IndVarSimplify.cpp revision db0d666578388026278c17f848095b396b7ea27d
1//===- IndVarSimplify.cpp - Induction Variable Elimination ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This transformation analyzes and transforms the induction variables (and
11// computations derived from them) into simpler forms suitable for subsequent
12// analysis and transformation.
13//
14// If the trip count of a loop is computable, this pass also makes the following
15// changes:
16//   1. The exit condition for the loop is canonicalized to compare the
17//      induction value against the exit value.  This turns loops like:
18//        'for (i = 7; i*i < 1000; ++i)' into 'for (i = 0; i != 25; ++i)'
19//   2. Any use outside of the loop of an expression derived from the indvar
20//      is changed to compute the derived value outside of the loop, eliminating
21//      the dependence on the exit value of the induction variable.  If the only
22//      purpose of the loop is to compute the exit value of some derived
23//      expression, this transformation will make the loop dead.
24//
25//===----------------------------------------------------------------------===//
26
27#define DEBUG_TYPE "indvars"
28#include "llvm/Transforms/Scalar.h"
29#include "llvm/BasicBlock.h"
30#include "llvm/Constants.h"
31#include "llvm/Instructions.h"
32#include "llvm/IntrinsicInst.h"
33#include "llvm/LLVMContext.h"
34#include "llvm/Type.h"
35#include "llvm/Analysis/Dominators.h"
36#include "llvm/Analysis/ScalarEvolutionExpander.h"
37#include "llvm/Analysis/LoopInfo.h"
38#include "llvm/Analysis/LoopPass.h"
39#include "llvm/Support/CFG.h"
40#include "llvm/Support/CommandLine.h"
41#include "llvm/Support/Debug.h"
42#include "llvm/Support/raw_ostream.h"
43#include "llvm/Transforms/Utils/Local.h"
44#include "llvm/Transforms/Utils/BasicBlockUtils.h"
45#include "llvm/Transforms/Utils/SimplifyIndVar.h"
46#include "llvm/Target/TargetData.h"
47#include "llvm/ADT/DenseMap.h"
48#include "llvm/ADT/SmallVector.h"
49#include "llvm/ADT/Statistic.h"
50using namespace llvm;
51
52STATISTIC(NumWidened     , "Number of indvars widened");
53STATISTIC(NumReplaced    , "Number of exit values replaced");
54STATISTIC(NumLFTR        , "Number of loop exit tests replaced");
55STATISTIC(NumElimExt     , "Number of IV sign/zero extends eliminated");
56STATISTIC(NumElimIV      , "Number of congruent IVs eliminated");
57
58// Trip count verification can be enabled by default under NDEBUG if we
59// implement a strong expression equivalence checker in SCEV. Until then, we
60// use the verify-indvars flag, which may assert in some cases.
61static cl::opt<bool> VerifyIndvars(
62  "verify-indvars", cl::Hidden,
63  cl::desc("Verify the ScalarEvolution result after running indvars"));
64
65namespace {
66  class IndVarSimplify : public LoopPass {
67    LoopInfo        *LI;
68    ScalarEvolution *SE;
69    DominatorTree   *DT;
70    TargetData      *TD;
71
72    SmallVector<WeakVH, 16> DeadInsts;
73    bool Changed;
74  public:
75
76    static char ID; // Pass identification, replacement for typeid
77    IndVarSimplify() : LoopPass(ID), LI(0), SE(0), DT(0), TD(0),
78                       Changed(false) {
79      initializeIndVarSimplifyPass(*PassRegistry::getPassRegistry());
80    }
81
82    virtual bool runOnLoop(Loop *L, LPPassManager &LPM);
83
84    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
85      AU.addRequired<DominatorTree>();
86      AU.addRequired<LoopInfo>();
87      AU.addRequired<ScalarEvolution>();
88      AU.addRequiredID(LoopSimplifyID);
89      AU.addRequiredID(LCSSAID);
90      AU.addPreserved<ScalarEvolution>();
91      AU.addPreservedID(LoopSimplifyID);
92      AU.addPreservedID(LCSSAID);
93      AU.setPreservesCFG();
94    }
95
96  private:
97    virtual void releaseMemory() {
98      DeadInsts.clear();
99    }
100
101    bool isValidRewrite(Value *FromVal, Value *ToVal);
102
103    void HandleFloatingPointIV(Loop *L, PHINode *PH);
104    void RewriteNonIntegerIVs(Loop *L);
105
106    void SimplifyAndExtend(Loop *L, SCEVExpander &Rewriter, LPPassManager &LPM);
107
108    void RewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter);
109
110    Value *LinearFunctionTestReplace(Loop *L, const SCEV *BackedgeTakenCount,
111                                     PHINode *IndVar, SCEVExpander &Rewriter);
112
113    void SinkUnusedInvariants(Loop *L);
114  };
115}
116
117char IndVarSimplify::ID = 0;
118INITIALIZE_PASS_BEGIN(IndVarSimplify, "indvars",
119                "Induction Variable Simplification", false, false)
120INITIALIZE_PASS_DEPENDENCY(DominatorTree)
121INITIALIZE_PASS_DEPENDENCY(LoopInfo)
122INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
123INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
124INITIALIZE_PASS_DEPENDENCY(LCSSA)
125INITIALIZE_PASS_END(IndVarSimplify, "indvars",
126                "Induction Variable Simplification", false, false)
127
128Pass *llvm::createIndVarSimplifyPass() {
129  return new IndVarSimplify();
130}
131
132/// isValidRewrite - Return true if the SCEV expansion generated by the
133/// rewriter can replace the original value. SCEV guarantees that it
134/// produces the same value, but the way it is produced may be illegal IR.
135/// Ideally, this function will only be called for verification.
136bool IndVarSimplify::isValidRewrite(Value *FromVal, Value *ToVal) {
137  // If an SCEV expression subsumed multiple pointers, its expansion could
138  // reassociate the GEP changing the base pointer. This is illegal because the
139  // final address produced by a GEP chain must be inbounds relative to its
140  // underlying object. Otherwise basic alias analysis, among other things,
141  // could fail in a dangerous way. Ultimately, SCEV will be improved to avoid
142  // producing an expression involving multiple pointers. Until then, we must
143  // bail out here.
144  //
145  // Retrieve the pointer operand of the GEP. Don't use GetUnderlyingObject
146  // because it understands lcssa phis while SCEV does not.
147  Value *FromPtr = FromVal;
148  Value *ToPtr = ToVal;
149  if (GEPOperator *GEP = dyn_cast<GEPOperator>(FromVal)) {
150    FromPtr = GEP->getPointerOperand();
151  }
152  if (GEPOperator *GEP = dyn_cast<GEPOperator>(ToVal)) {
153    ToPtr = GEP->getPointerOperand();
154  }
155  if (FromPtr != FromVal || ToPtr != ToVal) {
156    // Quickly check the common case
157    if (FromPtr == ToPtr)
158      return true;
159
160    // SCEV may have rewritten an expression that produces the GEP's pointer
161    // operand. That's ok as long as the pointer operand has the same base
162    // pointer. Unlike GetUnderlyingObject(), getPointerBase() will find the
163    // base of a recurrence. This handles the case in which SCEV expansion
164    // converts a pointer type recurrence into a nonrecurrent pointer base
165    // indexed by an integer recurrence.
166
167    // If the GEP base pointer is a vector of pointers, abort.
168    if (!FromPtr->getType()->isPointerTy() || !ToPtr->getType()->isPointerTy())
169      return false;
170
171    const SCEV *FromBase = SE->getPointerBase(SE->getSCEV(FromPtr));
172    const SCEV *ToBase = SE->getPointerBase(SE->getSCEV(ToPtr));
173    if (FromBase == ToBase)
174      return true;
175
176    DEBUG(dbgs() << "INDVARS: GEP rewrite bail out "
177          << *FromBase << " != " << *ToBase << "\n");
178
179    return false;
180  }
181  return true;
182}
183
184/// Determine the insertion point for this user. By default, insert immediately
185/// before the user. SCEVExpander or LICM will hoist loop invariants out of the
186/// loop. For PHI nodes, there may be multiple uses, so compute the nearest
187/// common dominator for the incoming blocks.
188static Instruction *getInsertPointForUses(Instruction *User, Value *Def,
189                                          DominatorTree *DT) {
190  PHINode *PHI = dyn_cast<PHINode>(User);
191  if (!PHI)
192    return User;
193
194  Instruction *InsertPt = 0;
195  for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i) {
196    if (PHI->getIncomingValue(i) != Def)
197      continue;
198
199    BasicBlock *InsertBB = PHI->getIncomingBlock(i);
200    if (!InsertPt) {
201      InsertPt = InsertBB->getTerminator();
202      continue;
203    }
204    InsertBB = DT->findNearestCommonDominator(InsertPt->getParent(), InsertBB);
205    InsertPt = InsertBB->getTerminator();
206  }
207  assert(InsertPt && "Missing phi operand");
208  assert((!isa<Instruction>(Def) ||
209          DT->dominates(cast<Instruction>(Def), InsertPt)) &&
210         "def does not dominate all uses");
211  return InsertPt;
212}
213
214//===----------------------------------------------------------------------===//
215// RewriteNonIntegerIVs and helpers. Prefer integer IVs.
216//===----------------------------------------------------------------------===//
217
218/// ConvertToSInt - Convert APF to an integer, if possible.
219static bool ConvertToSInt(const APFloat &APF, int64_t &IntVal) {
220  bool isExact = false;
221  if (&APF.getSemantics() == &APFloat::PPCDoubleDouble)
222    return false;
223  // See if we can convert this to an int64_t
224  uint64_t UIntVal;
225  if (APF.convertToInteger(&UIntVal, 64, true, APFloat::rmTowardZero,
226                           &isExact) != APFloat::opOK || !isExact)
227    return false;
228  IntVal = UIntVal;
229  return true;
230}
231
232/// HandleFloatingPointIV - If the loop has floating induction variable
233/// then insert corresponding integer induction variable if possible.
