IndVarSimplify.cpp revision dd1f9e4bf6e7d427fd581728f3d2e431e12e6e71
1//===- IndVarSimplify.cpp - Induction Variable Elimination ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This transformation analyzes and transforms the induction variables (and
11// computations derived from them) into simpler forms suitable for subsequent
12// analysis and transformation.
13//
14// This transformation makes the following changes to each loop with an
15// identifiable induction variable:
16//   1. All loops are transformed to have a SINGLE canonical induction variable
17//      which starts at zero and steps by one.
18//   2. The canonical induction variable is guaranteed to be the first PHI node
19//      in the loop header block.
20//   3. Any pointer arithmetic recurrences are raised to use array subscripts.
21//
22// If the trip count of a loop is computable, this pass also makes the following
23// changes:
24//   1. The exit condition for the loop is canonicalized to compare the
25//      induction value against the exit value.  This turns loops like:
26//        'for (i = 7; i*i < 1000; ++i)' into 'for (i = 0; i != 25; ++i)'
27//   2. Any use outside of the loop of an expression derived from the indvar
28//      is changed to compute the derived value outside of the loop, eliminating
29//      the dependence on the exit value of the induction variable.  If the only
30//      purpose of the loop is to compute the exit value of some derived
31//      expression, this transformation will make the loop dead.
32//
33// This transformation should be followed by strength reduction after all of the
34// desired loop transformations have been performed.  Additionally, on targets
35// where it is profitable, the loop could be transformed to count down to zero
36// (the "do loop" optimization).
37//
38//===----------------------------------------------------------------------===//
39
40#define DEBUG_TYPE "indvars"
41#include "llvm/Transforms/Scalar.h"
42#include "llvm/BasicBlock.h"
43#include "llvm/Constants.h"
44#include "llvm/Instructions.h"
45#include "llvm/Type.h"
46#include "llvm/Analysis/ScalarEvolutionExpander.h"
47#include "llvm/Analysis/LoopInfo.h"
48#include "llvm/Analysis/LoopPass.h"
49#include "llvm/Support/CFG.h"
50#include "llvm/Support/Compiler.h"
51#include "llvm/Support/Debug.h"
52#include "llvm/Support/GetElementPtrTypeIterator.h"
53#include "llvm/Transforms/Utils/Local.h"
54#include "llvm/Support/CommandLine.h"
55#include "llvm/ADT/SmallVector.h"
56#include "llvm/ADT/SetVector.h"
57#include "llvm/ADT/SmallPtrSet.h"
58#include "llvm/ADT/Statistic.h"
59using namespace llvm;
60
61STATISTIC(NumRemoved , "Number of aux indvars removed");
62STATISTIC(NumPointer , "Number of pointer indvars promoted");
63STATISTIC(NumInserted, "Number of canonical indvars added");
64STATISTIC(NumReplaced, "Number of exit values replaced");
65STATISTIC(NumLFTR    , "Number of loop exit tests replaced");
66
67namespace {
68  class VISIBILITY_HIDDEN IndVarSimplify : public LoopPass {
69    LoopInfo        *LI;
70    ScalarEvolution *SE;
71    bool Changed;
72  public:
73
74   static char ID; // Pass identification, replacement for typeid
75   IndVarSimplify() : LoopPass(&ID) {}
76
77   virtual bool runOnLoop(Loop *L, LPPassManager &LPM);
78
79   virtual void getAnalysisUsage(AnalysisUsage &AU) const {
80     AU.addRequired<ScalarEvolution>();
81     AU.addRequiredID(LCSSAID);
82     AU.addRequiredID(LoopSimplifyID);
83     AU.addRequired<LoopInfo>();
84     AU.addPreserved<ScalarEvolution>();
85     AU.addPreservedID(LoopSimplifyID);
86     AU.addPreservedID(LCSSAID);
87     AU.setPreservesCFG();
88   }
89
90  private:
91
92    void RewriteNonIntegerIVs(Loop *L);
93
94    void EliminatePointerRecurrence(PHINode *PN, BasicBlock *Preheader,
95                                    SmallPtrSet<Instruction*, 16> &DeadInsts);
96    void LinearFunctionTestReplace(Loop *L, SCEVHandle BackedgeTakenCount,
97                                   Value *IndVar,
98                                   BasicBlock *ExitingBlock,
99                                   BranchInst *BI,
100                                   SCEVExpander &Rewriter);
101    void RewriteLoopExitValues(Loop *L, SCEV *BackedgeTakenCount);
102
103    void DeleteTriviallyDeadInstructions(SmallPtrSet<Instruction*, 16> &Insts);
104
105    void HandleFloatingPointIV(Loop *L, PHINode *PH,
106                               SmallPtrSet<Instruction*, 16> &DeadInsts);
107  };
108}
109
110char IndVarSimplify::ID = 0;
111static RegisterPass<IndVarSimplify>
112X("indvars", "Canonicalize Induction Variables");
113
114Pass *llvm::createIndVarSimplifyPass() {
115  return new IndVarSimplify();
116}
117
118/// DeleteTriviallyDeadInstructions - If any of the instructions is the
119/// specified set are trivially dead, delete them and see if this makes any of
120/// their operands subsequently dead.
121void IndVarSimplify::
122DeleteTriviallyDeadInstructions(SmallPtrSet<Instruction*, 16> &Insts) {
123  while (!Insts.empty()) {
124    Instruction *I = *Insts.begin();
125    Insts.erase(I);
126    if (isInstructionTriviallyDead(I)) {
127      for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
128        if (Instruction *U = dyn_cast<Instruction>(I->getOperand(i)))
129          Insts.insert(U);
130      SE->deleteValueFromRecords(I);
131      DOUT << "INDVARS: Deleting: " << *I;
132      I->eraseFromParent();
133      Changed = true;
134    }
135  }
136}
137
138
139/// EliminatePointerRecurrence - Check to see if this is a trivial GEP pointer
140/// recurrence.  If so, change it into an integer recurrence, permitting
141/// analysis by the SCEV routines.
