IndVarSimplify.cpp revision ca703bd56ba1f717b3735c6889334c319ca005b1
1//===- IndVarSimplify.cpp - Induction Variable Elimination ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This transformation analyzes and transforms the induction variables (and
11// computations derived from them) into simpler forms suitable for subsequent
12// analysis and transformation.
13//
14// This transformation makes the following changes to each loop with an
15// identifiable induction variable:
16//   1. All loops are transformed to have a SINGLE canonical induction variable
17//      which starts at zero and steps by one.
18//   2. The canonical induction variable is guaranteed to be the first PHI node
19//      in the loop header block.
20//   3. The canonical induction variable is guaranteed to be in a wide enough
21//      type so that IV expressions need not be (directly) zero-extended or
22//      sign-extended.
23//   4. Any pointer arithmetic recurrences are raised to use array subscripts.
24//
25// If the trip count of a loop is computable, this pass also makes the following
26// changes:
27//   1. The exit condition for the loop is canonicalized to compare the
28//      induction value against the exit value.  This turns loops like:
29//        'for (i = 7; i*i < 1000; ++i)' into 'for (i = 0; i != 25; ++i)'
30//   2. Any use outside of the loop of an expression derived from the indvar
31//      is changed to compute the derived value outside of the loop, eliminating
32//      the dependence on the exit value of the induction variable.  If the only
33//      purpose of the loop is to compute the exit value of some derived
34//      expression, this transformation will make the loop dead.
35//
36// This transformation should be followed by strength reduction after all of the
37// desired loop transformations have been performed.
38//
39//===----------------------------------------------------------------------===//
40
41#define DEBUG_TYPE "indvars"
42#include "llvm/Transforms/Scalar.h"
43#include "llvm/BasicBlock.h"
44#include "llvm/Constants.h"
45#include "llvm/Instructions.h"
46#include "llvm/IntrinsicInst.h"
47#include "llvm/LLVMContext.h"
48#include "llvm/Type.h"
49#include "llvm/Analysis/Dominators.h"
50#include "llvm/Analysis/IVUsers.h"
51#include "llvm/Analysis/ScalarEvolutionExpander.h"
52#include "llvm/Analysis/LoopInfo.h"
53#include "llvm/Analysis/LoopPass.h"
54#include "llvm/Support/CFG.h"
55#include "llvm/Support/CommandLine.h"
56#include "llvm/Support/Debug.h"
57#include "llvm/Support/raw_ostream.h"
58#include "llvm/Transforms/Utils/Local.h"
59#include "llvm/Transforms/Utils/BasicBlockUtils.h"
60#include "llvm/ADT/SmallVector.h"
61#include "llvm/ADT/Statistic.h"
62#include "llvm/ADT/STLExtras.h"
63using namespace llvm;
64
65STATISTIC(NumRemoved , "Number of aux indvars removed");
66STATISTIC(NumInserted, "Number of canonical indvars added");
67STATISTIC(NumReplaced, "Number of exit values replaced");
68STATISTIC(NumLFTR    , "Number of loop exit tests replaced");
69
70namespace {
71  class IndVarSimplify : public LoopPass {
72    IVUsers         *IU;
73    LoopInfo        *LI;
74    ScalarEvolution *SE;
75    DominatorTree   *DT;
76    bool Changed;
77  public:
78
79    static char ID; // Pass identification, replacement for typeid
80    IndVarSimplify() : LoopPass(&ID) {}
81
82    virtual bool runOnLoop(Loop *L, LPPassManager &LPM);
83
84    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
85      AU.addRequired<DominatorTree>();
86      AU.addRequired<LoopInfo>();
87      AU.addRequired<ScalarEvolution>();
88      AU.addRequiredID(LoopSimplifyID);
89      AU.addRequiredID(LCSSAID);
90      AU.addRequired<IVUsers>();
91      AU.addPreserved<ScalarEvolution>();
92      AU.addPreservedID(LoopSimplifyID);
93      AU.addPreservedID(LCSSAID);
94      AU.addPreserved<IVUsers>();
95      AU.setPreservesCFG();
96    }
97
98  private:
99
100    void RewriteNonIntegerIVs(Loop *L);
101
102    ICmpInst *LinearFunctionTestReplace(Loop *L, const SCEV *BackedgeTakenCount,
103                                   Value *IndVar,
104                                   BasicBlock *ExitingBlock,
105                                   BranchInst *BI,
106                                   SCEVExpander &Rewriter);
107    void RewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter);
108
109    void RewriteIVExpressions(Loop *L, SCEVExpander &Rewriter);
110
111    void SinkUnusedInvariants(Loop *L);
112
113    void HandleFloatingPointIV(Loop *L, PHINode *PH);
114  };
115}
116
117char IndVarSimplify::ID = 0;
118static RegisterPass<IndVarSimplify>
119X("indvars", "Canonicalize Induction Variables");
120
121Pass *llvm::createIndVarSimplifyPass() {
122  return new IndVarSimplify();
123}
124
125/// LinearFunctionTestReplace - This method rewrites the exit condition of the
126/// loop to be a canonical != comparison against the incremented loop induction
127/// variable.  This pass is able to rewrite the exit tests of any loop where the
128/// SCEV analysis can determine a loop-invariant trip count of the loop, which
129/// is actually a much broader range than just linear tests.
