCmp     , "Number of IV comparisons eliminated");
75
76static cl::opt<bool> DisableIVRewrite(
77  "disable-iv-rewrite", cl::Hidden,
78  cl::desc("Disable canonical induction variable rewriting"));
79
80namespace {
81  class IndVarSimplify : public LoopPass {
82    IVUsers         *IU;
83    LoopInfo        *LI;
84    ScalarEvolution *SE;
85    DominatorTree   *DT;
86    TargetData      *TD;
87
88    SmallVector<WeakVH, 16> DeadInsts;
89    bool Changed;
90  public:
91
92    static char ID; // Pass identification, replacement for typeid
93    IndVarSimplify() : LoopPass(ID), IU(0), LI(0), SE(0), DT(0), TD(0),
94                       Changed(false) {
95      initializeIndVarSimplifyPass(*PassRegistry::getPassRegistry());
96    }
97
98    virtual bool runOnLoop(Loop *L, LPPassManager &LPM);
99
100    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
101      AU.addRequired<DominatorTree>();
102      AU.addRequired<LoopInfo>();
103      AU.addRequired<ScalarEvolution>();
104      AU.addRequiredID(LoopSimplifyID);
105      AU.addRequiredID(LCSSAID);
106      if (!DisableIVRewrite)
107        AU.addRequired<IVUsers>();
108      AU.addPreserved<ScalarEvolution>();
109      AU.addPreservedID(LoopSimplifyID);
110      AU.addPreservedID(LCSSAID);
111      if (!DisableIVRewrite)
112        AU.addPreserved<IVUsers>();
113      AU.setPreservesCFG();
114    }
115
116  private:
117    bool isValidRewrite(Value *FromVal, Value *ToVal);
118
119    void SimplifyIVUsers(SCEVExpander &Rewriter);
120    void SimplifyIVUsersNoRewrite(Loop *L, SCEVExpander &Rewriter);
121
122    bool EliminateIVUser(Instruction *UseInst, Instruction *IVOperand);
123    void EliminateIVComparison(ICmpInst *ICmp, Value *IVOperand);
124    void EliminateIVRemainder(BinaryOperator *Rem,
125                              Value *IVOperand,
126                              bool IsSigned);
127    bool isSimpleIVUser(Instruction *I, const Loop *L);
128    void RewriteNonIntegerIVs(Loop *L);
129
130    ICmpInst *LinearFunctionTestReplace(Loop *L, const SCEV *BackedgeTakenCount,
131                                        PHINode *IndVar,
132                                        SCEVExpander &Rewriter);
133
134    void RewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter);
135
136    void RewriteIVExpressions(Loop *L, SCEVExpander &Rewriter);
137
138    void SinkUnusedInvariants(Loop *L);
139
140    void HandleFloatingPointIV(Loop *L, PHINode *PH);
141  };
142}
143
144char IndVarSimplify::ID = 0;
145INITIALIZE_PASS_BEGIN(IndVarSimplify, "indvars",
146                "Induction Variable Simplification", false, false)
147INITIALIZE_PASS_DEPENDENCY(DominatorTree)
148INITIALIZE_PASS_DEPENDENCY(LoopInfo)
149INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
150INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
151INITIALIZE_PASS_DEPENDENCY(LCSSA)
152INITIALIZE_PASS_DEPENDENCY(IVUsers)
153INITIALIZE_PASS_END(IndVarSimplify, "indvars",
154                "Induction Variable Simplification", false, false)
155
156Pass *llvm::createIndVarSimplifyPass() {
157  return new IndVarSimplify();
158}
159
160/// isValidRewrite - Return true if the SCEV expansion generated by the
161/// rewriter can replace the original value. SCEV guarantees that it
162/// produces the same value, but the way it is produced may be illegal IR.
163/// Ideally, this function will only be called for verification.
164bool IndVarSimplify::isValidRewrite(Value *FromVal, Value *ToVal) {
165  // If an SCEV expression subsumed multiple pointers, its expansion could
166  // reassociate the GEP changing the base pointer. This is illegal because the
167  // final address produced by a GEP chain must be inbounds relative to its
168  // underlying object. Otherwise basic alias analysis, among other things,
169  // could fail in a dangerous way. Ultimately, SCEV will be improved to avoid
170  // producing an expression involving multiple pointers. Until then, we must
171  // bail out here.
172  //
173  // Retrieve the pointer operand of the GEP. Don't use GetUnderlyingObject
174  // because it understands lcssa phis while SCEV does not.
175  Value *FromPtr = FromVal;
176  Value *ToPtr = ToVal;
177  if (GEPOperator *GEP = dyn_cast<GEPOperator>(FromVal)) {
178    FromPtr = GEP->getPointerOperand();
179  }
180  if (GEPOperator *GEP = dyn_cast<GEPOperator>(ToVal)) {
181    ToPtr = GEP->getPointerOperand();
182  }
183  if (FromPtr != FromVal || ToPtr != ToVal) {
184    // Quickly check the common case
185    if (FromPtr == ToPtr)
186      return true;
187
188    // SCEV may have rewritten an expression that produces the GEP's pointer
189    // operand. That's ok as long as the pointer operand has the same base
190    // pointer. Unlike GetUnderlyingObject(), getPointerBase() will find the
191    // base of a recurrence. This handles the case in which SCEV expansion
192    // converts a pointer type recurrence into a nonrecurrent pointer base
193    // indexed by an integer recurrence.
194    const SCEV *FromBase = SE->getPointerBase(SE->getSCEV(FromPtr));
195    const SCEV *ToBase = SE->getPointerBase(SE->getSCEV(ToPtr));
196    if (FromBase == ToBase)
197      return true;
198
199    DEBUG(dbgs() << "INDVARS: GEP rewrite bail out "
200          << *FromBase << " != " << *ToBase << "\n");
201
202    return false;
203  }
204  return true;
205}
206
207/// canExpandBackedgeTakenCount - Return true if this loop's backedge taken
208/// count expression can be safely and cheaply expanded into an instruction
209/// sequence that can be used by LinearFunctionTestReplace.
210static bool canExpandBackedgeTakenCount(Loop *L, ScalarEvolution *SE) {
211  const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L);
212  if (isa<SCEVCouldNotCompute>(BackedgeTakenCount) ||
213      BackedgeTakenCount->isZero())
214    return false;
215
216  if (!L->getExitingBlock())
217    return false;
218
219  // Can't rewrite non-branch yet.
220  BranchInst *BI = dyn_cast<BranchInst>(L->getExitingBlock()->getTerminator());
221  if (!BI)
222    return false;
223
224  // Special case: If the backedge-taken count is a UDiv, it's very likely a
225  // UDiv that ScalarEvolution produced in order to compute a precise
226  // expression, rather than a UDiv from the user's code. If we can't find a
227  // UDiv in the code with some simple searching, assume the former and forego
228  // rewriting the loop.
229  if (isa<SCEVUDivExpr>(BackedgeTakenCount)) {
230    ICmpInst *OrigCond = dyn_cast<ICmpInst>(BI->getCondition());
231    if (!OrigCond) return false;
232    const SCEV *R = SE->getSCEV(OrigCond->getOperand(1));
233    R = SE->getMinusSCEV(R, SE->getConstant(R->getType(), 1));
234    if (R != BackedgeTakenCount) {
235      const SCEV *L = SE->getSCEV(OrigCond->getOperand(0));
236      L = SE->getMinusSCEV(L, SE->getConstant(L->getType(), 1));
237      if (L != BackedgeTakenCount)
238        return false;
239    }
240  }
241  return true;
242}
243
244/// getBackedgeIVType - Get the widest type used by the loop test after peeking
245/// through Truncs.
246///
247/// TODO: Unnecessary once LinearFunctionTestReplace is removed.
248static const Type *getBackedgeIVType(Loop *L) {
249  if (!L->getExitingBlock())
250    return 0;
251
252  // Can't rewrite non-branch yet.
253  BranchInst *BI = dyn_cast<BranchInst>(L->getExitingBlock()->getTerminator());
254  if (!BI)
255    return 0;
256
257  ICmpInst *Cond = dyn_cast<ICmpInst>(BI->getCondition());
258  if (!Cond)
259    return 0;
260
261  const Type *Ty = 0;
262  for(User::op_iterator OI = Cond->op_begin(), OE = Cond->op_end();
263      OI != OE; ++OI) {
264    assert((!Ty || Ty == (*OI)->getType()) && "bad icmp operand types");
265    TruncInst *Trunc = dyn_cast<TruncInst>(*OI);
266    if (!Trunc)
267      continue;
268
269    return Trunc->getSrcTy();
270  }
271  return Ty;
272}
273
274/// LinearFunctionTestReplace - This method rewrites the exit condition of the
275/// loop to be a canonical != comparison against the incremented loop induction
276/// variable.  This pass is able to rewrite the exit tests of any loop where the
277/// SCEV analysis can determine a loop-invariant trip count of the loop, which
278/// is actually a much broader range than just linear tests.
279ICmpInst *IndVarSimplify::
280LinearFunctionTestReplace(Loop *L,
281                          const SCEV *BackedgeTakenCount,
282                          PHINode *IndVar,
283                          SCEVExpander &Rewriter) {
284  assert(canExpandBackedgeTakenCount(L, SE) && "precondition");
285  BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator());
286
287  // If the exiting block is not the same as the backedge block, we must compare
288  // against the preincremented value, otherwise we prefer to compare against
289  // the post-incremented value.
290  Value *CmpIndVar;
291  const SCEV *RHS = BackedgeTakenCount;
292  if (L->getExitingBlock() == L->getLoopLatch()) {
293    // Add one to the "backedge-taken" count to get the trip count.
