LICM.cpp revision 128459b85b59530e511ea17b3cc3a5b8ee3e8bd4
1//===-- LICM.cpp - Loop Invariant Code Motion Pass ------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass performs loop invariant code motion, attempting to remove as much
11// code from the body of a loop as possible.  It does this by either hoisting
12// code into the preheader block, or by sinking code to the exit blocks if it is
13// safe.  This pass also promotes must-aliased memory locations in the loop to
14// live in registers, thus hoisting and sinking "invariant" loads and stores.
15//
16// This pass uses alias analysis for two purposes:
17//
18//  1. Moving loop invariant loads and calls out of loops.  If we can determine
19//     that a load or call inside of a loop never aliases anything stored to,
20//     we can hoist it or sink it like any other instruction.
21//  2. Scalar Promotion of Memory - If there is a store instruction inside of
22//     the loop, we try to move the store to happen AFTER the loop instead of
23//     inside of the loop.  This can only happen if a few conditions are true:
24//       A. The pointer stored through is loop invariant
25//       B. There are no stores or loads in the loop which _may_ alias the
26//          pointer.  There are no calls in the loop which mod/ref the pointer.
27//     If these conditions are true, we can promote the loads and stores in the
28//     loop of the pointer to use a temporary alloca'd variable.  We then use
29//     the mem2reg functionality to construct the appropriate SSA form for the
30//     variable.
31//
32//===----------------------------------------------------------------------===//
33
34#define DEBUG_TYPE "licm"
35#include "llvm/Transforms/Scalar.h"
36#include "llvm/Constants.h"
37#include "llvm/DerivedTypes.h"
38#include "llvm/Instructions.h"
39#include "llvm/Target/TargetData.h"
40#include "llvm/Analysis/LoopInfo.h"
41#include "llvm/Analysis/LoopPass.h"
42#include "llvm/Analysis/AliasAnalysis.h"
43#include "llvm/Analysis/AliasSetTracker.h"
44#include "llvm/Analysis/Dominators.h"
45#include "llvm/Analysis/ScalarEvolution.h"
46#include "llvm/Transforms/Utils/PromoteMemToReg.h"
47#include "llvm/Support/CFG.h"
48#include "llvm/Support/Compiler.h"
49#include "llvm/Support/CommandLine.h"
50#include "llvm/Support/Debug.h"
51#include "llvm/ADT/Statistic.h"
52#include <algorithm>
53using namespace llvm;
54
55STATISTIC(NumSunk      , "Number of instructions sunk out of loop");
56STATISTIC(NumHoisted   , "Number of instructions hoisted out of loop");
57STATISTIC(NumMovedLoads, "Number of load insts hoisted or sunk");
58STATISTIC(NumMovedCalls, "Number of call insts hoisted or sunk");
59STATISTIC(NumPromoted  , "Number of memory locations promoted to registers");
60
61namespace {
62  cl::opt<bool>
63  DisablePromotion("disable-licm-promotion", cl::Hidden,
64                   cl::desc("Disable memory promotion in LICM pass"));
65
66  struct VISIBILITY_HIDDEN LICM : public LoopPass {
67    static char ID; // Pass identification, replacement for typeid
68    LICM() : LoopPass((intptr_t)&ID) {}
69
70    virtual bool runOnLoop(Loop *L, LPPassManager &LPM);
71
72    /// This transformation requires natural loop information & requires that
73    /// loop preheaders be inserted into the CFG...
74    ///
75    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
76      AU.setPreservesCFG();
77      AU.addRequiredID(LoopSimplifyID);
78      AU.addRequired<LoopInfo>();
79      AU.addRequired<DominatorTree>();
80      AU.addRequired<DominanceFrontier>();  // For scalar promotion (mem2reg)
81      AU.addRequired<AliasAnalysis>();
82      AU.addPreserved<ScalarEvolution>();
83      AU.addPreserved<DominanceFrontier>();
84    }
85
86    bool doFinalization() {
87      LoopToAliasMap.clear();
88      return false;
89    }
90
91  private:
92    // Various analyses that we use...
93    AliasAnalysis *AA;       // Current AliasAnalysis information
94    LoopInfo      *LI;       // Current LoopInfo
95    DominatorTree *DT;       // Dominator Tree for the current Loop...
96    DominanceFrontier *DF;   // Current Dominance Frontier
97
98    // State that is updated as we process loops
99    bool Changed;            // Set to true when we change anything.
