IndVarSimplify.cpp revision ecb35ece5c42d89057da3c2c7bc2e95f08b1dbef
1//===- IndVarSimplify.cpp - Induction Variable Elimination ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This transformation analyzes and transforms the induction variables (and
11// computations derived from them) into simpler forms suitable for subsequent
12// analysis and transformation.
13//
14// If the trip count of a loop is computable, this pass also makes the following
15// changes:
16//   1. The exit condition for the loop is canonicalized to compare the
17//      induction value against the exit value.  This turns loops like:
18//        'for (i = 7; i*i < 1000; ++i)' into 'for (i = 0; i != 25; ++i)'
19//   2. Any use outside of the loop of an expression derived from the indvar
20//      is changed to compute the derived value outside of the loop, eliminating
21//      the dependence on the exit value of the induction variable.  If the only
22//      purpose of the loop is to compute the exit value of some derived
23//      expression, this transformation will make the loop dead.
24//
25//===----------------------------------------------------------------------===//
26
27#define DEBUG_TYPE "indvars"
28#include "llvm/Transforms/Scalar.h"
29#include "llvm/BasicBlock.h"
30#include "llvm/Constants.h"
31#include "llvm/Instructions.h"
32#include "llvm/IntrinsicInst.h"
33#include "llvm/LLVMContext.h"
34#include "llvm/Type.h"
35#include "llvm/Analysis/Dominators.h"
36#include "llvm/Analysis/IVUsers.h"
37#include "llvm/Analysis/ScalarEvolutionExpander.h"
38#include "llvm/Analysis/LoopInfo.h"
39#include "llvm/Analysis/LoopPass.h"
40#include "llvm/Support/CFG.h"
41#include "llvm/Support/CommandLine.h"
42#include "llvm/Support/Debug.h"
43#include "llvm/Support/raw_ostream.h"
44#include "llvm/Transforms/Utils/Local.h"
45#include "llvm/Transforms/Utils/BasicBlockUtils.h"
46#include "llvm/Transforms/Utils/SimplifyIndVar.h"
47#include "llvm/Target/TargetData.h"
48#include "llvm/ADT/DenseMap.h"
49#include "llvm/ADT/SmallVector.h"
50#include "llvm/ADT/Statistic.h"
51using namespace llvm;
52
53STATISTIC(NumRemoved     , "Number of aux indvars removed");
54STATISTIC(NumWidened     , "Number of indvars widened");
55STATISTIC(NumInserted    , "Number of canonical indvars added");
56STATISTIC(NumReplaced    , "Number of exit values replaced");
57STATISTIC(NumLFTR        , "Number of loop exit tests replaced");
58STATISTIC(NumElimExt     , "Number of IV sign/zero extends eliminated");
59STATISTIC(NumElimIV      , "Number of congruent IVs eliminated");
60
61static cl::opt<bool> EnableIVRewrite(
62  "enable-iv-rewrite", cl::Hidden,
63  cl::desc("Enable canonical induction variable rewriting"));
64
65// Trip count verification can be enabled by default under NDEBUG if we
66// implement a strong expression equivalence checker in SCEV. Until then, we
67// use the verify-indvars flag, which may assert in some cases.
68static cl::opt<bool> VerifyIndvars(
69  "verify-indvars", cl::Hidden,
70  cl::desc("Verify the ScalarEvolution result after running indvars"));
71
72namespace {
73  class IndVarSimplify : public LoopPass {
74    IVUsers         *IU;
75    LoopInfo        *LI;
76    ScalarEvolution *SE;
77    DominatorTree   *DT;
78    TargetData      *TD;
79
80    SmallVector<WeakVH, 16> DeadInsts;
81    bool Changed;
82  public:
83
84    static char ID; // Pass identification, replacement for typeid
85    IndVarSimplify() : LoopPass(ID), IU(0), LI(0), SE(0), DT(0), TD(0),
86                       Changed(false) {
87      initializeIndVarSimplifyPass(*PassRegistry::getPassRegistry());
88    }
89
90    virtual bool runOnLoop(Loop *L, LPPassManager &LPM);
91
92    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
93      AU.addRequired<DominatorTree>();
94      AU.addRequired<LoopInfo>();
95      AU.addRequired<ScalarEvolution>();
96      AU.addRequiredID(LoopSimplifyID);
97      AU.addRequiredID(LCSSAID);
98      if (EnableIVRewrite)
99        AU.addRequired<IVUsers>();
100      AU.addPreserved<ScalarEvolution>();
101      AU.addPreservedID(LoopSimplifyID);
102      AU.addPreservedID(LCSSAID);
103      if (EnableIVRewrite)
104        AU.addPreserved<IVUsers>();
105      AU.setPreservesCFG();
106    }
107
108  private:
109    virtual void releaseMemory() {
110      DeadInsts.clear();
111    }
112
113    bool isValidRewrite(Value *FromVal, Value *ToVal);
114
115    void HandleFloatingPointIV(Loop *L, PHINode *PH);
116    void RewriteNonIntegerIVs(Loop *L);
117
118    void SimplifyAndExtend(Loop *L, SCEVExpander &Rewriter, LPPassManager &LPM);
119
120    void RewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter);
121
122    void RewriteIVExpressions(Loop *L, SCEVExpander &Rewriter);
123
124    Value *LinearFunctionTestReplace(Loop *L, const SCEV *BackedgeTakenCount,
125                                     PHINode *IndVar, SCEVExpander &Rewriter);
126
127    void SinkUnusedInvariants(Loop *L);
128  };
129}
130
131char IndVarSimplify::ID = 0;
132INITIALIZE_PASS_BEGIN(IndVarSimplify, "indvars",
133                "Induction Variable Simplification", false, false)
134INITIALIZE_PASS_DEPENDENCY(DominatorTree)
135INITIALIZE_PASS_DEPENDENCY(LoopInfo)
136INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
137INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
138INITIALIZE_PASS_DEPENDENCY(LCSSA)
139INITIALIZE_PASS_DEPENDENCY(IVUsers)
140INITIALIZE_PASS_END(IndVarSimplify, "indvars",
141                "Induction Variable Simplification", false, false)
142
143Pass *llvm::createIndVarSimplifyPass() {
144  return new IndVarSimplify();
145}
146
147/// isValidRewrite - Return true if the SCEV expansion generated by the
148/// rewriter can replace the original value. SCEV guarantees that it
149/// produces the same value, but the way it is produced may be illegal IR.
150/// Ideally, this function will only be called for verification.
151bool IndVarSimplify::isValidRewrite(Value *FromVal, Value *ToVal) {
152  // If an SCEV expression subsumed multiple pointers, its expansion could
153  // reassociate the GEP changing the base pointer. This is illegal because the
154  // final address produced by a GEP chain must be inbounds relative to its
155  // underlying object. Otherwise basic alias analysis, among other things,
156  // could fail in a dangerous way. Ultimately, SCEV will be improved to avoid
157  // producing an expression involving multiple pointers. Until then, we must
158  // bail out here.
159  //
160  // Retrieve the pointer operand of the GEP. Don't use GetUnderlyingObject
161  // because it understands lcssa phis while SCEV does not.
162  Value *FromPtr = FromVal;
163  Value *ToPtr = ToVal;
164  if (GEPOperator *GEP = dyn_cast<GEPOperator>(FromVal)) {
165    FromPtr = GEP->getPointerOperand();
166  }
167  if (GEPOperator *GEP = dyn_cast<GEPOperator>(ToVal)) {
168    ToPtr = GEP->getPointerOperand();
169  }
170  if (FromPtr != FromVal || ToPtr != ToVal) {
171    // Quickly check the common case
172    if (FromPtr == ToPtr)
173      return true;
174
175    // SCEV may have rewritten an expression that produces the GEP's pointer
176    // operand. That's ok as long as the pointer operand has the same base
177    // pointer. Unlike GetUnderlyingObject(), getPointerBase() will find the
178    // base of a recurrence. This handles the case in which SCEV expansion
179    // converts a pointer type recurrence into a nonrecurrent pointer base
180    // indexed by an integer recurrence.
181    const SCEV *FromBase = SE->getPointerBase(SE->getSCEV(FromPtr));
182    const SCEV *ToBase = SE->getPointerBase(SE->getSCEV(ToPtr));
183    if (FromBase == ToBase)
184      return true;
185
186    DEBUG(dbgs() << "INDVARS: GEP rewrite bail out "
187          << *FromBase << " != " << *ToBase << "\n");
188
189    return false;
190  }
191  return true;
192}
193
194/// Determine the insertion point for this user. By default, insert immediately
195/// before the user. SCEVExpander or LICM will hoist loop invariants out of the
196/// loop. For PHI nodes, there may be multiple uses, so compute the nearest
197/// common dominator for the incoming blocks.
198static Instruction *getInsertPointForUses(Instruction *User, Value *Def,
199                                          DominatorTree *DT) {
200  PHINode *PHI = dyn_cast<PHINode>(User);
201  if (!PHI)
202    return User;
203
204  Instruction *InsertPt = 0;
205  for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i) {
206    if (PHI->getIncomingValue(i) != Def)
207      continue;
208
209    BasicBlock *InsertBB = PHI->getIncomingBlock(i);
210    if (!InsertPt) {
211      InsertPt = InsertBB->getTerminator();
212      continue;
213    }
214    InsertBB = DT->findNearestCommonDominator(InsertPt->getParent(), InsertBB);
215    InsertPt = InsertBB->getTerminator();
216  }
217  assert(InsertPt && "Missing phi operand");
218  assert((!isa<Instruction>(Def) ||
219          DT->dominates(cast<Instruction>(Def), InsertPt)) &&
220         "def does not dominate all uses");
221  return InsertPt;
222}
223
224//===----------------------------------------------------------------------===//
225// RewriteNonIntegerIVs and helpers. Prefer integer IVs.
226//===----------------------------------------------------------------------===//
227
228/// ConvertToSInt - Convert APF to an integer, if possible.
229static bool ConvertToSInt(const APFloat &APF, int64_t &IntVal) {
230  bool isExact = false;
231  if (&APF.getSemantics() == &APFloat::PPCDoubleDouble)
232    return false;
233  // See if we can convert this to an int64_t
234  uint64_t UIntVal;
235  if (APF.convertToInteger(&UIntVal, 64, true, APFloat::rmTowardZero,
236                           &isExact) != APFloat::opOK || !isExact)
237    return false;
238  IntVal = UIntVal;
239  return true;
240}
241
242/// HandleFloatingPointIV - If the loop has floating induction variable
243/// then insert corresponding integer induction variable if possible.
244/// For example,
245/// for(double i = 0; i < 10000; ++i)
246///   bar(i)
247/// is converted into
248/// for(int i = 0; i < 10000; ++i)
249///   bar((double)i);
250///
251void IndVarSimplify::HandleFloatingPointIV(Loop *L, PHINode *PN) {
252  unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0));
253  unsigned BackEdge     = IncomingEdge^1;
254
255  // Check incoming value.
256  ConstantFP *InitValueVal =
257    dyn_cast<ConstantFP>(PN->getIncomingValue(IncomingEdge));
258
259  int64_t InitValue;
260  if (!InitValueVal || !ConvertToSInt(InitValueVal->getValueAPF(), InitValue))
261    return;
262
263  // Check IV increment. Reject this PN if increment operation is not
264  // an add or increment value can not be represented by an integer.