234/// For example,
235/// for(double i = 0; i < 10000; ++i)
236///   bar(i)
237/// is converted into
238/// for(int i = 0; i < 10000; ++i)
239///   bar((double)i);
240///
241void IndVarSimplify::HandleFloatingPointIV(Loop *L, PHINode *PN) {
242  unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0));
243  unsigned BackEdge     = IncomingEdge^1;
244
245  // Check incoming value.
246  ConstantFP *InitValueVal =
247    dyn_cast<ConstantFP>(PN->getIncomingValue(IncomingEdge));
248
249  int64_t InitValue;
250  if (!InitValueVal || !ConvertToSInt(InitValueVal->getValueAPF(), InitValue))
251    return;
252
253  // Check IV increment. Reject this PN if increment operation is not
254  // an add or increment value can not be represented by an integer.
255  BinaryOperator *Incr =
256    dyn_cast<BinaryOperator>(PN->getIncomingValue(BackEdge));
257  if (Incr == 0 || Incr->getOpcode() != Instruction::FAdd) return;
258
259  // If this is not an add of the PHI with a constantfp, or if the constant fp
260  // is not an integer, bail out.
261  ConstantFP *IncValueVal = dyn_cast<ConstantFP>(Incr->getOperand(1));
262  int64_t IncValue;
263  if (IncValueVal == 0 || Incr->getOperand(0) != PN ||
264      !ConvertToSInt(IncValueVal->getValueAPF(), IncValue))
265    return;
266
267  // Check Incr uses. One user is PN and the other user is an exit condition
268  // used by the conditional terminator.
269  Value::use_iterator IncrUse = Incr->use_begin();
270  Instruction *U1 = cast<Instruction>(*IncrUse++);
271  if (IncrUse == Incr->use_end()) return;
272  Instruction *U2 = cast<Instruction>(*IncrUse++);
273  if (IncrUse != Incr->use_end()) return;
274
275  // Find exit condition, which is an fcmp.  If it doesn't exist, or if it isn't
276  // only used by a branch, we can't transform it.
277  FCmpInst *Compare = dyn_cast<FCmpInst>(U1);
278  if (!Compare)
279    Compare = dyn_cast<FCmpInst>(U2);
280  if (Compare == 0 || !Compare->hasOneUse() ||
281      !isa<BranchInst>(Compare->use_back()))
282    return;
283
284  BranchInst *TheBr = cast<BranchInst>(Compare->use_back());
285
286  // We need to verify that the branch actually controls the iteration count
287  // of the loop.  If not, the new IV can overflow and no one will notice.
288  // The branch block must be in the loop and one of the successors must be out
289  // of the loop.
290  assert(TheBr->isConditional() && "Can't use fcmp if not conditional");
291  if (!L->contains(TheBr->getParent()) ||
292      (L->contains(TheBr->getSuccessor(0)) &&
293       L->contains(TheBr->getSuccessor(1))))
294    return;
295
296
297  // If it isn't a comparison with an integer-as-fp (the exit value), we can't
298  // transform it.
299  ConstantFP *ExitValueVal = dyn_cast<ConstantFP>(Compare->getOperand(1));
300  int64_t ExitValue;
301  if (ExitValueVal == 0 ||
302      !ConvertToSInt(ExitValueVal->getValueAPF(), ExitValue))
303    return;
304
305  // Find new predicate for integer comparison.
306  CmpInst::Predicate NewPred = CmpInst::BAD_ICMP_PREDICATE;
307  switch (Compare->getPredicate()) {
308  default: return;  // Unknown comparison.
309  case CmpInst::FCMP_OEQ:
310  case CmpInst::FCMP_UEQ: NewPred = CmpInst::ICMP_EQ; break;
311  case CmpInst::FCMP_ONE:
312  case CmpInst::FCMP_UNE: NewPred = CmpInst::ICMP_NE; break;
313  case CmpInst::FCMP_OGT:
314  case CmpInst::FCMP_UGT: NewPred = CmpInst::ICMP_SGT; break;
315  case CmpInst::FCMP_OGE:
316  case CmpInst::FCMP_UGE: NewPred = CmpInst::ICMP_SGE; break;
317  case CmpInst::FCMP_OLT:
318  case CmpInst::FCMP_ULT: NewPred = CmpInst::ICMP_SLT; break;
319  case CmpInst::FCMP_OLE:
320  case CmpInst::FCMP_ULE: NewPred = CmpInst::ICMP_SLE; break;
321  }
322
323  // We convert the floating point induction variable to a signed i32 value if
324  // we can.  This is only safe if the comparison will not overflow in a way
325  // that won't be trapped by the integer equivalent operations.  Check for this
326  // now.
327  // TODO: We could use i64 if it is native and the range requires it.
328
329  // The start/stride/exit values must all fit in signed i32.
330  if (!isInt<32>(InitValue) || !isInt<32>(IncValue) || !isInt<32>(ExitValue))
331    return;
332
333  // If not actually striding (add x, 0.0), avoid touching the code.
334  if (IncValue == 0)
335    return;
336
337  // Positive and negative strides have different safety conditions.
338  if (IncValue > 0) {
339    // If we have a positive stride, we require the init to be less than the
340    // exit value.
341    if (InitValue >= ExitValue)
342      return;
343
344    uint32_t Range = uint32_t(ExitValue-InitValue);
345    // Check for infinite loop, either:
346    // while (i <= Exit) or until (i > Exit)
347    if (NewPred == CmpInst::ICMP_SLE || NewPred == CmpInst::ICMP_SGT) {
348      if (++Range == 0) return;  // Range overflows.
349    }
350
351    unsigned Leftover = Range % uint32_t(IncValue);
352
353    // If this is an equality comparison, we require that the strided value
354    // exactly land on the exit value, otherwise the IV condition will wrap
355    // around and do things the fp IV wouldn't.
356    if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) &&
357        Leftover != 0)
358      return;
359
360    // If the stride would wrap around the i32 before exiting, we can't
361    // transform the IV.
362    if (Leftover != 0 && int32_t(ExitValue+IncValue) < ExitValue)
363      return;
364
365  } else {
366    // If we have a negative stride, we require the init to be greater than the
367    // exit value.
368    if (InitValue <= ExitValue)
369      return;
370
371    uint32_t Range = uint32_t(InitValue-ExitValue);
372    // Check for infinite loop, either:
373    // while (i >= Exit) or until (i < Exit)
374    if (NewPred == CmpInst::ICMP_SGE || NewPred == CmpInst::ICMP_SLT) {
375      if (++Range == 0) return;  // Range overflows.
376    }
377
378    unsigned Leftover = Range % uint32_t(-IncValue);
379
380    // If this is an equality comparison, we require that the strided value
381    // exactly land on the exit value, otherwise the IV condition will wrap
382    // around and do things the fp IV wouldn't.
383    if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) &&
384        Leftover != 0)
385      return;
386
387    // If the stride would wrap around the i32 before exiting, we can't
388    // transform the IV.
389    if (Leftover != 0 && int32_t(ExitValue+IncValue) > ExitValue)
390      return;
391  }
392
393  IntegerType *Int32Ty = Type::getInt32Ty(PN->getContext());
394
395  // Insert new integer induction variable.
396  PHINode *NewPHI = PHINode::Create(Int32Ty, 2, PN->getName()+".int", PN);
397  NewPHI->addIncoming(ConstantInt::get(Int32Ty, InitValue),
398                      PN->getIncomingBlock(IncomingEdge));
399
400  Value *NewAdd =
401    BinaryOperator::CreateAdd(NewPHI, ConstantInt::get(Int32Ty, IncValue),
402                              Incr->getName()+".int", Incr);
403  NewPHI->addIncoming(NewAdd, PN->getIncomingBlock(BackEdge));
404
405  ICmpInst *NewCompare = new ICmpInst(TheBr, NewPred, NewAdd,
406                                      ConstantInt::get(Int32Ty, ExitValue),
407                                      Compare->getName());
408
409  // In the following deletions, PN may become dead and may be deleted.
410  // Use a WeakVH to observe whether this happens.
411  WeakVH WeakPH = PN;
412
413  // Delete the old floating point exit comparison.  The branch starts using the
414  // new comparison.
415  NewCompare->takeName(Compare);
416  Compare->replaceAllUsesWith(NewCompare);
417  RecursivelyDeleteTriviallyDeadInstructions(Compare);
418
419  // Delete the old floating point increment.
420  Incr->replaceAllUsesWith(UndefValue::get(Incr->getType()));
421  RecursivelyDeleteTriviallyDeadInstructions(Incr);
422
423  // If the FP induction variable still has uses, this is because something else
424  // in the loop uses its value.  In order to canonicalize the induction
425  // variable, we chose to eliminate the IV and rewrite it in terms of an
426  // int->fp cast.
427  //
428  // We give preference to sitofp over uitofp because it is faster on most
429  // platforms.
430  if (WeakPH) {
431    Value *Conv = new SIToFPInst(NewPHI, PN->getType(), "indvar.conv",
432                                 PN->getParent()->getFirstInsertionPt());
433    PN->replaceAllUsesWith(Conv);
434    RecursivelyDeleteTriviallyDeadInstructions(PN);
435  }
436  Changed = true;
437}
438
439void IndVarSimplify::RewriteNonIntegerIVs(Loop *L) {
440  // First step.  Check to see if there are any floating-point recurrences.
441  // If there are, change them into integer recurrences, permitting analysis by
442  // the SCEV routines.