142void IndVarSimplify::EliminatePointerRecurrence(PHINode *PN,
143                                                BasicBlock *Preheader,
144                                     SmallPtrSet<Instruction*, 16> &DeadInsts) {
145  assert(PN->getNumIncomingValues() == 2 && "Noncanonicalized loop!");
146  unsigned PreheaderIdx = PN->getBasicBlockIndex(Preheader);
147  unsigned BackedgeIdx = PreheaderIdx^1;
148  if (GetElementPtrInst *GEPI =
149          dyn_cast<GetElementPtrInst>(PN->getIncomingValue(BackedgeIdx)))
150    if (GEPI->getOperand(0) == PN) {
151      assert(GEPI->getNumOperands() == 2 && "GEP types must match!");
152      DOUT << "INDVARS: Eliminating pointer recurrence: " << *GEPI;
153
154      // Okay, we found a pointer recurrence.  Transform this pointer
155      // recurrence into an integer recurrence.  Compute the value that gets
156      // added to the pointer at every iteration.
157      Value *AddedVal = GEPI->getOperand(1);
158
159      // Insert a new integer PHI node into the top of the block.
160      PHINode *NewPhi = PHINode::Create(AddedVal->getType(),
161                                        PN->getName()+".rec", PN);
162      NewPhi->addIncoming(Constant::getNullValue(NewPhi->getType()), Preheader);
163
164      // Create the new add instruction.
165      Value *NewAdd = BinaryOperator::CreateAdd(NewPhi, AddedVal,
166                                                GEPI->getName()+".rec", GEPI);
167      NewPhi->addIncoming(NewAdd, PN->getIncomingBlock(BackedgeIdx));
168
169      // Update the existing GEP to use the recurrence.
170      GEPI->setOperand(0, PN->getIncomingValue(PreheaderIdx));
171
172      // Update the GEP to use the new recurrence we just inserted.
173      GEPI->setOperand(1, NewAdd);
174
175      // If the incoming value is a constant expr GEP, try peeling out the array
176      // 0 index if possible to make things simpler.
177      if (ConstantExpr *CE = dyn_cast<ConstantExpr>(GEPI->getOperand(0)))
178        if (CE->getOpcode() == Instruction::GetElementPtr) {
179          unsigned NumOps = CE->getNumOperands();
180          assert(NumOps > 1 && "CE folding didn't work!");
181          if (CE->getOperand(NumOps-1)->isNullValue()) {
182            // Check to make sure the last index really is an array index.
183            gep_type_iterator GTI = gep_type_begin(CE);
184            for (unsigned i = 1, e = CE->getNumOperands()-1;
185                 i != e; ++i, ++GTI)
186              /*empty*/;
187            if (isa<SequentialType>(*GTI)) {
188              // Pull the last index out of the constant expr GEP.
189              SmallVector<Value*, 8> CEIdxs(CE->op_begin()+1, CE->op_end()-1);
190              Constant *NCE = ConstantExpr::getGetElementPtr(CE->getOperand(0),
191                                                             &CEIdxs[0],
192                                                             CEIdxs.size());
193              Value *Idx[2];
194              Idx[0] = Constant::getNullValue(Type::Int32Ty);
195              Idx[1] = NewAdd;
196              GetElementPtrInst *NGEPI = GetElementPtrInst::Create(
197                  NCE, Idx, Idx + 2,
198                  GEPI->getName(), GEPI);
199              SE->deleteValueFromRecords(GEPI);
200              GEPI->replaceAllUsesWith(NGEPI);
201              GEPI->eraseFromParent();
202              GEPI = NGEPI;
203            }
204          }
205        }
206
207
208      // Finally, if there are any other users of the PHI node, we must
209      // insert a new GEP instruction that uses the pre-incremented version
210      // of the induction amount.
211      if (!PN->use_empty()) {
212        BasicBlock::iterator InsertPos = PN; ++InsertPos;
213        while (isa<PHINode>(InsertPos)) ++InsertPos;
214        Value *PreInc =
215          GetElementPtrInst::Create(PN->getIncomingValue(PreheaderIdx),
216                                    NewPhi, "", InsertPos);
217        PreInc->takeName(PN);
218        PN->replaceAllUsesWith(PreInc);
219      }
220
221      // Delete the old PHI for sure, and the GEP if its otherwise unused.
222      DeadInsts.insert(PN);
223
224      ++NumPointer;
225      Changed = true;
226    }
227}
228
229/// LinearFunctionTestReplace - This method rewrites the exit condition of the
230/// loop to be a canonical != comparison against the incremented loop induction
231/// variable.  This pass is able to rewrite the exit tests of any loop where the
232/// SCEV analysis can determine a loop-invariant trip count of the loop, which
233/// is actually a much broader range than just linear tests.
234void IndVarSimplify::LinearFunctionTestReplace(Loop *L,
235                                   SCEVHandle BackedgeTakenCount,
236                                   Value *IndVar,
237                                   BasicBlock *ExitingBlock,
238                                   BranchInst *BI,
239                                   SCEVExpander &Rewriter) {
240  // If the exiting block is not the same as the backedge block, we must compare
241  // against the preincremented value, otherwise we prefer to compare against
242  // the post-incremented value.
243  Value *CmpIndVar;
244  SCEVHandle RHS = BackedgeTakenCount;
245  if (ExitingBlock == L->getLoopLatch()) {
246    // Add one to the "backedge-taken" count to get the trip count.
247    // If this addition may overflow, we have to be more pessimistic and
248    // cast the induction variable before doing the add.
249    SCEVHandle Zero = SE->getIntegerSCEV(0, BackedgeTakenCount->getType());
250    SCEVHandle N =
251      SE->getAddExpr(BackedgeTakenCount,
252                     SE->getIntegerSCEV(1, BackedgeTakenCount->getType()));
253    if ((isa<SCEVConstant>(N) && !N->isZero()) ||
254        SE->isLoopGuardedByCond(L, ICmpInst::ICMP_NE, N, Zero)) {
255      // No overflow. Cast the sum.
256      RHS = SE->getTruncateOrZeroExtend(N, IndVar->getType());
257    } else {
258      // Potential overflow. Cast before doing the add.