265  BinaryOperator *Incr =
266    dyn_cast<BinaryOperator>(PN->getIncomingValue(BackEdge));
267  if (Incr == 0 || Incr->getOpcode() != Instruction::FAdd) return;
268
269  // If this is not an add of the PHI with a constantfp, or if the constant fp
270  // is not an integer, bail out.
271  ConstantFP *IncValueVal = dyn_cast<ConstantFP>(Incr->getOperand(1));
272  int64_t IncValue;
273  if (IncValueVal == 0 || Incr->getOperand(0) != PN ||
274      !ConvertToSInt(IncValueVal->getValueAPF(), IncValue))
275    return;
276
277  // Check Incr uses. One user is PN and the other user is an exit condition
278  // used by the conditional terminator.
279  Value::use_iterator IncrUse = Incr->use_begin();
280  Instruction *U1 = cast<Instruction>(*IncrUse++);
281  if (IncrUse == Incr->use_end()) return;
282  Instruction *U2 = cast<Instruction>(*IncrUse++);
283  if (IncrUse != Incr->use_end()) return;
284
285  // Find exit condition, which is an fcmp.  If it doesn't exist, or if it isn't
286  // only used by a branch, we can't transform it.
287  FCmpInst *Compare = dyn_cast<FCmpInst>(U1);
288  if (!Compare)
289    Compare = dyn_cast<FCmpInst>(U2);
290  if (Compare == 0 || !Compare->hasOneUse() ||
291      !isa<BranchInst>(Compare->use_back()))
292    return;
293
294  BranchInst *TheBr = cast<BranchInst>(Compare->use_back());
295
296  // We need to verify that the branch actually controls the iteration count
297  // of the loop.  If not, the new IV can overflow and no one will notice.
298  // The branch block must be in the loop and one of the successors must be out
299  // of the loop.
300  assert(TheBr->isConditional() && "Can't use fcmp if not conditional");
301  if (!L->contains(TheBr->getParent()) ||
302      (L->contains(TheBr->getSuccessor(0)) &&
303       L->contains(TheBr->getSuccessor(1))))
304    return;
305
306
307  // If it isn't a comparison with an integer-as-fp (the exit value), we can't
308  // transform it.
309  ConstantFP *ExitValueVal = dyn_cast<ConstantFP>(Compare->getOperand(1));
310  int64_t ExitValue;
311  if (ExitValueVal == 0 ||
312      !ConvertToSInt(ExitValueVal->getValueAPF(), ExitValue))
313    return;
314
315  // Find new predicate for integer comparison.
316  CmpInst::Predicate NewPred = CmpInst::BAD_ICMP_PREDICATE;
317  switch (Compare->getPredicate()) {
318  default: return;  // Unknown comparison.
319  case CmpInst::FCMP_OEQ:
320  case CmpInst::FCMP_UEQ: NewPred = CmpInst::ICMP_EQ; break;
321  case CmpInst::FCMP_ONE:
322  case CmpInst::FCMP_UNE: NewPred = CmpInst::ICMP_NE; break;
323  case CmpInst::FCMP_OGT:
324  case CmpInst::FCMP_UGT: NewPred = CmpInst::ICMP_SGT; break;
325  case CmpInst::FCMP_OGE:
326  case CmpInst::FCMP_UGE: NewPred = CmpInst::ICMP_SGE; break;
327  case CmpInst::FCMP_OLT:
328  case CmpInst::FCMP_ULT: NewPred = CmpInst::ICMP_SLT; break;
329  case CmpInst::FCMP_OLE:
330  case CmpInst::FCMP_ULE: NewPred = CmpInst::ICMP_SLE; break;
331  }
332
333  // We convert the floating point induction variable to a signed i32 value if
334  // we can.  This is only safe if the comparison will not overflow in a way
335  // that won't be trapped by the integer equivalent operations.  Check for this
336  // now.
337  // TODO: We could use i64 if it is native and the range requires it.
338
339  // The start/stride/exit values must all fit in signed i32.
340  if (!isInt<32>(InitValue) || !isInt<32>(IncValue) || !isInt<32>(ExitValue))
341    return;
342
343  // If not actually striding (add x, 0.0), avoid touching the code.
344  if (IncValue == 0)
345    return;
346
347  // Positive and negative strides have different safety conditions.
348  if (IncValue > 0) {
349    // If we have a positive stride, we require the init to be less than the
350    // exit value.
351    if (InitValue >= ExitValue)
352      return;
353
354    uint32_t Range = uint32_t(ExitValue-InitValue);
355    // Check for infinite loop, either:
356    // while (i <= Exit) or until (i > Exit)
357    if (NewPred == CmpInst::ICMP_SLE || NewPred == CmpInst::ICMP_SGT) {
358      if (++Range == 0) return;  // Range overflows.
359    }
360
361    unsigned Leftover = Range % uint32_t(IncValue);
362
363    // If this is an equality comparison, we require that the strided value
364    // exactly land on the exit value, otherwise the IV condition will wrap
365    // around and do things the fp IV wouldn't.
366    if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) &&
367        Leftover != 0)
368      return;
369
370    // If the stride would wrap around the i32 before exiting, we can't
371    // transform the IV.
372    if (Leftover != 0 && int32_t(ExitValue+IncValue) < ExitValue)
373      return;
374
375  } else {
376    // If we have a negative stride, we require the init to be greater than the
377    // exit value.
378    if (InitValue <= ExitValue)
379      return;
380
381    uint32_t Range = uint32_t(InitValue-ExitValue);
382    // Check for infinite loop, either:
383    // while (i >= Exit) or until (i < Exit)
384    if (NewPred == CmpInst::ICMP_SGE || NewPred == CmpInst::ICMP_SLT) {
385      if (++Range == 0) return;  // Range overflows.
386    }
387
388    unsigned Leftover = Range % uint32_t(-IncValue);
389
390    // If this is an equality comparison, we require that the strided value
391    // exactly land on the exit value, otherwise the IV condition will wrap
392    // around and do things the fp IV wouldn't.
393    if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) &&
394        Leftover != 0)
395      return;
396
397    // If the stride would wrap around the i32 before exiting, we can't
398    // transform the IV.
399    if (Leftover != 0 && int32_t(ExitValue+IncValue) > ExitValue)
400      return;
401  }
402
403  IntegerType *Int32Ty = Type::getInt32Ty(PN->getContext());
404
405  // Insert new integer induction variable.
406  PHINode *NewPHI = PHINode::Create(Int32Ty, 2, PN->getName()+".int", PN);
407  NewPHI->addIncoming(ConstantInt::get(Int32Ty, InitValue),
408                      PN->getIncomingBlock(IncomingEdge));
409
410  Value *NewAdd =
411    BinaryOperator::CreateAdd(NewPHI, ConstantInt::get(Int32Ty, IncValue),
412                              Incr->getName()+".int", Incr);
413  NewPHI->addIncoming(NewAdd, PN->getIncomingBlock(BackEdge));
414
415  ICmpInst *NewCompare = new ICmpInst(TheBr, NewPred, NewAdd,
416                                      ConstantInt::get(Int32Ty, ExitValue),
417                                      Compare->getName());
418
419  // In the following deletions, PN may become dead and may be deleted.
420  // Use a WeakVH to observe whether this happens.
421  WeakVH WeakPH = PN;
422
423  // Delete the old floating point exit comparison.  The branch starts using the
424  // new comparison.
425  NewCompare->takeName(Compare);
426  Compare->replaceAllUsesWith(NewCompare);
427  RecursivelyDeleteTriviallyDeadInstructions(Compare);
428
429  // Delete the old floating point increment.
430  Incr->replaceAllUsesWith(UndefValue::get(Incr->getType()));
431  RecursivelyDeleteTriviallyDeadInstructions(Incr);
432
433  // If the FP induction variable still has uses, this is because something else
434  // in the loop uses its value.  In order to canonicalize the induction
435  // variable, we chose to eliminate the IV and rewrite it in terms of an
436  // int->fp cast.
437  //
438  // We give preference to sitofp over uitofp because it is faster on most
439  // platforms.
440  if (WeakPH) {
441    Value *Conv = new SIToFPInst(NewPHI, PN->getType(), "indvar.conv",
442                                 PN->getParent()->getFirstInsertionPt());
443    PN->replaceAllUsesWith(Conv);
444    RecursivelyDeleteTriviallyDeadInstructions(PN);
445  }
446
447  // Add a new IVUsers entry for the newly-created integer PHI.
448  if (IU)
449    IU->AddUsersIfInteresting(NewPHI);
450
451  Changed = true;
452}
453
454void IndVarSimplify::RewriteNonIntegerIVs(Loop *L) {
455  // First step.  Check to see if there are any floating-point recurrences.
456  // If there are, change them into integer recurrences, permitting analysis by
457  // the SCEV routines.
458  //
459  BasicBlock *Header = L->getHeader();
460
461  SmallVector<WeakVH, 8> PHIs;
462  for (BasicBlock::iterator I = Header->begin();
463       PHINode *PN = dyn_cast<PHINode>(I); ++I)
464    PHIs.push_back(PN);
465
466  for (unsigned i = 0, e = PHIs.size(); i != e; ++i)
467    if (PHINode *PN = dyn_cast_or_null<PHINode>(&*PHIs[i]))
468      HandleFloatingPointIV(L, PN);
469
470  // If the loop previously had floating-point IV, ScalarEvolution
471  // may not have been able to compute a trip count. Now that we've done some
472  // re-writing, the trip count may be computable.
473  if (Changed)
474    SE->forgetLoop(L);
475}
476
477//===----------------------------------------------------------------------===//
478// RewriteLoopExitValues - Optimize IV users outside the loop.
479// As a side effect, reduces the amount of IV processing within the loop.
480//===----------------------------------------------------------------------===//
481
482/// RewriteLoopExitValues - Check to see if this loop has a computable
483/// loop-invariant execution count.  If so, this means that we can compute the
484/// final value of any expressions that are recurrent in the loop, and
485/// substitute the exit values from the loop into any instructions outside of
486/// the loop that use the final values of the current expressions.
487///
488/// This is mostly redundant with the regular IndVarSimplify activities that
489/// happen later, except that it's more powerful in some cases, because it's
490/// able to brute-force evaluate arbitrary instructions as long as they have
491/// constant operands at the beginning of the loop.
492void IndVarSimplify::RewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter) {
493  // Verify the input to the pass in already in LCSSA form.
494  assert(L->isLCSSAForm(*DT));
495
496  SmallVector<BasicBlock*, 8> ExitBlocks;
497  L->getUniqueExitBlocks(ExitBlocks);
498
499  // Find all values that are computed inside the loop, but used outside of it.
500  // Because of LCSSA, these values will only occur in LCSSA PHI Nodes.  Scan
501  // the exit blocks of the loop to find them.
502  for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
503    BasicBlock *ExitBB = ExitBlocks[i];
504
505    // If there are no PHI nodes in this exit block, then no values defined
506    // inside the loop are used on this path, skip it.
507    PHINode *PN = dyn_cast<PHINode>(ExitBB->begin());
508    if (!PN) continue;
509
510    unsigned NumPreds = PN->getNumIncomingValues();
511
512    // Iterate over all of the PHI nodes.