100    BasicBlock *Preheader;   // The preheader block of the current loop...
101    Loop *CurLoop;           // The current loop we are working on...
102    AliasSetTracker *CurAST; // AliasSet information for the current loop...
103    std::map<Loop *, AliasSetTracker *> LoopToAliasMap;
104
105    /// cloneBasicBlockAnalysis - Simple Analysis hook. Clone alias set info.
106    void cloneBasicBlockAnalysis(BasicBlock *From, BasicBlock *To, Loop *L);
107
108    /// deleteAnalysisValue - Simple Analysis hook. Delete value V from alias
109    /// set.
110    void deleteAnalysisValue(Value *V, Loop *L);
111
112    /// SinkRegion - Walk the specified region of the CFG (defined by all blocks
113    /// dominated by the specified block, and that are in the current loop) in
114    /// reverse depth first order w.r.t the DominatorTree.  This allows us to
115    /// visit uses before definitions, allowing us to sink a loop body in one
116    /// pass without iteration.
117    ///
118    void SinkRegion(DomTreeNode *N);
119
120    /// HoistRegion - Walk the specified region of the CFG (defined by all
121    /// blocks dominated by the specified block, and that are in the current
122    /// loop) in depth first order w.r.t the DominatorTree.  This allows us to
123    /// visit definitions before uses, allowing us to hoist a loop body in one
124    /// pass without iteration.
125    ///
126    void HoistRegion(DomTreeNode *N);
127
128    /// inSubLoop - Little predicate that returns true if the specified basic
129    /// block is in a subloop of the current one, not the current one itself.
130    ///
131    bool inSubLoop(BasicBlock *BB) {
132      assert(CurLoop->contains(BB) && "Only valid if BB is IN the loop");
133      for (Loop::iterator I = CurLoop->begin(), E = CurLoop->end(); I != E; ++I)
134        if ((*I)->contains(BB))
135          return true;  // A subloop actually contains this block!
136      return false;
137    }
138
139    /// isExitBlockDominatedByBlockInLoop - This method checks to see if the
140    /// specified exit block of the loop is dominated by the specified block
141    /// that is in the body of the loop.  We use these constraints to
142    /// dramatically limit the amount of the dominator tree that needs to be
143    /// searched.
144    bool isExitBlockDominatedByBlockInLoop(BasicBlock *ExitBlock,
145                                           BasicBlock *BlockInLoop) const {
146      // If the block in the loop is the loop header, it must be dominated!
147      BasicBlock *LoopHeader = CurLoop->getHeader();
148      if (BlockInLoop == LoopHeader)
149        return true;
150
151      DomTreeNode *BlockInLoopNode = DT->getNode(BlockInLoop);
152      DomTreeNode *IDom            = DT->getNode(ExitBlock);
153
154      // Because the exit block is not in the loop, we know we have to get _at
155      // least_ its immediate dominator.
156      do {
157        // Get next Immediate Dominator.
158        IDom = IDom->getIDom();
159
160        // If we have got to the header of the loop, then the instructions block
161        // did not dominate the exit node, so we can't hoist it.
162        if (IDom->getBlock() == LoopHeader)
163          return false;
164
165      } while (IDom != BlockInLoopNode);
166
167      return true;
168    }
169
170    /// sink - When an instruction is found to only be used outside of the loop,
171    /// this function moves it to the exit blocks and patches up SSA form as
172    /// needed.
173    ///
174    void sink(Instruction &I);
175
176    /// hoist - When an instruction is found to only use loop invariant operands
177    /// that is safe to hoist, this instruction is called to do the dirty work.
178    ///
179    void hoist(Instruction &I);
180
181    /// isSafeToExecuteUnconditionally - Only sink or hoist an instruction if it
182    /// is not a trapping instruction or if it is a trapping instruction and is
183    /// guaranteed to execute.
184    ///
185    bool isSafeToExecuteUnconditionally(Instruction &I);
186
187    /// pointerInvalidatedByLoop - Return true if the body of this loop may
188    /// store into the memory location pointed to by V.
189    ///
190    bool pointerInvalidatedByLoop(Value *V, unsigned Size) {
191      // Check to see if any of the basic blocks in CurLoop invalidate *V.
192      return CurAST->getAliasSetForPointer(V, Size).isMod();
193    }
194
195    bool canSinkOrHoistInst(Instruction &I);
196    bool isLoopInvariantInst(Instruction &I);
197    bool isNotUsedInLoop(Instruction &I);
198
199    /// PromoteValuesInLoop - Look at the stores in the loop and promote as many
200    /// to scalars as we can.