259      RHS = SE->getTruncateOrZeroExtend(BackedgeTakenCount,
260                                        IndVar->getType());
261      RHS = SE->getAddExpr(RHS,
262                           SE->getIntegerSCEV(1, IndVar->getType()));
263    }
264
265    // The BackedgeTaken expression contains the number of times that the
266    // backedge branches to the loop header.  This is one less than the
267    // number of times the loop executes, so use the incremented indvar.
268    CmpIndVar = L->getCanonicalInductionVariableIncrement();
269  } else {
270    // We have to use the preincremented value...
271    RHS = SE->getTruncateOrZeroExtend(BackedgeTakenCount,
272                                      IndVar->getType());
273    CmpIndVar = IndVar;
274  }
275
276  // Expand the code for the iteration count into the preheader of the loop.
277  BasicBlock *Preheader = L->getLoopPreheader();
278  Value *ExitCnt = Rewriter.expandCodeFor(RHS,
279                                          Preheader->getTerminator());
280
281  // Insert a new icmp_ne or icmp_eq instruction before the branch.
282  ICmpInst::Predicate Opcode;
283  if (L->contains(BI->getSuccessor(0)))
284    Opcode = ICmpInst::ICMP_NE;
285  else
286    Opcode = ICmpInst::ICMP_EQ;
287
288  DOUT << "INDVARS: Rewriting loop exit condition to:\n"
289       << "      LHS:" << *CmpIndVar // includes a newline
290       << "       op:\t"
291       << (Opcode == ICmpInst::ICMP_NE ? "!=" : "==") << "\n"
292       << "      RHS:\t" << *RHS << "\n";
293
294  Value *Cond = new ICmpInst(Opcode, CmpIndVar, ExitCnt, "exitcond", BI);
295  BI->setCondition(Cond);
296  ++NumLFTR;
297  Changed = true;
298}
299
300/// RewriteLoopExitValues - Check to see if this loop has a computable
301/// loop-invariant execution count.  If so, this means that we can compute the
302/// final value of any expressions that are recurrent in the loop, and
303/// substitute the exit values from the loop into any instructions outside of
304/// the loop that use the final values of the current expressions.
305void IndVarSimplify::RewriteLoopExitValues(Loop *L, SCEV *BackedgeTakenCount) {
306  BasicBlock *Preheader = L->getLoopPreheader();
307
308  // Scan all of the instructions in the loop, looking at those that have
309  // extra-loop users and which are recurrences.
310  SCEVExpander Rewriter(*SE, *LI);
311
312  // We insert the code into the preheader of the loop if the loop contains
313  // multiple exit blocks, or in the exit block if there is exactly one.
314  BasicBlock *BlockToInsertInto;
315  SmallVector<BasicBlock*, 8> ExitBlocks;
316  L->getUniqueExitBlocks(ExitBlocks);
317  if (ExitBlocks.size() == 1)
318    BlockToInsertInto = ExitBlocks[0];
319  else
320    BlockToInsertInto = Preheader;
321  BasicBlock::iterator InsertPt = BlockToInsertInto->getFirstNonPHI();
322
323  bool HasConstantItCount = isa<SCEVConstant>(BackedgeTakenCount);
324
325  SmallPtrSet<Instruction*, 16> InstructionsToDelete;
326  std::map<Instruction*, Value*> ExitValues;
327
328  // Find all values that are computed inside the loop, but used outside of it.
329  // Because of LCSSA, these values will only occur in LCSSA PHI Nodes.  Scan
330  // the exit blocks of the loop to find them.
331  for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
332    BasicBlock *ExitBB = ExitBlocks[i];
333
334    // If there are no PHI nodes in this exit block, then no values defined
335    // inside the loop are used on this path, skip it.
336    PHINode *PN = dyn_cast<PHINode>(ExitBB->begin());
337    if (!PN) continue;
338
339    unsigned NumPreds = PN->getNumIncomingValues();
340
341    // Iterate over all of the PHI nodes.
342    BasicBlock::iterator BBI = ExitBB->begin();
343    while ((PN = dyn_cast<PHINode>(BBI++))) {
344
345      // Iterate over all of the values in all the PHI nodes.
346      for (unsigned i = 0; i != NumPreds; ++i) {
347        // If the value being merged in is not integer or is not defined
348        // in the loop, skip it.
349        Value *InVal = PN->getIncomingValue(i);
350        if (!isa<Instruction>(InVal) ||
351            // SCEV only supports integer expressions for now.
352            !isa<IntegerType>(InVal->getType()))
353          continue;
354
355        // If this pred is for a subloop, not L itself, skip it.
356        if (LI->getLoopFor(PN->getIncomingBlock(i)) != L)
357          continue; // The Block is in a subloop, skip it.
358
359        // Check that InVal is defined in the loop.
360        Instruction *Inst = cast<Instruction>(InVal);
361        if (!L->contains(Inst->getParent()))
362          continue;
363
364        // We require that this value either have a computable evolution or that
365        // the loop have a constant iteration count.  In the case where the loop
366        // has a constant iteration count, we can sometimes force evaluation of
367        // the exit value through brute force.
368        SCEVHandle SH = SE->getSCEV(Inst);
369        if (!SH->hasComputableLoopEvolution(L) && !HasConstantItCount)
370          continue;          // Cannot get exit evolution for the loop value.
371
372        // Okay, this instruction has a user outside of the current loop
373        // and varies predictably *inside* the loop.  Evaluate the value it
374        // contains when the loop exits, if possible.
375        SCEVHandle ExitValue = SE->getSCEVAtScope(Inst, L->getParentLoop());
376        if (isa<SCEVCouldNotCompute>(ExitValue) ||
377            !ExitValue->isLoopInvariant(L))
378          continue;
379
380        Changed = true;
381        ++NumReplaced;
382
383        // See if we already computed the exit value for the instruction, if so,
384        // just reuse it.
385        Value *&ExitVal = ExitValues[Inst];
386        if (!ExitVal)
387          ExitVal = Rewriter.expandCodeFor(ExitValue, InsertPt);
388
389        DOUT << "INDVARS: RLEV: AfterLoopVal = " << *ExitVal
390             << "  LoopVal = " << *Inst << "\n";
391
392        PN->setIncomingValue(i, ExitVal);
393
394        // If this instruction is dead now, schedule it to be removed.