513    BasicBlock::iterator BBI = ExitBB->begin();
514    while ((PN = dyn_cast<PHINode>(BBI++))) {
515      if (PN->use_empty())
516        continue; // dead use, don't replace it
517
518      // SCEV only supports integer expressions for now.
519      if (!PN->getType()->isIntegerTy() && !PN->getType()->isPointerTy())
520        continue;
521
522      // It's necessary to tell ScalarEvolution about this explicitly so that
523      // it can walk the def-use list and forget all SCEVs, as it may not be
524      // watching the PHI itself. Once the new exit value is in place, there
525      // may not be a def-use connection between the loop and every instruction
526      // which got a SCEVAddRecExpr for that loop.
527      SE->forgetValue(PN);
528
529      // Iterate over all of the values in all the PHI nodes.
530      for (unsigned i = 0; i != NumPreds; ++i) {
531        // If the value being merged in is not integer or is not defined
532        // in the loop, skip it.
533        Value *InVal = PN->getIncomingValue(i);
534        if (!isa<Instruction>(InVal))
535          continue;
536
537        // If this pred is for a subloop, not L itself, skip it.
538        if (LI->getLoopFor(PN->getIncomingBlock(i)) != L)
539          continue; // The Block is in a subloop, skip it.
540
541        // Check that InVal is defined in the loop.
542        Instruction *Inst = cast<Instruction>(InVal);
543        if (!L->contains(Inst))
544          continue;
545
546        // Okay, this instruction has a user outside of the current loop
547        // and varies predictably *inside* the loop.  Evaluate the value it
548        // contains when the loop exits, if possible.
549        const SCEV *ExitValue = SE->getSCEVAtScope(Inst, L->getParentLoop());
550        if (!SE->isLoopInvariant(ExitValue, L))
551          continue;
552
553        Value *ExitVal = Rewriter.expandCodeFor(ExitValue, PN->getType(), Inst);
554
555        DEBUG(dbgs() << "INDVARS: RLEV: AfterLoopVal = " << *ExitVal << '\n'
556                     << "  LoopVal = " << *Inst << "\n");
557
558        if (!isValidRewrite(Inst, ExitVal)) {
559          DeadInsts.push_back(ExitVal);
560          continue;
561        }
562        Changed = true;
563        ++NumReplaced;
564
565        PN->setIncomingValue(i, ExitVal);
566
567        // If this instruction is dead now, delete it.
568        RecursivelyDeleteTriviallyDeadInstructions(Inst);
569
570        if (NumPreds == 1) {
571          // Completely replace a single-pred PHI. This is safe, because the
572          // NewVal won't be variant in the loop, so we don't need an LCSSA phi
573          // node anymore.
574          PN->replaceAllUsesWith(ExitVal);
575          RecursivelyDeleteTriviallyDeadInstructions(PN);
576        }
577      }
578      if (NumPreds != 1) {
579        // Clone the PHI and delete the original one. This lets IVUsers and
580        // any other maps purge the original user from their records.
581        PHINode *NewPN = cast<PHINode>(PN->clone());
582        NewPN->takeName(PN);
583        NewPN->insertBefore(PN);
584        PN->replaceAllUsesWith(NewPN);
585        PN->eraseFromParent();
586      }
587    }
588  }
589
590  // The insertion point instruction may have been deleted; clear it out
591  // so that the rewriter doesn't trip over it later.
592  Rewriter.clearInsertPoint();
593}
594
595//===----------------------------------------------------------------------===//
596//  Rewrite IV users based on a canonical IV.
597//  Only for use with -enable-iv-rewrite.
598//===----------------------------------------------------------------------===//
599
600/// FIXME: It is an extremely bad idea to indvar substitute anything more
601/// complex than affine induction variables.  Doing so will put expensive
602/// polynomial evaluations inside of the loop, and the str reduction pass
603/// currently can only reduce affine polynomials.  For now just disable
604/// indvar subst on anything more complex than an affine addrec, unless
605/// it can be expanded to a trivial value.
606static bool isSafe(const SCEV *S, const Loop *L, ScalarEvolution *SE) {
607  // Loop-invariant values are safe.
608  if (SE->isLoopInvariant(S, L)) return true;
609
610  // Affine addrecs are safe. Non-affine are not, because LSR doesn't know how
611  // to transform them into efficient code.
612  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
613    return AR->isAffine();
614
615  // An add is safe it all its operands are safe.
616  if (const SCEVCommutativeExpr *Commutative
617      = dyn_cast<SCEVCommutativeExpr>(S)) {
618    for (SCEVCommutativeExpr::op_iterator I = Commutative->op_begin(),
619         E = Commutative->op_end(); I != E; ++I)
620      if (!isSafe(*I, L, SE)) return false;
621    return true;
622  }
623
624  // A cast is safe if its operand is.
625  if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S))
626    return isSafe(C->getOperand(), L, SE);
627
628  // A udiv is safe if its operands are.
629  if (const SCEVUDivExpr *UD = dyn_cast<SCEVUDivExpr>(S))
630    return isSafe(UD->getLHS(), L, SE) &&
631           isSafe(UD->getRHS(), L, SE);
632
633  // SCEVUnknown is always safe.
634  if (isa<SCEVUnknown>(S))
635    return true;
636
637  // Nothing else is safe.
638  return false;
639}
640
641void IndVarSimplify::RewriteIVExpressions(Loop *L, SCEVExpander &Rewriter) {
642  // Rewrite all induction variable expressions in terms of the canonical
643  // induction variable.
644  //
645  // If there were induction variables of other sizes or offsets, manually
646  // add the offsets to the primary induction variable and cast, avoiding
647  // the need for the code evaluation methods to insert induction variables
648  // of different sizes.
649  for (IVUsers::iterator UI = IU->begin(), E = IU->end(); UI != E; ++UI) {
650    Value *Op = UI->getOperandValToReplace();
651    Type *UseTy = Op->getType();
652    Instruction *User = UI->getUser();
653
654    // Compute the final addrec to expand into code.
655    const SCEV *AR = IU->getReplacementExpr(*UI);
656
657    // Evaluate the expression out of the loop, if possible.
658    if (!L->contains(UI->getUser())) {
659      const SCEV *ExitVal = SE->getSCEVAtScope(AR, L->getParentLoop());
660      if (SE->isLoopInvariant(ExitVal, L))
661        AR = ExitVal;
662    }
663
664    // FIXME: It is an extremely bad idea to indvar substitute anything more
665    // complex than affine induction variables.  Doing so will put expensive
666    // polynomial evaluations inside of the loop, and the str reduction pass
667    // currently can only reduce affine polynomials.  For now just disable
668    // indvar subst on anything more complex than an affine addrec, unless
669    // it can be expanded to a trivial value.
670    if (!isSafe(AR, L, SE))
671      continue;
672
673    // Determine the insertion point for this user. By default, insert
674    // immediately before the user. The SCEVExpander class will automatically
675    // hoist loop invariants out of the loop. For PHI nodes, there may be
676    // multiple uses, so compute the nearest common dominator for the
677    // incoming blocks.
678    Instruction *InsertPt = getInsertPointForUses(User, Op, DT);
679
680    // Now expand it into actual Instructions and patch it into place.
681    Value *NewVal = Rewriter.expandCodeFor(AR, UseTy, InsertPt);
682
683    DEBUG(dbgs() << "INDVARS: Rewrote IV '" << *AR << "' " << *Op << '\n'
684                 << "   into = " << *NewVal << "\n");
685
686    if (!isValidRewrite(Op, NewVal)) {
687      DeadInsts.push_back(NewVal);
688      continue;
689    }
690    // Inform ScalarEvolution that this value is changing. The change doesn't
691    // affect its value, but it does potentially affect which use lists the
692    // value will be on after the replacement, which affects ScalarEvolution's
693    // ability to walk use lists and drop dangling pointers when a value is
694    // deleted.
695    SE->forgetValue(User);
696
697    // Patch the new value into place.
698    if (Op->hasName())
699      NewVal->takeName(Op);
700    if (Instruction *NewValI = dyn_cast<Instruction>(NewVal))
701      NewValI->setDebugLoc(User->getDebugLoc());
702    User->replaceUsesOfWith(Op, NewVal);
703    UI->setOperandValToReplace(NewVal);
704
705    ++NumRemoved;
706    Changed = true;
707
708    // The old value may be dead now.
709    DeadInsts.push_back(Op);
710  }
711}
712
713//===----------------------------------------------------------------------===//
714//  IV Widening - Extend the width of an IV to cover its widest uses.
715//===----------------------------------------------------------------------===//
716
717namespace {
718  // Collect information about induction variables that are used by sign/zero
719  // extend operations. This information is recorded by CollectExtend and
720  // provides the input to WidenIV.
721  struct WideIVInfo {
722    PHINode *NarrowIV;
723    Type *WidestNativeType; // Widest integer type created [sz]ext
724    bool IsSigned;          // Was an sext user seen before a zext?
725
726    WideIVInfo() : NarrowIV(0), WidestNativeType(0), IsSigned(false) {}
727  };
728
729  class WideIVVisitor : public IVVisitor {
730    ScalarEvolution *SE;
731    const TargetData *TD;
732
733  public:
734    WideIVInfo WI;
735
736    WideIVVisitor(PHINode *NarrowIV, ScalarEvolution *SCEV,
737                  const TargetData *TData) :
738      SE(SCEV), TD(TData) { WI.NarrowIV = NarrowIV; }
739
740    // Implement the interface used by simplifyUsersOfIV.
741    virtual void visitCast(CastInst *Cast);
742  };
743}
744
745/// visitCast - Update information about the induction variable that is
746/// extended by this sign or zero extend operation. This is used to determine
747/// the final width of the IV before actually widening it.
748void WideIVVisitor::visitCast(CastInst *Cast) {
749  bool IsSigned = Cast->getOpcode() == Instruction::SExt;
750  if (!IsSigned && Cast->getOpcode() != Instruction::ZExt)
751    return;
752
753  Type *Ty = Cast->getType();
754  uint64_t Width = SE->getTypeSizeInBits(Ty);
755  if (TD && !TD->isLegalInteger(Width))
756    return;
757
758  if (!WI.WidestNativeType) {
759    WI.WidestNativeType = SE->getEffectiveSCEVType(Ty);
760    WI.IsSigned = IsSigned;
761    return;
762  }
763
764  // We extend the IV to satisfy the sign of its first user, arbitrarily.
765  if (WI.IsSigned != IsSigned)
766    return;
767
768  if (Width > SE->getTypeSizeInBits(WI.WidestNativeType))
769    WI.WidestNativeType = SE->getEffectiveSCEVType(Ty);
770}
771
772namespace {
773
774/// NarrowIVDefUse - Record a link in the Narrow IV def-use chain along with the
775/// WideIV that computes the same value as the Narrow IV def.  This avoids
776/// caching Use* pointers.