130ICmpInst *IndVarSimplify::LinearFunctionTestReplace(Loop *L,
131                                   const SCEV *BackedgeTakenCount,
132                                   Value *IndVar,
133                                   BasicBlock *ExitingBlock,
134                                   BranchInst *BI,
135                                   SCEVExpander &Rewriter) {
136  // If the exiting block is not the same as the backedge block, we must compare
137  // against the preincremented value, otherwise we prefer to compare against
138  // the post-incremented value.
139  Value *CmpIndVar;
140  const SCEV *RHS = BackedgeTakenCount;
141  if (ExitingBlock == L->getLoopLatch()) {
142    // Add one to the "backedge-taken" count to get the trip count.
143    // If this addition may overflow, we have to be more pessimistic and
144    // cast the induction variable before doing the add.
145    const SCEV *Zero = SE->getIntegerSCEV(0, BackedgeTakenCount->getType());
146    const SCEV *N =
147      SE->getAddExpr(BackedgeTakenCount,
148                     SE->getIntegerSCEV(1, BackedgeTakenCount->getType()));
149    if ((isa<SCEVConstant>(N) && !N->isZero()) ||
150        SE->isLoopGuardedByCond(L, ICmpInst::ICMP_NE, N, Zero)) {
151      // No overflow. Cast the sum.
152      RHS = SE->getTruncateOrZeroExtend(N, IndVar->getType());
153    } else {
154      // Potential overflow. Cast before doing the add.
155      RHS = SE->getTruncateOrZeroExtend(BackedgeTakenCount,
156                                        IndVar->getType());
157      RHS = SE->getAddExpr(RHS,
158                           SE->getIntegerSCEV(1, IndVar->getType()));
159    }
160
161    // The BackedgeTaken expression contains the number of times that the
162    // backedge branches to the loop header.  This is one less than the
163    // number of times the loop executes, so use the incremented indvar.
164    CmpIndVar = L->getCanonicalInductionVariableIncrement();
165  } else {
166    // We have to use the preincremented value...
167    RHS = SE->getTruncateOrZeroExtend(BackedgeTakenCount,
168                                      IndVar->getType());
169    CmpIndVar = IndVar;
170  }
171
172  // Expand the code for the iteration count.
173  assert(RHS->isLoopInvariant(L) &&
174         "Computed iteration count is not loop invariant!");
175  Value *ExitCnt = Rewriter.expandCodeFor(RHS, IndVar->getType(), BI);
176
177  // Insert a new icmp_ne or icmp_eq instruction before the branch.
178  ICmpInst::Predicate Opcode;
179  if (L->contains(BI->getSuccessor(0)))
180    Opcode = ICmpInst::ICMP_NE;
181  else
182    Opcode = ICmpInst::ICMP_EQ;
183
184  DEBUG(dbgs() << "INDVARS: Rewriting loop exit condition to:\n"
185               << "      LHS:" << *CmpIndVar << '\n'
186               << "       op:\t"
187               << (Opcode == ICmpInst::ICMP_NE ? "!=" : "==") << "\n"
188               << "      RHS:\t" << *RHS << "\n");
189
190  ICmpInst *Cond = new ICmpInst(BI, Opcode, CmpIndVar, ExitCnt, "exitcond");
191
192  Value *OrigCond = BI->getCondition();
193  // It's tempting to use replaceAllUsesWith here to fully replace the old
194  // comparison, but that's not immediately safe, since users of the old
195  // comparison may not be dominated by the new comparison. Instead, just
196  // update the branch to use the new comparison; in the common case this
197  // will make old comparison dead.