443  //
444  BasicBlock *Header = L->getHeader();
445
446  SmallVector<WeakVH, 8> PHIs;
447  for (BasicBlock::iterator I = Header->begin();
448       PHINode *PN = dyn_cast<PHINode>(I); ++I)
449    PHIs.push_back(PN);
450
451  for (unsigned i = 0, e = PHIs.size(); i != e; ++i)
452    if (PHINode *PN = dyn_cast_or_null<PHINode>(&*PHIs[i]))
453      HandleFloatingPointIV(L, PN);
454
455  // If the loop previously had floating-point IV, ScalarEvolution
456  // may not have been able to compute a trip count. Now that we've done some
457  // re-writing, the trip count may be computable.
458  if (Changed)
459    SE->forgetLoop(L);
460}
461
462//===----------------------------------------------------------------------===//
463// RewriteLoopExitValues - Optimize IV users outside the loop.
464// As a side effect, reduces the amount of IV processing within the loop.
465//===----------------------------------------------------------------------===//
466
467/// RewriteLoopExitValues - Check to see if this loop has a computable
468/// loop-invariant execution count.  If so, this means that we can compute the
469/// final value of any expressions that are recurrent in the loop, and
470/// substitute the exit values from the loop into any instructions outside of
471/// the loop that use the final values of the current expressions.
472///
473/// This is mostly redundant with the regular IndVarSimplify activities that
474/// happen later, except that it's more powerful in some cases, because it's
475/// able to brute-force evaluate arbitrary instructions as long as they have
476/// constant operands at the beginning of the loop.
477void IndVarSimplify::RewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter) {
478  // Verify the input to the pass in already in LCSSA form.
479  assert(L->isLCSSAForm(*DT));
480
481  SmallVector<BasicBlock*, 8> ExitBlocks;
482  L->getUniqueExitBlocks(ExitBlocks);
483
484  // Find all values that are computed inside the loop, but used outside of it.
485  // Because of LCSSA, these values will only occur in LCSSA PHI Nodes.  Scan
486  // the exit blocks of the loop to find them.
487  for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
488    BasicBlock *ExitBB = ExitBlocks[i];
489
490    // If there are no PHI nodes in this exit block, then no values defined
491    // inside the loop are used on this path, skip it.
492    PHINode *PN = dyn_cast<PHINode>(ExitBB->begin());
493    if (!PN) continue;
494
495    unsigned NumPreds = PN->getNumIncomingValues();
496
497    // Iterate over all of the PHI nodes.
498    BasicBlock::iterator BBI = ExitBB->begin();
499    while ((PN = dyn_cast<PHINode>(BBI++))) {
500      if (PN->use_empty())
501        continue; // dead use, don't replace it
502
503      // SCEV only supports integer expressions for now.
504      if (!PN->getType()->isIntegerTy() && !PN->getType()->isPointerTy())
505        continue;
506
507      // It's necessary to tell ScalarEvolution about this explicitly so that
508      // it can walk the def-use list and forget all SCEVs, as it may not be
509      // watching the PHI itself. Once the new exit value is in place, there
510      // may not be a def-use connection between the loop and every instruction
511      // which got a SCEVAddRecExpr for that loop.
512      SE->forgetValue(PN);
513
514      // Iterate over all of the values in all the PHI nodes.
515      for (unsigned i = 0; i != NumPreds; ++i) {
516        // If the value being merged in is not integer or is not defined
517        // in the loop, skip it.
518        Value *InVal = PN->getIncomingValue(i);
519        if (!isa<Instruction>(InVal))
520          continue;
521
522        // If this pred is for a subloop, not L itself, skip it.
523        if (LI->getLoopFor(PN->getIncomingBlock(i)) != L)
524          continue; // The Block is in a subloop, skip it.
525
526        // Check that InVal is defined in the loop.
527        Instruction *Inst = cast<Instruction>(InVal);
528        if (!L->contains(Inst))
529          continue;
530
531        // Okay, this instruction has a user outside of the current loop
532        // and varies predictably *inside* the loop.  Evaluate the value it
533        // contains when the loop exits, if possible.
534        const SCEV *ExitValue = SE->getSCEVAtScope(Inst, L->getParentLoop());
535        if (!SE->isLoopInvariant(ExitValue, L))
536          continue;
537
538        Value *ExitVal = Rewriter.expandCodeFor(ExitValue, PN->getType(), Inst);
539
540        DEBUG(dbgs() << "INDVARS: RLEV: AfterLoopVal = " << *ExitVal << '\n'
541                     << "  LoopVal = " << *Inst << "\n");
542
543        if (!isValidRewrite(Inst, ExitVal)) {
544          DeadInsts.push_back(ExitVal);
545          continue;
546        }
547        Changed = true;
548        ++NumReplaced;
549
550        PN->setIncomingValue(i, ExitVal);
551
552        // If this instruction is dead now, delete it.
553        RecursivelyDeleteTriviallyDeadInstructions(Inst);
554
555        if (NumPreds == 1) {
556          // Completely replace a single-pred PHI. This is safe, because the
557          // NewVal won't be variant in the loop, so we don't need an LCSSA phi
558          // node anymore.
559          PN->replaceAllUsesWith(ExitVal);
560          RecursivelyDeleteTriviallyDeadInstructions(PN);
561        }
562      }
563      if (NumPreds != 1) {
564        // Clone the PHI and delete the original one. This lets IVUsers and
565        // any other maps purge the original user from their records.
566        PHINode *NewPN = cast<PHINode>(PN->clone());
567        NewPN->takeName(PN);
568        NewPN->insertBefore(PN);
569        PN->replaceAllUsesWith(NewPN);
570        PN->eraseFromParent();
571      }
572    }
573  }
574
575  // The insertion point instruction may have been deleted; clear it out
576  // so that the rewriter doesn't trip over it later.
577  Rewriter.clearInsertPoint();
578}
579
580//===----------------------------------------------------------------------===//
581//  IV Widening - Extend the width of an IV to cover its widest uses.
582//===----------------------------------------------------------------------===//
583
584namespace {
585  // Collect information about induction variables that are used by sign/zero
586  // extend operations. This information is recorded by CollectExtend and
587  // provides the input to WidenIV.
588  struct WideIVInfo {
589    PHINode *NarrowIV;
590    Type *WidestNativeType; // Widest integer type created [sz]ext
591    bool IsSigned;          // Was an sext user seen before a zext?
592
593    WideIVInfo() : NarrowIV(0), WidestNativeType(0), IsSigned(false) {}
594  };
595
596  class WideIVVisitor : public IVVisitor {
597    ScalarEvolution *SE;
598    const TargetData *TD;
599
600  public:
601    WideIVInfo WI;
602
603    WideIVVisitor(PHINode *NarrowIV, ScalarEvolution *SCEV,
604                  const TargetData *TData) :
605      SE(SCEV), TD(TData) { WI.NarrowIV = NarrowIV; }
606
607    // Implement the interface used by simplifyUsersOfIV.
608    virtual void visitCast(CastInst *Cast);
609  };
610}
611
612/// visitCast - Update information about the induction variable that is
613/// extended by this sign or zero extend operation. This is used to determine
614/// the final width of the IV before actually widening it.
615void WideIVVisitor::visitCast(CastInst *Cast) {
616  bool IsSigned = Cast->getOpcode() == Instruction::SExt;
617  if (!IsSigned && Cast->getOpcode() != Instruction::ZExt)
618    return;
619
620  Type *Ty = Cast->getType();
621  uint64_t Width = SE->getTypeSizeInBits(Ty);
622  if (TD && !TD->isLegalInteger(Width))
623    return;
624
625  if (!WI.WidestNativeType) {
626    WI.WidestNativeType = SE->getEffectiveSCEVType(Ty);
627    WI.IsSigned = IsSigned;
628    return;
629  }
630
631  // We extend the IV to satisfy the sign of its first user, arbitrarily.
632  if (WI.IsSigned != IsSigned)
633    return;
634
635  if (Width > SE->getTypeSizeInBits(WI.WidestNativeType))
636    WI.WidestNativeType = SE->getEffectiveSCEVType(Ty);
637}
638
639namespace {
640
641/// NarrowIVDefUse - Record a link in the Narrow IV def-use chain along with the
642/// WideIV that computes the same value as the Narrow IV def.  This avoids
643/// caching Use* pointers.
644struct NarrowIVDefUse {
645  Instruction *NarrowDef;
646  Instruction *NarrowUse;
647  Instruction *WideDef;
648
649  NarrowIVDefUse(): NarrowDef(0), NarrowUse(0), WideDef(0) {}
650
651  NarrowIVDefUse(Instruction *ND, Instruction *NU, Instruction *WD):
652    NarrowDef(ND), NarrowUse(NU), WideDef(WD) {}
653};
654
655/// WidenIV - The goal of this transform is to remove sign and zero extends
656/// without creating any new induction variables. To do this, it creates a new
657/// phi of the wider type and redirects all users, either removing extends or
658/// inserting truncs whenever we stop propagating the type.
659///
660class WidenIV {
661  // Parameters
662  PHINode *OrigPhi;
663  Type *WideType;
664  bool IsSigned;
665
666  // Context
667  LoopInfo        *LI;
668  Loop            *L;
669  ScalarEvolution *SE;
670  DominatorTree   *DT;
671
672  // Result
673  PHINode *WidePhi;
674  Instruction *WideInc;
675  const SCEV *WideIncExpr;
676  SmallVectorImpl<WeakVH> &DeadInsts;
677
678  SmallPtrSet<Instruction*,16> Widened;
679  SmallVector<NarrowIVDefUse, 8> NarrowIVUsers;
680
681public:
682  WidenIV(const WideIVInfo &WI, LoopInfo *LInfo,
683          ScalarEvolution *SEv, DominatorTree *DTree,
684          SmallVectorImpl<WeakVH> &DI) :
685    OrigPhi(WI.NarrowIV),
686    WideType(WI.WidestNativeType),
687    IsSigned(WI.IsSigned),
688    LI(LInfo),
689    L(LI->getLoopFor(OrigPhi->getParent())),
690    SE(SEv),
691    DT(DTree),
692    WidePhi(0),
693    WideInc(0),
694    WideIncExpr(0),
695    DeadInsts(DI) {
696    assert(L->getHeader() == OrigPhi->getParent() && "Phi must be an IV");
697  }
698
699  PHINode *CreateWideIV(SCEVExpander &Rewriter);
700
701protected:
702  Value *getExtend(Value *NarrowOper, Type *WideType, bool IsSigned,
703                   Instruction *Use);
704
705  Instruction *CloneIVUser(NarrowIVDefUse DU);
706
707  const SCEVAddRecExpr *GetWideRecurrence(Instruction *NarrowUse);
708
709  const SCEVAddRecExpr* GetExtendedOperandRecurrence(NarrowIVDefUse DU);
710
711  Instruction *WidenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter);
712
713  void pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef);
714};
715} // anonymous namespace
716
717/// isLoopInvariant - Perform a quick domtree based check for loop invariance
718/// assuming that V is used within the loop. LoopInfo::isLoopInvariant() seems
719/// gratuitous for this purpose.