777struct NarrowIVDefUse {
778  Instruction *NarrowDef;
779  Instruction *NarrowUse;
780  Instruction *WideDef;
781
782  NarrowIVDefUse(): NarrowDef(0), NarrowUse(0), WideDef(0) {}
783
784  NarrowIVDefUse(Instruction *ND, Instruction *NU, Instruction *WD):
785    NarrowDef(ND), NarrowUse(NU), WideDef(WD) {}
786};
787
788/// WidenIV - The goal of this transform is to remove sign and zero extends
789/// without creating any new induction variables. To do this, it creates a new
790/// phi of the wider type and redirects all users, either removing extends or
791/// inserting truncs whenever we stop propagating the type.
792///
793class WidenIV {
794  // Parameters
795  PHINode *OrigPhi;
796  Type *WideType;
797  bool IsSigned;
798
799  // Context
800  LoopInfo        *LI;
801  Loop            *L;
802  ScalarEvolution *SE;
803  DominatorTree   *DT;
804
805  // Result
806  PHINode *WidePhi;
807  Instruction *WideInc;
808  const SCEV *WideIncExpr;
809  SmallVectorImpl<WeakVH> &DeadInsts;
810
811  SmallPtrSet<Instruction*,16> Widened;
812  SmallVector<NarrowIVDefUse, 8> NarrowIVUsers;
813
814public:
815  WidenIV(const WideIVInfo &WI, LoopInfo *LInfo,
816          ScalarEvolution *SEv, DominatorTree *DTree,
817          SmallVectorImpl<WeakVH> &DI) :
818    OrigPhi(WI.NarrowIV),
819    WideType(WI.WidestNativeType),
820    IsSigned(WI.IsSigned),
821    LI(LInfo),
822    L(LI->getLoopFor(OrigPhi->getParent())),
823    SE(SEv),
824    DT(DTree),
825    WidePhi(0),
826    WideInc(0),
827    WideIncExpr(0),
828    DeadInsts(DI) {
829    assert(L->getHeader() == OrigPhi->getParent() && "Phi must be an IV");
830  }
831
832  PHINode *CreateWideIV(SCEVExpander &Rewriter);
833
834protected:
835  Value *getExtend(Value *NarrowOper, Type *WideType, bool IsSigned,
836                   Instruction *Use);
837
838  Instruction *CloneIVUser(NarrowIVDefUse DU);
839
840  const SCEVAddRecExpr *GetWideRecurrence(Instruction *NarrowUse);
841
842  const SCEVAddRecExpr* GetExtendedOperandRecurrence(NarrowIVDefUse DU);
843
844  Instruction *WidenIVUse(NarrowIVDefUse DU);
845
846  void pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef);
847};
848} // anonymous namespace
849
850/// isLoopInvariant - Perform a quick domtree based check for loop invariance
851/// assuming that V is used within the loop. LoopInfo::isLoopInvariant() seems
852/// gratuitous for this purpose.
853static bool isLoopInvariant(Value *V, const Loop *L, const DominatorTree *DT) {
854  Instruction *Inst = dyn_cast<Instruction>(V);
855  if (!Inst)
856    return true;
857
858  return DT->properlyDominates(Inst->getParent(), L->getHeader());
859}
860
861Value *WidenIV::getExtend(Value *NarrowOper, Type *WideType, bool IsSigned,
862                          Instruction *Use) {
863  // Set the debug location and conservative insertion point.
864  IRBuilder<> Builder(Use);
865  // Hoist the insertion point into loop preheaders as far as possible.
866  for (const Loop *L = LI->getLoopFor(Use->getParent());
867       L && L->getLoopPreheader() && isLoopInvariant(NarrowOper, L, DT);
868       L = L->getParentLoop())
869    Builder.SetInsertPoint(L->getLoopPreheader()->getTerminator());
870
871  return IsSigned ? Builder.CreateSExt(NarrowOper, WideType) :
872                    Builder.CreateZExt(NarrowOper, WideType);
873}
874
875/// CloneIVUser - Instantiate a wide operation to replace a narrow
876/// operation. This only needs to handle operations that can evaluation to
877/// SCEVAddRec. It can safely return 0 for any operation we decide not to clone.
878Instruction *WidenIV::CloneIVUser(NarrowIVDefUse DU) {
879  unsigned Opcode = DU.NarrowUse->getOpcode();
880  switch (Opcode) {
881  default:
882    return 0;
883  case Instruction::Add:
884  case Instruction::Mul:
885  case Instruction::UDiv:
886  case Instruction::Sub:
887  case Instruction::And:
888  case Instruction::Or:
889  case Instruction::Xor:
890  case Instruction::Shl:
891  case Instruction::LShr:
892  case Instruction::AShr:
893    DEBUG(dbgs() << "Cloning IVUser: " << *DU.NarrowUse << "\n");
894
895    // Replace NarrowDef operands with WideDef. Otherwise, we don't know
896    // anything about the narrow operand yet so must insert a [sz]ext. It is
897    // probably loop invariant and will be folded or hoisted. If it actually
898    // comes from a widened IV, it should be removed during a future call to
899    // WidenIVUse.
900    Value *LHS = (DU.NarrowUse->getOperand(0) == DU.NarrowDef) ? DU.WideDef :
901      getExtend(DU.NarrowUse->getOperand(0), WideType, IsSigned, DU.NarrowUse);
902    Value *RHS = (DU.NarrowUse->getOperand(1) == DU.NarrowDef) ? DU.WideDef :
903      getExtend(DU.NarrowUse->getOperand(1), WideType, IsSigned, DU.NarrowUse);
904
905    BinaryOperator *NarrowBO = cast<BinaryOperator>(DU.NarrowUse);
906    BinaryOperator *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(),
907                                                    LHS, RHS,
908                                                    NarrowBO->getName());
909    IRBuilder<> Builder(DU.NarrowUse);
910    Builder.Insert(WideBO);
911    if (const OverflowingBinaryOperator *OBO =
912        dyn_cast<OverflowingBinaryOperator>(NarrowBO)) {
913      if (OBO->hasNoUnsignedWrap()) WideBO->setHasNoUnsignedWrap();
914      if (OBO->hasNoSignedWrap()) WideBO->setHasNoSignedWrap();
915    }
916    return WideBO;
917  }
918  llvm_unreachable(0);
919}
920
921/// No-wrap operations can transfer sign extension of their result to their
922/// operands. Generate the SCEV value for the widened operation without
923/// actually modifying the IR yet. If the expression after extending the
924/// operands is an AddRec for this loop, return it.
925const SCEVAddRecExpr* WidenIV::GetExtendedOperandRecurrence(NarrowIVDefUse DU) {
926  // Handle the common case of add<nsw/nuw>
927  if (DU.NarrowUse->getOpcode() != Instruction::Add)
928    return 0;
929
930  // One operand (NarrowDef) has already been extended to WideDef. Now determine
931  // if extending the other will lead to a recurrence.
932  unsigned ExtendOperIdx = DU.NarrowUse->getOperand(0) == DU.NarrowDef ? 1 : 0;
933  assert(DU.NarrowUse->getOperand(1-ExtendOperIdx) == DU.NarrowDef && "bad DU");
934
935  const SCEV *ExtendOperExpr = 0;
936  const OverflowingBinaryOperator *OBO =
937    cast<OverflowingBinaryOperator>(DU.NarrowUse);
938  if (IsSigned && OBO->hasNoSignedWrap())
939    ExtendOperExpr = SE->getSignExtendExpr(
940      SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType);
941  else if(!IsSigned && OBO->hasNoUnsignedWrap())
942    ExtendOperExpr = SE->getZeroExtendExpr(
943      SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType);
944  else
945    return 0;
946
947  // When creating this AddExpr, don't apply the current operations NSW or NUW
948  // flags. This instruction may be guarded by control flow that the no-wrap
949  // behavior depends on. Non-control-equivalent instructions can be mapped to
950  // the same SCEV expression, and it would be incorrect to transfer NSW/NUW
951  // semantics to those operations.
952  const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(
953    SE->getAddExpr(SE->getSCEV(DU.WideDef), ExtendOperExpr));
954
955  if (!AddRec || AddRec->getLoop() != L)
956    return 0;
957  return AddRec;
958}
959
960/// GetWideRecurrence - Is this instruction potentially interesting from
961/// IVUsers' perspective after widening it's type? In other words, can the
962/// extend be safely hoisted out of the loop with SCEV reducing the value to a
963/// recurrence on the same loop. If so, return the sign or zero extended
964/// recurrence. Otherwise return NULL.
965const SCEVAddRecExpr *WidenIV::GetWideRecurrence(Instruction *NarrowUse) {
966  if (!SE->isSCEVable(NarrowUse->getType()))
967    return 0;
968
969  const SCEV *NarrowExpr = SE->getSCEV(NarrowUse);
970  if (SE->getTypeSizeInBits(NarrowExpr->getType())
971      >= SE->getTypeSizeInBits(WideType)) {
972    // NarrowUse implicitly widens its operand. e.g. a gep with a narrow
973    // index. So don't follow this use.
974    return 0;
975  }
976
977  const SCEV *WideExpr = IsSigned ?
978    SE->getSignExtendExpr(NarrowExpr, WideType) :
979    SE->getZeroExtendExpr(NarrowExpr, WideType);
980  const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(WideExpr);
981  if (!AddRec || AddRec->getLoop() != L)
982    return 0;
983  return AddRec;
984}
985
986/// WidenIVUse - Determine whether an individual user of the narrow IV can be
987/// widened. If so, return the wide clone of the user.
988Instruction *WidenIV::WidenIVUse(NarrowIVDefUse DU) {
989
990  // Stop traversing the def-use chain at inner-loop phis or post-loop phis.
991  if (isa<PHINode>(DU.NarrowUse) &&
992      LI->getLoopFor(DU.NarrowUse->getParent()) != L)
993    return 0;
994
995  // Our raison d'etre! Eliminate sign and zero extension.
996  if (IsSigned ? isa<SExtInst>(DU.NarrowUse) : isa<ZExtInst>(DU.NarrowUse)) {
997    Value *NewDef = DU.WideDef;
998    if (DU.NarrowUse->getType() != WideType) {
999      unsigned CastWidth = SE->getTypeSizeInBits(DU.NarrowUse->getType());
1000      unsigned IVWidth = SE->getTypeSizeInBits(WideType);
1001      if (CastWidth < IVWidth) {
1002        // The cast isn't as wide as the IV, so insert a Trunc.
1003        IRBuilder<> Builder(DU.NarrowUse);
1004        NewDef = Builder.CreateTrunc(DU.WideDef, DU.NarrowUse->getType());
1005      }
1006      else {
1007        // A wider extend was hidden behind a narrower one. This may induce
1008        // another round of IV widening in which the intermediate IV becomes
1009        // dead. It should be very rare.
1010        DEBUG(dbgs() << "INDVARS: New IV " << *WidePhi
1011              << " not wide enough to subsume " << *DU.NarrowUse << "\n");
1012        DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef);
1013        NewDef = DU.NarrowUse;
1014      }
1015    }
1016    if (NewDef != DU.NarrowUse) {
1017      DEBUG(dbgs() << "INDVARS: eliminating " << *DU.NarrowUse
1018            << " replaced by " << *DU.WideDef << "\n");
1019      ++NumElimExt;
1020      DU.NarrowUse->replaceAllUsesWith(NewDef);
1021      DeadInsts.push_back(DU.NarrowUse);
1022    }
1023    // Now that the extend is gone, we want to expose it's uses for potential
1024    // further simplification. We don't need to directly inform SimplifyIVUsers
1025    // of the new users, because their parent IV will be processed later as a
1026    // new loop phi. If we preserved IVUsers analysis, we would also want to
1027    // push the uses of WideDef here.