198  BI->setCondition(Cond);
199  RecursivelyDeleteTriviallyDeadInstructions(OrigCond);
200
201  ++NumLFTR;
202  Changed = true;
203  return Cond;
204}
205
206/// RewriteLoopExitValues - Check to see if this loop has a computable
207/// loop-invariant execution count.  If so, this means that we can compute the
208/// final value of any expressions that are recurrent in the loop, and
209/// substitute the exit values from the loop into any instructions outside of
210/// the loop that use the final values of the current expressions.
211///
212/// This is mostly redundant with the regular IndVarSimplify activities that
213/// happen later, except that it's more powerful in some cases, because it's
214/// able to brute-force evaluate arbitrary instructions as long as they have
215/// constant operands at the beginning of the loop.
216void IndVarSimplify::RewriteLoopExitValues(Loop *L,
217                                           SCEVExpander &Rewriter) {
218  // Verify the input to the pass in already in LCSSA form.
219  assert(L->isLCSSAForm(*DT));
220
221  SmallVector<BasicBlock*, 8> ExitBlocks;
222  L->getUniqueExitBlocks(ExitBlocks);
223
224  // Find all values that are computed inside the loop, but used outside of it.
225  // Because of LCSSA, these values will only occur in LCSSA PHI Nodes.  Scan
226  // the exit blocks of the loop to find them.
227  for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
228    BasicBlock *ExitBB = ExitBlocks[i];
229
230    // If there are no PHI nodes in this exit block, then no values defined
231    // inside the loop are used on this path, skip it.
232    PHINode *PN = dyn_cast<PHINode>(ExitBB->begin());
233    if (!PN) continue;
234
235    unsigned NumPreds = PN->getNumIncomingValues();
236
237    // Iterate over all of the PHI nodes.
238    BasicBlock::iterator BBI = ExitBB->begin();
239    while ((PN = dyn_cast<PHINode>(BBI++))) {
240      if (PN->use_empty())
241        continue; // dead use, don't replace it
242
243      // SCEV only supports integer expressions for now.
244      if (!PN->getType()->isIntegerTy() && !PN->getType()->isPointerTy())
245        continue;
246
247      // It's necessary to tell ScalarEvolution about this explicitly so that
248      // it can walk the def-use list and forget all SCEVs, as it may not be
249      // watching the PHI itself. Once the new exit value is in place, there
250      // may not be a def-use connection between the loop and every instruction
251      // which got a SCEVAddRecExpr for that loop.
252      SE->forgetValue(PN);
253
254      // Iterate over all of the values in all the PHI nodes.
255      for (unsigned i = 0; i != NumPreds; ++i) {
256        // If the value being merged in is not integer or is not defined
257        // in the loop, skip it.
258        Value *InVal = PN->getIncomingValue(i);
259        if (!isa<Instruction>(InVal))
260          continue;
261
262        // If this pred is for a subloop, not L itself, skip it.
263        if (LI->getLoopFor(PN->getIncomingBlock(i)) != L)
264          continue; // The Block is in a subloop, skip it.
265
266        // Check that InVal is defined in the loop.
267        Instruction *Inst = cast<Instruction>(InVal);
268        if (!L->contains(Inst))
269          continue;
270
271        // Okay, this instruction has a user outside of the current loop
272        // and varies predictably *inside* the loop.  Evaluate the value it
273        // contains when the loop exits, if possible.
274        const SCEV *ExitValue = SE->getSCEVAtScope(Inst, L->getParentLoop());
275        if (!ExitValue->isLoopInvariant(L))
276          continue;
277
278        Changed = true;
279        ++NumReplaced;
280
281        Value *ExitVal = Rewriter.expandCodeFor(ExitValue, PN->getType(), Inst);
282
283        DEBUG(dbgs() << "INDVARS: RLEV: AfterLoopVal = " << *ExitVal << '\n'
284                     << "  LoopVal = " << *Inst << "\n");
285
286        PN->setIncomingValue(i, ExitVal);
287
288        // If this instruction is dead now, delete it.
289        RecursivelyDeleteTriviallyDeadInstructions(Inst);
290
291        if (NumPreds == 1) {
292          // Completely replace a single-pred PHI. This is safe, because the
293          // NewVal won't be variant in the loop, so we don't need an LCSSA phi
294          // node anymore.