294    // If this addition may overflow, we have to be more pessimistic and
295    // cast the induction variable before doing the add.
296    const SCEV *Zero = SE->getConstant(BackedgeTakenCount->getType(), 0);
297    const SCEV *N =
298      SE->getAddExpr(BackedgeTakenCount,
299                     SE->getConstant(BackedgeTakenCount->getType(), 1));
300    if ((isa<SCEVConstant>(N) && !N->isZero()) ||
301        SE->isLoopEntryGuardedByCond(L, ICmpInst::ICMP_NE, N, Zero)) {
302      // No overflow. Cast the sum.
303      RHS = SE->getTruncateOrZeroExtend(N, IndVar->getType());
304    } else {
305      // Potential overflow. Cast before doing the add.
306      RHS = SE->getTruncateOrZeroExtend(BackedgeTakenCount,
307                                        IndVar->getType());
308      RHS = SE->getAddExpr(RHS,
309                           SE->getConstant(IndVar->getType(), 1));
310    }
311
312    // The BackedgeTaken expression contains the number of times that the
313    // backedge branches to the loop header.  This is one less than the
314    // number of times the loop executes, so use the incremented indvar.
315    CmpIndVar = IndVar->getIncomingValueForBlock(L->getExitingBlock());
316  } else {
317    // We have to use the preincremented value...
318    RHS = SE->getTruncateOrZeroExtend(BackedgeTakenCount,
319                                      IndVar->getType());
320    CmpIndVar = IndVar;
321  }
322
323  // Expand the code for the iteration count.
324  assert(SE->isLoopInvariant(RHS, L) &&
325         "Computed iteration count is not loop invariant!");
326  Value *ExitCnt = Rewriter.expandCodeFor(RHS, IndVar->getType(), BI);
327
328  // Insert a new icmp_ne or icmp_eq instruction before the branch.
329  ICmpInst::Predicate Opcode;
330  if (L->contains(BI->getSuccessor(0)))
331    Opcode = ICmpInst::ICMP_NE;
332  else
333    Opcode = ICmpInst::ICMP_EQ;
334
335  DEBUG(dbgs() << "INDVARS: Rewriting loop exit condition to:\n"
336               << "      LHS:" << *CmpIndVar << '\n'
337               << "       op:\t"
338               << (Opcode == ICmpInst::ICMP_NE ? "!=" : "==") << "\n"
339               << "      RHS:\t" << *RHS << "\n");
340
341  ICmpInst *Cond = new ICmpInst(BI, Opcode, CmpIndVar, ExitCnt, "exitcond");
342  Cond->setDebugLoc(BI->getDebugLoc());
343  Value *OrigCond = BI->getCondition();
344  // It's tempting to use replaceAllUsesWith here to fully replace the old
345  // comparison, but that's not immediately safe, since users of the old
346  // comparison may not be dominated by the new comparison. Instead, just
347  // update the branch to use the new comparison; in the common case this
348  // will make old comparison dead.
349  BI->setCondition(Cond);
350  DeadInsts.push_back(OrigCond);
351
352  ++NumLFTR;
353  Changed = true;
354  return Cond;
355}
356
357/// RewriteLoopExitValues - Check to see if this loop has a computable
358/// loop-invariant execution count.  If so, this means that we can compute the
359/// final value of any expressions that are recurrent in the loop, and
360/// substitute the exit values from the loop into any instructions outside of
361/// the loop that use the final values of the current expressions.
362///
363/// This is mostly redundant with the regular IndVarSimplify activities that
364/// happen later, except that it's more powerful in some cases, because it's
365/// able to brute-force evaluate arbitrary instructions as long as they have
366/// constant operands at the beginning of the loop.
367void IndVarSimplify::RewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter) {
368  // Verify the input to the pass in already in LCSSA form.
369  assert(L->isLCSSAForm(*DT));
370
371  SmallVector<BasicBlock*, 8> ExitBlocks;
372  L->getUniqueExitBlocks(ExitBlocks);
373
374  // Find all values that are computed inside the loop, but used outside of it.
375  // Because of LCSSA, these values will only occur in LCSSA PHI Nodes.  Scan
376  // the exit blocks of the loop to find them.
377  for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
378    BasicBlock *ExitBB = ExitBlocks[i];
379
380    // If there are no PHI nodes in this exit block, then no values defined
381    // inside the loop are used on this path, skip it.
382    PHINode *PN = dyn_cast<PHINode>(ExitBB->begin());
383    if (!PN) continue;
384
385    unsigned NumPreds = PN->getNumIncomingValues();
386
387    // Iterate over all of the PHI nodes.
388    BasicBlock::iterator BBI = ExitBB->begin();
389    while ((PN = dyn_cast<PHINode>(BBI++))) {
390      if (PN->use_empty())
391        continue; // dead use, don't replace it
392
393      // SCEV only supports integer expressions for now.
394      if (!PN->getType()->isIntegerTy() && !PN->getType()->isPointerTy())
395        continue;
396
397      // It's necessary to tell ScalarEvolution about this explicitly so that
398      // it can walk the def-use list and forget all SCEVs, as it may not be
399      // watching the PHI itself. Once the new exit value is in place, there
400      // may not be a def-use connection between the loop and every instruction
401      // which got a SCEVAddRecExpr for that loop.
402      SE->forgetValue(PN);
403
404      // Iterate over all of the values in all the PHI nodes.
405      for (unsigned i = 0; i != NumPreds; ++i) {
406        // If the value being merged in is not integer or is not defined
407        // in the loop, skip it.
408        Value *InVal = PN->getIncomingValue(i);
409        if (!isa<Instruction>(InVal))
410          continue;
411
412        // If this pred is for a subloop, not L itself, skip it.
413        if (LI->getLoopFor(PN->getIncomingBlock(i)) != L)
414          continue; // The Block is in a subloop, skip it.
415
416        // Check that InVal is defined in the loop.
417        Instruction *Inst = cast<Instruction>(InVal);
418        if (!L->contains(Inst))
419          continue;
420
421        // Okay, this instruction has a user outside of the current loop
422        // and varies predictably *inside* the loop.  Evaluate the value it
423        // contains when the loop exits, if possible.
424        const SCEV *ExitValue = SE->getSCEVAtScope(Inst, L->getParentLoop());
425        if (!SE->isLoopInvariant(ExitValue, L))
426          continue;
427
428        Value *ExitVal = Rewriter.expandCodeFor(ExitValue, PN->getType(), Inst);
429
430        DEBUG(dbgs() << "INDVARS: RLEV: AfterLoopVal = " << *ExitVal << '\n'
431                     << "  LoopVal = " << *Inst << "\n");
432
433        if (!isValidRewrite(Inst, ExitVal)) {
434          DeadInsts.push_back(ExitVal);
435          continue;
436        }
437        Changed = true;
438        ++NumReplaced;
439
440        PN->setIncomingValue(i, ExitVal);
441
442        // If this instruction is dead now, delete it.
443        RecursivelyDeleteTriviallyDeadInstructions(Inst);
444
445        if (NumPreds == 1) {
446          // Completely replace a single-pred PHI. This is safe, because the
447          // NewVal won't be variant in the loop, so we don't need an LCSSA phi
448          // node anymore.
449          PN->replaceAllUsesWith(ExitVal);
450          RecursivelyDeleteTriviallyDeadInstructions(PN);
451        }
452      }
453      if (NumPreds != 1) {
454        // Clone the PHI and delete the original one. This lets IVUsers and
455        // any other maps purge the original user from their records.
456        PHINode *NewPN = cast<PHINode>(PN->clone());
457        NewPN->takeName(PN);
458        NewPN->insertBefore(PN);
459        PN->replaceAllUsesWith(NewPN);
460        PN->eraseFromParent();
461      }
462    }
463  }
464
465  // The insertion point instruction may have been deleted; clear it out
466  // so that the rewriter doesn't trip over it later.
467  Rewriter.clearInsertPoint();
468}
469
470void IndVarSimplify::RewriteNonIntegerIVs(Loop *L) {
471  // First step.  Check to see if there are any floating-point recurrences.
472  // If there are, change them into integer recurrences, permitting analysis by
473  // the SCEV routines.
474  //
475  BasicBlock *Header = L->getHeader();
476
477  SmallVector<WeakVH, 8> PHIs;
478  for (BasicBlock::iterator I = Header->begin();
479       PHINode *PN = dyn_cast<PHINode>(I); ++I)
480    PHIs.push_back(PN);
481
482  for (unsigned i = 0, e = PHIs.size(); i != e; ++i)
483    if (PHINode *PN = dyn_cast_or_null<PHINode>(&*PHIs[i]))
484      HandleFloatingPointIV(L, PN);
485
486  // If the loop previously had floating-point IV, ScalarEvolution
487  // may not have been able to compute a trip count. Now that we've done some
488  // re-writing, the trip count may be computable.
489  if (Changed)
490    SE->forgetLoop(L);
491}
492
493/// SimplifyIVUsers - Iteratively perform simplification on IVUsers within this
494/// loop. IVUsers is treated as a worklist. Each successive simplification may
495/// push more users which may themselves be candidates for simplification.
496///
497/// This is the old approach to IV simplification to be replaced by
498/// SimplifyIVUsersNoRewrite.
499///
500void IndVarSimplify::SimplifyIVUsers(SCEVExpander &Rewriter) {
501  // Each round of simplification involves a round of eliminating operations
502  // followed by a round of widening IVs. A single IVUsers worklist is used
503  // across all rounds. The inner loop advances the user. If widening exposes
504  // more uses, then another pass through the outer loop is triggered.