395        if (Inst->use_empty())
396          InstructionsToDelete.insert(Inst);
397
398        // See if this is a single-entry LCSSA PHI node.  If so, we can (and
399        // have to) remove
400        // the PHI entirely.  This is safe, because the NewVal won't be variant
401        // in the loop, so we don't need an LCSSA phi node anymore.
402        if (NumPreds == 1) {
403          SE->deleteValueFromRecords(PN);
404          PN->replaceAllUsesWith(ExitVal);
405          PN->eraseFromParent();
406          break;
407        }
408      }
409    }
410  }
411
412  DeleteTriviallyDeadInstructions(InstructionsToDelete);
413}
414
415void IndVarSimplify::RewriteNonIntegerIVs(Loop *L) {
416  // First step.  Check to see if there are any trivial GEP pointer recurrences.
417  // If there are, change them into integer recurrences, permitting analysis by
418  // the SCEV routines.
419  //
420  BasicBlock *Header    = L->getHeader();
421  BasicBlock *Preheader = L->getLoopPreheader();
422
423  SmallPtrSet<Instruction*, 16> DeadInsts;
424  for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
425    PHINode *PN = cast<PHINode>(I);
426    if (isa<PointerType>(PN->getType()))
427      EliminatePointerRecurrence(PN, Preheader, DeadInsts);
428    else
429      HandleFloatingPointIV(L, PN, DeadInsts);
430  }
431
432  // If the loop previously had a pointer or floating-point IV, ScalarEvolution
433  // may not have been able to compute a trip count. Now that we've done some
434  // re-writing, the trip count may be computable.
435  if (Changed)
436    SE->forgetLoopBackedgeTakenCount(L);
437
438  if (!DeadInsts.empty())
439    DeleteTriviallyDeadInstructions(DeadInsts);
440}
441
442/// getEffectiveIndvarType - Determine the widest type that the
443/// induction-variable PHINode Phi is cast to.
444///
445static const Type *getEffectiveIndvarType(const PHINode *Phi) {
446  const Type *Ty = Phi->getType();
447
448  for (Value::use_const_iterator UI = Phi->use_begin(), UE = Phi->use_end();
449       UI != UE; ++UI) {
450    const Type *CandidateType = NULL;
451    if (const ZExtInst *ZI = dyn_cast<ZExtInst>(UI))
452      CandidateType = ZI->getDestTy();
453    else if (const SExtInst *SI = dyn_cast<SExtInst>(UI))
454      CandidateType = SI->getDestTy();
455    if (CandidateType &&
456        CandidateType->getPrimitiveSizeInBits() >
457          Ty->getPrimitiveSizeInBits())
458      Ty = CandidateType;
459  }
460
461  return Ty;
462}
463
464/// TestOrigIVForWrap - Analyze the original induction variable
465/// that controls the loop's iteration to determine whether it
466/// would ever undergo signed or unsigned overflow. Also, check
467/// whether an induction variable in the same type that starts
468/// at 0 would undergo signed overflow.
469///
470/// In addition to setting the NoSignedWrap and NoUnsignedWrap
471/// variables to true when appropriate (they are not set to false here),
472/// return the PHI for this induction variable.  Also record the initial
473/// and final values and the increment; these are not meaningful unless
474/// either NoSignedWrap or NoUnsignedWrap is true, and are always meaningful
475/// in that case, although the final value may be 0 indicating a nonconstant.
476///
477/// TODO: This duplicates a fair amount of ScalarEvolution logic.
478/// Perhaps this can be merged with
479/// ScalarEvolution::getBackedgeTakenCount
480/// and/or ScalarEvolution::get{Sign,Zero}ExtendExpr.
481///
482static const PHINode *TestOrigIVForWrap(const Loop *L,
483                                        const BranchInst *BI,
484                                        const Instruction *OrigCond,
485                                        bool &NoSignedWrap,
486                                        bool &NoUnsignedWrap,
487                                        const ConstantInt* &InitialVal,
488                                        const ConstantInt* &IncrVal,
489                                        const ConstantInt* &LimitVal) {
490  // Verify that the loop is sane and find the exit condition.
491  const ICmpInst *Cmp = dyn_cast<ICmpInst>(OrigCond);
492  if (!Cmp) return 0;
493
494  const Value *CmpLHS = Cmp->getOperand(0);
495  const Value *CmpRHS = Cmp->getOperand(1);
496  const BasicBlock *TrueBB = BI->getSuccessor(0);
497  const BasicBlock *FalseBB = BI->getSuccessor(1);
498  ICmpInst::Predicate Pred = Cmp->getPredicate();
499
500  // Canonicalize a constant to the RHS.
501  if (isa<ConstantInt>(CmpLHS)) {
502    Pred = ICmpInst::getSwappedPredicate(Pred);
503    std::swap(CmpLHS, CmpRHS);
504  }
505  // Canonicalize SLE to SLT.
506  if (Pred == ICmpInst::ICMP_SLE)
507    if (const ConstantInt *CI = dyn_cast<ConstantInt>(CmpRHS))
508      if (!CI->getValue().isMaxSignedValue()) {
509        CmpRHS = ConstantInt::get(CI->getValue() + 1);
510        Pred = ICmpInst::ICMP_SLT;
511      }
512  // Canonicalize SGT to SGE.
513  if (Pred == ICmpInst::ICMP_SGT)
514    if (const ConstantInt *CI = dyn_cast<ConstantInt>(CmpRHS))
515      if (!CI->getValue().isMaxSignedValue()) {
516        CmpRHS = ConstantInt::get(CI->getValue() + 1);
517        Pred = ICmpInst::ICMP_SGE;
518      }
519  // Canonicalize SGE to SLT.
520  if (Pred == ICmpInst::ICMP_SGE) {
521    std::swap(TrueBB, FalseBB);
522    Pred = ICmpInst::ICMP_SLT;
523  }
524  // Canonicalize ULE to ULT.