720static bool isLoopInvariant(Value *V, const Loop *L, const DominatorTree *DT) {
721  Instruction *Inst = dyn_cast<Instruction>(V);
722  if (!Inst)
723    return true;
724
725  return DT->properlyDominates(Inst->getParent(), L->getHeader());
726}
727
728Value *WidenIV::getExtend(Value *NarrowOper, Type *WideType, bool IsSigned,
729                          Instruction *Use) {
730  // Set the debug location and conservative insertion point.
731  IRBuilder<> Builder(Use);
732  // Hoist the insertion point into loop preheaders as far as possible.
733  for (const Loop *L = LI->getLoopFor(Use->getParent());
734       L && L->getLoopPreheader() && isLoopInvariant(NarrowOper, L, DT);
735       L = L->getParentLoop())
736    Builder.SetInsertPoint(L->getLoopPreheader()->getTerminator());
737
738  return IsSigned ? Builder.CreateSExt(NarrowOper, WideType) :
739                    Builder.CreateZExt(NarrowOper, WideType);
740}
741
742/// CloneIVUser - Instantiate a wide operation to replace a narrow
743/// operation. This only needs to handle operations that can evaluation to
744/// SCEVAddRec. It can safely return 0 for any operation we decide not to clone.
745Instruction *WidenIV::CloneIVUser(NarrowIVDefUse DU) {
746  unsigned Opcode = DU.NarrowUse->getOpcode();
747  switch (Opcode) {
748  default:
749    return 0;
750  case Instruction::Add:
751  case Instruction::Mul:
752  case Instruction::UDiv:
753  case Instruction::Sub:
754  case Instruction::And:
755  case Instruction::Or:
756  case Instruction::Xor:
757  case Instruction::Shl:
758  case Instruction::LShr:
759  case Instruction::AShr:
760    DEBUG(dbgs() << "Cloning IVUser: " << *DU.NarrowUse << "\n");
761
762    // Replace NarrowDef operands with WideDef. Otherwise, we don't know
763    // anything about the narrow operand yet so must insert a [sz]ext. It is
764    // probably loop invariant and will be folded or hoisted. If it actually
765    // comes from a widened IV, it should be removed during a future call to
766    // WidenIVUse.
767    Value *LHS = (DU.NarrowUse->getOperand(0) == DU.NarrowDef) ? DU.WideDef :
768      getExtend(DU.NarrowUse->getOperand(0), WideType, IsSigned, DU.NarrowUse);
769    Value *RHS = (DU.NarrowUse->getOperand(1) == DU.NarrowDef) ? DU.WideDef :
770      getExtend(DU.NarrowUse->getOperand(1), WideType, IsSigned, DU.NarrowUse);
771
772    BinaryOperator *NarrowBO = cast<BinaryOperator>(DU.NarrowUse);
773    BinaryOperator *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(),
774                                                    LHS, RHS,
775                                                    NarrowBO->getName());
776    IRBuilder<> Builder(DU.NarrowUse);
777    Builder.Insert(WideBO);
778    if (const OverflowingBinaryOperator *OBO =
779        dyn_cast<OverflowingBinaryOperator>(NarrowBO)) {
780      if (OBO->hasNoUnsignedWrap()) WideBO->setHasNoUnsignedWrap();
781      if (OBO->hasNoSignedWrap()) WideBO->setHasNoSignedWrap();
782    }
783    return WideBO;
784  }
785}
786
787/// No-wrap operations can transfer sign extension of their result to their
788/// operands. Generate the SCEV value for the widened operation without
789/// actually modifying the IR yet. If the expression after extending the
790/// operands is an AddRec for this loop, return it.
791const SCEVAddRecExpr* WidenIV::GetExtendedOperandRecurrence(NarrowIVDefUse DU) {
792  // Handle the common case of add<nsw/nuw>
793  if (DU.NarrowUse->getOpcode() != Instruction::Add)
794    return 0;
795
796  // One operand (NarrowDef) has already been extended to WideDef. Now determine
797  // if extending the other will lead to a recurrence.
798  unsigned ExtendOperIdx = DU.NarrowUse->getOperand(0) == DU.NarrowDef ? 1 : 0;
799  assert(DU.NarrowUse->getOperand(1-ExtendOperIdx) == DU.NarrowDef && "bad DU");
800
801  const SCEV *ExtendOperExpr = 0;
802  const OverflowingBinaryOperator *OBO =
803    cast<OverflowingBinaryOperator>(DU.NarrowUse);
804  if (IsSigned && OBO->hasNoSignedWrap())
805    ExtendOperExpr = SE->getSignExtendExpr(
806      SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType);
807  else if(!IsSigned && OBO->hasNoUnsignedWrap())
808    ExtendOperExpr = SE->getZeroExtendExpr(
809      SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType);
810  else
811    return 0;
812
813  // When creating this AddExpr, don't apply the current operations NSW or NUW
814  // flags. This instruction may be guarded by control flow that the no-wrap
815  // behavior depends on. Non-control-equivalent instructions can be mapped to
816  // the same SCEV expression, and it would be incorrect to transfer NSW/NUW
817  // semantics to those operations.
818  const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(
819    SE->getAddExpr(SE->getSCEV(DU.WideDef), ExtendOperExpr));
820
821  if (!AddRec || AddRec->getLoop() != L)
822    return 0;
823  return AddRec;
824}
825
826/// GetWideRecurrence - Is this instruction potentially interesting from
827/// IVUsers' perspective after widening it's type? In other words, can the
828/// extend be safely hoisted out of the loop with SCEV reducing the value to a
829/// recurrence on the same loop. If so, return the sign or zero extended
830/// recurrence. Otherwise return NULL.
831const SCEVAddRecExpr *WidenIV::GetWideRecurrence(Instruction *NarrowUse) {
832  if (!SE->isSCEVable(NarrowUse->getType()))
833    return 0;
834
835  const SCEV *NarrowExpr = SE->getSCEV(NarrowUse);
836  if (SE->getTypeSizeInBits(NarrowExpr->getType())
837      >= SE->getTypeSizeInBits(WideType)) {
838    // NarrowUse implicitly widens its operand. e.g. a gep with a narrow
839    // index. So don't follow this use.
840    return 0;
841  }
842
843  const SCEV *WideExpr = IsSigned ?
844    SE->getSignExtendExpr(NarrowExpr, WideType) :
845    SE->getZeroExtendExpr(NarrowExpr, WideType);
846  const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(WideExpr);
847  if (!AddRec || AddRec->getLoop() != L)
848    return 0;
849  return AddRec;
850}
851
852/// WidenIVUse - Determine whether an individual user of the narrow IV can be
853/// widened. If so, return the wide clone of the user.
854Instruction *WidenIV::WidenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter) {
855
856  // Stop traversing the def-use chain at inner-loop phis or post-loop phis.
857  if (isa<PHINode>(DU.NarrowUse) &&
858      LI->getLoopFor(DU.NarrowUse->getParent()) != L)
859    return 0;
860
861  // Our raison d'etre! Eliminate sign and zero extension.
862  if (IsSigned ? isa<SExtInst>(DU.NarrowUse) : isa<ZExtInst>(DU.NarrowUse)) {
863    Value *NewDef = DU.WideDef;
864    if (DU.NarrowUse->getType() != WideType) {
865      unsigned CastWidth = SE->getTypeSizeInBits(DU.NarrowUse->getType());
866      unsigned IVWidth = SE->getTypeSizeInBits(WideType);
867      if (CastWidth < IVWidth) {
868        // The cast isn't as wide as the IV, so insert a Trunc.
869        IRBuilder<> Builder(DU.NarrowUse);
870        NewDef = Builder.CreateTrunc(DU.WideDef, DU.NarrowUse->getType());
871      }
872      else {
873        // A wider extend was hidden behind a narrower one. This may induce
874        // another round of IV widening in which the intermediate IV becomes
875        // dead. It should be very rare.
876        DEBUG(dbgs() << "INDVARS: New IV " << *WidePhi
877              << " not wide enough to subsume " << *DU.NarrowUse << "\n");
878        DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef);
879        NewDef = DU.NarrowUse;
880      }
881    }
882    if (NewDef != DU.NarrowUse) {
883      DEBUG(dbgs() << "INDVARS: eliminating " << *DU.NarrowUse
884            << " replaced by " << *DU.WideDef << "\n");
885      ++NumElimExt;
886      DU.NarrowUse->replaceAllUsesWith(NewDef);
887      DeadInsts.push_back(DU.NarrowUse);
888    }
889    // Now that the extend is gone, we want to expose it's uses for potential
890    // further simplification. We don't need to directly inform SimplifyIVUsers
891    // of the new users, because their parent IV will be processed later as a
892    // new loop phi. If we preserved IVUsers analysis, we would also want to
893    // push the uses of WideDef here.
894
895    // No further widening is needed. The deceased [sz]ext had done it for us.
896    return 0;
897  }
898
899  // Does this user itself evaluate to a recurrence after widening?