295          PN->replaceAllUsesWith(ExitVal);
296          RecursivelyDeleteTriviallyDeadInstructions(PN);
297        }
298      }
299      if (NumPreds != 1) {
300        // Clone the PHI and delete the original one. This lets IVUsers and
301        // any other maps purge the original user from their records.
302        PHINode *NewPN = cast<PHINode>(PN->clone());
303        NewPN->takeName(PN);
304        NewPN->insertBefore(PN);
305        PN->replaceAllUsesWith(NewPN);
306        PN->eraseFromParent();
307      }
308    }
309  }
310
311  // The insertion point instruction may have been deleted; clear it out
312  // so that the rewriter doesn't trip over it later.
313  Rewriter.clearInsertPoint();
314}
315
316void IndVarSimplify::RewriteNonIntegerIVs(Loop *L) {
317  // First step.  Check to see if there are any floating-point recurrences.
318  // If there are, change them into integer recurrences, permitting analysis by
319  // the SCEV routines.
320  //
321  BasicBlock *Header    = L->getHeader();
322
323  SmallVector<WeakVH, 8> PHIs;
324  for (BasicBlock::iterator I = Header->begin();
325       PHINode *PN = dyn_cast<PHINode>(I); ++I)
326    PHIs.push_back(PN);
327
328  for (unsigned i = 0, e = PHIs.size(); i != e; ++i)
329    if (PHINode *PN = dyn_cast_or_null<PHINode>(PHIs[i]))
330      HandleFloatingPointIV(L, PN);
331
332  // If the loop previously had floating-point IV, ScalarEvolution
333  // may not have been able to compute a trip count. Now that we've done some
334  // re-writing, the trip count may be computable.
335  if (Changed)
336    SE->forgetLoop(L);
337}
338
339bool IndVarSimplify::runOnLoop(Loop *L, LPPassManager &LPM) {
340  IU = &getAnalysis<IVUsers>();
341  LI = &getAnalysis<LoopInfo>();
342  SE = &getAnalysis<ScalarEvolution>();
343  DT = &getAnalysis<DominatorTree>();
344  Changed = false;
345
346  // If there are any floating-point recurrences, attempt to
347  // transform them to use integer recurrences.
348  RewriteNonIntegerIVs(L);
349
350  BasicBlock *ExitingBlock = L->getExitingBlock(); // may be null
351  const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L);
352
353  // Create a rewriter object which we'll use to transform the code with.
354  SCEVExpander Rewriter(*SE);
355
356  // Check to see if this loop has a computable loop-invariant execution count.
357  // If so, this means that we can compute the final value of any expressions
358  // that are recurrent in the loop, and substitute the exit values from the
359  // loop into any instructions outside of the loop that use the final values of
360  // the current expressions.
361  //
362  if (!isa<SCEVCouldNotCompute>(BackedgeTakenCount))
363    RewriteLoopExitValues(L, Rewriter);
364
365  // Compute the type of the largest recurrence expression, and decide whether
366  // a canonical induction variable should be inserted.
367  const Type *LargestType = 0;
368  bool NeedCannIV = false;
369  if (!isa<SCEVCouldNotCompute>(BackedgeTakenCount)) {
370    LargestType = BackedgeTakenCount->getType();
371    LargestType = SE->getEffectiveSCEVType(LargestType);
372    // If we have a known trip count and a single exit block, we'll be
373    // rewriting the loop exit test condition below, which requires a
374    // canonical induction variable.
375    if (ExitingBlock)
376      NeedCannIV = true;
377  }
378  for (IVUsers::const_iterator I = IU->begin(), E = IU->end(); I != E; ++I) {
379    const Type *Ty =
380      SE->getEffectiveSCEVType(I->getOperandValToReplace()->getType());
381    if (!LargestType ||
382        SE->getTypeSizeInBits(Ty) >
383          SE->getTypeSizeInBits(LargestType))
384      LargestType = Ty;
385    NeedCannIV = true;
386  }
387
388  // Now that we know the largest of the induction variable expressions
389  // in this loop, insert a canonical induction variable of the largest size.
390  Value *IndVar = 0;
391  if (NeedCannIV) {
392    // Check to see if the loop already has any canonical-looking induction
393    // variables. If any are present and wider than the planned canonical
394    // induction variable, temporarily remove them, so that the Rewriter
395    // doesn't attempt to reuse them.