505  for (IVUsers::iterator I = IU->begin(); I != IU->end(); ++I) {
506    Instruction *UseInst = I->getUser();
507    Value *IVOperand = I->getOperandValToReplace();
508
509    if (ICmpInst *ICmp = dyn_cast<ICmpInst>(UseInst)) {
510      EliminateIVComparison(ICmp, IVOperand);
511      continue;
512    }
513    if (BinaryOperator *Rem = dyn_cast<BinaryOperator>(UseInst)) {
514      bool IsSigned = Rem->getOpcode() == Instruction::SRem;
515      if (IsSigned || Rem->getOpcode() == Instruction::URem) {
516        EliminateIVRemainder(Rem, IVOperand, IsSigned);
517        continue;
518      }
519    }
520  }
521}
522
523namespace {
524  // Collect information about induction variables that are used by sign/zero
525  // extend operations. This information is recorded by CollectExtend and
526  // provides the input to WidenIV.
527  struct WideIVInfo {
528    const Type *WidestNativeType; // Widest integer type created [sz]ext
529    bool IsSigned;                // Was an sext user seen before a zext?
530
531    WideIVInfo() : WidestNativeType(0), IsSigned(false) {}
532  };
533}
534
535/// CollectExtend - Update information about the induction variable that is
536/// extended by this sign or zero extend operation. This is used to determine
537/// the final width of the IV before actually widening it.
538static void CollectExtend(CastInst *Cast, bool IsSigned, WideIVInfo &WI,
539                          ScalarEvolution *SE, const TargetData *TD) {
540  const Type *Ty = Cast->getType();
541  uint64_t Width = SE->getTypeSizeInBits(Ty);
542  if (TD && !TD->isLegalInteger(Width))
543    return;
544
545  if (!WI.WidestNativeType) {
546    WI.WidestNativeType = SE->getEffectiveSCEVType(Ty);
547    WI.IsSigned = IsSigned;
548    return;
549  }
550
551  // We extend the IV to satisfy the sign of its first user, arbitrarily.
552  if (WI.IsSigned != IsSigned)
553    return;
554
555  if (Width > SE->getTypeSizeInBits(WI.WidestNativeType))
556    WI.WidestNativeType = SE->getEffectiveSCEVType(Ty);
557}
558
559namespace {
560/// WidenIV - The goal of this transform is to remove sign and zero extends
561/// without creating any new induction variables. To do this, it creates a new
562/// phi of the wider type and redirects all users, either removing extends or
563/// inserting truncs whenever we stop propagating the type.
564///
565class WidenIV {
566  // Parameters
567  PHINode *OrigPhi;
568  const Type *WideType;
569  bool IsSigned;
570
571  // Context
572  LoopInfo        *LI;
573  Loop            *L;
574  ScalarEvolution *SE;
575  DominatorTree   *DT;
576
577  // Result
578  PHINode *WidePhi;
579  Instruction *WideInc;
580  const SCEV *WideIncExpr;
581  SmallVectorImpl<WeakVH> &DeadInsts;
582
583  SmallPtrSet<Instruction*,16> Widened;
584  SmallVector<std::pair<Use *, Instruction *>, 8> NarrowIVUsers;
585
586public:
587  WidenIV(PHINode *PN, const WideIVInfo &WI, LoopInfo *LInfo,
588          ScalarEvolution *SEv, DominatorTree *DTree,
589          SmallVectorImpl<WeakVH> &DI) :
590    OrigPhi(PN),
591    WideType(WI.WidestNativeType),
592    IsSigned(WI.IsSigned),
593    LI(LInfo),
594    L(LI->getLoopFor(OrigPhi->getParent())),
595    SE(SEv),
596    DT(DTree),
597    WidePhi(0),
598    WideInc(0),
599    WideIncExpr(0),
600    DeadInsts(DI) {
601    assert(L->getHeader() == OrigPhi->getParent() && "Phi must be an IV");
602  }
603
604  PHINode *CreateWideIV(SCEVExpander &Rewriter);
605
606protected:
607  Instruction *CloneIVUser(Instruction *NarrowUse,
608                           Instruction *NarrowDef,
609                           Instruction *WideDef);
610
611  const SCEVAddRecExpr *GetWideRecurrence(Instruction *NarrowUse);
612
613  Instruction *WidenIVUse(Use &NarrowDefUse, Instruction *NarrowDef,
614                          Instruction *WideDef);
615
616  void pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef);
617};
618} // anonymous namespace
619
620static Value *getExtend( Value *NarrowOper, const Type *WideType,
621                               bool IsSigned, IRBuilder<> &Builder) {
622  return IsSigned ? Builder.CreateSExt(NarrowOper, WideType) :
623                    Builder.CreateZExt(NarrowOper, WideType);
624}
625
626/// CloneIVUser - Instantiate a wide operation to replace a narrow
627/// operation. This only needs to handle operations that can evaluation to
628/// SCEVAddRec. It can safely return 0 for any operation we decide not to clone.
629Instruction *WidenIV::CloneIVUser(Instruction *NarrowUse,
630                                  Instruction *NarrowDef,
631                                  Instruction *WideDef) {
632  unsigned Opcode = NarrowUse->getOpcode();
633  switch (Opcode) {
634  default:
635    return 0;
636  case Instruction::Add:
637  case Instruction::Mul:
638  case Instruction::UDiv:
639  case Instruction::Sub:
640  case Instruction::And:
641  case Instruction::Or:
642  case Instruction::Xor:
643  case Instruction::Shl:
644  case Instruction::LShr:
645  case Instruction::AShr:
646    DEBUG(dbgs() << "Cloning IVUser: " << *NarrowUse << "\n");
647
648    IRBuilder<> Builder(NarrowUse);
649
650    // Replace NarrowDef operands with WideDef. Otherwise, we don't know
651    // anything about the narrow operand yet so must insert a [sz]ext. It is
652    // probably loop invariant and will be folded or hoisted. If it actually
653    // comes from a widened IV, it should be removed during a future call to
654    // WidenIVUse.
655    Value *LHS = (NarrowUse->getOperand(0) == NarrowDef) ? WideDef :
656      getExtend(NarrowUse->getOperand(0), WideType, IsSigned, Builder);
657    Value *RHS = (NarrowUse->getOperand(1) == NarrowDef) ? WideDef :
658      getExtend(NarrowUse->getOperand(1), WideType, IsSigned, Builder);
659
660    BinaryOperator *NarrowBO = cast<BinaryOperator>(NarrowUse);
661    BinaryOperator *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(),
662                                                    LHS, RHS,
663                                                    NarrowBO->getName());
664    Builder.Insert(WideBO);
665    if (const OverflowingBinaryOperator *OBO =
666        dyn_cast<OverflowingBinaryOperator>(NarrowBO)) {
667      if (OBO->hasNoUnsignedWrap()) WideBO->setHasNoUnsignedWrap();
668      if (OBO->hasNoSignedWrap()) WideBO->setHasNoSignedWrap();
669    }
670    return WideBO;
671  }
672  llvm_unreachable(0);
673}
674
675/// HoistStep - Attempt to hoist an IV increment above a potential use.
676///
677/// To successfully hoist, two criteria must be met:
678/// - IncV operands dominate InsertPos and
679/// - InsertPos dominates IncV
680///
681/// Meeting the second condition means that we don't need to check all of IncV's
682/// existing uses (it's moving up in the domtree).
683///
684/// This does not yet recursively hoist the operands, although that would
685/// not be difficult.
686static bool HoistStep(Instruction *IncV, Instruction *InsertPos,
687                      const DominatorTree *DT)
688{
689  if (DT->dominates(IncV, InsertPos))
690    return true;
691
692  if (!DT->dominates(InsertPos->getParent(), IncV->getParent()))
693    return false;
694
695  if (IncV->mayHaveSideEffects())
696    return false;
697
698  // Attempt to hoist IncV
699  for (User::op_iterator OI = IncV->op_begin(), OE = IncV->op_end();
700       OI != OE; ++OI) {
701    Instruction *OInst = dyn_cast<Instruction>(OI);
702    if (OInst && !DT->dominates(OInst, InsertPos))
703      return false;
704  }
705  IncV->moveBefore(InsertPos);
706  return true;
707}
708
709// GetWideRecurrence - Is this instruction potentially interesting from IVUsers'
710// perspective after widening it's type? In other words, can the extend be
711// safely hoisted out of the loop with SCEV reducing the value to a recurrence
712// on the same loop. If so, return the sign or zero extended
713// recurrence. Otherwise return NULL.
714const SCEVAddRecExpr *WidenIV::GetWideRecurrence(Instruction *NarrowUse) {
715  if (!SE->isSCEVable(NarrowUse->getType()))
716    return 0;
717
718  const SCEV *NarrowExpr = SE->getSCEV(NarrowUse);
719  if (SE->getTypeSizeInBits(NarrowExpr->getType())
720      >= SE->getTypeSizeInBits(WideType)) {
721    // NarrowUse implicitly widens its operand. e.g. a gep with a narrow
722    // index. So don't follow this use.
723    return 0;
724  }
725
726  const SCEV *WideExpr = IsSigned ?
727    SE->getSignExtendExpr(NarrowExpr, WideType) :
728    SE->getZeroExtendExpr(NarrowExpr, WideType);
729  const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(WideExpr);
730  if (!AddRec || AddRec->getLoop() != L)
731    return 0;
732
733  return AddRec;
734}
735
736/// WidenIVUse - Determine whether an individual user of the narrow IV can be
737/// widened. If so, return the wide clone of the user.