900  const SCEVAddRecExpr *WideAddRec = GetWideRecurrence(DU.NarrowUse);
901  if (!WideAddRec) {
902      WideAddRec = GetExtendedOperandRecurrence(DU);
903  }
904  if (!WideAddRec) {
905    // This user does not evaluate to a recurence after widening, so don't
906    // follow it. Instead insert a Trunc to kill off the original use,
907    // eventually isolating the original narrow IV so it can be removed.
908    IRBuilder<> Builder(getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT));
909    Value *Trunc = Builder.CreateTrunc(DU.WideDef, DU.NarrowDef->getType());
910    DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, Trunc);
911    return 0;
912  }
913  // Assume block terminators cannot evaluate to a recurrence. We can't to
914  // insert a Trunc after a terminator if there happens to be a critical edge.
915  assert(DU.NarrowUse != DU.NarrowUse->getParent()->getTerminator() &&
916         "SCEV is not expected to evaluate a block terminator");
917
918  // Reuse the IV increment that SCEVExpander created as long as it dominates
919  // NarrowUse.
920  Instruction *WideUse = 0;
921  if (WideAddRec == WideIncExpr
922      && Rewriter.hoistIVInc(WideInc, DU.NarrowUse))
923    WideUse = WideInc;
924  else {
925    WideUse = CloneIVUser(DU);
926    if (!WideUse)
927      return 0;
928  }
929  // Evaluation of WideAddRec ensured that the narrow expression could be
930  // extended outside the loop without overflow. This suggests that the wide use
931  // evaluates to the same expression as the extended narrow use, but doesn't
932  // absolutely guarantee it. Hence the following failsafe check. In rare cases
933  // where it fails, we simply throw away the newly created wide use.
934  if (WideAddRec != SE->getSCEV(WideUse)) {
935    DEBUG(dbgs() << "Wide use expression mismatch: " << *WideUse
936          << ": " << *SE->getSCEV(WideUse) << " != " << *WideAddRec << "\n");
937    DeadInsts.push_back(WideUse);
938    return 0;
939  }
940
941  // Returning WideUse pushes it on the worklist.
942  return WideUse;
943}
944
945/// pushNarrowIVUsers - Add eligible users of NarrowDef to NarrowIVUsers.
946///
947void WidenIV::pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef) {
948  for (Value::use_iterator UI = NarrowDef->use_begin(),
949         UE = NarrowDef->use_end(); UI != UE; ++UI) {
950    Instruction *NarrowUse = cast<Instruction>(*UI);
951
952    // Handle data flow merges and bizarre phi cycles.
953    if (!Widened.insert(NarrowUse))
954      continue;
955
956    NarrowIVUsers.push_back(NarrowIVDefUse(NarrowDef, NarrowUse, WideDef));
957  }
958}
959
960/// CreateWideIV - Process a single induction variable. First use the
961/// SCEVExpander to create a wide induction variable that evaluates to the same
962/// recurrence as the original narrow IV. Then use a worklist to forward
963/// traverse the narrow IV's def-use chain. After WidenIVUse has processed all
964/// interesting IV users, the narrow IV will be isolated for removal by
965/// DeleteDeadPHIs.
966///
967/// It would be simpler to delete uses as they are processed, but we must avoid
968/// invalidating SCEV expressions.
969///
970PHINode *WidenIV::CreateWideIV(SCEVExpander &Rewriter) {
971  // Is this phi an induction variable?
972  const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(OrigPhi));
973  if (!AddRec)
974    return NULL;
975
976  // Widen the induction variable expression.
977  const SCEV *WideIVExpr = IsSigned ?
978    SE->getSignExtendExpr(AddRec, WideType) :
979    SE->getZeroExtendExpr(AddRec, WideType);
980
981  assert(SE->getEffectiveSCEVType(WideIVExpr->getType()) == WideType &&
982         "Expect the new IV expression to preserve its type");
983
984  // Can the IV be extended outside the loop without overflow?
985  AddRec = dyn_cast<SCEVAddRecExpr>(WideIVExpr);
986  if (!AddRec || AddRec->getLoop() != L)
987    return NULL;
988
989  // An AddRec must have loop-invariant operands. Since this AddRec is
990  // materialized by a loop header phi, the expression cannot have any post-loop
991  // operands, so they must dominate the loop header.
992  assert(SE->properlyDominates(AddRec->getStart(), L->getHeader()) &&
993         SE->properlyDominates(AddRec->getStepRecurrence(*SE), L->getHeader())
994         && "Loop header phi recurrence inputs do not dominate the loop");
995
996  // The rewriter provides a value for the desired IV expression. This may
997  // either find an existing phi or materialize a new one. Either way, we
998  // expect a well-formed cyclic phi-with-increments. i.e. any operand not part
999  // of the phi-SCC dominates the loop entry.
1000  Instruction *InsertPt = L->getHeader()->begin();
1001  WidePhi = cast<PHINode>(Rewriter.expandCodeFor(AddRec, WideType, InsertPt));
1002
1003  // Remembering the WideIV increment generated by SCEVExpander allows
1004  // WidenIVUse to reuse it when widening the narrow IV's increment. We don't
1005  // employ a general reuse mechanism because the call above is the only call to
1006  // SCEVExpander. Henceforth, we produce 1-to-1 narrow to wide uses.
1007  if (BasicBlock *LatchBlock = L->getLoopLatch()) {
1008    WideInc =
1009      cast<Instruction>(WidePhi->getIncomingValueForBlock(LatchBlock));
1010    WideIncExpr = SE->getSCEV(WideInc);
1011  }
1012
1013  DEBUG(dbgs() << "Wide IV: " << *WidePhi << "\n");
1014  ++NumWidened;
1015
1016  // Traverse the def-use chain using a worklist starting at the original IV.
1017  assert(Widened.empty() && NarrowIVUsers.empty() && "expect initial state" );
1018
1019  Widened.insert(OrigPhi);
1020  pushNarrowIVUsers(OrigPhi, WidePhi);
1021
1022  while (!NarrowIVUsers.empty()) {
1023    NarrowIVDefUse DU = NarrowIVUsers.pop_back_val();
1024
1025    // Process a def-use edge. This may replace the use, so don't hold a
1026    // use_iterator across it.
1027    Instruction *WideUse = WidenIVUse(DU, Rewriter);
1028
1029    // Follow all def-use edges from the previous narrow use.
1030    if (WideUse)
1031      pushNarrowIVUsers(DU.NarrowUse, WideUse);
1032
1033    // WidenIVUse may have removed the def-use edge.
1034    if (DU.NarrowDef->use_empty())
1035      DeadInsts.push_back(DU.NarrowDef);
1036  }
1037  return WidePhi;
1038}
1039
1040//===----------------------------------------------------------------------===//
1041//  Simplification of IV users based on SCEV evaluation.
1042//===----------------------------------------------------------------------===//
1043
1044
1045/// SimplifyAndExtend - Iteratively perform simplification on a worklist of IV
1046/// users. Each successive simplification may push more users which may
1047/// themselves be candidates for simplification.
1048///
1049/// Sign/Zero extend elimination is interleaved with IV simplification.
1050///
1051void IndVarSimplify::SimplifyAndExtend(Loop *L,
1052                                       SCEVExpander &Rewriter,
1053                                       LPPassManager &LPM) {
1054  SmallVector<WideIVInfo, 8> WideIVs;
1055
1056  SmallVector<PHINode*, 8> LoopPhis;
1057  for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
1058    LoopPhis.push_back(cast<PHINode>(I));
1059  }
1060  // Each round of simplification iterates through the SimplifyIVUsers worklist
1061  // for all current phis, then determines whether any IVs can be
1062  // widened. Widening adds new phis to LoopPhis, inducing another round of
1063  // simplification on the wide IVs.
1064  while (!LoopPhis.empty()) {
1065    // Evaluate as many IV expressions as possible before widening any IVs. This
1066    // forces SCEV to set no-wrap flags before evaluating sign/zero
1067    // extension. The first time SCEV attempts to normalize sign/zero extension,
1068    // the result becomes final. So for the most predictable results, we delay
1069    // evaluation of sign/zero extend evaluation until needed, and avoid running
1070    // other SCEV based analysis prior to SimplifyAndExtend.
1071    do {
1072      PHINode *CurrIV = LoopPhis.pop_back_val();
1073
1074      // Information about sign/zero extensions of CurrIV.
1075      WideIVVisitor WIV(CurrIV, SE, TD);
1076
1077      Changed |= simplifyUsersOfIV(CurrIV, SE, &LPM, DeadInsts, &WIV);
1078
1079      if (WIV.WI.WidestNativeType) {
1080        WideIVs.push_back(WIV.WI);
1081      }
1082    } while(!LoopPhis.empty());
1083
1084    for (; !WideIVs.empty(); WideIVs.pop_back()) {
1085      WidenIV Widener(WideIVs.back(), LI, SE, DT, DeadInsts);
1086      if (PHINode *WidePhi = Widener.CreateWideIV(Rewriter)) {
1087        Changed = true;
1088        LoopPhis.push_back(WidePhi);
1089      }
1090    }
1091  }
1092}
1093
1094//===----------------------------------------------------------------------===//
1095//  LinearFunctionTestReplace and its kin. Rewrite the loop exit condition.
1096//===----------------------------------------------------------------------===//
1097
1098/// Check for expressions that ScalarEvolution generates to compute
1099/// BackedgeTakenInfo. If these expressions have not been reduced, then
1100/// expanding them may incur additional cost (albeit in the loop preheader).
1101static bool isHighCostExpansion(const SCEV *S, BranchInst *BI,
1102                                SmallPtrSet<const SCEV*, 8> &Processed,
1103                                ScalarEvolution *SE) {
1104  if (!Processed.insert(S))
1105    return false;
1106
1107  // If the backedge-taken count is a UDiv, it's very likely a UDiv that
1108  // ScalarEvolution's HowFarToZero or HowManyLessThans produced to compute a
1109  // precise expression, rather than a UDiv from the user's code. If we can't
1110  // find a UDiv in the code with some simple searching, assume the former and
1111  // forego rewriting the loop.