396    SmallVector<PHINode *, 2> OldCannIVs;
397    while (PHINode *OldCannIV = L->getCanonicalInductionVariable()) {
398      if (SE->getTypeSizeInBits(OldCannIV->getType()) >
399          SE->getTypeSizeInBits(LargestType))
400        OldCannIV->removeFromParent();
401      else
402        break;
403      OldCannIVs.push_back(OldCannIV);
404    }
405
406    IndVar = Rewriter.getOrInsertCanonicalInductionVariable(L, LargestType);
407
408    ++NumInserted;
409    Changed = true;
410    DEBUG(dbgs() << "INDVARS: New CanIV: " << *IndVar << '\n');
411
412    // Now that the official induction variable is established, reinsert
413    // any old canonical-looking variables after it so that the IR remains
414    // consistent. They will be deleted as part of the dead-PHI deletion at
415    // the end of the pass.
416    while (!OldCannIVs.empty()) {
417      PHINode *OldCannIV = OldCannIVs.pop_back_val();
418      OldCannIV->insertBefore(L->getHeader()->getFirstNonPHI());
419    }
420  }
421
422  // If we have a trip count expression, rewrite the loop's exit condition
423  // using it.  We can currently only handle loops with a single exit.
424  ICmpInst *NewICmp = 0;
425  if (!isa<SCEVCouldNotCompute>(BackedgeTakenCount) &&
426      !BackedgeTakenCount->isZero() &&
427      ExitingBlock) {
428    assert(NeedCannIV &&
429           "LinearFunctionTestReplace requires a canonical induction variable");
430    // Can't rewrite non-branch yet.
431    if (BranchInst *BI = dyn_cast<BranchInst>(ExitingBlock->getTerminator()))
432      NewICmp = LinearFunctionTestReplace(L, BackedgeTakenCount, IndVar,
433                                          ExitingBlock, BI, Rewriter);
434  }
435
436  // Rewrite IV-derived expressions. Clears the rewriter cache.
437  RewriteIVExpressions(L, Rewriter);
438
439  // The Rewriter may not be used from this point on.
440
441  // Loop-invariant instructions in the preheader that aren't used in the
442  // loop may be sunk below the loop to reduce register pressure.
443  SinkUnusedInvariants(L);
444
445  // For completeness, inform IVUsers of the IV use in the newly-created
446  // loop exit test instruction.
447  if (NewICmp)
448    IU->AddUsersIfInteresting(cast<Instruction>(NewICmp->getOperand(0)));
449
450  // Clean up dead instructions.
451  Changed |= DeleteDeadPHIs(L->getHeader());
452  // Check a post-condition.
453  assert(L->isLCSSAForm(*DT) && "Indvars did not leave the loop in lcssa form!");
454  return Changed;
455}
456
457void IndVarSimplify::RewriteIVExpressions(Loop *L, SCEVExpander &Rewriter) {
458  SmallVector<WeakVH, 16> DeadInsts;
459
460  // Rewrite all induction variable expressions in terms of the canonical
461  // induction variable.
462  //
463  // If there were induction variables of other sizes or offsets, manually
464  // add the offsets to the primary induction variable and cast, avoiding
465  // the need for the code evaluation methods to insert induction variables
466  // of different sizes.
467  for (IVUsers::iterator UI = IU->begin(), E = IU->end(); UI != E; ++UI) {
468    const SCEV *Stride = UI->getStride();
469    Value *Op = UI->getOperandValToReplace();
470    const Type *UseTy = Op->getType();
471    Instruction *User = UI->getUser();
472
473    // Compute the final addrec to expand into code.
474    const SCEV *AR = IU->getReplacementExpr(*UI);
475
476    // Evaluate the expression out of the loop, if possible.
477    if (!L->contains(UI->getUser())) {
478      const SCEV *ExitVal = SE->getSCEVAtScope(AR, L->getParentLoop());
479      if (ExitVal->isLoopInvariant(L))
480        AR = ExitVal;
481    }
482
483    // FIXME: It is an extremely bad idea to indvar substitute anything more
484    // complex than affine induction variables.  Doing so will put expensive
485    // polynomial evaluations inside of the loop, and the str reduction pass
486    // currently can only reduce affine polynomials.  For now just disable
487    // indvar subst on anything more complex than an affine addrec, unless
488    // it can be expanded to a trivial value.