738Instruction *WidenIV::WidenIVUse(Use &NarrowDefUse, Instruction *NarrowDef,
739                                 Instruction *WideDef) {
740  Instruction *NarrowUse = cast<Instruction>(NarrowDefUse.getUser());
741
742  // Stop traversing the def-use chain at inner-loop phis or post-loop phis.
743  if (isa<PHINode>(NarrowUse) && LI->getLoopFor(NarrowUse->getParent()) != L)
744    return 0;
745
746  // Our raison d'etre! Eliminate sign and zero extension.
747  if (IsSigned ? isa<SExtInst>(NarrowUse) : isa<ZExtInst>(NarrowUse)) {
748    Value *NewDef = WideDef;
749    if (NarrowUse->getType() != WideType) {
750      unsigned CastWidth = SE->getTypeSizeInBits(NarrowUse->getType());
751      unsigned IVWidth = SE->getTypeSizeInBits(WideType);
752      if (CastWidth < IVWidth) {
753        // The cast isn't as wide as the IV, so insert a Trunc.
754        IRBuilder<> Builder(NarrowDefUse);
755        NewDef = Builder.CreateTrunc(WideDef, NarrowUse->getType());
756      }
757      else {
758        // A wider extend was hidden behind a narrower one. This may induce
759        // another round of IV widening in which the intermediate IV becomes
760        // dead. It should be very rare.
761        DEBUG(dbgs() << "INDVARS: New IV " << *WidePhi
762              << " not wide enough to subsume " << *NarrowUse << "\n");
763        NarrowUse->replaceUsesOfWith(NarrowDef, WideDef);
764        NewDef = NarrowUse;
765      }
766    }
767    if (NewDef != NarrowUse) {
768      DEBUG(dbgs() << "INDVARS: eliminating " << *NarrowUse
769            << " replaced by " << *WideDef << "\n");
770      ++NumElimExt;
771      NarrowUse->replaceAllUsesWith(NewDef);
772      DeadInsts.push_back(NarrowUse);
773    }
774    // Now that the extend is gone, we want to expose it's uses for potential
775    // further simplification. We don't need to directly inform SimplifyIVUsers
776    // of the new users, because their parent IV will be processed later as a
777    // new loop phi. If we preserved IVUsers analysis, we would also want to
778    // push the uses of WideDef here.
779
780    // No further widening is needed. The deceased [sz]ext had done it for us.
781    return 0;
782  }
783
784  // Does this user itself evaluate to a recurrence after widening?
785  const SCEVAddRecExpr *WideAddRec = GetWideRecurrence(NarrowUse);
786  if (!WideAddRec) {
787    // This user does not evaluate to a recurence after widening, so don't
788    // follow it. Instead insert a Trunc to kill off the original use,
789    // eventually isolating the original narrow IV so it can be removed.
790    IRBuilder<> Builder(NarrowDefUse);
791    Value *Trunc = Builder.CreateTrunc(WideDef, NarrowDef->getType());
792    NarrowUse->replaceUsesOfWith(NarrowDef, Trunc);
793    return 0;
794  }
795  // We assume that block terminators are not SCEVable. We wouldn't want to
796  // insert a Trunc after a terminator if there happens to be a critical edge.
797  assert(NarrowUse != NarrowUse->getParent()->getTerminator() &&
798         "SCEV is not expected to evaluate a block terminator");
799
800  // Reuse the IV increment that SCEVExpander created as long as it dominates
801  // NarrowUse.
802  Instruction *WideUse = 0;
803  if (WideAddRec == WideIncExpr && HoistStep(WideInc, NarrowUse, DT)) {
804    WideUse = WideInc;
805  }
806  else {
807    WideUse = CloneIVUser(NarrowUse, NarrowDef, WideDef);
808    if (!WideUse)
809      return 0;
810  }
811  // Evaluation of WideAddRec ensured that the narrow expression could be
812  // extended outside the loop without overflow. This suggests that the wide use
813  // evaluates to the same expression as the extended narrow use, but doesn't
814  // absolutely guarantee it. Hence the following failsafe check. In rare cases
815  // where it fails, we simply throw away the newly created wide use.
816  if (WideAddRec != SE->getSCEV(WideUse)) {
817    DEBUG(dbgs() << "Wide use expression mismatch: " << *WideUse
818          << ": " << *SE->getSCEV(WideUse) << " != " << *WideAddRec << "\n");
819    DeadInsts.push_back(WideUse);
820    return 0;
821  }
822
823  // Returning WideUse pushes it on the worklist.
824  return WideUse;
825}
826
827/// pushNarrowIVUsers - Add eligible users of NarrowDef to NarrowIVUsers.
828///
829void WidenIV::pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef) {
830  for (Value::use_iterator UI = NarrowDef->use_begin(),
831         UE = NarrowDef->use_end(); UI != UE; ++UI) {
832    Use &U = UI.getUse();
833
834    // Handle data flow merges and bizarre phi cycles.
835    if (!Widened.insert(cast<Instruction>(U.getUser())))
836      continue;
837
838    NarrowIVUsers.push_back(std::make_pair(&UI.getUse(), WideDef));
839  }
840}
841
842/// CreateWideIV - Process a single induction variable. First use the
843/// SCEVExpander to create a wide induction variable that evaluates to the same
844/// recurrence as the original narrow IV. Then use a worklist to forward
845/// traverse the narrow IV's def-use chain. After WidenIVUse has processed all
846/// interesting IV users, the narrow IV will be isolated for removal by
847/// DeleteDeadPHIs.
848///
849/// It would be simpler to delete uses as they are processed, but we must avoid
850/// invalidating SCEV expressions.
851///
852PHINode *WidenIV::CreateWideIV(SCEVExpander &Rewriter) {
853  // Is this phi an induction variable?
854  const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(OrigPhi));
855  if (!AddRec)
856    return NULL;
857
858  // Widen the induction variable expression.
859  const SCEV *WideIVExpr = IsSigned ?
860    SE->getSignExtendExpr(AddRec, WideType) :
861    SE->getZeroExtendExpr(AddRec, WideType);
862
863  assert(SE->getEffectiveSCEVType(WideIVExpr->getType()) == WideType &&
864         "Expect the new IV expression to preserve its type");
865
866  // Can the IV be extended outside the loop without overflow?
867  AddRec = dyn_cast<SCEVAddRecExpr>(WideIVExpr);
868  if (!AddRec || AddRec->getLoop() != L)
869    return NULL;
870
871  // An AddRec must have loop-invariant operands. Since this AddRec is
872  // materialized by a loop header phi, the expression cannot have any post-loop
873  // operands, so they must dominate the loop header.
874  assert(SE->properlyDominates(AddRec->getStart(), L->getHeader()) &&
875         SE->properlyDominates(AddRec->getStepRecurrence(*SE), L->getHeader())
876         && "Loop header phi recurrence inputs do not dominate the loop");
877
878  // The rewriter provides a value for the desired IV expression. This may
879  // either find an existing phi or materialize a new one. Either way, we
880  // expect a well-formed cyclic phi-with-increments. i.e. any operand not part
881  // of the phi-SCC dominates the loop entry.
882  Instruction *InsertPt = L->getHeader()->begin();
883  WidePhi = cast<PHINode>(Rewriter.expandCodeFor(AddRec, WideType, InsertPt));
884
885  // Remembering the WideIV increment generated by SCEVExpander allows
886  // WidenIVUse to reuse it when widening the narrow IV's increment. We don't
887  // employ a general reuse mechanism because the call above is the only call to
888  // SCEVExpander. Henceforth, we produce 1-to-1 narrow to wide uses.
889  if (BasicBlock *LatchBlock = L->getLoopLatch()) {
890    WideInc =
891      cast<Instruction>(WidePhi->getIncomingValueForBlock(LatchBlock));
892    WideIncExpr = SE->getSCEV(WideInc);
893  }
894
895  DEBUG(dbgs() << "Wide IV: " << *WidePhi << "\n");
896  ++NumWidened;
897
898  // Traverse the def-use chain using a worklist starting at the original IV.
899  assert(Widened.empty() && NarrowIVUsers.empty() && "expect initial state" );
900
901  Widened.insert(OrigPhi);
902  pushNarrowIVUsers(OrigPhi, WidePhi);
903
904  while (!NarrowIVUsers.empty()) {
905    Use *UsePtr;
906    Instruction *WideDef;
907    tie(UsePtr, WideDef) = NarrowIVUsers.pop_back_val();
908    Use &NarrowDefUse = *UsePtr;
909
910    // Process a def-use edge. This may replace the use, so don't hold a
911    // use_iterator across it.
912    Instruction *NarrowDef = cast<Instruction>(NarrowDefUse.get());
913    Instruction *WideUse = WidenIVUse(NarrowDefUse, NarrowDef, WideDef);
914
915    // Follow all def-use edges from the previous narrow use.
916    if (WideUse)
917      pushNarrowIVUsers(cast<Instruction>(NarrowDefUse.getUser()), WideUse);
918
919    // WidenIVUse may have removed the def-use edge.
920    if (NarrowDef->use_empty())
921      DeadInsts.push_back(NarrowDef);
922  }
923  return WidePhi;
924}
925
926void IndVarSimplify::EliminateIVComparison(ICmpInst *ICmp, Value *IVOperand) {
927  unsigned IVOperIdx = 0;
928  ICmpInst::Predicate Pred = ICmp->getPredicate();
929  if (IVOperand != ICmp->getOperand(0)) {
930    // Swapped
931    assert(IVOperand == ICmp->getOperand(1) && "Can't find IVOperand");
932    IVOperIdx = 1;
933    Pred = ICmpInst::getSwappedPredicate(Pred);
934  }
935
936  // Get the SCEVs for the ICmp operands.