525  if (Pred == ICmpInst::ICMP_ULE)
526    if (const ConstantInt *CI = dyn_cast<ConstantInt>(CmpRHS))
527      if (!CI->getValue().isMaxValue()) {
528        CmpRHS = ConstantInt::get(CI->getValue() + 1);
529        Pred = ICmpInst::ICMP_ULT;
530      }
531  // Canonicalize UGT to UGE.
532  if (Pred == ICmpInst::ICMP_UGT)
533    if (const ConstantInt *CI = dyn_cast<ConstantInt>(CmpRHS))
534      if (!CI->getValue().isMaxValue()) {
535        CmpRHS = ConstantInt::get(CI->getValue() + 1);
536        Pred = ICmpInst::ICMP_UGE;
537      }
538  // Canonicalize UGE to ULT.
539  if (Pred == ICmpInst::ICMP_UGE) {
540    std::swap(TrueBB, FalseBB);
541    Pred = ICmpInst::ICMP_ULT;
542  }
543  // For now, analyze only LT loops for signed overflow.
544  if (Pred != ICmpInst::ICMP_SLT && Pred != ICmpInst::ICMP_ULT)
545    return 0;
546
547  bool isSigned = Pred == ICmpInst::ICMP_SLT;
548
549  // Get the increment instruction. Look past casts if we will
550  // be able to prove that the original induction variable doesn't
551  // undergo signed or unsigned overflow, respectively.
552  const Value *IncrInst = CmpLHS;
553  if (isSigned) {
554    if (const SExtInst *SI = dyn_cast<SExtInst>(CmpLHS)) {
555      if (!isa<ConstantInt>(CmpRHS) ||
556          !cast<ConstantInt>(CmpRHS)->getValue()
557            .isSignedIntN(IncrInst->getType()->getPrimitiveSizeInBits()))
558        return 0;
559      IncrInst = SI->getOperand(0);
560    }
561  } else {
562    if (const ZExtInst *ZI = dyn_cast<ZExtInst>(CmpLHS)) {
563      if (!isa<ConstantInt>(CmpRHS) ||
564          !cast<ConstantInt>(CmpRHS)->getValue()
565            .isIntN(IncrInst->getType()->getPrimitiveSizeInBits()))
566        return 0;
567      IncrInst = ZI->getOperand(0);
568    }
569  }
570
571  // For now, only analyze induction variables that have simple increments.
572  const BinaryOperator *IncrOp = dyn_cast<BinaryOperator>(IncrInst);
573  if (!IncrOp || IncrOp->getOpcode() != Instruction::Add)
574    return 0;
575  IncrVal = dyn_cast<ConstantInt>(IncrOp->getOperand(1));
576  if (!IncrVal)
577    return 0;
578
579  // Make sure the PHI looks like a normal IV.
580  const PHINode *PN = dyn_cast<PHINode>(IncrOp->getOperand(0));
581  if (!PN || PN->getNumIncomingValues() != 2)
582    return 0;
583  unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0));
584  unsigned BackEdge = !IncomingEdge;
585  if (!L->contains(PN->getIncomingBlock(BackEdge)) ||
586      PN->getIncomingValue(BackEdge) != IncrOp)
587    return 0;
588  if (!L->contains(TrueBB))
589    return 0;
590
591  // For now, only analyze loops with a constant start value, so that
592  // we can easily determine if the start value is not a maximum value
593  // which would wrap on the first iteration.
594  InitialVal = dyn_cast<ConstantInt>(PN->getIncomingValue(IncomingEdge));
595  if (!InitialVal)
596    return 0;
597
598  // The upper limit need not be a constant; we'll check later.
599  LimitVal = dyn_cast<ConstantInt>(CmpRHS);
600
601  // We detect the impossibility of wrapping in two cases, both of
602  // which require starting with a non-max value:
603  // - The IV counts up by one, and the loop iterates only while it remains
604  // less than a limiting value (any) in the same type.
605  // - The IV counts up by a positive increment other than 1, and the
606  // constant limiting value + the increment is less than the max value
607  // (computed as max-increment to avoid overflow)
608  if (isSigned && !InitialVal->getValue().isMaxSignedValue()) {
609    if (IncrVal->equalsInt(1))
610      NoSignedWrap = true;    // LimitVal need not be constant
611    else if (LimitVal) {
612      uint64_t numBits = LimitVal->getValue().getBitWidth();
613      if (IncrVal->getValue().sgt(APInt::getNullValue(numBits)) &&
614          (APInt::getSignedMaxValue(numBits) - IncrVal->getValue())
615            .sgt(LimitVal->getValue()))
616        NoSignedWrap = true;
617    }
618  } else if (!isSigned && !InitialVal->getValue().isMaxValue()) {
619    if (IncrVal->equalsInt(1))
620      NoUnsignedWrap = true;  // LimitVal need not be constant
621    else if (LimitVal) {
622      uint64_t numBits = LimitVal->getValue().getBitWidth();
623      if (IncrVal->getValue().ugt(APInt::getNullValue(numBits)) &&
624          (APInt::getMaxValue(numBits) - IncrVal->getValue())
625            .ugt(LimitVal->getValue()))
626        NoUnsignedWrap = true;
627    }
628  }
629  return PN;
630}
631
632static Value *getSignExtendedTruncVar(const SCEVAddRecExpr *AR,
633                                      ScalarEvolution *SE,
634                                      const Type *LargestType, Loop *L,
635                                      const Type *myType,
636                                      SCEVExpander &Rewriter,
637                                      BasicBlock::iterator InsertPt) {
638  SCEVHandle ExtendedStart =
639    SE->getSignExtendExpr(AR->getStart(), LargestType);
640  SCEVHandle ExtendedStep =
641    SE->getSignExtendExpr(AR->getStepRecurrence(*SE), LargestType);
642  SCEVHandle ExtendedAddRec =
643    SE->getAddRecExpr(ExtendedStart, ExtendedStep, L);
644  if (LargestType != myType)
645    ExtendedAddRec = SE->getTruncateExpr(ExtendedAddRec, myType);
646  return Rewriter.expandCodeFor(ExtendedAddRec, InsertPt);
647}
648
649static Value *getZeroExtendedTruncVar(const SCEVAddRecExpr *AR,
650                                      ScalarEvolution *SE,
651                                      const Type *LargestType, Loop *L,
652                                      const Type *myType,
653                                      SCEVExpander &Rewriter,
654                                      BasicBlock::iterator InsertPt) {
655  SCEVHandle ExtendedStart =
656    SE->getZeroExtendExpr(AR->getStart(), LargestType);
657  SCEVHandle ExtendedStep =
658    SE->getZeroExtendExpr(AR->getStepRecurrence(*SE), LargestType);
659  SCEVHandle ExtendedAddRec =
660    SE->getAddRecExpr(ExtendedStart, ExtendedStep, L);
661  if (LargestType != myType)
662    ExtendedAddRec = SE->getTruncateExpr(ExtendedAddRec, myType);
663  return Rewriter.expandCodeFor(ExtendedAddRec, InsertPt);
664}
665
666bool IndVarSimplify::runOnLoop(Loop *L, LPPassManager &LPM) {
667  LI = &getAnalysis<LoopInfo>();
668  SE = &getAnalysis<ScalarEvolution>();
669  Changed = false;
670
671  // If there are any floating-point or pointer recurrences, attempt to
672  // transform them to use integer recurrences.