489    if (!AR->isLoopInvariant(L) && !Stride->isLoopInvariant(L))
490      continue;
491
492    // Determine the insertion point for this user. By default, insert
493    // immediately before the user. The SCEVExpander class will automatically
494    // hoist loop invariants out of the loop. For PHI nodes, there may be
495    // multiple uses, so compute the nearest common dominator for the
496    // incoming blocks.
497    Instruction *InsertPt = User;
498    if (PHINode *PHI = dyn_cast<PHINode>(InsertPt))
499      for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i)
500        if (PHI->getIncomingValue(i) == Op) {
501          if (InsertPt == User)
502            InsertPt = PHI->getIncomingBlock(i)->getTerminator();
503          else
504            InsertPt =
505              DT->findNearestCommonDominator(InsertPt->getParent(),
506                                             PHI->getIncomingBlock(i))
507                    ->getTerminator();
508        }
509
510    // Now expand it into actual Instructions and patch it into place.
511    Value *NewVal = Rewriter.expandCodeFor(AR, UseTy, InsertPt);
512
513    // Inform ScalarEvolution that this value is changing. The change doesn't
514    // affect its value, but it does potentially affect which use lists the
515    // value will be on after the replacement, which affects ScalarEvolution's
516    // ability to walk use lists and drop dangling pointers when a value is
517    // deleted.
518    SE->forgetValue(User);
519
520    // Patch the new value into place.
521    if (Op->hasName())
522      NewVal->takeName(Op);
523    User->replaceUsesOfWith(Op, NewVal);
524    UI->setOperandValToReplace(NewVal);
525    DEBUG(dbgs() << "INDVARS: Rewrote IV '" << *AR << "' " << *Op << '\n'
526                 << "   into = " << *NewVal << "\n");
527    ++NumRemoved;
528    Changed = true;
529
530    // The old value may be dead now.
531    DeadInsts.push_back(Op);
532  }
533
534  // Clear the rewriter cache, because values that are in the rewriter's cache
535  // can be deleted in the loop below, causing the AssertingVH in the cache to
536  // trigger.
537  Rewriter.clear();
538  // Now that we're done iterating through lists, clean up any instructions
539  // which are now dead.
540  while (!DeadInsts.empty())
541    if (Instruction *Inst =
542          dyn_cast_or_null<Instruction>(DeadInsts.pop_back_val()))
543      RecursivelyDeleteTriviallyDeadInstructions(Inst);
544}
545
546/// If there's a single exit block, sink any loop-invariant values that
547/// were defined in the preheader but not used inside the loop into the
548/// exit block to reduce register pressure in the loop.
549void IndVarSimplify::SinkUnusedInvariants(Loop *L) {
550  BasicBlock *ExitBlock = L->getExitBlock();
551  if (!ExitBlock) return;
552
553  BasicBlock *Preheader = L->getLoopPreheader();
554  if (!Preheader) return;
555
556  Instruction *InsertPt = ExitBlock->getFirstNonPHI();
557  BasicBlock::iterator I = Preheader->getTerminator();
558  while (I != Preheader->begin()) {
559    --I;
560    // New instructions were inserted at the end of the preheader.
561    if (isa<PHINode>(I))
562      break;
563
564    // Don't move instructions which might have side effects, since the side
565    // effects need to complete before instructions inside the loop.  Also don't
566    // move instructions which might read memory, since the loop may modify
567    // memory. Note that it's okay if the instruction might have undefined
568    // behavior: LoopSimplify guarantees that the preheader dominates the exit
569    // block.
570    if (I->mayHaveSideEffects() || I->mayReadFromMemory())
571      continue;
572
573    // Skip debug info intrinsics.
574    if (isa<DbgInfoIntrinsic>(I))
575      continue;
576
577    // Don't sink static AllocaInsts out of the entry block, which would
578    // turn them into dynamic allocas!
579    if (AllocaInst *AI = dyn_cast<AllocaInst>(I))
580      if (AI->isStaticAlloca())
581        continue;
582
583    // Determine if there is a use in or before the loop (direct or
584    // otherwise).