937  const SCEV *S = SE->getSCEV(ICmp->getOperand(IVOperIdx));
938  const SCEV *X = SE->getSCEV(ICmp->getOperand(1 - IVOperIdx));
939
940  // Simplify unnecessary loops away.
941  const Loop *ICmpLoop = LI->getLoopFor(ICmp->getParent());
942  S = SE->getSCEVAtScope(S, ICmpLoop);
943  X = SE->getSCEVAtScope(X, ICmpLoop);
944
945  // If the condition is always true or always false, replace it with
946  // a constant value.
947  if (SE->isKnownPredicate(Pred, S, X))
948    ICmp->replaceAllUsesWith(ConstantInt::getTrue(ICmp->getContext()));
949  else if (SE->isKnownPredicate(ICmpInst::getInversePredicate(Pred), S, X))
950    ICmp->replaceAllUsesWith(ConstantInt::getFalse(ICmp->getContext()));
951  else
952    return;
953
954  DEBUG(dbgs() << "INDVARS: Eliminated comparison: " << *ICmp << '\n');
955  ++NumElimCmp;
956  Changed = true;
957  DeadInsts.push_back(ICmp);
958}
959
960void IndVarSimplify::EliminateIVRemainder(BinaryOperator *Rem,
961                                          Value *IVOperand,
962                                          bool IsSigned) {
963  // We're only interested in the case where we know something about
964  // the numerator.
965  if (IVOperand != Rem->getOperand(0))
966    return;
967
968  // Get the SCEVs for the ICmp operands.
969  const SCEV *S = SE->getSCEV(Rem->getOperand(0));
970  const SCEV *X = SE->getSCEV(Rem->getOperand(1));
971
972  // Simplify unnecessary loops away.
973  const Loop *ICmpLoop = LI->getLoopFor(Rem->getParent());
974  S = SE->getSCEVAtScope(S, ICmpLoop);
975  X = SE->getSCEVAtScope(X, ICmpLoop);
976
977  // i % n  -->  i  if i is in [0,n).
978  if ((!IsSigned || SE->isKnownNonNegative(S)) &&
979      SE->isKnownPredicate(IsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT,
980                           S, X))
981    Rem->replaceAllUsesWith(Rem->getOperand(0));
982  else {
983    // (i+1) % n  -->  (i+1)==n?0:(i+1)  if i is in [0,n).
984    const SCEV *LessOne =
985      SE->getMinusSCEV(S, SE->getConstant(S->getType(), 1));
986    if (IsSigned && !SE->isKnownNonNegative(LessOne))
987      return;
988
989    if (!SE->isKnownPredicate(IsSigned ?
990                              ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT,
991                              LessOne, X))
992      return;
993
994    ICmpInst *ICmp = new ICmpInst(Rem, ICmpInst::ICMP_EQ,
995                                  Rem->getOperand(0), Rem->getOperand(1),
996                                  "tmp");
997    SelectInst *Sel =
998      SelectInst::Create(ICmp,
999                         ConstantInt::get(Rem->getType(), 0),
1000                         Rem->getOperand(0), "tmp", Rem);
1001    Rem->replaceAllUsesWith(Sel);
1002  }
1003
1004  // Inform IVUsers about the new users.
1005  if (IU) {
1006    if (Instruction *I = dyn_cast<Instruction>(Rem->getOperand(0)))
1007      IU->AddUsersIfInteresting(I);
1008  }
1009  DEBUG(dbgs() << "INDVARS: Simplified rem: " << *Rem << '\n');
1010  ++NumElimRem;
1011  Changed = true;
1012  DeadInsts.push_back(Rem);
1013}
1014
1015/// EliminateIVUser - Eliminate an operation that consumes a simple IV and has
1016/// no observable side-effect given the range of IV values.
1017bool IndVarSimplify::EliminateIVUser(Instruction *UseInst,
1018                                     Instruction *IVOperand) {
1019  if (ICmpInst *ICmp = dyn_cast<ICmpInst>(UseInst)) {
1020    EliminateIVComparison(ICmp, IVOperand);
1021    return true;
1022  }
1023  if (BinaryOperator *Rem = dyn_cast<BinaryOperator>(UseInst)) {
1024    bool IsSigned = Rem->getOpcode() == Instruction::SRem;
1025    if (IsSigned || Rem->getOpcode() == Instruction::URem) {
1026      EliminateIVRemainder(Rem, IVOperand, IsSigned);
1027      return true;
1028    }
1029  }
1030
1031  // Eliminate any operation that SCEV can prove is an identity function.
1032  if (!SE->isSCEVable(UseInst->getType()) ||
1033      (UseInst->getType() != IVOperand->getType()) ||
1034      (SE->getSCEV(UseInst) != SE->getSCEV(IVOperand)))
1035    return false;
1036
1037  DEBUG(dbgs() << "INDVARS: Eliminated identity: " << *UseInst << '\n');
1038
1039  UseInst->replaceAllUsesWith(IVOperand);
1040  ++NumElimIdentity;
1041  Changed = true;
1042  DeadInsts.push_back(UseInst);
1043  return true;
1044}
1045
1046/// pushIVUsers - Add all uses of Def to the current IV's worklist.
1047///
1048static void pushIVUsers(
1049  Instruction *Def,
1050  SmallPtrSet<Instruction*,16> &Simplified,
1051  SmallVectorImpl< std::pair<Instruction*,Instruction*> > &SimpleIVUsers) {
1052
1053  for (Value::use_iterator UI = Def->use_begin(), E = Def->use_end();
1054       UI != E; ++UI) {
1055    Instruction *User = cast<Instruction>(*UI);
1056
1057    // Avoid infinite or exponential worklist processing.
1058    // Also ensure unique worklist users.
1059    // If Def is a LoopPhi, it may not be in the Simplified set, so check for
1060    // self edges first.
1061    if (User != Def && Simplified.insert(User))
1062      SimpleIVUsers.push_back(std::make_pair(User, Def));
1063  }
1064}
1065
1066/// isSimpleIVUser - Return true if this instruction generates a simple SCEV
1067/// expression in terms of that IV.
1068///
1069/// This is similar to IVUsers' isInsteresting() but processes each instruction
1070/// non-recursively when the operand is already known to be a simpleIVUser.
1071///
1072bool IndVarSimplify::isSimpleIVUser(Instruction *I, const Loop *L) {
1073  if (!SE->isSCEVable(I->getType()))
1074    return false;
1075
1076  // Get the symbolic expression for this instruction.
1077  const SCEV *S = SE->getSCEV(I);
1078
1079  // We assume that terminators are not SCEVable.
1080  assert((!S || I != I->getParent()->getTerminator()) &&
1081         "can't fold terminators");
1082
1083  // Only consider affine recurrences.
1084  const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S);
1085  if (AR && AR->getLoop() == L)
1086    return true;
1087
1088  return false;
1089}
1090
1091/// SimplifyIVUsersNoRewrite - Iteratively perform simplification on a worklist
1092/// of IV users. Each successive simplification may push more users which may
1093/// themselves be candidates for simplification.
1094///
1095/// The "NoRewrite" algorithm does not require IVUsers analysis. Instead, it
1096/// simplifies instructions in-place during analysis. Rather than rewriting
1097/// induction variables bottom-up from their users, it transforms a chain of
1098/// IVUsers top-down, updating the IR only when it encouters a clear
1099/// optimization opportunitiy. A SCEVExpander "Rewriter" instance is still
1100/// needed, but only used to generate a new IV (phi) of wider type for sign/zero
1101/// extend elimination.
1102///
1103/// Once DisableIVRewrite is default, LSR will be the only client of IVUsers.
1104///
1105void IndVarSimplify::SimplifyIVUsersNoRewrite(Loop *L, SCEVExpander &Rewriter) {
1106  std::map<PHINode *, WideIVInfo> WideIVMap;
1107
1108  SmallVector<PHINode*, 8> LoopPhis;
1109  for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
1110    LoopPhis.push_back(cast<PHINode>(I));
1111  }
1112  // Each round of simplification iterates through the SimplifyIVUsers worklist
1113  // for all current phis, then determines whether any IVs can be
1114  // widened. Widening adds new phis to LoopPhis, inducing another round of
1115  // simplification on the wide IVs.
1116  while (!LoopPhis.empty()) {
1117    // Evaluate as many IV expressions as possible before widening any IVs. This
1118    // forces SCEV to set no-wrap flags before evaluating sign/zero
1119    // extension. The first time SCEV attempts to normalize sign/zero extension,
1120    // the result becomes final. So for the most predictable results, we delay
1121    // evaluation of sign/zero extend evaluation until needed, and avoid running
1122    // other SCEV based analysis prior to SimplifyIVUsersNoRewrite.
1123    do {
1124      PHINode *CurrIV = LoopPhis.pop_back_val();
1125
1126      // Information about sign/zero extensions of CurrIV.
1127      WideIVInfo WI;
1128
1129      // Instructions processed by SimplifyIVUsers for CurrIV.
1130      SmallPtrSet<Instruction*,16> Simplified;
1131
1132      // Use-def pairs if IVUsers waiting to be processed for CurrIV.
1133      SmallVector<std::pair<Instruction*, Instruction*>, 8> SimpleIVUsers;
1134
1135      // Push users of the current LoopPhi. In rare cases, pushIVUsers may be
1136      // called multiple times for the same LoopPhi. This is the proper thing to
1137      // do for loop header phis that use each other.