1112  if (isa<SCEVUDivExpr>(S)) {
1113    ICmpInst *OrigCond = dyn_cast<ICmpInst>(BI->getCondition());
1114    if (!OrigCond) return true;
1115    const SCEV *R = SE->getSCEV(OrigCond->getOperand(1));
1116    R = SE->getMinusSCEV(R, SE->getConstant(R->getType(), 1));
1117    if (R != S) {
1118      const SCEV *L = SE->getSCEV(OrigCond->getOperand(0));
1119      L = SE->getMinusSCEV(L, SE->getConstant(L->getType(), 1));
1120      if (L != S)
1121        return true;
1122    }
1123  }
1124
1125  // Recurse past add expressions, which commonly occur in the
1126  // BackedgeTakenCount. They may already exist in program code, and if not,
1127  // they are not too expensive rematerialize.
1128  if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
1129    for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
1130         I != E; ++I) {
1131      if (isHighCostExpansion(*I, BI, Processed, SE))
1132        return true;
1133    }
1134    return false;
1135  }
1136
1137  // HowManyLessThans uses a Max expression whenever the loop is not guarded by
1138  // the exit condition.
1139  if (isa<SCEVSMaxExpr>(S) || isa<SCEVUMaxExpr>(S))
1140    return true;
1141
1142  // If we haven't recognized an expensive SCEV pattern, assume it's an
1143  // expression produced by program code.
1144  return false;
1145}
1146
1147/// canExpandBackedgeTakenCount - Return true if this loop's backedge taken
1148/// count expression can be safely and cheaply expanded into an instruction
1149/// sequence that can be used by LinearFunctionTestReplace.
1150///
1151/// TODO: This fails for pointer-type loop counters with greater than one byte
1152/// strides, consequently preventing LFTR from running. For the purpose of LFTR
1153/// we could skip this check in the case that the LFTR loop counter (chosen by
1154/// FindLoopCounter) is also pointer type. Instead, we could directly convert
1155/// the loop test to an inequality test by checking the target data's alignment
1156/// of element types (given that the initial pointer value originates from or is
1157/// used by ABI constrained operation, as opposed to inttoptr/ptrtoint).
1158/// However, we don't yet have a strong motivation for converting loop tests
1159/// into inequality tests.
1160static bool canExpandBackedgeTakenCount(Loop *L, ScalarEvolution *SE) {
1161  const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L);
1162  if (isa<SCEVCouldNotCompute>(BackedgeTakenCount) ||
1163      BackedgeTakenCount->isZero())
1164    return false;
1165
1166  if (!L->getExitingBlock())
1167    return false;
1168
1169  // Can't rewrite non-branch yet.
1170  BranchInst *BI = dyn_cast<BranchInst>(L->getExitingBlock()->getTerminator());
1171  if (!BI)
1172    return false;
1173
1174  SmallPtrSet<const SCEV*, 8> Processed;
1175  if (isHighCostExpansion(BackedgeTakenCount, BI, Processed, SE))
1176    return false;
1177
1178  return true;
1179}
1180
1181/// getLoopPhiForCounter - Return the loop header phi IFF IncV adds a loop
1182/// invariant value to the phi.
1183static PHINode *getLoopPhiForCounter(Value *IncV, Loop *L, DominatorTree *DT) {
1184  Instruction *IncI = dyn_cast<Instruction>(IncV);
1185  if (!IncI)
1186    return 0;
1187
1188  switch (IncI->getOpcode()) {
1189  case Instruction::Add:
1190  case Instruction::Sub:
1191    break;
1192  case Instruction::GetElementPtr:
1193    // An IV counter must preserve its type.
1194    if (IncI->getNumOperands() == 2)
1195      break;
1196  default:
1197    return 0;
1198  }
1199
1200  PHINode *Phi = dyn_cast<PHINode>(IncI->getOperand(0));
1201  if (Phi && Phi->getParent() == L->getHeader()) {
1202    if (isLoopInvariant(IncI->getOperand(1), L, DT))
1203      return Phi;
1204    return 0;
1205  }
1206  if (IncI->getOpcode() == Instruction::GetElementPtr)
1207    return 0;
1208
1209  // Allow add/sub to be commuted.
1210  Phi = dyn_cast<PHINode>(IncI->getOperand(1));
1211  if (Phi && Phi->getParent() == L->getHeader()) {
1212    if (isLoopInvariant(IncI->getOperand(0), L, DT))
1213      return Phi;
1214  }
1215  return 0;
1216}
1217
1218/// needsLFTR - LinearFunctionTestReplace policy. Return true unless we can show
1219/// that the current exit test is already sufficiently canonical.
1220static bool needsLFTR(Loop *L, DominatorTree *DT) {
1221  assert(L->getExitingBlock() && "expected loop exit");
1222
1223  BasicBlock *LatchBlock = L->getLoopLatch();
1224  // Don't bother with LFTR if the loop is not properly simplified.
1225  if (!LatchBlock)
1226    return false;
1227
1228  BranchInst *BI = dyn_cast<BranchInst>(L->getExitingBlock()->getTerminator());
1229  assert(BI && "expected exit branch");
1230
1231  // Do LFTR to simplify the exit condition to an ICMP.
1232  ICmpInst *Cond = dyn_cast<ICmpInst>(BI->getCondition());
1233  if (!Cond)
1234    return true;
1235
1236  // Do LFTR to simplify the exit ICMP to EQ/NE
1237  ICmpInst::Predicate Pred = Cond->getPredicate();
1238  if (Pred != ICmpInst::ICMP_NE && Pred != ICmpInst::ICMP_EQ)
1239    return true;
1240
1241  // Look for a loop invariant RHS
1242  Value *LHS = Cond->getOperand(0);
1243  Value *RHS = Cond->getOperand(1);
1244  if (!isLoopInvariant(RHS, L, DT)) {
1245    if (!isLoopInvariant(LHS, L, DT))
1246      return true;
1247    std::swap(LHS, RHS);
1248  }
1249  // Look for a simple IV counter LHS
1250  PHINode *Phi = dyn_cast<PHINode>(LHS);
1251  if (!Phi)
1252    Phi = getLoopPhiForCounter(LHS, L, DT);
1253
1254  if (!Phi)
1255    return true;
1256
1257  // Do LFTR if the exit condition's IV is *not* a simple counter.
1258  Value *IncV = Phi->getIncomingValueForBlock(L->getLoopLatch());
1259  return Phi != getLoopPhiForCounter(IncV, L, DT);
1260}
1261
1262/// AlmostDeadIV - Return true if this IV has any uses other than the (soon to
1263/// be rewritten) loop exit test.
1264static bool AlmostDeadIV(PHINode *Phi, BasicBlock *LatchBlock, Value *Cond) {
1265  int LatchIdx = Phi->getBasicBlockIndex(LatchBlock);
1266  Value *IncV = Phi->getIncomingValue(LatchIdx);
1267
1268  for (Value::use_iterator UI = Phi->use_begin(), UE = Phi->use_end();
1269       UI != UE; ++UI) {
1270    if (*UI != Cond && *UI != IncV) return false;
1271  }
1272
1273  for (Value::use_iterator UI = IncV->use_begin(), UE = IncV->use_end();
1274       UI != UE; ++UI) {
1275    if (*UI != Cond && *UI != Phi) return false;
1276  }
1277  return true;
1278}
1279
1280/// FindLoopCounter - Find an affine IV in canonical form.
1281///
1282/// BECount may be an i8* pointer type. The pointer difference is already
1283/// valid count without scaling the address stride, so it remains a pointer
1284/// expression as far as SCEV is concerned.
1285///
1286/// FIXME: Accept -1 stride and set IVLimit = IVInit - BECount
1287///
1288/// FIXME: Accept non-unit stride as long as SCEV can reduce BECount * Stride.
1289/// This is difficult in general for SCEV because of potential overflow. But we
1290/// could at least handle constant BECounts.
1291static PHINode *
1292FindLoopCounter(Loop *L, const SCEV *BECount,
1293                ScalarEvolution *SE, DominatorTree *DT, const TargetData *TD) {
1294  uint64_t BCWidth = SE->getTypeSizeInBits(BECount->getType());
1295
1296  Value *Cond =
1297    cast<BranchInst>(L->getExitingBlock()->getTerminator())->getCondition();
1298
1299  // Loop over all of the PHI nodes, looking for a simple counter.
1300  PHINode *BestPhi = 0;
1301  const SCEV *BestInit = 0;
1302  BasicBlock *LatchBlock = L->getLoopLatch();
1303  assert(LatchBlock && "needsLFTR should guarantee a loop latch");
1304
1305  for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
1306    PHINode *Phi = cast<PHINode>(I);
1307    if (!SE->isSCEVable(Phi->getType()))
1308      continue;
1309
1310    // Avoid comparing an integer IV against a pointer Limit.
1311    if (BECount->getType()->isPointerTy() && !Phi->getType()->isPointerTy())
1312      continue;
1313
1314    const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Phi));
1315    if (!AR || AR->getLoop() != L || !AR->isAffine())
1316      continue;
1317
1318    // AR may be a pointer type, while BECount is an integer type.
1319    // AR may be wider than BECount. With eq/ne tests overflow is immaterial.
1320    // AR may not be a narrower type, or we may never exit.