585    bool UsedInLoop = false;
586    for (Value::use_iterator UI = I->use_begin(), UE = I->use_end();
587         UI != UE; ++UI) {
588      BasicBlock *UseBB = cast<Instruction>(UI)->getParent();
589      if (PHINode *P = dyn_cast<PHINode>(UI)) {
590        unsigned i =
591          PHINode::getIncomingValueNumForOperand(UI.getOperandNo());
592        UseBB = P->getIncomingBlock(i);
593      }
594      if (UseBB == Preheader || L->contains(UseBB)) {
595        UsedInLoop = true;
596        break;
597      }
598    }
599
600    // If there is, the def must remain in the preheader.
601    if (UsedInLoop)
602      continue;
603
604    // Otherwise, sink it to the exit block.
605    Instruction *ToMove = I;
606    bool Done = false;
607
608    if (I != Preheader->begin()) {
609      // Skip debug info intrinsics.
610      do {
611        --I;
612      } while (isa<DbgInfoIntrinsic>(I) && I != Preheader->begin());
613
614      if (isa<DbgInfoIntrinsic>(I) && I == Preheader->begin())
615        Done = true;
616    } else {
617      Done = true;
618    }
619
620    ToMove->moveBefore(InsertPt);
621    if (Done) break;
622    InsertPt = ToMove;
623  }
624}
625
626/// Return true if it is OK to use SIToFPInst for an induction variable
627/// with given initial and exit values.
628static bool CanUseSIToFP(ConstantFP *InitV, ConstantFP *ExitV,
629                         uint64_t intIV, uint64_t intEV) {
630
631  if (InitV->getValueAPF().isNegative() || ExitV->getValueAPF().isNegative())
632    return true;
633
634  // If the iteration range can be handled by SIToFPInst then use it.
635  APInt Max = APInt::getSignedMaxValue(32);
636  if (Max.getZExtValue() > static_cast<uint64_t>(abs64(intEV - intIV)))
637    return true;
638
639  return false;
640}
641
642/// convertToInt - Convert APF to an integer, if possible.
643static bool convertToInt(const APFloat &APF, uint64_t &intVal) {
644  bool isExact = false;
645  if (&APF.getSemantics() == &APFloat::PPCDoubleDouble)
646    return false;
647  if (APF.convertToInteger(&intVal, 32, APF.isNegative(),
648                           APFloat::rmTowardZero, &isExact) != APFloat::opOK)
649    return false;
650  if (!isExact)
651    return false;
652  return true;
653}
654
655/// HandleFloatingPointIV - If the loop has floating induction variable
656/// then insert corresponding integer induction variable if possible.
657/// For example,
658/// for(double i = 0; i < 10000; ++i)
659///   bar(i)
660/// is converted into
661/// for(int i = 0; i < 10000; ++i)
662///   bar((double)i);
663///
664void IndVarSimplify::HandleFloatingPointIV(Loop *L, PHINode *PH) {
665  unsigned IncomingEdge = L->contains(PH->getIncomingBlock(0));
666  unsigned BackEdge     = IncomingEdge^1;
667
668  // Check incoming value.
669  ConstantFP *InitValueVal =
670    dyn_cast<ConstantFP>(PH->getIncomingValue(IncomingEdge));
671  if (!InitValueVal) return;
672
673  uint64_t InitValue;
674  if (!convertToInt(InitValueVal->getValueAPF(), InitValue))
675    return;
676
677  // Check IV increment. Reject this PH if increment operation is not
678  // an add or increment value can not be represented by an integer.
679  BinaryOperator *Incr =
680    dyn_cast<BinaryOperator>(PH->getIncomingValue(BackEdge));
681  if (Incr == 0 || Incr->getOpcode() != Instruction::FAdd) return;
682
683  // If this is not an add of the PHI with a constantfp, or if the constant fp
684  // is not an integer, bail out.
685  ConstantFP *IncValueVal = dyn_cast<ConstantFP>(Incr->getOperand(1));
686  uint64_t IntValue;
687  if (IncValueVal == 0 || Incr->getOperand(0) != PH ||
688      !convertToInt(IncValueVal->getValueAPF(), IntValue))
689    return;
690
691  // Check Incr uses. One user is PH and the other user is an exit condition
692  // used by the conditional terminator.
693  Value::use_iterator IncrUse = Incr->use_begin();
694  Instruction *U1 = cast<Instruction>(IncrUse++);
695  if (IncrUse == Incr->use_end()) return;
696  Instruction *U2 = cast<Instruction>(IncrUse++);
697  if (IncrUse != Incr->use_end()) return;
698
699  // Find exit condition, which is an fcmp.  If it doesn't exist, or if it isn't
700  // only used by a branch, we can't transform it.