1138      pushIVUsers(CurrIV, Simplified, SimpleIVUsers);
1139
1140      while (!SimpleIVUsers.empty()) {
1141        Instruction *UseInst, *Operand;
1142        tie(UseInst, Operand) = SimpleIVUsers.pop_back_val();
1143        // Bypass back edges to avoid extra work.
1144        if (UseInst == CurrIV) continue;
1145
1146        if (EliminateIVUser(UseInst, Operand)) {
1147          pushIVUsers(Operand, Simplified, SimpleIVUsers);
1148          continue;
1149        }
1150        if (CastInst *Cast = dyn_cast<CastInst>(UseInst)) {
1151          bool IsSigned = Cast->getOpcode() == Instruction::SExt;
1152          if (IsSigned || Cast->getOpcode() == Instruction::ZExt) {
1153            CollectExtend(Cast, IsSigned, WI, SE, TD);
1154          }
1155          continue;
1156        }
1157        if (isSimpleIVUser(UseInst, L)) {
1158          pushIVUsers(UseInst, Simplified, SimpleIVUsers);
1159        }
1160      }
1161      if (WI.WidestNativeType) {
1162        WideIVMap[CurrIV] = WI;
1163      }
1164    } while(!LoopPhis.empty());
1165
1166    for (std::map<PHINode *, WideIVInfo>::const_iterator I = WideIVMap.begin(),
1167           E = WideIVMap.end(); I != E; ++I) {
1168      WidenIV Widener(I->first, I->second, LI, SE, DT, DeadInsts);
1169      if (PHINode *WidePhi = Widener.CreateWideIV(Rewriter)) {
1170        Changed = true;
1171        LoopPhis.push_back(WidePhi);
1172      }
1173    }
1174    WideIVMap.clear();
1175  }
1176}
1177
1178bool IndVarSimplify::runOnLoop(Loop *L, LPPassManager &LPM) {
1179  // If LoopSimplify form is not available, stay out of trouble. Some notes:
1180  //  - LSR currently only supports LoopSimplify-form loops. Indvars'
1181  //    canonicalization can be a pessimization without LSR to "clean up"
1182  //    afterwards.
1183  //  - We depend on having a preheader; in particular,
1184  //    Loop::getCanonicalInductionVariable only supports loops with preheaders,
1185  //    and we're in trouble if we can't find the induction variable even when
1186  //    we've manually inserted one.
1187  if (!L->isLoopSimplifyForm())
1188    return false;
1189
1190  if (!DisableIVRewrite)
1191    IU = &getAnalysis<IVUsers>();
1192  LI = &getAnalysis<LoopInfo>();
1193  SE = &getAnalysis<ScalarEvolution>();
1194  DT = &getAnalysis<DominatorTree>();
1195  TD = getAnalysisIfAvailable<TargetData>();
1196
1197  DeadInsts.clear();
1198  Changed = false;
1199
1200  // If there are any floating-point recurrences, attempt to
1201  // transform them to use integer recurrences.
1202  RewriteNonIntegerIVs(L);
1203
1204  const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L);
1205
1206  // Create a rewriter object which we'll use to transform the code with.
1207  SCEVExpander Rewriter(*SE, "indvars");
1208
1209  // Eliminate redundant IV users.
1210  //
1211  // Simplification works best when run before other consumers of SCEV. We
1212  // attempt to avoid evaluating SCEVs for sign/zero extend operations until
1213  // other expressions involving loop IVs have been evaluated. This helps SCEV
1214  // set no-wrap flags before normalizing sign/zero extension.
1215  if (DisableIVRewrite) {
1216    Rewriter.disableCanonicalMode();
1217    SimplifyIVUsersNoRewrite(L, Rewriter);
1218  }
1219
1220  // Check to see if this loop has a computable loop-invariant execution count.
1221  // If so, this means that we can compute the final value of any expressions
1222  // that are recurrent in the loop, and substitute the exit values from the
1223  // loop into any instructions outside of the loop that use the final values of
1224  // the current expressions.
1225  //
1226  if (!isa<SCEVCouldNotCompute>(BackedgeTakenCount))
1227    RewriteLoopExitValues(L, Rewriter);
1228
1229  // Eliminate redundant IV users.
1230  if (!DisableIVRewrite)
1231    SimplifyIVUsers(Rewriter);
1232
1233  // Compute the type of the largest recurrence expression, and decide whether
1234  // a canonical induction variable should be inserted.
1235  const Type *LargestType = 0;
1236  bool NeedCannIV = false;
1237  bool ExpandBECount = canExpandBackedgeTakenCount(L, SE);
1238  if (ExpandBECount) {
1239    // If we have a known trip count and a single exit block, we'll be
1240    // rewriting the loop exit test condition below, which requires a
1241    // canonical induction variable.
1242    NeedCannIV = true;
1243    const Type *Ty = BackedgeTakenCount->getType();
1244    if (DisableIVRewrite) {
1245      // In this mode, SimplifyIVUsers may have already widened the IV used by
1246      // the backedge test and inserted a Trunc on the compare's operand. Get
1247      // the wider type to avoid creating a redundant narrow IV only used by the
1248      // loop test.
1249      LargestType = getBackedgeIVType(L);
1250    }
1251    if (!LargestType ||
1252        SE->getTypeSizeInBits(Ty) >
1253        SE->getTypeSizeInBits(LargestType))
1254      LargestType = SE->getEffectiveSCEVType(Ty);
1255  }
1256  if (!DisableIVRewrite) {
1257    for (IVUsers::const_iterator I = IU->begin(), E = IU->end(); I != E; ++I) {
1258      NeedCannIV = true;
1259      const Type *Ty =
1260        SE->getEffectiveSCEVType(I->getOperandValToReplace()->getType());
1261      if (!LargestType ||
1262          SE->getTypeSizeInBits(Ty) >
1263          SE->getTypeSizeInBits(LargestType))
1264        LargestType = Ty;
1265    }
1266  }
1267
1268  // Now that we know the largest of the induction variable expressions
1269  // in this loop, insert a canonical induction variable of the largest size.
1270  PHINode *IndVar = 0;
1271  if (NeedCannIV) {
1272    // Check to see if the loop already has any canonical-looking induction
1273    // variables. If any are present and wider than the planned canonical
1274    // induction variable, temporarily remove them, so that the Rewriter
1275    // doesn't attempt to reuse them.
1276    SmallVector<PHINode *, 2> OldCannIVs;
1277    while (PHINode *OldCannIV = L->getCanonicalInductionVariable()) {
1278      if (SE->getTypeSizeInBits(OldCannIV->getType()) >
1279          SE->getTypeSizeInBits(LargestType))
1280        OldCannIV->removeFromParent();
1281      else
1282        break;
1283      OldCannIVs.push_back(OldCannIV);
1284    }
1285
1286    IndVar = Rewriter.getOrInsertCanonicalInductionVariable(L, LargestType);
1287
1288    ++NumInserted;
1289    Changed = true;
1290    DEBUG(dbgs() << "INDVARS: New CanIV: " << *IndVar << '\n');
1291
1292    // Now that the official induction variable is established, reinsert
1293    // any old canonical-looking variables after it so that the IR remains
1294    // consistent. They will be deleted as part of the dead-PHI deletion at
1295    // the end of the pass.
1296    while (!OldCannIVs.empty()) {
1297      PHINode *OldCannIV = OldCannIVs.pop_back_val();
1298      OldCannIV->insertBefore(L->getHeader()->getFirstNonPHI());
1299    }
1300  }
1301
1302  // If we have a trip count expression, rewrite the loop's exit condition
1303  // using it.  We can currently only handle loops with a single exit.
1304  ICmpInst *NewICmp = 0;
1305  if (ExpandBECount) {
1306    assert(canExpandBackedgeTakenCount(L, SE) &&
1307           "canonical IV disrupted BackedgeTaken expansion");
1308    assert(NeedCannIV &&
1309           "LinearFunctionTestReplace requires a canonical induction variable");
1310    NewICmp = LinearFunctionTestReplace(L, BackedgeTakenCount, IndVar,
1311                                        Rewriter);
1312  }
1313  // Rewrite IV-derived expressions.
1314  if (!DisableIVRewrite)
1315    RewriteIVExpressions(L, Rewriter);
1316
1317  // Clear the rewriter cache, because values that are in the rewriter's cache
1318  // can be deleted in the loop below, causing the AssertingVH in the cache to
1319  // trigger.
1320  Rewriter.clear();
1321
1322  // Now that we're done iterating through lists, clean up any instructions
1323  // which are now dead.
1324  while (!DeadInsts.empty())
1325    if (Instruction *Inst =
1326          dyn_cast_or_null<Instruction>(&*DeadInsts.pop_back_val()))
1327      RecursivelyDeleteTriviallyDeadInstructions(Inst);
1328
1329  // The Rewriter may not be used from this point on.
1330
1331  // Loop-invariant instructions in the preheader that aren't used in the
1332  // loop may be sunk below the loop to reduce register pressure.
1333  SinkUnusedInvariants(L);
1334
1335  // For completeness, inform IVUsers of the IV use in the newly-created
1336  // loop exit test instruction.
1337  if (NewICmp && IU)
1338    IU->AddUsersIfInteresting(cast<Instruction>(NewICmp->getOperand(0)));
1339
1340  // Clean up dead instructions.
1341  Changed |= DeleteDeadPHIs(L->getHeader());
1342  // Check a post-condition.
1343  assert(L->isLCSSAForm(*DT) && "Indvars did not leave the loop in lcssa form!");
1344  return Changed;
1345}
1346
1347// FIXME: It is an extremely bad idea to indvar substitute anything more
1348// complex than affine induction variables.  Doing so will put expensive
1349// polynomial evaluations inside of the loop, and the str reduction pass
1350// currently can only reduce affine polynomials.  For now just disable
1351// indvar subst on anything more complex than an affine addrec, unless
1352// it can be expanded to a trivial value.