1028
1029    // No further widening is needed. The deceased [sz]ext had done it for us.
1030    return 0;
1031  }
1032
1033  // Does this user itself evaluate to a recurrence after widening?
1034  const SCEVAddRecExpr *WideAddRec = GetWideRecurrence(DU.NarrowUse);
1035  if (!WideAddRec) {
1036      WideAddRec = GetExtendedOperandRecurrence(DU);
1037  }
1038  if (!WideAddRec) {
1039    // This user does not evaluate to a recurence after widening, so don't
1040    // follow it. Instead insert a Trunc to kill off the original use,
1041    // eventually isolating the original narrow IV so it can be removed.
1042    IRBuilder<> Builder(getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT));
1043    Value *Trunc = Builder.CreateTrunc(DU.WideDef, DU.NarrowDef->getType());
1044    DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, Trunc);
1045    return 0;
1046  }
1047  // Assume block terminators cannot evaluate to a recurrence. We can't to
1048  // insert a Trunc after a terminator if there happens to be a critical edge.
1049  assert(DU.NarrowUse != DU.NarrowUse->getParent()->getTerminator() &&
1050         "SCEV is not expected to evaluate a block terminator");
1051
1052  // Reuse the IV increment that SCEVExpander created as long as it dominates
1053  // NarrowUse.
1054  Instruction *WideUse = 0;
1055  if (WideAddRec == WideIncExpr
1056      && SCEVExpander::hoistStep(WideInc, DU.NarrowUse, DT))
1057    WideUse = WideInc;
1058  else {
1059    WideUse = CloneIVUser(DU);
1060    if (!WideUse)
1061      return 0;
1062  }
1063  // Evaluation of WideAddRec ensured that the narrow expression could be
1064  // extended outside the loop without overflow. This suggests that the wide use
1065  // evaluates to the same expression as the extended narrow use, but doesn't
1066  // absolutely guarantee it. Hence the following failsafe check. In rare cases
1067  // where it fails, we simply throw away the newly created wide use.
1068  if (WideAddRec != SE->getSCEV(WideUse)) {
1069    DEBUG(dbgs() << "Wide use expression mismatch: " << *WideUse
1070          << ": " << *SE->getSCEV(WideUse) << " != " << *WideAddRec << "\n");
1071    DeadInsts.push_back(WideUse);
1072    return 0;
1073  }
1074
1075  // Returning WideUse pushes it on the worklist.
1076  return WideUse;
1077}
1078
1079/// pushNarrowIVUsers - Add eligible users of NarrowDef to NarrowIVUsers.
1080///
1081void WidenIV::pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef) {
1082  for (Value::use_iterator UI = NarrowDef->use_begin(),
1083         UE = NarrowDef->use_end(); UI != UE; ++UI) {
1084    Instruction *NarrowUse = cast<Instruction>(*UI);
1085
1086    // Handle data flow merges and bizarre phi cycles.
1087    if (!Widened.insert(NarrowUse))
1088      continue;
1089
1090    NarrowIVUsers.push_back(NarrowIVDefUse(NarrowDef, NarrowUse, WideDef));
1091  }
1092}
1093
1094/// CreateWideIV - Process a single induction variable. First use the
1095/// SCEVExpander to create a wide induction variable that evaluates to the same
1096/// recurrence as the original narrow IV. Then use a worklist to forward
1097/// traverse the narrow IV's def-use chain. After WidenIVUse has processed all
1098/// interesting IV users, the narrow IV will be isolated for removal by
1099/// DeleteDeadPHIs.
1100///
1101/// It would be simpler to delete uses as they are processed, but we must avoid
1102/// invalidating SCEV expressions.
1103///
1104PHINode *WidenIV::CreateWideIV(SCEVExpander &Rewriter) {
1105  // Is this phi an induction variable?
1106  const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(OrigPhi));
1107  if (!AddRec)
1108    return NULL;
1109
1110  // Widen the induction variable expression.
1111  const SCEV *WideIVExpr = IsSigned ?
1112    SE->getSignExtendExpr(AddRec, WideType) :
1113    SE->getZeroExtendExpr(AddRec, WideType);
1114
1115  assert(SE->getEffectiveSCEVType(WideIVExpr->getType()) == WideType &&
1116         "Expect the new IV expression to preserve its type");
1117
1118  // Can the IV be extended outside the loop without overflow?
1119  AddRec = dyn_cast<SCEVAddRecExpr>(WideIVExpr);
1120  if (!AddRec || AddRec->getLoop() != L)
1121    return NULL;
1122
1123  // An AddRec must have loop-invariant operands. Since this AddRec is
1124  // materialized by a loop header phi, the expression cannot have any post-loop
1125  // operands, so they must dominate the loop header.
1126  assert(SE->properlyDominates(AddRec->getStart(), L->getHeader()) &&
1127         SE->properlyDominates(AddRec->getStepRecurrence(*SE), L->getHeader())
1128         && "Loop header phi recurrence inputs do not dominate the loop");
1129
1130  // The rewriter provides a value for the desired IV expression. This may
1131  // either find an existing phi or materialize a new one. Either way, we
1132  // expect a well-formed cyclic phi-with-increments. i.e. any operand not part
1133  // of the phi-SCC dominates the loop entry.
1134  Instruction *InsertPt = L->getHeader()->begin();
1135  WidePhi = cast<PHINode>(Rewriter.expandCodeFor(AddRec, WideType, InsertPt));
1136
1137  // Remembering the WideIV increment generated by SCEVExpander allows
1138  // WidenIVUse to reuse it when widening the narrow IV's increment. We don't
1139  // employ a general reuse mechanism because the call above is the only call to
1140  // SCEVExpander. Henceforth, we produce 1-to-1 narrow to wide uses.
1141  if (BasicBlock *LatchBlock = L->getLoopLatch()) {
1142    WideInc =
1143      cast<Instruction>(WidePhi->getIncomingValueForBlock(LatchBlock));
1144    WideIncExpr = SE->getSCEV(WideInc);
1145  }
1146
1147  DEBUG(dbgs() << "Wide IV: " << *WidePhi << "\n");
1148  ++NumWidened;
1149
1150  // Traverse the def-use chain using a worklist starting at the original IV.
1151  assert(Widened.empty() && NarrowIVUsers.empty() && "expect initial state" );
1152
1153  Widened.insert(OrigPhi);
1154  pushNarrowIVUsers(OrigPhi, WidePhi);
1155
1156  while (!NarrowIVUsers.empty()) {
1157    NarrowIVDefUse DU = NarrowIVUsers.pop_back_val();
1158
1159    // Process a def-use edge. This may replace the use, so don't hold a
1160    // use_iterator across it.
1161    Instruction *WideUse = WidenIVUse(DU);
1162
1163    // Follow all def-use edges from the previous narrow use.
1164    if (WideUse)
1165      pushNarrowIVUsers(DU.NarrowUse, WideUse);
1166
1167    // WidenIVUse may have removed the def-use edge.
1168    if (DU.NarrowDef->use_empty())
1169      DeadInsts.push_back(DU.NarrowDef);
1170  }
1171  return WidePhi;
1172}
1173
1174//===----------------------------------------------------------------------===//
1175//  Simplification of IV users based on SCEV evaluation.
1176//===----------------------------------------------------------------------===//
1177
1178
1179/// SimplifyAndExtend - Iteratively perform simplification on a worklist of IV
1180/// users. Each successive simplification may push more users which may
1181/// themselves be candidates for simplification.
1182///
1183/// Sign/Zero extend elimination is interleaved with IV simplification.
1184///
1185void IndVarSimplify::SimplifyAndExtend(Loop *L,
1186                                       SCEVExpander &Rewriter,
1187                                       LPPassManager &LPM) {
1188  SmallVector<WideIVInfo, 8> WideIVs;
1189
1190  SmallVector<PHINode*, 8> LoopPhis;
1191  for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
1192    LoopPhis.push_back(cast<PHINode>(I));
1193  }
1194  // Each round of simplification iterates through the SimplifyIVUsers worklist
1195  // for all current phis, then determines whether any IVs can be
1196  // widened. Widening adds new phis to LoopPhis, inducing another round of
1197  // simplification on the wide IVs.
1198  while (!LoopPhis.empty()) {
1199    // Evaluate as many IV expressions as possible before widening any IVs. This
1200    // forces SCEV to set no-wrap flags before evaluating sign/zero
1201    // extension. The first time SCEV attempts to normalize sign/zero extension,
1202    // the result becomes final. So for the most predictable results, we delay
1203    // evaluation of sign/zero extend evaluation until needed, and avoid running
1204    // other SCEV based analysis prior to SimplifyAndExtend.
1205    do {
1206      PHINode *CurrIV = LoopPhis.pop_back_val();
1207
1208      // Information about sign/zero extensions of CurrIV.
1209      WideIVVisitor WIV(CurrIV, SE, TD);
1210
1211      Changed |= simplifyUsersOfIV(CurrIV, SE, &LPM, DeadInsts, &WIV);
1212
1213      if (WIV.WI.WidestNativeType) {
1214        WideIVs.push_back(WIV.WI);
1215      }
1216    } while(!LoopPhis.empty());
1217
1218    for (; !WideIVs.empty(); WideIVs.pop_back()) {
1219      WidenIV Widener(WideIVs.back(), LI, SE, DT, DeadInsts);
1220      if (PHINode *WidePhi = Widener.CreateWideIV(Rewriter)) {
1221        Changed = true;
1222        LoopPhis.push_back(WidePhi);
1223      }
1224    }
1225  }
1226}
1227
1228//===----------------------------------------------------------------------===//
1229//  LinearFunctionTestReplace and its kin. Rewrite the loop exit condition.
1230//===----------------------------------------------------------------------===//
1231
1232/// Check for expressions that ScalarEvolution generates to compute
1233/// BackedgeTakenInfo. If these expressions have not been reduced, then
1234/// expanding them may incur additional cost (albeit in the loop preheader).
1235static bool isHighCostExpansion(const SCEV *S, BranchInst *BI,
1236                                ScalarEvolution *SE) {
1237  // If the backedge-taken count is a UDiv, it's very likely a UDiv that
1238  // ScalarEvolution's HowFarToZero or HowManyLessThans produced to compute a
1239  // precise expression, rather than a UDiv from the user's code. If we can't
1240  // find a UDiv in the code with some simple searching, assume the former and
1241  // forego rewriting the loop.
1242  if (isa<SCEVUDivExpr>(S)) {
1243    ICmpInst *OrigCond = dyn_cast<ICmpInst>(BI->getCondition());
1244    if (!OrigCond) return true;
1245    const SCEV *R = SE->getSCEV(OrigCond->getOperand(1));
1246    R = SE->getMinusSCEV(R, SE->getConstant(R->getType(), 1));
1247    if (R != S) {
1248      const SCEV *L = SE->getSCEV(OrigCond->getOperand(0));
1249      L = SE->getMinusSCEV(L, SE->getConstant(L->getType(), 1));
1250      if (L != S)
1251        return true;
1252    }
1253  }
1254
1255  if (EnableIVRewrite)
1256    return false;
1257
1258  // Recurse past add expressions, which commonly occur in the
1259  // BackedgeTakenCount. They may already exist in program code, and if not,
1260  // they are not too expensive rematerialize.