701  FCmpInst *Compare = dyn_cast<FCmpInst>(U1);
702  if (!Compare)
703    Compare = dyn_cast<FCmpInst>(U2);
704  if (Compare == 0 || !Compare->hasOneUse() ||
705      !isa<BranchInst>(Compare->use_back()))
706    return;
707
708  BranchInst *TheBr = cast<BranchInst>(Compare->use_back());
709
710  // If it isn't a comparison with an integer-as-fp (the exit value), we can't
711  // transform it.
712  ConstantFP *ExitValueVal = dyn_cast<ConstantFP>(Compare->getOperand(1));
713  uint64_t ExitValue;
714  if (ExitValueVal == 0 || !convertToInt(ExitValueVal->getValueAPF(),ExitValue))
715    return;
716
717  // Find new predicate for integer comparison.
718  CmpInst::Predicate NewPred = CmpInst::BAD_ICMP_PREDICATE;
719  switch (Compare->getPredicate()) {
720  default: return;  // Unknown comparison.
721  case CmpInst::FCMP_OEQ:
722  case CmpInst::FCMP_UEQ: NewPred = CmpInst::ICMP_EQ; break;
723  case CmpInst::FCMP_OGT:
724  case CmpInst::FCMP_UGT: NewPred = CmpInst::ICMP_UGT; break;
725  case CmpInst::FCMP_OGE:
726  case CmpInst::FCMP_UGE: NewPred = CmpInst::ICMP_UGE; break;
727  case CmpInst::FCMP_OLT:
728  case CmpInst::FCMP_ULT: NewPred = CmpInst::ICMP_ULT; break;
729  case CmpInst::FCMP_OLE:
730  case CmpInst::FCMP_ULE: NewPred = CmpInst::ICMP_ULE; break;
731  }
732
733  const IntegerType *Int32Ty = Type::getInt32Ty(PH->getContext());
734
735  // Insert new i32 integer induction variable.
736  PHINode *NewPHI = PHINode::Create(Int32Ty, PH->getName()+".int", PH);
737  NewPHI->addIncoming(ConstantInt::get(Int32Ty, InitValue),
738                      PH->getIncomingBlock(IncomingEdge));
739
740  Value *NewAdd =
741    BinaryOperator::CreateAdd(NewPHI, ConstantInt::get(Int32Ty, IntValue),
742                              Incr->getName()+".int", Incr);
743  NewPHI->addIncoming(NewAdd, PH->getIncomingBlock(BackEdge));
744
745  ICmpInst *NewCompare = new ICmpInst(TheBr, NewPred, NewAdd,
746                                      ConstantInt::get(Int32Ty, ExitValue),
747                                      Compare->getName());
748
749  // In the following deletions, PH may become dead and may be deleted.
750  // Use a WeakVH to observe whether this happens.
751  WeakVH WeakPH = PH;
752
753  // Delete the old floating point exit comparison.  The branch starts using the
754  // new comparison.
755  NewCompare->takeName(Compare);
756  Compare->replaceAllUsesWith(NewCompare);
757  RecursivelyDeleteTriviallyDeadInstructions(Compare);
758
759  // Delete the old floating point increment.
760  Incr->replaceAllUsesWith(UndefValue::get(Incr->getType()));
761  RecursivelyDeleteTriviallyDeadInstructions(Incr);
762
763  // Replace floating induction variable, if it isn't already deleted.
764  // Give SIToFPInst preference over UIToFPInst because it is faster on
765  // platforms that are widely used.
766  if (WeakPH && !PH->use_empty()) {
767    if (CanUseSIToFP(InitValueVal, ExitValueVal, InitValue, ExitValue)) {
768      SIToFPInst *Conv = new SIToFPInst(NewPHI, PH->getType(), "indvar.conv",
769                                        PH->getParent()->getFirstNonPHI());
770      PH->replaceAllUsesWith(Conv);
771    } else {
772      UIToFPInst *Conv = new UIToFPInst(NewPHI, PH->getType(), "indvar.conv",
773                                        PH->getParent()->getFirstNonPHI());
774      PH->replaceAllUsesWith(Conv);
775    }
776    RecursivelyDeleteTriviallyDeadInstructions(PH);
777  }
778
779  // Add a new IVUsers entry for the newly-created integer PHI.
780  IU->AddUsersIfInteresting(NewPHI);
781}
782