1321    uint64_t PhiWidth = SE->getTypeSizeInBits(AR->getType());
1322    if (PhiWidth < BCWidth || (TD && !TD->isLegalInteger(PhiWidth)))
1323      continue;
1324
1325    const SCEV *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*SE));
1326    if (!Step || !Step->isOne())
1327      continue;
1328
1329    int LatchIdx = Phi->getBasicBlockIndex(LatchBlock);
1330    Value *IncV = Phi->getIncomingValue(LatchIdx);
1331    if (getLoopPhiForCounter(IncV, L, DT) != Phi)
1332      continue;
1333
1334    const SCEV *Init = AR->getStart();
1335
1336    if (BestPhi && !AlmostDeadIV(BestPhi, LatchBlock, Cond)) {
1337      // Don't force a live loop counter if another IV can be used.
1338      if (AlmostDeadIV(Phi, LatchBlock, Cond))
1339        continue;
1340
1341      // Prefer to count-from-zero. This is a more "canonical" counter form. It
1342      // also prefers integer to pointer IVs.
1343      if (BestInit->isZero() != Init->isZero()) {
1344        if (BestInit->isZero())
1345          continue;
1346      }
1347      // If two IVs both count from zero or both count from nonzero then the
1348      // narrower is likely a dead phi that has been widened. Use the wider phi
1349      // to allow the other to be eliminated.
1350      if (PhiWidth <= SE->getTypeSizeInBits(BestPhi->getType()))
1351        continue;
1352    }
1353    BestPhi = Phi;
1354    BestInit = Init;
1355  }
1356  return BestPhi;
1357}
1358
1359/// genLoopLimit - Help LinearFunctionTestReplace by generating a value that
1360/// holds the RHS of the new loop test.
1361static Value *genLoopLimit(PHINode *IndVar, const SCEV *IVCount, Loop *L,
1362                           SCEVExpander &Rewriter, ScalarEvolution *SE) {
1363  const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(IndVar));
1364  assert(AR && AR->getLoop() == L && AR->isAffine() && "bad loop counter");
1365  const SCEV *IVInit = AR->getStart();
1366
1367  // IVInit may be a pointer while IVCount is an integer when FindLoopCounter
1368  // finds a valid pointer IV. Sign extend BECount in order to materialize a
1369  // GEP. Avoid running SCEVExpander on a new pointer value, instead reusing
1370  // the existing GEPs whenever possible.
1371  if (IndVar->getType()->isPointerTy()
1372      && !IVCount->getType()->isPointerTy()) {
1373
1374    Type *OfsTy = SE->getEffectiveSCEVType(IVInit->getType());
1375    const SCEV *IVOffset = SE->getTruncateOrSignExtend(IVCount, OfsTy);
1376
1377    // Expand the code for the iteration count.
1378    assert(SE->isLoopInvariant(IVOffset, L) &&
1379           "Computed iteration count is not loop invariant!");
1380    BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator());
1381    Value *GEPOffset = Rewriter.expandCodeFor(IVOffset, OfsTy, BI);
1382
1383    Value *GEPBase = IndVar->getIncomingValueForBlock(L->getLoopPreheader());
1384    assert(AR->getStart() == SE->getSCEV(GEPBase) && "bad loop counter");
1385    // We could handle pointer IVs other than i8*, but we need to compensate for
1386    // gep index scaling. See canExpandBackedgeTakenCount comments.
1387    assert(SE->getSizeOfExpr(
1388             cast<PointerType>(GEPBase->getType())->getElementType())->isOne()
1389           && "unit stride pointer IV must be i8*");
1390
1391    IRBuilder<> Builder(L->getLoopPreheader()->getTerminator());
1392    return Builder.CreateGEP(GEPBase, GEPOffset, "lftr.limit");
1393  }
1394  else {
1395    // In any other case, convert both IVInit and IVCount to integers before
1396    // comparing. This may result in SCEV expension of pointers, but in practice
1397    // SCEV will fold the pointer arithmetic away as such:
1398    // BECount = (IVEnd - IVInit - 1) => IVLimit = IVInit (postinc).
1399    //
1400    // Valid Cases: (1) both integers is most common; (2) both may be pointers
1401    // for simple memset-style loops; (3) IVInit is an integer and IVCount is a
1402    // pointer may occur when enable-iv-rewrite generates a canonical IV on top
1403    // of case #2.
1404
1405    const SCEV *IVLimit = 0;
1406    // For unit stride, IVCount = Start + BECount with 2's complement overflow.
1407    // For non-zero Start, compute IVCount here.
1408    if (AR->getStart()->isZero())
1409      IVLimit = IVCount;
1410    else {
1411      assert(AR->getStepRecurrence(*SE)->isOne() && "only handles unit stride");
1412      const SCEV *IVInit = AR->getStart();
1413
1414      // For integer IVs, truncate the IV before computing IVInit + BECount.
1415      if (SE->getTypeSizeInBits(IVInit->getType())
1416          > SE->getTypeSizeInBits(IVCount->getType()))
1417        IVInit = SE->getTruncateExpr(IVInit, IVCount->getType());
1418
1419      IVLimit = SE->getAddExpr(IVInit, IVCount);
1420    }
1421    // Expand the code for the iteration count.
1422    BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator());
1423    IRBuilder<> Builder(BI);
1424    assert(SE->isLoopInvariant(IVLimit, L) &&
1425           "Computed iteration count is not loop invariant!");
1426    // Ensure that we generate the same type as IndVar, or a smaller integer
1427    // type. In the presence of null pointer values, we have an integer type
1428    // SCEV expression (IVInit) for a pointer type IV value (IndVar).
1429    Type *LimitTy = IVCount->getType()->isPointerTy() ?
1430      IndVar->getType() : IVCount->getType();
1431    return Rewriter.expandCodeFor(IVLimit, LimitTy, BI);
1432  }
1433}
1434
1435/// LinearFunctionTestReplace - This method rewrites the exit condition of the
1436/// loop to be a canonical != comparison against the incremented loop induction
1437/// variable.  This pass is able to rewrite the exit tests of any loop where the
1438/// SCEV analysis can determine a loop-invariant trip count of the loop, which
1439/// is actually a much broader range than just linear tests.
1440Value *IndVarSimplify::
1441LinearFunctionTestReplace(Loop *L,
1442                          const SCEV *BackedgeTakenCount,
1443                          PHINode *IndVar,
1444                          SCEVExpander &Rewriter) {
1445  assert(canExpandBackedgeTakenCount(L, SE) && "precondition");
1446
1447  // LFTR can ignore IV overflow and truncate to the width of
1448  // BECount. This avoids materializing the add(zext(add)) expression.
1449  Type *CntTy = BackedgeTakenCount->getType();
1450
1451  const SCEV *IVCount = BackedgeTakenCount;
1452
1453  // If the exiting block is the same as the backedge block, we prefer to
1454  // compare against the post-incremented value, otherwise we must compare
1455  // against the preincremented value.
1456  Value *CmpIndVar;
1457  if (L->getExitingBlock() == L->getLoopLatch()) {
1458    // Add one to the "backedge-taken" count to get the trip count.
1459    // If this addition may overflow, we have to be more pessimistic and
1460    // cast the induction variable before doing the add.
1461    const SCEV *N =
1462      SE->getAddExpr(IVCount, SE->getConstant(IVCount->getType(), 1));
1463    if (CntTy == IVCount->getType())
1464      IVCount = N;
1465    else {
1466      const SCEV *Zero = SE->getConstant(IVCount->getType(), 0);
1467      if ((isa<SCEVConstant>(N) && !N->isZero()) ||
1468          SE->isLoopEntryGuardedByCond(L, ICmpInst::ICMP_NE, N, Zero)) {
1469        // No overflow. Cast the sum.
1470        IVCount = SE->getTruncateOrZeroExtend(N, CntTy);
1471      } else {
1472        // Potential overflow. Cast before doing the add.
1473        IVCount = SE->getTruncateOrZeroExtend(IVCount, CntTy);
1474        IVCount = SE->getAddExpr(IVCount, SE->getConstant(CntTy, 1));
1475      }
1476    }
1477    // The BackedgeTaken expression contains the number of times that the
1478    // backedge branches to the loop header.  This is one less than the
1479    // number of times the loop executes, so use the incremented indvar.
1480    CmpIndVar = IndVar->getIncomingValueForBlock(L->getExitingBlock());
1481  } else {
1482    // We must use the preincremented value...
1483    IVCount = SE->getTruncateOrZeroExtend(IVCount, CntTy);
1484    CmpIndVar = IndVar;
1485  }
1486
1487  Value *ExitCnt = genLoopLimit(IndVar, IVCount, L, Rewriter, SE);
1488  assert(ExitCnt->getType()->isPointerTy() == IndVar->getType()->isPointerTy()
1489         && "genLoopLimit missed a cast");
1490
1491  // Insert a new icmp_ne or icmp_eq instruction before the branch.
1492  BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator());
1493  ICmpInst::Predicate P;
1494  if (L->contains(BI->getSuccessor(0)))
1495    P = ICmpInst::ICMP_NE;
1496  else
1497    P = ICmpInst::ICMP_EQ;
1498
1499  DEBUG(dbgs() << "INDVARS: Rewriting loop exit condition to:\n"
1500               << "      LHS:" << *CmpIndVar << '\n'
1501               << "       op:\t"
1502               << (P == ICmpInst::ICMP_NE ? "!=" : "==") << "\n"
1503               << "      RHS:\t" << *ExitCnt << "\n"
1504               << "  IVCount:\t" << *IVCount << "\n");
1505
1506  IRBuilder<> Builder(BI);
1507  if (SE->getTypeSizeInBits(CmpIndVar->getType())
1508      > SE->getTypeSizeInBits(ExitCnt->getType())) {
1509    CmpIndVar = Builder.CreateTrunc(CmpIndVar, ExitCnt->getType(),
1510                                    "lftr.wideiv");
1511  }
1512
1513  Value *Cond = Builder.CreateICmp(P, CmpIndVar, ExitCnt, "exitcond");
1514  Value *OrigCond = BI->getCondition();
1515  // It's tempting to use replaceAllUsesWith here to fully replace the old
1516  // comparison, but that's not immediately safe, since users of the old
1517  // comparison may not be dominated by the new comparison. Instead, just
1518  // update the branch to use the new comparison; in the common case this
1519  // will make old comparison dead.