1261  if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
1262    for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
1263         I != E; ++I) {
1264      if (isHighCostExpansion(*I, BI, SE))
1265        return true;
1266    }
1267    return false;
1268  }
1269
1270  // HowManyLessThans uses a Max expression whenever the loop is not guarded by
1271  // the exit condition.
1272  if (isa<SCEVSMaxExpr>(S) || isa<SCEVUMaxExpr>(S))
1273    return true;
1274
1275  // If we haven't recognized an expensive SCEV patter, assume its an expression
1276  // produced by program code.
1277  return false;
1278}
1279
1280/// canExpandBackedgeTakenCount - Return true if this loop's backedge taken
1281/// count expression can be safely and cheaply expanded into an instruction
1282/// sequence that can be used by LinearFunctionTestReplace.
1283///
1284/// TODO: This fails for pointer-type loop counters with greater than one byte
1285/// strides, consequently preventing LFTR from running. For the purpose of LFTR
1286/// we could skip this check in the case that the LFTR loop counter (chosen by
1287/// FindLoopCounter) is also pointer type. Instead, we could directly convert
1288/// the loop test to an inequality test by checking the target data's alignment
1289/// of element types (given that the initial pointer value originates from or is
1290/// used by ABI constrained operation, as opposed to inttoptr/ptrtoint).
1291/// However, we don't yet have a strong motivation for converting loop tests
1292/// into inequality tests.
1293static bool canExpandBackedgeTakenCount(Loop *L, ScalarEvolution *SE) {
1294  const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L);
1295  if (isa<SCEVCouldNotCompute>(BackedgeTakenCount) ||
1296      BackedgeTakenCount->isZero())
1297    return false;
1298
1299  if (!L->getExitingBlock())
1300    return false;
1301
1302  // Can't rewrite non-branch yet.
1303  BranchInst *BI = dyn_cast<BranchInst>(L->getExitingBlock()->getTerminator());
1304  if (!BI)
1305    return false;
1306
1307  if (isHighCostExpansion(BackedgeTakenCount, BI, SE))
1308    return false;
1309
1310  return true;
1311}
1312
1313/// getBackedgeIVType - Get the widest type used by the loop test after peeking
1314/// through Truncs.
1315///
1316/// TODO: Unnecessary when ForceLFTR is removed.
1317static Type *getBackedgeIVType(Loop *L) {
1318  if (!L->getExitingBlock())
1319    return 0;
1320
1321  // Can't rewrite non-branch yet.
1322  BranchInst *BI = dyn_cast<BranchInst>(L->getExitingBlock()->getTerminator());
1323  if (!BI)
1324    return 0;
1325
1326  ICmpInst *Cond = dyn_cast<ICmpInst>(BI->getCondition());
1327  if (!Cond)
1328    return 0;
1329
1330  Type *Ty = 0;
1331  for(User::op_iterator OI = Cond->op_begin(), OE = Cond->op_end();
1332      OI != OE; ++OI) {
1333    assert((!Ty || Ty == (*OI)->getType()) && "bad icmp operand types");
1334    TruncInst *Trunc = dyn_cast<TruncInst>(*OI);
1335    if (!Trunc)
1336      continue;
1337
1338    return Trunc->getSrcTy();
1339  }
1340  return Ty;
1341}
1342
1343/// getLoopPhiForCounter - Return the loop header phi IFF IncV adds a loop
1344/// invariant value to the phi.
1345static PHINode *getLoopPhiForCounter(Value *IncV, Loop *L, DominatorTree *DT) {
1346  Instruction *IncI = dyn_cast<Instruction>(IncV);
1347  if (!IncI)
1348    return 0;
1349
1350  switch (IncI->getOpcode()) {
1351  case Instruction::Add:
1352  case Instruction::Sub:
1353    break;
1354  case Instruction::GetElementPtr:
1355    // An IV counter must preserve its type.
1356    if (IncI->getNumOperands() == 2)
1357      break;
1358  default:
1359    return 0;
1360  }
1361
1362  PHINode *Phi = dyn_cast<PHINode>(IncI->getOperand(0));
1363  if (Phi && Phi->getParent() == L->getHeader()) {
1364    if (isLoopInvariant(IncI->getOperand(1), L, DT))
1365      return Phi;
1366    return 0;
1367  }
1368  if (IncI->getOpcode() == Instruction::GetElementPtr)
1369    return 0;
1370
1371  // Allow add/sub to be commuted.
1372  Phi = dyn_cast<PHINode>(IncI->getOperand(1));
1373  if (Phi && Phi->getParent() == L->getHeader()) {
1374    if (isLoopInvariant(IncI->getOperand(0), L, DT))
1375      return Phi;
1376  }
1377  return 0;
1378}
1379
1380/// needsLFTR - LinearFunctionTestReplace policy. Return true unless we can show
1381/// that the current exit test is already sufficiently canonical.
1382static bool needsLFTR(Loop *L, DominatorTree *DT) {
1383  assert(L->getExitingBlock() && "expected loop exit");
1384
1385  BasicBlock *LatchBlock = L->getLoopLatch();
1386  // Don't bother with LFTR if the loop is not properly simplified.
1387  if (!LatchBlock)
1388    return false;
1389
1390  BranchInst *BI = dyn_cast<BranchInst>(L->getExitingBlock()->getTerminator());
1391  assert(BI && "expected exit branch");
1392
1393  // Do LFTR to simplify the exit condition to an ICMP.
1394  ICmpInst *Cond = dyn_cast<ICmpInst>(BI->getCondition());
1395  if (!Cond)
1396    return true;
1397
1398  // Do LFTR to simplify the exit ICMP to EQ/NE
1399  ICmpInst::Predicate Pred = Cond->getPredicate();
1400  if (Pred != ICmpInst::ICMP_NE && Pred != ICmpInst::ICMP_EQ)
1401    return true;
1402
1403  // Look for a loop invariant RHS
1404  Value *LHS = Cond->getOperand(0);
1405  Value *RHS = Cond->getOperand(1);
1406  if (!isLoopInvariant(RHS, L, DT)) {
1407    if (!isLoopInvariant(LHS, L, DT))
1408      return true;
1409    std::swap(LHS, RHS);
1410  }
1411  // Look for a simple IV counter LHS
1412  PHINode *Phi = dyn_cast<PHINode>(LHS);
1413  if (!Phi)
1414    Phi = getLoopPhiForCounter(LHS, L, DT);
1415
1416  if (!Phi)
1417    return true;
1418
1419  // Do LFTR if the exit condition's IV is *not* a simple counter.
1420  Value *IncV = Phi->getIncomingValueForBlock(L->getLoopLatch());
1421  return Phi != getLoopPhiForCounter(IncV, L, DT);
1422}
1423
1424/// AlmostDeadIV - Return true if this IV has any uses other than the (soon to
1425/// be rewritten) loop exit test.
1426static bool AlmostDeadIV(PHINode *Phi, BasicBlock *LatchBlock, Value *Cond) {
1427  int LatchIdx = Phi->getBasicBlockIndex(LatchBlock);
1428  Value *IncV = Phi->getIncomingValue(LatchIdx);
1429
1430  for (Value::use_iterator UI = Phi->use_begin(), UE = Phi->use_end();
1431       UI != UE; ++UI) {
1432    if (*UI != Cond && *UI != IncV) return false;
1433  }
1434
1435  for (Value::use_iterator UI = IncV->use_begin(), UE = IncV->use_end();
1436       UI != UE; ++UI) {
1437    if (*UI != Cond && *UI != Phi) return false;
1438  }
1439  return true;
1440}
1441
1442/// FindLoopCounter - Find an affine IV in canonical form.
1443///
1444/// BECount may be an i8* pointer type. The pointer difference is already
1445/// valid count without scaling the address stride, so it remains a pointer
1446/// expression as far as SCEV is concerned.
1447///
1448/// FIXME: Accept -1 stride and set IVLimit = IVInit - BECount
1449///
1450/// FIXME: Accept non-unit stride as long as SCEV can reduce BECount * Stride.
1451/// This is difficult in general for SCEV because of potential overflow. But we
1452/// could at least handle constant BECounts.
1453static PHINode *
1454FindLoopCounter(Loop *L, const SCEV *BECount,
1455                ScalarEvolution *SE, DominatorTree *DT, const TargetData *TD) {
1456  uint64_t BCWidth = SE->getTypeSizeInBits(BECount->getType());
1457
1458  Value *Cond =
1459    cast<BranchInst>(L->getExitingBlock()->getTerminator())->getCondition();
1460
1461  // Loop over all of the PHI nodes, looking for a simple counter.
1462  PHINode *BestPhi = 0;
1463  const SCEV *BestInit = 0;
1464  BasicBlock *LatchBlock = L->getLoopLatch();
1465  assert(LatchBlock && "needsLFTR should guarantee a loop latch");
1466
1467  for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
1468    PHINode *Phi = cast<PHINode>(I);
1469    if (!SE->isSCEVable(Phi->getType()))
1470      continue;
1471
1472    // Avoid comparing an integer IV against a pointer Limit.
1473    if (BECount->getType()->isPointerTy() && !Phi->getType()->isPointerTy())
1474      continue;
1475
1476    const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Phi));
1477    if (!AR || AR->getLoop() != L || !AR->isAffine())
1478      continue;
1479
1480    // AR may be a pointer type, while BECount is an integer type.
1481    // AR may be wider than BECount. With eq/ne tests overflow is immaterial.
1482    // AR may not be a narrower type, or we may never exit.
1483    uint64_t PhiWidth = SE->getTypeSizeInBits(AR->getType());
1484    if (PhiWidth < BCWidth || (TD && !TD->isLegalInteger(PhiWidth)))
1485      continue;
1486
1487    const SCEV *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*SE));
1488    if (!Step || !Step->isOne())
1489      continue;
1490
1491    int LatchIdx = Phi->getBasicBlockIndex(LatchBlock);
1492    Value *IncV = Phi->getIncomingValue(LatchIdx);
1493    if (getLoopPhiForCounter(IncV, L, DT) != Phi)
1494      continue;
1495
1496    const SCEV *Init = AR->getStart();
1497
1498    if (BestPhi && !AlmostDeadIV(BestPhi, LatchBlock, Cond)) {
1499      // Don't force a live loop counter if another IV can be used.
1500      if (AlmostDeadIV(Phi, LatchBlock, Cond))
1501        continue;
1502
1503      // Prefer to count-from-zero. This is a more "canonical" counter form. It
1504      // also prefers integer to pointer IVs.
1505      if (BestInit->isZero() != Init->isZero()) {
1506        if (BestInit->isZero())
1507          continue;
1508      }
1509      // If two IVs both count from zero or both count from nonzero then the
1510      // narrower is likely a dead phi that has been widened. Use the wider phi
1511      // to allow the other to be eliminated.