673  RewriteNonIntegerIVs(L);
674
675  BasicBlock *Header       = L->getHeader();
676  BasicBlock *ExitingBlock = L->getExitingBlock();
677  SmallPtrSet<Instruction*, 16> DeadInsts;
678
679  // Verify the input to the pass in already in LCSSA form.
680  assert(L->isLCSSAForm());
681
682  // Check to see if this loop has a computable loop-invariant execution count.
683  // If so, this means that we can compute the final value of any expressions
684  // that are recurrent in the loop, and substitute the exit values from the
685  // loop into any instructions outside of the loop that use the final values of
686  // the current expressions.
687  //
688  SCEVHandle BackedgeTakenCount = SE->getBackedgeTakenCount(L);
689  if (!isa<SCEVCouldNotCompute>(BackedgeTakenCount))
690    RewriteLoopExitValues(L, BackedgeTakenCount);
691
692  // Next, analyze all of the induction variables in the loop, canonicalizing
693  // auxillary induction variables.
694  std::vector<std::pair<PHINode*, SCEVHandle> > IndVars;
695
696  for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
697    PHINode *PN = cast<PHINode>(I);
698    if (PN->getType()->isInteger()) { // FIXME: when we have fast-math, enable!
699      SCEVHandle SCEV = SE->getSCEV(PN);
700      // FIXME: It is an extremely bad idea to indvar substitute anything more
701      // complex than affine induction variables.  Doing so will put expensive
702      // polynomial evaluations inside of the loop, and the str reduction pass
703      // currently can only reduce affine polynomials.  For now just disable
704      // indvar subst on anything more complex than an affine addrec.
705      if (SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SCEV))
706        if (AR->getLoop() == L && AR->isAffine())
707          IndVars.push_back(std::make_pair(PN, SCEV));
708    }
709  }
710
711  // Compute the type of the largest recurrence expression, and collect
712  // the set of the types of the other recurrence expressions.
713  const Type *LargestType = 0;
714  SmallSetVector<const Type *, 4> SizesToInsert;
715  if (!isa<SCEVCouldNotCompute>(BackedgeTakenCount)) {
716    LargestType = BackedgeTakenCount->getType();
717    SizesToInsert.insert(BackedgeTakenCount->getType());
718  }
719  for (unsigned i = 0, e = IndVars.size(); i != e; ++i) {
720    const PHINode *PN = IndVars[i].first;
721    SizesToInsert.insert(PN->getType());
722    const Type *EffTy = getEffectiveIndvarType(PN);
723    SizesToInsert.insert(EffTy);
724    if (!LargestType ||
725        EffTy->getPrimitiveSizeInBits() >
726          LargestType->getPrimitiveSizeInBits())
727      LargestType = EffTy;
728  }
729
730  // Create a rewriter object which we'll use to transform the code with.
731  SCEVExpander Rewriter(*SE, *LI);
732
733  // Now that we know the largest of of the induction variables in this loop,
734  // insert a canonical induction variable of the largest size.
735  Value *IndVar = 0;
736  if (!SizesToInsert.empty()) {
737    IndVar = Rewriter.getOrInsertCanonicalInductionVariable(L,LargestType);
738    ++NumInserted;
739    Changed = true;
740    DOUT << "INDVARS: New CanIV: " << *IndVar;
741  }
742
743  // If we have a trip count expression, rewrite the loop's exit condition
744  // using it.  We can currently only handle loops with a single exit.
745  bool NoSignedWrap = false;
746  bool NoUnsignedWrap = false;
747  const ConstantInt* InitialVal, * IncrVal, * LimitVal;
748  const PHINode *OrigControllingPHI = 0;
749  if (!isa<SCEVCouldNotCompute>(BackedgeTakenCount) && ExitingBlock)
750    // Can't rewrite non-branch yet.
751    if (BranchInst *BI = dyn_cast<BranchInst>(ExitingBlock->getTerminator())) {
752      if (Instruction *OrigCond = dyn_cast<Instruction>(BI->getCondition())) {
753        // Determine if the OrigIV will ever undergo overflow.
754        OrigControllingPHI =
755          TestOrigIVForWrap(L, BI, OrigCond,
756                            NoSignedWrap, NoUnsignedWrap,
757                            InitialVal, IncrVal, LimitVal);
758
759        // We'll be replacing the original condition, so it'll be dead.
760        DeadInsts.insert(OrigCond);
761      }
762
763      LinearFunctionTestReplace(L, BackedgeTakenCount, IndVar,
764                                ExitingBlock, BI, Rewriter);
765    }
766
767  // Now that we have a canonical induction variable, we can rewrite any
768  // recurrences in terms of the induction variable.  Start with the auxillary
769  // induction variables, and recursively rewrite any of their uses.
770  BasicBlock::iterator InsertPt = Header->getFirstNonPHI();
771
772  // If there were induction variables of other sizes, cast the primary
773  // induction variable to the right size for them, avoiding the need for the
774  // code evaluation methods to insert induction variables of different sizes.