1353static bool isSafe(const SCEV *S, const Loop *L, ScalarEvolution *SE) {
1354  // Loop-invariant values are safe.
1355  if (SE->isLoopInvariant(S, L)) return true;
1356
1357  // Affine addrecs are safe. Non-affine are not, because LSR doesn't know how
1358  // to transform them into efficient code.
1359  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
1360    return AR->isAffine();
1361
1362  // An add is safe it all its operands are safe.
1363  if (const SCEVCommutativeExpr *Commutative = dyn_cast<SCEVCommutativeExpr>(S)) {
1364    for (SCEVCommutativeExpr::op_iterator I = Commutative->op_begin(),
1365         E = Commutative->op_end(); I != E; ++I)
1366      if (!isSafe(*I, L, SE)) return false;
1367    return true;
1368  }
1369
1370  // A cast is safe if its operand is.
1371  if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S))
1372    return isSafe(C->getOperand(), L, SE);
1373
1374  // A udiv is safe if its operands are.
1375  if (const SCEVUDivExpr *UD = dyn_cast<SCEVUDivExpr>(S))
1376    return isSafe(UD->getLHS(), L, SE) &&
1377           isSafe(UD->getRHS(), L, SE);
1378
1379  // SCEVUnknown is always safe.
1380  if (isa<SCEVUnknown>(S))
1381    return true;
1382
1383  // Nothing else is safe.
1384  return false;
1385}
1386
1387void IndVarSimplify::RewriteIVExpressions(Loop *L, SCEVExpander &Rewriter) {
1388  // Rewrite all induction variable expressions in terms of the canonical
1389  // induction variable.
1390  //
1391  // If there were induction variables of other sizes or offsets, manually
1392  // add the offsets to the primary induction variable and cast, avoiding
1393  // the need for the code evaluation methods to insert induction variables
1394  // of different sizes.
1395  for (IVUsers::iterator UI = IU->begin(), E = IU->end(); UI != E; ++UI) {
1396    Value *Op = UI->getOperandValToReplace();
1397    const Type *UseTy = Op->getType();
1398    Instruction *User = UI->getUser();
1399
1400    // Compute the final addrec to expand into code.
1401    const SCEV *AR = IU->getReplacementExpr(*UI);
1402
1403    // Evaluate the expression out of the loop, if possible.
1404    if (!L->contains(UI->getUser())) {
1405      const SCEV *ExitVal = SE->getSCEVAtScope(AR, L->getParentLoop());
1406      if (SE->isLoopInvariant(ExitVal, L))
1407        AR = ExitVal;
1408    }
1409
1410    // FIXME: It is an extremely bad idea to indvar substitute anything more
1411    // complex than affine induction variables.  Doing so will put expensive
1412    // polynomial evaluations inside of the loop, and the str reduction pass
1413    // currently can only reduce affine polynomials.  For now just disable
1414    // indvar subst on anything more complex than an affine addrec, unless
1415    // it can be expanded to a trivial value.
1416    if (!isSafe(AR, L, SE))
1417      continue;
1418
1419    // Determine the insertion point for this user. By default, insert
1420    // immediately before the user. The SCEVExpander class will automatically
1421    // hoist loop invariants out of the loop. For PHI nodes, there may be
1422    // multiple uses, so compute the nearest common dominator for the
1423    // incoming blocks.
1424    Instruction *InsertPt = User;
1425    if (PHINode *PHI = dyn_cast<PHINode>(InsertPt))
1426      for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i)
1427        if (PHI->getIncomingValue(i) == Op) {
1428          if (InsertPt == User)
1429            InsertPt = PHI->getIncomingBlock(i)->getTerminator();
1430          else
1431            InsertPt =
1432              DT->findNearestCommonDominator(InsertPt->getParent(),
1433                                             PHI->getIncomingBlock(i))
1434                    ->getTerminator();
1435        }
1436
1437    // Now expand it into actual Instructions and patch it into place.
1438    Value *NewVal = Rewriter.expandCodeFor(AR, UseTy, InsertPt);
1439
1440    DEBUG(dbgs() << "INDVARS: Rewrote IV '" << *AR << "' " << *Op << '\n'
1441                 << "   into = " << *NewVal << "\n");
1442
1443    if (!isValidRewrite(Op, NewVal)) {
1444      DeadInsts.push_back(NewVal);
1445      continue;
1446    }
1447    // Inform ScalarEvolution that this value is changing. The change doesn't
1448    // affect its value, but it does potentially affect which use lists the
1449    // value will be on after the replacement, which affects ScalarEvolution's
1450    // ability to walk use lists and drop dangling pointers when a value is
1451    // deleted.
1452    SE->forgetValue(User);
1453
1454    // Patch the new value into place.
1455    if (Op->hasName())
1456      NewVal->takeName(Op);
1457    if (Instruction *NewValI = dyn_cast<Instruction>(NewVal))
1458      NewValI->setDebugLoc(User->getDebugLoc());
1459    User->replaceUsesOfWith(Op, NewVal);
1460    UI->setOperandValToReplace(NewVal);
1461
1462    ++NumRemoved;
1463    Changed = true;
1464
1465    // The old value may be dead now.
1466    DeadInsts.push_back(Op);
1467  }
1468}
1469
1470/// If there's a single exit block, sink any loop-invariant values that
1471/// were defined in the preheader but not used inside the loop into the
1472/// exit block to reduce register pressure in the loop.
1473void IndVarSimplify::SinkUnusedInvariants(Loop *L) {
1474  BasicBlock *ExitBlock = L->getExitBlock();
1475  if (!ExitBlock) return;
1476
1477  BasicBlock *Preheader = L->getLoopPreheader();
1478  if (!Preheader) return;
1479
1480  Instruction *InsertPt = ExitBlock->getFirstNonPHI();
1481  BasicBlock::iterator I = Preheader->getTerminator();
1482  while (I != Preheader->begin()) {
1483    --I;
1484    // New instructions were inserted at the end of the preheader.
1485    if (isa<PHINode>(I))
1486      break;
1487
1488    // Don't move instructions which might have side effects, since the side
1489    // effects need to complete before instructions inside the loop.  Also don't
1490    // move instructions which might read memory, since the loop may modify
1491    // memory. Note that it's okay if the instruction might have undefined
1492    // behavior: LoopSimplify guarantees that the preheader dominates the exit
1493    // block.
1494    if (I->mayHaveSideEffects() || I->mayReadFromMemory())
1495      continue;
1496
1497    // Skip debug info intrinsics.
1498    if (isa<DbgInfoIntrinsic>(I))
1499      continue;
1500
1501    // Don't sink static AllocaInsts out of the entry block, which would
1502    // turn them into dynamic allocas!
1503    if (AllocaInst *AI = dyn_cast<AllocaInst>(I))
1504      if (AI->isStaticAlloca())
1505        continue;
1506
1507    // Determine if there is a use in or before the loop (direct or
1508    // otherwise).
1509    bool UsedInLoop = false;
1510    for (Value::use_iterator UI = I->use_begin(), UE = I->use_end();
1511         UI != UE; ++UI) {
1512      User *U = *UI;
1513      BasicBlock *UseBB = cast<Instruction>(U)->getParent();
1514      if (PHINode *P = dyn_cast<PHINode>(U)) {
1515        unsigned i =
1516          PHINode::getIncomingValueNumForOperand(UI.getOperandNo());
1517        UseBB = P->getIncomingBlock(i);
1518      }
1519      if (UseBB == Preheader || L->contains(UseBB)) {
1520        UsedInLoop = true;
1521        break;
1522      }
1523    }
1524
1525    // If there is, the def must remain in the preheader.
1526    if (UsedInLoop)
1527      continue;
1528
1529    // Otherwise, sink it to the exit block.
1530    Instruction *ToMove = I;
1531    bool Done = false;
1532
1533    if (I != Preheader->begin()) {
1534      // Skip debug info intrinsics.
1535      do {
1536        --I;
1537      } while (isa<DbgInfoIntrinsic>(I) && I != Preheader->begin());
1538
1539      if (isa<DbgInfoIntrinsic>(I) && I == Preheader->begin())
1540        Done = true;
1541    } else {
1542      Done = true;
1543    }
1544
1545    ToMove->moveBefore(InsertPt);
1546    if (Done) break;
1547    InsertPt = ToMove;
1548  }
1549}
1550
1551/// ConvertToSInt - Convert APF to an integer, if possible.
1552static bool ConvertToSInt(const APFloat &APF, int64_t &IntVal) {
1553  bool isExact = false;
1554  if (&APF.getSemantics() == &APFloat::PPCDoubleDouble)
1555    return false;
1556  // See if we can convert this to an int64_t
1557  uint64_t UIntVal;
1558  if (APF.convertToInteger(&UIntVal, 64, true, APFloat::rmTowardZero,
1559                           &isExact) != APFloat::opOK || !isExact)
1560    return false;
1561  IntVal = UIntVal;
1562  return true;
1563}
1564
1565/// HandleFloatingPointIV - If the loop has floating induction variable
1566/// then insert corresponding integer induction variable if possible.
1567/// For example,
1568/// for(double i = 0; i < 10000; ++i)
1569///   bar(i)
1570/// is converted into
1571/// for(int i = 0; i < 10000; ++i)
1572///   bar((double)i);
1573///
1574void IndVarSimplify::HandleFloatingPointIV(Loop *L, PHINode *PN) {
1575  unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0));
1576  unsigned BackEdge     = IncomingEdge^1;
1577
1578  // Check incoming value.