1512      if (PhiWidth <= SE->getTypeSizeInBits(BestPhi->getType()))
1513        continue;
1514    }
1515    BestPhi = Phi;
1516    BestInit = Init;
1517  }
1518  return BestPhi;
1519}
1520
1521/// genLoopLimit - Help LinearFunctionTestReplace by generating a value that
1522/// holds the RHS of the new loop test.
1523static Value *genLoopLimit(PHINode *IndVar, const SCEV *IVCount, Loop *L,
1524                           SCEVExpander &Rewriter, ScalarEvolution *SE) {
1525  const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(IndVar));
1526  assert(AR && AR->getLoop() == L && AR->isAffine() && "bad loop counter");
1527  const SCEV *IVInit = AR->getStart();
1528
1529  // IVInit may be a pointer while IVCount is an integer when FindLoopCounter
1530  // finds a valid pointer IV. Sign extend BECount in order to materialize a
1531  // GEP. Avoid running SCEVExpander on a new pointer value, instead reusing
1532  // the existing GEPs whenever possible.
1533  if (IndVar->getType()->isPointerTy()
1534      && !IVCount->getType()->isPointerTy()) {
1535
1536    Type *OfsTy = SE->getEffectiveSCEVType(IVInit->getType());
1537    const SCEV *IVOffset = SE->getTruncateOrSignExtend(IVCount, OfsTy);
1538
1539    // Expand the code for the iteration count.
1540    assert(SE->isLoopInvariant(IVOffset, L) &&
1541           "Computed iteration count is not loop invariant!");
1542    BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator());
1543    Value *GEPOffset = Rewriter.expandCodeFor(IVOffset, OfsTy, BI);
1544
1545    Value *GEPBase = IndVar->getIncomingValueForBlock(L->getLoopPreheader());
1546    assert(AR->getStart() == SE->getSCEV(GEPBase) && "bad loop counter");
1547    // We could handle pointer IVs other than i8*, but we need to compensate for
1548    // gep index scaling. See canExpandBackedgeTakenCount comments.
1549    assert(SE->getSizeOfExpr(
1550             cast<PointerType>(GEPBase->getType())->getElementType())->isOne()
1551           && "unit stride pointer IV must be i8*");
1552
1553    IRBuilder<> Builder(L->getLoopPreheader()->getTerminator());
1554    return Builder.CreateGEP(GEPBase, GEPOffset, "lftr.limit");
1555  }
1556  else {
1557    // In any other case, convert both IVInit and IVCount to integers before
1558    // comparing. This may result in SCEV expension of pointers, but in practice
1559    // SCEV will fold the pointer arithmetic away as such:
1560    // BECount = (IVEnd - IVInit - 1) => IVLimit = IVInit (postinc).
1561    //
1562    // Valid Cases: (1) both integers is most common; (2) both may be pointers
1563    // for simple memset-style loops; (3) IVInit is an integer and IVCount is a
1564    // pointer may occur when enable-iv-rewrite generates a canonical IV on top
1565    // of case #2.
1566
1567    const SCEV *IVLimit = 0;
1568    // For unit stride, IVCount = Start + BECount with 2's complement overflow.
1569    // For non-zero Start, compute IVCount here.
1570    if (AR->getStart()->isZero())
1571      IVLimit = IVCount;
1572    else {
1573      assert(AR->getStepRecurrence(*SE)->isOne() && "only handles unit stride");
1574      const SCEV *IVInit = AR->getStart();
1575
1576      // For integer IVs, truncate the IV before computing IVInit + BECount.
1577      if (SE->getTypeSizeInBits(IVInit->getType())
1578          > SE->getTypeSizeInBits(IVCount->getType()))
1579        IVInit = SE->getTruncateExpr(IVInit, IVCount->getType());
1580
1581      IVLimit = SE->getAddExpr(IVInit, IVCount);
1582    }
1583    // Expand the code for the iteration count.
1584    BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator());
1585    IRBuilder<> Builder(BI);
1586    assert(SE->isLoopInvariant(IVLimit, L) &&
1587           "Computed iteration count is not loop invariant!");
1588    // Ensure that we generate the same type as IndVar, or a smaller integer
1589    // type. In the presence of null pointer values, we have an integer type
1590    // SCEV expression (IVInit) for a pointer type IV value (IndVar).
1591    Type *LimitTy = IVCount->getType()->isPointerTy() ?
1592      IndVar->getType() : IVCount->getType();
1593    return Rewriter.expandCodeFor(IVLimit, LimitTy, BI);
1594  }
1595}
1596
1597/// LinearFunctionTestReplace - This method rewrites the exit condition of the
1598/// loop to be a canonical != comparison against the incremented loop induction
1599/// variable.  This pass is able to rewrite the exit tests of any loop where the
1600/// SCEV analysis can determine a loop-invariant trip count of the loop, which
1601/// is actually a much broader range than just linear tests.
1602Value *IndVarSimplify::
1603LinearFunctionTestReplace(Loop *L,
1604                          const SCEV *BackedgeTakenCount,
1605                          PHINode *IndVar,
1606                          SCEVExpander &Rewriter) {
1607  assert(canExpandBackedgeTakenCount(L, SE) && "precondition");
1608
1609  // LFTR can ignore IV overflow and truncate to the width of
1610  // BECount. This avoids materializing the add(zext(add)) expression.
1611  Type *CntTy = !EnableIVRewrite ?
1612    BackedgeTakenCount->getType() : IndVar->getType();
1613
1614  const SCEV *IVCount = BackedgeTakenCount;
1615
1616  // If the exiting block is the same as the backedge block, we prefer to
1617  // compare against the post-incremented value, otherwise we must compare
1618  // against the preincremented value.
1619  Value *CmpIndVar;
1620  if (L->getExitingBlock() == L->getLoopLatch()) {
1621    // Add one to the "backedge-taken" count to get the trip count.
1622    // If this addition may overflow, we have to be more pessimistic and
1623    // cast the induction variable before doing the add.
1624    const SCEV *N =
1625      SE->getAddExpr(IVCount, SE->getConstant(IVCount->getType(), 1));
1626    if (CntTy == IVCount->getType())
1627      IVCount = N;
1628    else {
1629      const SCEV *Zero = SE->getConstant(IVCount->getType(), 0);
1630      if ((isa<SCEVConstant>(N) && !N->isZero()) ||
1631          SE->isLoopEntryGuardedByCond(L, ICmpInst::ICMP_NE, N, Zero)) {
1632        // No overflow. Cast the sum.
1633        IVCount = SE->getTruncateOrZeroExtend(N, CntTy);
1634      } else {
1635        // Potential overflow. Cast before doing the add.
1636        IVCount = SE->getTruncateOrZeroExtend(IVCount, CntTy);
1637        IVCount = SE->getAddExpr(IVCount, SE->getConstant(CntTy, 1));
1638      }
1639    }
1640    // The BackedgeTaken expression contains the number of times that the
1641    // backedge branches to the loop header.  This is one less than the
1642    // number of times the loop executes, so use the incremented indvar.
1643    CmpIndVar = IndVar->getIncomingValueForBlock(L->getExitingBlock());
1644  } else {
1645    // We must use the preincremented value...
1646    IVCount = SE->getTruncateOrZeroExtend(IVCount, CntTy);
1647    CmpIndVar = IndVar;
1648  }
1649
1650  Value *ExitCnt = genLoopLimit(IndVar, IVCount, L, Rewriter, SE);
1651  assert(ExitCnt->getType()->isPointerTy() == IndVar->getType()->isPointerTy()
1652         && "genLoopLimit missed a cast");
1653
1654  // Insert a new icmp_ne or icmp_eq instruction before the branch.
1655  BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator());
1656  ICmpInst::Predicate P;
1657  if (L->contains(BI->getSuccessor(0)))
1658    P = ICmpInst::ICMP_NE;
1659  else
1660    P = ICmpInst::ICMP_EQ;
1661
1662  DEBUG(dbgs() << "INDVARS: Rewriting loop exit condition to:\n"
1663               << "      LHS:" << *CmpIndVar << '\n'
1664               << "       op:\t"
1665               << (P == ICmpInst::ICMP_NE ? "!=" : "==") << "\n"
1666               << "      RHS:\t" << *ExitCnt << "\n"
1667               << "  IVCount:\t" << *IVCount << "\n");
1668
1669  IRBuilder<> Builder(BI);
1670  if (SE->getTypeSizeInBits(CmpIndVar->getType())
1671      > SE->getTypeSizeInBits(ExitCnt->getType())) {
1672    CmpIndVar = Builder.CreateTrunc(CmpIndVar, ExitCnt->getType(),
1673                                    "lftr.wideiv");
1674  }
1675
1676  Value *Cond = Builder.CreateICmp(P, CmpIndVar, ExitCnt, "exitcond");
1677  Value *OrigCond = BI->getCondition();
1678  // It's tempting to use replaceAllUsesWith here to fully replace the old
1679  // comparison, but that's not immediately safe, since users of the old
1680  // comparison may not be dominated by the new comparison. Instead, just
1681  // update the branch to use the new comparison; in the common case this
1682  // will make old comparison dead.
1683  BI->setCondition(Cond);
1684  DeadInsts.push_back(OrigCond);
1685
1686  ++NumLFTR;
1687  Changed = true;
1688  return Cond;
1689}
1690
1691//===----------------------------------------------------------------------===//
1692//  SinkUnusedInvariants. A late subpass to cleanup loop preheaders.
1693//===----------------------------------------------------------------------===//
1694
1695/// If there's a single exit block, sink any loop-invariant values that
1696/// were defined in the preheader but not used inside the loop into the
1697/// exit block to reduce register pressure in the loop.
1698void IndVarSimplify::SinkUnusedInvariants(Loop *L) {
1699  BasicBlock *ExitBlock = L->getExitBlock();
1700  if (!ExitBlock) return;
1701
1702  BasicBlock *Preheader = L->getLoopPreheader();
1703  if (!Preheader) return;
1704
1705  Instruction *InsertPt = ExitBlock->getFirstInsertionPt();
1706  BasicBlock::iterator I = Preheader->getTerminator();
1707  while (I != Preheader->begin()) {
1708    --I;
1709    // New instructions were inserted at the end of the preheader.
1710    if (isa<PHINode>(I))
1711      break;
1712
1713    // Don't move instructions which might have side effects, since the side
1714    // effects need to complete before instructions inside the loop.  Also don't
1715    // move instructions which might read memory, since the loop may modify
1716    // memory. Note that it's okay if the instruction might have undefined
1717    // behavior: LoopSimplify guarantees that the preheader dominates the exit
1718    // block.
1719    if (I->mayHaveSideEffects() || I->mayReadFromMemory())
1720      continue;
1721
1722    // Skip debug info intrinsics.
1723    if (isa<DbgInfoIntrinsic>(I))
1724      continue;
1725
1726    // Skip landingpad instructions.
1727    if (isa<LandingPadInst>(I))
1728      continue;
1729
1730    // Don't sink alloca: we never want to sink static alloca's out of the
1731    // entry block, and correctly sinking dynamic alloca's requires
1732    // checks for stacksave/stackrestore intrinsics.
1733    // FIXME: Refactor this check somehow?
1734    if (isa<AllocaInst>(I))
1735      continue;
1736
1737    // Determine if there is a use in or before the loop (direct or
1738    // otherwise).