775  for (unsigned i = 0, e = SizesToInsert.size(); i != e; ++i) {
776    const Type *Ty = SizesToInsert[i];
777    if (Ty != LargestType) {
778      Instruction *New = new TruncInst(IndVar, Ty, "indvar", InsertPt);
779      Rewriter.addInsertedValue(New, SE->getSCEV(New));
780      DOUT << "INDVARS: Made trunc IV for type " << *Ty << ": "
781           << *New << "\n";
782    }
783  }
784
785  // Rewrite all induction variables in terms of the canonical induction
786  // variable.
787  while (!IndVars.empty()) {
788    PHINode *PN = IndVars.back().first;
789    SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(IndVars.back().second);
790    Value *NewVal = Rewriter.expandCodeFor(AR, InsertPt);
791    DOUT << "INDVARS: Rewrote IV '" << *AR << "' " << *PN
792         << "   into = " << *NewVal << "\n";
793    NewVal->takeName(PN);
794
795    /// If the new canonical induction variable is wider than the original,
796    /// and the original has uses that are casts to wider types, see if the
797    /// truncate and extend can be omitted.
798    if (PN == OrigControllingPHI && PN->getType() != LargestType)
799      for (Value::use_iterator UI = PN->use_begin(), UE = PN->use_end();
800           UI != UE; ++UI) {
801        if (isa<SExtInst>(UI) && NoSignedWrap) {
802          Value *TruncIndVar = getSignExtendedTruncVar(AR, SE, LargestType, L,
803                                            UI->getType(), Rewriter, InsertPt);
804          UI->replaceAllUsesWith(TruncIndVar);
805          if (Instruction *DeadUse = dyn_cast<Instruction>(*UI))
806            DeadInsts.insert(DeadUse);
807        }
808        // See if we can figure out sext(i+constant) doesn't wrap, so we can
809        // use a larger add.  This is common in subscripting.
810        Instruction *UInst = dyn_cast<Instruction>(*UI);
811        if (UInst && UInst->getOpcode()==Instruction::Add &&
812            UInst->hasOneUse() &&
813            isa<ConstantInt>(UInst->getOperand(1)) &&
814            isa<SExtInst>(UInst->use_begin()) && NoSignedWrap && LimitVal) {
815          uint64_t numBits = LimitVal->getValue().getBitWidth();
816          ConstantInt* RHS = dyn_cast<ConstantInt>(UInst->getOperand(1));
817          if (((APInt::getSignedMaxValue(numBits) - IncrVal->getValue()) -
818                RHS->getValue()).sgt(LimitVal->getValue())) {
819            SExtInst* oldSext = dyn_cast<SExtInst>(UInst->use_begin());
820            Value *TruncIndVar = getSignExtendedTruncVar(AR, SE, LargestType, L,
821                                              oldSext->getType(), Rewriter,
822                                              InsertPt);
823            APInt APcopy = APInt(RHS->getValue());
824            ConstantInt* newRHS =
825                  ConstantInt::get(APcopy.sext(oldSext->getType()->
826                                               getPrimitiveSizeInBits()));
827            Value *NewAdd = BinaryOperator::CreateAdd(TruncIndVar, newRHS,
828                                                      UInst->getName()+".nosex",
829                                                      UInst);
830            oldSext->replaceAllUsesWith(NewAdd);
831            if (Instruction *DeadUse = dyn_cast<Instruction>(oldSext))
832              DeadInsts.insert(DeadUse);
833            if (Instruction *DeadUse = dyn_cast<Instruction>(UInst))
834              DeadInsts.insert(DeadUse);
835          }
836        }
837        if (isa<ZExtInst>(UI) && NoUnsignedWrap) {
838          Value *TruncIndVar = getZeroExtendedTruncVar(AR, SE, LargestType, L,
839                                            UI->getType(), Rewriter, InsertPt);
840          UI->replaceAllUsesWith(TruncIndVar);
841          if (Instruction *DeadUse = dyn_cast<Instruction>(*UI))
842            DeadInsts.insert(DeadUse);
843        }
844      }
845
846    // Replace the old PHI Node with the inserted computation.
847    PN->replaceAllUsesWith(NewVal);
848    DeadInsts.insert(PN);
849    IndVars.pop_back();
850    ++NumRemoved;
851    Changed = true;
852  }
853
854  DeleteTriviallyDeadInstructions(DeadInsts);
855  assert(L->isLCSSAForm());
856  return Changed;
857}
858
859/// Return true if it is OK to use SIToFPInst for an inducation variable
860/// with given inital and exit values.
861static bool useSIToFPInst(ConstantFP &InitV, ConstantFP &ExitV,
862                          uint64_t intIV, uint64_t intEV) {
863
864  if (InitV.getValueAPF().isNegative() || ExitV.getValueAPF().isNegative())
865    return true;
866
867  // If the iteration range can be handled by SIToFPInst then use it.
868  APInt Max = APInt::getSignedMaxValue(32);
869  if (Max.getZExtValue() > static_cast<uint64_t>(abs(intEV - intIV)))
870    return true;
871
872  return false;
873}
874
875/// convertToInt - Convert APF to an integer, if possible.
876static bool convertToInt(const APFloat &APF, uint64_t *intVal) {
877
878  bool isExact = false;
879  if (&APF.getSemantics() == &APFloat::PPCDoubleDouble)
880    return false;
881  if (APF.convertToInteger(intVal, 32, APF.isNegative(),
882                           APFloat::rmTowardZero, &isExact)
883      != APFloat::opOK)
884    return false;
885  if (!isExact)
886    return false;
887  return true;
888
889}
890
891/// HandleFloatingPointIV - If the loop has floating induction variable
892/// then insert corresponding integer induction variable if possible.
893/// For example,
894/// for(double i = 0; i < 10000; ++i)
895///   bar(i)
896/// is converted into
897/// for(int i = 0; i < 10000; ++i)
898///   bar((double)i);
899///
900void IndVarSimplify::HandleFloatingPointIV(Loop *L, PHINode *PH,
901                                   SmallPtrSet<Instruction*, 16> &DeadInsts) {
902
903  unsigned IncomingEdge = L->contains(PH->getIncomingBlock(0));
904  unsigned BackEdge     = IncomingEdge^1;
905
906  // Check incoming value.