1579  ConstantFP *InitValueVal =
1580    dyn_cast<ConstantFP>(PN->getIncomingValue(IncomingEdge));
1581
1582  int64_t InitValue;
1583  if (!InitValueVal || !ConvertToSInt(InitValueVal->getValueAPF(), InitValue))
1584    return;
1585
1586  // Check IV increment. Reject this PN if increment operation is not
1587  // an add or increment value can not be represented by an integer.
1588  BinaryOperator *Incr =
1589    dyn_cast<BinaryOperator>(PN->getIncomingValue(BackEdge));
1590  if (Incr == 0 || Incr->getOpcode() != Instruction::FAdd) return;
1591
1592  // If this is not an add of the PHI with a constantfp, or if the constant fp
1593  // is not an integer, bail out.
1594  ConstantFP *IncValueVal = dyn_cast<ConstantFP>(Incr->getOperand(1));
1595  int64_t IncValue;
1596  if (IncValueVal == 0 || Incr->getOperand(0) != PN ||
1597      !ConvertToSInt(IncValueVal->getValueAPF(), IncValue))
1598    return;
1599
1600  // Check Incr uses. One user is PN and the other user is an exit condition
1601  // used by the conditional terminator.
1602  Value::use_iterator IncrUse = Incr->use_begin();
1603  Instruction *U1 = cast<Instruction>(*IncrUse++);
1604  if (IncrUse == Incr->use_end()) return;
1605  Instruction *U2 = cast<Instruction>(*IncrUse++);
1606  if (IncrUse != Incr->use_end()) return;
1607
1608  // Find exit condition, which is an fcmp.  If it doesn't exist, or if it isn't
1609  // only used by a branch, we can't transform it.
1610  FCmpInst *Compare = dyn_cast<FCmpInst>(U1);
1611  if (!Compare)
1612    Compare = dyn_cast<FCmpInst>(U2);
1613  if (Compare == 0 || !Compare->hasOneUse() ||
1614      !isa<BranchInst>(Compare->use_back()))
1615    return;
1616
1617  BranchInst *TheBr = cast<BranchInst>(Compare->use_back());
1618
1619  // We need to verify that the branch actually controls the iteration count
1620  // of the loop.  If not, the new IV can overflow and no one will notice.
1621  // The branch block must be in the loop and one of the successors must be out
1622  // of the loop.
1623  assert(TheBr->isConditional() && "Can't use fcmp if not conditional");
1624  if (!L->contains(TheBr->getParent()) ||
1625      (L->contains(TheBr->getSuccessor(0)) &&
1626       L->contains(TheBr->getSuccessor(1))))
1627    return;
1628
1629
1630  // If it isn't a comparison with an integer-as-fp (the exit value), we can't
1631  // transform it.
1632  ConstantFP *ExitValueVal = dyn_cast<ConstantFP>(Compare->getOperand(1));
1633  int64_t ExitValue;
1634  if (ExitValueVal == 0 ||
1635      !ConvertToSInt(ExitValueVal->getValueAPF(), ExitValue))
1636    return;
1637
1638  // Find new predicate for integer comparison.
1639  CmpInst::Predicate NewPred = CmpInst::BAD_ICMP_PREDICATE;
1640  switch (Compare->getPredicate()) {
1641  default: return;  // Unknown comparison.
1642  case CmpInst::FCMP_OEQ:
1643  case CmpInst::FCMP_UEQ: NewPred = CmpInst::ICMP_EQ; break;
1644  case CmpInst::FCMP_ONE:
1645  case CmpInst::FCMP_UNE: NewPred = CmpInst::ICMP_NE; break;
1646  case CmpInst::FCMP_OGT:
1647  case CmpInst::FCMP_UGT: NewPred = CmpInst::ICMP_SGT; break;
1648  case CmpInst::FCMP_OGE:
1649  case CmpInst::FCMP_UGE: NewPred = CmpInst::ICMP_SGE; break;
1650  case CmpInst::FCMP_OLT:
1651  case CmpInst::FCMP_ULT: NewPred = CmpInst::ICMP_SLT; break;
1652  case CmpInst::FCMP_OLE:
1653  case CmpInst::FCMP_ULE: NewPred = CmpInst::ICMP_SLE; break;
1654  }
1655
1656  // We convert the floating point induction variable to a signed i32 value if
1657  // we can.  This is only safe if the comparison will not overflow in a way
1658  // that won't be trapped by the integer equivalent operations.  Check for this
1659  // now.
1660  // TODO: We could use i64 if it is native and the range requires it.
1661
1662  // The start/stride/exit values must all fit in signed i32.
1663  if (!isInt<32>(InitValue) || !isInt<32>(IncValue) || !isInt<32>(ExitValue))
1664    return;
1665
1666  // If not actually striding (add x, 0.0), avoid touching the code.
1667  if (IncValue == 0)
1668    return;
1669
1670  // Positive and negative strides have different safety conditions.
1671  if (IncValue > 0) {
1672    // If we have a positive stride, we require the init to be less than the
1673    // exit value and an equality or less than comparison.
1674    if (InitValue >= ExitValue ||
1675        NewPred == CmpInst::ICMP_SGT || NewPred == CmpInst::ICMP_SGE)
1676      return;
1677
1678    uint32_t Range = uint32_t(ExitValue-InitValue);
1679    if (NewPred == CmpInst::ICMP_SLE) {
1680      // Normalize SLE -> SLT, check for infinite loop.
1681      if (++Range == 0) return;  // Range overflows.
1682    }
1683
1684    unsigned Leftover = Range % uint32_t(IncValue);
1685
1686    // If this is an equality comparison, we require that the strided value
1687    // exactly land on the exit value, otherwise the IV condition will wrap
1688    // around and do things the fp IV wouldn't.
1689    if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) &&
1690        Leftover != 0)
1691      return;
1692
1693    // If the stride would wrap around the i32 before exiting, we can't
1694    // transform the IV.
1695    if (Leftover != 0 && int32_t(ExitValue+IncValue) < ExitValue)
1696      return;
1697
1698  } else {
1699    // If we have a negative stride, we require the init to be greater than the
1700    // exit value and an equality or greater than comparison.
1701    if (InitValue >= ExitValue ||
1702        NewPred == CmpInst::ICMP_SLT || NewPred == CmpInst::ICMP_SLE)
1703      return;
1704
1705    uint32_t Range = uint32_t(InitValue-ExitValue);
1706    if (NewPred == CmpInst::ICMP_SGE) {
1707      // Normalize SGE -> SGT, check for infinite loop.
1708      if (++Range == 0) return;  // Range overflows.
1709    }
1710
1711    unsigned Leftover = Range % uint32_t(-IncValue);
1712
1713    // If this is an equality comparison, we require that the strided value
1714    // exactly land on the exit value, otherwise the IV condition will wrap
1715    // around and do things the fp IV wouldn't.
1716    if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) &&
1717        Leftover != 0)
1718      return;
1719
1720    // If the stride would wrap around the i32 before exiting, we can't
1721    // transform the IV.
1722    if (Leftover != 0 && int32_t(ExitValue+IncValue) > ExitValue)
1723      return;
1724  }
1725
1726  const IntegerType *Int32Ty = Type::getInt32Ty(PN->getContext());
1727
1728  // Insert new integer induction variable.
1729  PHINode *NewPHI = PHINode::Create(Int32Ty, 2, PN->getName()+".int", PN);
1730  NewPHI->addIncoming(ConstantInt::get(Int32Ty, InitValue),
1731                      PN->getIncomingBlock(IncomingEdge));
1732
1733  Value *NewAdd =
1734    BinaryOperator::CreateAdd(NewPHI, ConstantInt::get(Int32Ty, IncValue),
1735                              Incr->getName()+".int", Incr);
1736  NewPHI->addIncoming(NewAdd, PN->getIncomingBlock(BackEdge));
1737
1738  ICmpInst *NewCompare = new ICmpInst(TheBr, NewPred, NewAdd,
1739                                      ConstantInt::get(Int32Ty, ExitValue),
1740                                      Compare->getName());
1741
1742  // In the following deletions, PN may become dead and may be deleted.
1743  // Use a WeakVH to observe whether this happens.
1744  WeakVH WeakPH = PN;
1745
1746  // Delete the old floating point exit comparison.  The branch starts using the
1747  // new comparison.
1748  NewCompare->takeName(Compare);
1749  Compare->replaceAllUsesWith(NewCompare);
1750  RecursivelyDeleteTriviallyDeadInstructions(Compare);
1751
1752  // Delete the old floating point increment.
1753  Incr->replaceAllUsesWith(UndefValue::get(Incr->getType()));
1754  RecursivelyDeleteTriviallyDeadInstructions(Incr);
1755
1756  // If the FP induction variable still has uses, this is because something else
1757  // in the loop uses its value.  In order to canonicalize the induction
1758  // variable, we chose to eliminate the IV and rewrite it in terms of an
1759  // int->fp cast.
1760  //
1761  // We give preference to sitofp over uitofp because it is faster on most
1762  // platforms.
1763  if (WeakPH) {
1764    Value *Conv = new SIToFPInst(NewPHI, PN->getType(), "indvar.conv",
1765                                 PN->getParent()->getFirstNonPHI());
1766    PN->replaceAllUsesWith(Conv);
1767    RecursivelyDeleteTriviallyDeadInstructions(PN);
1768  }
1769
1770  // Add a new IVUsers entry for the newly-created integer PHI.
1771  if (IU)
1772    IU->AddUsersIfInteresting(NewPHI);
1773}
1774