1739    bool UsedInLoop = false;
1740    for (Value::use_iterator UI = I->use_begin(), UE = I->use_end();
1741         UI != UE; ++UI) {
1742      User *U = *UI;
1743      BasicBlock *UseBB = cast<Instruction>(U)->getParent();
1744      if (PHINode *P = dyn_cast<PHINode>(U)) {
1745        unsigned i =
1746          PHINode::getIncomingValueNumForOperand(UI.getOperandNo());
1747        UseBB = P->getIncomingBlock(i);
1748      }
1749      if (UseBB == Preheader || L->contains(UseBB)) {
1750        UsedInLoop = true;
1751        break;
1752      }
1753    }
1754
1755    // If there is, the def must remain in the preheader.
1756    if (UsedInLoop)
1757      continue;
1758
1759    // Otherwise, sink it to the exit block.
1760    Instruction *ToMove = I;
1761    bool Done = false;
1762
1763    if (I != Preheader->begin()) {
1764      // Skip debug info intrinsics.
1765      do {
1766        --I;
1767      } while (isa<DbgInfoIntrinsic>(I) && I != Preheader->begin());
1768
1769      if (isa<DbgInfoIntrinsic>(I) && I == Preheader->begin())
1770        Done = true;
1771    } else {
1772      Done = true;
1773    }
1774
1775    ToMove->moveBefore(InsertPt);
1776    if (Done) break;
1777    InsertPt = ToMove;
1778  }
1779}
1780
1781//===----------------------------------------------------------------------===//
1782//  IndVarSimplify driver. Manage several subpasses of IV simplification.
1783//===----------------------------------------------------------------------===//
1784
1785bool IndVarSimplify::runOnLoop(Loop *L, LPPassManager &LPM) {
1786  // If LoopSimplify form is not available, stay out of trouble. Some notes:
1787  //  - LSR currently only supports LoopSimplify-form loops. Indvars'
1788  //    canonicalization can be a pessimization without LSR to "clean up"
1789  //    afterwards.
1790  //  - We depend on having a preheader; in particular,
1791  //    Loop::getCanonicalInductionVariable only supports loops with preheaders,
1792  //    and we're in trouble if we can't find the induction variable even when
1793  //    we've manually inserted one.
1794  if (!L->isLoopSimplifyForm())
1795    return false;
1796
1797  if (EnableIVRewrite)
1798    IU = &getAnalysis<IVUsers>();
1799  LI = &getAnalysis<LoopInfo>();
1800  SE = &getAnalysis<ScalarEvolution>();
1801  DT = &getAnalysis<DominatorTree>();
1802  TD = getAnalysisIfAvailable<TargetData>();
1803
1804  DeadInsts.clear();
1805  Changed = false;
1806
1807  // If there are any floating-point recurrences, attempt to
1808  // transform them to use integer recurrences.
1809  RewriteNonIntegerIVs(L);
1810
1811  const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L);
1812
1813  // Create a rewriter object which we'll use to transform the code with.
1814  SCEVExpander Rewriter(*SE, "indvars");
1815#ifndef NDEBUG
1816  Rewriter.setDebugType(DEBUG_TYPE);
1817#endif
1818
1819  // Eliminate redundant IV users.
1820  //
1821  // Simplification works best when run before other consumers of SCEV. We
1822  // attempt to avoid evaluating SCEVs for sign/zero extend operations until
1823  // other expressions involving loop IVs have been evaluated. This helps SCEV
1824  // set no-wrap flags before normalizing sign/zero extension.
1825  if (!EnableIVRewrite) {
1826    Rewriter.disableCanonicalMode();
1827    SimplifyAndExtend(L, Rewriter, LPM);
1828  }
1829
1830  // Check to see if this loop has a computable loop-invariant execution count.
1831  // If so, this means that we can compute the final value of any expressions
1832  // that are recurrent in the loop, and substitute the exit values from the
1833  // loop into any instructions outside of the loop that use the final values of
1834  // the current expressions.
1835  //
1836  if (!isa<SCEVCouldNotCompute>(BackedgeTakenCount))
1837    RewriteLoopExitValues(L, Rewriter);
1838
1839  // Eliminate redundant IV users.
1840  if (EnableIVRewrite)
1841    Changed |= simplifyIVUsers(IU, SE, &LPM, DeadInsts);
1842
1843  // Eliminate redundant IV cycles.
1844  if (!EnableIVRewrite)
1845    NumElimIV += Rewriter.replaceCongruentIVs(L, DT, DeadInsts);
1846
1847  // Compute the type of the largest recurrence expression, and decide whether
1848  // a canonical induction variable should be inserted.
1849  Type *LargestType = 0;
1850  bool NeedCannIV = false;
1851  bool ExpandBECount = canExpandBackedgeTakenCount(L, SE);
1852  if (EnableIVRewrite && ExpandBECount) {
1853    // If we have a known trip count and a single exit block, we'll be
1854    // rewriting the loop exit test condition below, which requires a
1855    // canonical induction variable.
1856    NeedCannIV = true;
1857    Type *Ty = BackedgeTakenCount->getType();
1858    if (!EnableIVRewrite) {
1859      // In this mode, SimplifyIVUsers may have already widened the IV used by
1860      // the backedge test and inserted a Trunc on the compare's operand. Get
1861      // the wider type to avoid creating a redundant narrow IV only used by the
1862      // loop test.
1863      LargestType = getBackedgeIVType(L);
1864    }
1865    if (!LargestType ||
1866        SE->getTypeSizeInBits(Ty) >
1867        SE->getTypeSizeInBits(LargestType))
1868      LargestType = SE->getEffectiveSCEVType(Ty);
1869  }
1870  if (EnableIVRewrite) {
1871    for (IVUsers::const_iterator I = IU->begin(), E = IU->end(); I != E; ++I) {
1872      NeedCannIV = true;
1873      Type *Ty =
1874        SE->getEffectiveSCEVType(I->getOperandValToReplace()->getType());
1875      if (!LargestType ||
1876          SE->getTypeSizeInBits(Ty) >
1877          SE->getTypeSizeInBits(LargestType))
1878        LargestType = Ty;
1879    }
1880  }
1881
1882  // Now that we know the largest of the induction variable expressions
1883  // in this loop, insert a canonical induction variable of the largest size.
1884  PHINode *IndVar = 0;
1885  if (NeedCannIV) {
1886    // Check to see if the loop already has any canonical-looking induction
1887    // variables. If any are present and wider than the planned canonical
1888    // induction variable, temporarily remove them, so that the Rewriter
1889    // doesn't attempt to reuse them.
1890    SmallVector<PHINode *, 2> OldCannIVs;
1891    while (PHINode *OldCannIV = L->getCanonicalInductionVariable()) {
1892      if (SE->getTypeSizeInBits(OldCannIV->getType()) >
1893          SE->getTypeSizeInBits(LargestType))
1894        OldCannIV->removeFromParent();
1895      else
1896        break;
1897      OldCannIVs.push_back(OldCannIV);
1898    }
1899
1900    IndVar = Rewriter.getOrInsertCanonicalInductionVariable(L, LargestType);
1901
1902    ++NumInserted;
1903    Changed = true;
1904    DEBUG(dbgs() << "INDVARS: New CanIV: " << *IndVar << '\n');
1905
1906    // Now that the official induction variable is established, reinsert
1907    // any old canonical-looking variables after it so that the IR remains
1908    // consistent. They will be deleted as part of the dead-PHI deletion at
1909    // the end of the pass.
1910    while (!OldCannIVs.empty()) {
1911      PHINode *OldCannIV = OldCannIVs.pop_back_val();
1912      OldCannIV->insertBefore(L->getHeader()->getFirstInsertionPt());
1913    }
1914  }
1915  else if (!EnableIVRewrite && ExpandBECount && needsLFTR(L, DT)) {
1916    IndVar = FindLoopCounter(L, BackedgeTakenCount, SE, DT, TD);
1917  }
1918  // If we have a trip count expression, rewrite the loop's exit condition
1919  // using it.  We can currently only handle loops with a single exit.
1920  Value *NewICmp = 0;
1921  if (ExpandBECount && IndVar) {
1922    // Check preconditions for proper SCEVExpander operation. SCEV does not
1923    // express SCEVExpander's dependencies, such as LoopSimplify. Instead any
1924    // pass that uses the SCEVExpander must do it. This does not work well for
1925    // loop passes because SCEVExpander makes assumptions about all loops, while
1926    // LoopPassManager only forces the current loop to be simplified.
1927    //
1928    // FIXME: SCEV expansion has no way to bail out, so the caller must
1929    // explicitly check any assumptions made by SCEV. Brittle.
1930    const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(BackedgeTakenCount);
1931    if (!AR || AR->getLoop()->getLoopPreheader())
1932      NewICmp =
1933        LinearFunctionTestReplace(L, BackedgeTakenCount, IndVar, Rewriter);
1934  }
1935  // Rewrite IV-derived expressions.
1936  if (EnableIVRewrite)
1937    RewriteIVExpressions(L, Rewriter);
1938
1939  // Clear the rewriter cache, because values that are in the rewriter's cache
1940  // can be deleted in the loop below, causing the AssertingVH in the cache to
1941  // trigger.
1942  Rewriter.clear();
1943
1944  // Now that we're done iterating through lists, clean up any instructions
1945  // which are now dead.
1946  while (!DeadInsts.empty())
1947    if (Instruction *Inst =
1948          dyn_cast_or_null<Instruction>(&*DeadInsts.pop_back_val()))
1949      RecursivelyDeleteTriviallyDeadInstructions(Inst);
1950
1951  // The Rewriter may not be used from this point on.
1952
1953  // Loop-invariant instructions in the preheader that aren't used in the
1954  // loop may be sunk below the loop to reduce register pressure.
1955  SinkUnusedInvariants(L);
1956
1957  // For completeness, inform IVUsers of the IV use in the newly-created
1958  // loop exit test instruction.
1959  if (IU && NewICmp) {
1960    ICmpInst *NewICmpInst = dyn_cast<ICmpInst>(NewICmp);
1961    if (NewICmpInst)
1962      IU->AddUsersIfInteresting(cast<Instruction>(NewICmpInst->getOperand(0)));
1963  }
1964  // Clean up dead instructions.
1965  Changed |= DeleteDeadPHIs(L->getHeader());
1966  // Check a post-condition.
1967  assert(L->isLCSSAForm(*DT) &&
1968         "Indvars did not leave the loop in lcssa form!");
1969
1970  // Verify that LFTR, and any other change have not interfered with SCEV's
1971  // ability to compute trip count.
1972#ifndef NDEBUG
1973  if (!EnableIVRewrite && VerifyIndvars &&
1974      !isa<SCEVCouldNotCompute>(BackedgeTakenCount)) {
1975    SE->forgetLoop(L);
1976    const SCEV *NewBECount = SE->getBackedgeTakenCount(L);
1977    if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) <
1978        SE->getTypeSizeInBits(NewBECount->getType()))
1979      NewBECount = SE->getTruncateOrNoop(NewBECount,
1980                                         BackedgeTakenCount->getType());
1981    else
1982      BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount,
1983                                                 NewBECount->getType());
1984    assert(BackedgeTakenCount == NewBECount && "indvars must preserve SCEV");
1985  }
1986#endif
1987
1988  return Changed;
1989}
1990