1520  BI->setCondition(Cond);
1521  DeadInsts.push_back(OrigCond);
1522
1523  ++NumLFTR;
1524  Changed = true;
1525  return Cond;
1526}
1527
1528//===----------------------------------------------------------------------===//
1529//  SinkUnusedInvariants. A late subpass to cleanup loop preheaders.
1530//===----------------------------------------------------------------------===//
1531
1532/// If there's a single exit block, sink any loop-invariant values that
1533/// were defined in the preheader but not used inside the loop into the
1534/// exit block to reduce register pressure in the loop.
1535void IndVarSimplify::SinkUnusedInvariants(Loop *L) {
1536  BasicBlock *ExitBlock = L->getExitBlock();
1537  if (!ExitBlock) return;
1538
1539  BasicBlock *Preheader = L->getLoopPreheader();
1540  if (!Preheader) return;
1541
1542  Instruction *InsertPt = ExitBlock->getFirstInsertionPt();
1543  BasicBlock::iterator I = Preheader->getTerminator();
1544  while (I != Preheader->begin()) {
1545    --I;
1546    // New instructions were inserted at the end of the preheader.
1547    if (isa<PHINode>(I))
1548      break;
1549
1550    // Don't move instructions which might have side effects, since the side
1551    // effects need to complete before instructions inside the loop.  Also don't
1552    // move instructions which might read memory, since the loop may modify
1553    // memory. Note that it's okay if the instruction might have undefined
1554    // behavior: LoopSimplify guarantees that the preheader dominates the exit
1555    // block.
1556    if (I->mayHaveSideEffects() || I->mayReadFromMemory())
1557      continue;
1558
1559    // Skip debug info intrinsics.
1560    if (isa<DbgInfoIntrinsic>(I))
1561      continue;
1562
1563    // Skip landingpad instructions.
1564    if (isa<LandingPadInst>(I))
1565      continue;
1566
1567    // Don't sink alloca: we never want to sink static alloca's out of the
1568    // entry block, and correctly sinking dynamic alloca's requires
1569    // checks for stacksave/stackrestore intrinsics.
1570    // FIXME: Refactor this check somehow?
1571    if (isa<AllocaInst>(I))
1572      continue;
1573
1574    // Determine if there is a use in or before the loop (direct or
1575    // otherwise).
1576    bool UsedInLoop = false;
1577    for (Value::use_iterator UI = I->use_begin(), UE = I->use_end();
1578         UI != UE; ++UI) {
1579      User *U = *UI;
1580      BasicBlock *UseBB = cast<Instruction>(U)->getParent();
1581      if (PHINode *P = dyn_cast<PHINode>(U)) {
1582        unsigned i =
1583          PHINode::getIncomingValueNumForOperand(UI.getOperandNo());
1584        UseBB = P->getIncomingBlock(i);
1585      }
1586      if (UseBB == Preheader || L->contains(UseBB)) {
1587        UsedInLoop = true;
1588        break;
1589      }
1590    }
1591
1592    // If there is, the def must remain in the preheader.
1593    if (UsedInLoop)
1594      continue;
1595
1596    // Otherwise, sink it to the exit block.
1597    Instruction *ToMove = I;
1598    bool Done = false;
1599
1600    if (I != Preheader->begin()) {
1601      // Skip debug info intrinsics.
1602      do {
1603        --I;
1604      } while (isa<DbgInfoIntrinsic>(I) && I != Preheader->begin());
1605
1606      if (isa<DbgInfoIntrinsic>(I) && I == Preheader->begin())
1607        Done = true;
1608    } else {
1609      Done = true;
1610    }
1611
1612    ToMove->moveBefore(InsertPt);
1613    if (Done) break;
1614    InsertPt = ToMove;
1615  }
1616}
1617
1618//===----------------------------------------------------------------------===//
1619//  IndVarSimplify driver. Manage several subpasses of IV simplification.
1620//===----------------------------------------------------------------------===//
1621
1622bool IndVarSimplify::runOnLoop(Loop *L, LPPassManager &LPM) {
1623  // If LoopSimplify form is not available, stay out of trouble. Some notes:
1624  //  - LSR currently only supports LoopSimplify-form loops. Indvars'
1625  //    canonicalization can be a pessimization without LSR to "clean up"
1626  //    afterwards.
1627  //  - We depend on having a preheader; in particular,
1628  //    Loop::getCanonicalInductionVariable only supports loops with preheaders,
1629  //    and we're in trouble if we can't find the induction variable even when
1630  //    we've manually inserted one.
1631  if (!L->isLoopSimplifyForm())
1632    return false;
1633
1634  LI = &getAnalysis<LoopInfo>();
1635  SE = &getAnalysis<ScalarEvolution>();
1636  DT = &getAnalysis<DominatorTree>();
1637  TD = getAnalysisIfAvailable<TargetData>();
1638
1639  DeadInsts.clear();
1640  Changed = false;
1641
1642  // If there are any floating-point recurrences, attempt to
1643  // transform them to use integer recurrences.
1644  RewriteNonIntegerIVs(L);
1645
1646  const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L);
1647
1648  // Create a rewriter object which we'll use to transform the code with.
1649  SCEVExpander Rewriter(*SE, "indvars");
1650#ifndef NDEBUG
1651  Rewriter.setDebugType(DEBUG_TYPE);
1652#endif
1653
1654  // Eliminate redundant IV users.
1655  //
1656  // Simplification works best when run before other consumers of SCEV. We
1657  // attempt to avoid evaluating SCEVs for sign/zero extend operations until
1658  // other expressions involving loop IVs have been evaluated. This helps SCEV
1659  // set no-wrap flags before normalizing sign/zero extension.
1660  Rewriter.disableCanonicalMode();
1661  SimplifyAndExtend(L, Rewriter, LPM);
1662
1663  // Check to see if this loop has a computable loop-invariant execution count.
1664  // If so, this means that we can compute the final value of any expressions
1665  // that are recurrent in the loop, and substitute the exit values from the
1666  // loop into any instructions outside of the loop that use the final values of
1667  // the current expressions.
1668  //
1669  if (!isa<SCEVCouldNotCompute>(BackedgeTakenCount))
1670    RewriteLoopExitValues(L, Rewriter);
1671
1672  // Eliminate redundant IV cycles.
1673  NumElimIV += Rewriter.replaceCongruentIVs(L, DT, DeadInsts);
1674
1675  // Compute the type of the largest recurrence expression, and decide whether
1676  // a canonical induction variable should be inserted.
1677  bool ExpandBECount = canExpandBackedgeTakenCount(L, SE);
1678
1679  // Now that we know the largest of the induction variable expressions
1680  // in this loop, insert a canonical induction variable of the largest size.
1681  PHINode *IndVar = 0;
1682  if (ExpandBECount && needsLFTR(L, DT)) {
1683    IndVar = FindLoopCounter(L, BackedgeTakenCount, SE, DT, TD);
1684  }
1685  // If we have a trip count expression, rewrite the loop's exit condition
1686  // using it.  We can currently only handle loops with a single exit.
1687  Value *NewICmp = 0;
1688  if (ExpandBECount && IndVar) {
1689    // Check preconditions for proper SCEVExpander operation. SCEV does not
1690    // express SCEVExpander's dependencies, such as LoopSimplify. Instead any
1691    // pass that uses the SCEVExpander must do it. This does not work well for
1692    // loop passes because SCEVExpander makes assumptions about all loops, while
1693    // LoopPassManager only forces the current loop to be simplified.
1694    //
1695    // FIXME: SCEV expansion has no way to bail out, so the caller must
1696    // explicitly check any assumptions made by SCEV. Brittle.
1697    const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(BackedgeTakenCount);
1698    if (!AR || AR->getLoop()->getLoopPreheader())
1699      NewICmp =
1700        LinearFunctionTestReplace(L, BackedgeTakenCount, IndVar, Rewriter);
1701  }
1702
1703  // Clear the rewriter cache, because values that are in the rewriter's cache
1704  // can be deleted in the loop below, causing the AssertingVH in the cache to
1705  // trigger.
1706  Rewriter.clear();
1707
1708  // Now that we're done iterating through lists, clean up any instructions
1709  // which are now dead.
1710  while (!DeadInsts.empty())
1711    if (Instruction *Inst =
1712          dyn_cast_or_null<Instruction>(&*DeadInsts.pop_back_val()))
1713      RecursivelyDeleteTriviallyDeadInstructions(Inst);
1714
1715  // The Rewriter may not be used from this point on.
1716
1717  // Loop-invariant instructions in the preheader that aren't used in the
1718  // loop may be sunk below the loop to reduce register pressure.
1719  SinkUnusedInvariants(L);
1720
1721  // Clean up dead instructions.
1722  Changed |= DeleteDeadPHIs(L->getHeader());
1723  // Check a post-condition.
1724  assert(L->isLCSSAForm(*DT) &&
1725         "Indvars did not leave the loop in lcssa form!");
1726
1727  // Verify that LFTR, and any other change have not interfered with SCEV's
1728  // ability to compute trip count.
1729#ifndef NDEBUG
1730  if (VerifyIndvars && !isa<SCEVCouldNotCompute>(BackedgeTakenCount)) {
1731    SE->forgetLoop(L);
1732    const SCEV *NewBECount = SE->getBackedgeTakenCount(L);
1733    if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) <
1734        SE->getTypeSizeInBits(NewBECount->getType()))
1735      NewBECount = SE->getTruncateOrNoop(NewBECount,
1736                                         BackedgeTakenCount->getType());
1737    else
1738      BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount,
1739                                                 NewBECount->getType());
1740    assert(BackedgeTakenCount == NewBECount && "indvars must preserve SCEV");
1741  }
1742#endif
1743
1744  return Changed;
1745}
1746