907  ConstantFP *InitValue = dyn_cast<ConstantFP>(PH->getIncomingValue(IncomingEdge));
908  if (!InitValue) return;
909  uint64_t newInitValue = Type::Int32Ty->getPrimitiveSizeInBits();
910  if (!convertToInt(InitValue->getValueAPF(), &newInitValue))
911    return;
912
913  // Check IV increment. Reject this PH if increement operation is not
914  // an add or increment value can not be represented by an integer.
915  BinaryOperator *Incr =
916    dyn_cast<BinaryOperator>(PH->getIncomingValue(BackEdge));
917  if (!Incr) return;
918  if (Incr->getOpcode() != Instruction::Add) return;
919  ConstantFP *IncrValue = NULL;
920  unsigned IncrVIndex = 1;
921  if (Incr->getOperand(1) == PH)
922    IncrVIndex = 0;
923  IncrValue = dyn_cast<ConstantFP>(Incr->getOperand(IncrVIndex));
924  if (!IncrValue) return;
925  uint64_t newIncrValue = Type::Int32Ty->getPrimitiveSizeInBits();
926  if (!convertToInt(IncrValue->getValueAPF(), &newIncrValue))
927    return;
928
929  // Check Incr uses. One user is PH and the other users is exit condition used
930  // by the conditional terminator.
931  Value::use_iterator IncrUse = Incr->use_begin();
932  Instruction *U1 = cast<Instruction>(IncrUse++);
933  if (IncrUse == Incr->use_end()) return;
934  Instruction *U2 = cast<Instruction>(IncrUse++);
935  if (IncrUse != Incr->use_end()) return;
936
937  // Find exit condition.
938  FCmpInst *EC = dyn_cast<FCmpInst>(U1);
939  if (!EC)
940    EC = dyn_cast<FCmpInst>(U2);
941  if (!EC) return;
942
943  if (BranchInst *BI = dyn_cast<BranchInst>(EC->getParent()->getTerminator())) {
944    if (!BI->isConditional()) return;
945    if (BI->getCondition() != EC) return;
946  }
947
948  // Find exit value. If exit value can not be represented as an interger then
949  // do not handle this floating point PH.
950  ConstantFP *EV = NULL;
951  unsigned EVIndex = 1;
952  if (EC->getOperand(1) == Incr)
953    EVIndex = 0;
954  EV = dyn_cast<ConstantFP>(EC->getOperand(EVIndex));
955  if (!EV) return;
956  uint64_t intEV = Type::Int32Ty->getPrimitiveSizeInBits();
957  if (!convertToInt(EV->getValueAPF(), &intEV))
958    return;
959
960  // Find new predicate for integer comparison.
961  CmpInst::Predicate NewPred = CmpInst::BAD_ICMP_PREDICATE;
962  switch (EC->getPredicate()) {
963  case CmpInst::FCMP_OEQ:
964  case CmpInst::FCMP_UEQ:
965    NewPred = CmpInst::ICMP_EQ;
966    break;
967  case CmpInst::FCMP_OGT:
968  case CmpInst::FCMP_UGT:
969    NewPred = CmpInst::ICMP_UGT;
970    break;
971  case CmpInst::FCMP_OGE:
972  case CmpInst::FCMP_UGE:
973    NewPred = CmpInst::ICMP_UGE;
974    break;
975  case CmpInst::FCMP_OLT:
976  case CmpInst::FCMP_ULT:
977    NewPred = CmpInst::ICMP_ULT;
978    break;
979  case CmpInst::FCMP_OLE:
980  case CmpInst::FCMP_ULE:
981    NewPred = CmpInst::ICMP_ULE;
982    break;
983  default:
984    break;
985  }
986  if (NewPred == CmpInst::BAD_ICMP_PREDICATE) return;
987
988  // Insert new integer induction variable.
989  PHINode *NewPHI = PHINode::Create(Type::Int32Ty,
990                                    PH->getName()+".int", PH);
991  NewPHI->addIncoming(ConstantInt::get(Type::Int32Ty, newInitValue),
992                      PH->getIncomingBlock(IncomingEdge));
993
994  Value *NewAdd = BinaryOperator::CreateAdd(NewPHI,
995                                            ConstantInt::get(Type::Int32Ty,
996                                                             newIncrValue),
997                                            Incr->getName()+".int", Incr);
998  NewPHI->addIncoming(NewAdd, PH->getIncomingBlock(BackEdge));
999
1000  ConstantInt *NewEV = ConstantInt::get(Type::Int32Ty, intEV);
1001  Value *LHS = (EVIndex == 1 ? NewPHI->getIncomingValue(BackEdge) : NewEV);
1002  Value *RHS = (EVIndex == 1 ? NewEV : NewPHI->getIncomingValue(BackEdge));
1003  ICmpInst *NewEC = new ICmpInst(NewPred, LHS, RHS, EC->getNameStart(),
1004                                 EC->getParent()->getTerminator());
1005
1006  // Delete old, floating point, exit comparision instruction.
1007  EC->replaceAllUsesWith(NewEC);
1008  DeadInsts.insert(EC);
1009
1010  // Delete old, floating point, increment instruction.
1011  Incr->replaceAllUsesWith(UndefValue::get(Incr->getType()));
1012  DeadInsts.insert(Incr);
1013
1014  // Replace floating induction variable. Give SIToFPInst preference over
1015  // UIToFPInst because it is faster on platforms that are widely used.
1016  if (useSIToFPInst(*InitValue, *EV, newInitValue, intEV)) {
1017    SIToFPInst *Conv = new SIToFPInst(NewPHI, PH->getType(), "indvar.conv",
1018                                      PH->getParent()->getFirstNonPHI());
1019    PH->replaceAllUsesWith(Conv);
1020  } else {
1021    UIToFPInst *Conv = new UIToFPInst(NewPHI, PH->getType(), "indvar.conv",
1022                                      PH->getParent()->getFirstNonPHI());
1023    PH->replaceAllUsesWith(Conv);
1024  }
1025  DeadInsts.insert(PH);
1026}
1027
1028