201    ///
202    void PromoteValuesInLoop();
203
204    /// FindPromotableValuesInLoop - Check the current loop for stores to
205    /// definite pointers, which are not loaded and stored through may aliases.
206    /// If these are found, create an alloca for the value, add it to the
207    /// PromotedValues list, and keep track of the mapping from value to
208    /// alloca...
209    ///
210    void FindPromotableValuesInLoop(
211                   std::vector<std::pair<AllocaInst*, Value*> > &PromotedValues,
212                                    std::map<Value*, AllocaInst*> &Val2AlMap);
213  };
214
215  char LICM::ID = 0;
216  RegisterPass<LICM> X("licm", "Loop Invariant Code Motion");
217}
218
219LoopPass *llvm::createLICMPass() { return new LICM(); }
220
221/// Hoist expressions out of the specified loop. Note, alias info for inner
222/// loop is not preserved so it is not a good idea to run LICM multiple
223/// times on one loop.
224///
225bool LICM::runOnLoop(Loop *L, LPPassManager &LPM) {
226  Changed = false;
227
228  // Get our Loop and Alias Analysis information...
229  LI = &getAnalysis<LoopInfo>();
230  AA = &getAnalysis<AliasAnalysis>();
231  DF = &getAnalysis<DominanceFrontier>();
232  DT = &getAnalysis<DominatorTree>();
233
234  CurAST = new AliasSetTracker(*AA);
235  // Collect Alias info from subloops
236  for (Loop::iterator LoopItr = L->begin(), LoopItrE = L->end();
237       LoopItr != LoopItrE; ++LoopItr) {
238    Loop *InnerL = *LoopItr;
239    AliasSetTracker *InnerAST = LoopToAliasMap[InnerL];
240    assert (InnerAST && "Where is my AST?");
241
242    // What if InnerLoop was modified by other passes ?
243    CurAST->add(*InnerAST);
244  }
245
246  CurLoop = L;
247
248  // Get the preheader block to move instructions into...
249  Preheader = L->getLoopPreheader();
250  assert(Preheader&&"Preheader insertion pass guarantees we have a preheader!");
251
252  // Loop over the body of this loop, looking for calls, invokes, and stores.
253  // Because subloops have already been incorporated into AST, we skip blocks in
254  // subloops.
255  //
256  for (std::vector<BasicBlock*>::const_iterator I = L->getBlocks().begin(),
257         E = L->getBlocks().end(); I != E; ++I)
258    if (LI->getLoopFor(*I) == L)        // Ignore blocks in subloops...
259      CurAST->add(**I);                 // Incorporate the specified basic block
260
261  // We want to visit all of the instructions in this loop... that are not parts
262  // of our subloops (they have already had their invariants hoisted out of
263  // their loop, into this loop, so there is no need to process the BODIES of
264  // the subloops).
265  //
266  // Traverse the body of the loop in depth first order on the dominator tree so
267  // that we are guaranteed to see definitions before we see uses.  This allows
268  // us to sink instructions in one pass, without iteration.  After sinking
269  // instructions, we perform another pass to hoist them out of the loop.
270  //
271  SinkRegion(DT->getNode(L->getHeader()));
272  HoistRegion(DT->getNode(L->getHeader()));
273
274  // Now that all loop invariants have been removed from the loop, promote any
275  // memory references to scalars that we can...
276  if (!DisablePromotion)
277    PromoteValuesInLoop();
278
279  // Clear out loops state information for the next iteration
280  CurLoop = 0;
281  Preheader = 0;
282
283  LoopToAliasMap[L] = CurAST;
284  return Changed;
285}
286
287/// SinkRegion - Walk the specified region of the CFG (defined by all blocks
288/// dominated by the specified block, and that are in the current loop) in
289/// reverse depth first order w.r.t the DominatorTree.  This allows us to visit
290/// uses before definitions, allowing us to sink a loop body in one pass without
291/// iteration.
292///
293void LICM::SinkRegion(DomTreeNode *N) {
294  assert(N != 0 && "Null dominator tree node?");
295  BasicBlock *BB = N->getBlock();
296
297  // If this subregion is not in the top level loop at all, exit.
298  if (!CurLoop->contains(BB)) return;
299
300  // We are processing blocks in reverse dfo, so process children first...
301  const std::vector<DomTreeNode*> &Children = N->getChildren();
302  for (unsigned i = 0, e = Children.size(); i != e; ++i)
303    SinkRegion(Children[i]);
304
305  // Only need to process the contents of this block if it is not part of a
306  // subloop (which would already have been processed).
307  if (inSubLoop(BB)) return;
308
309  for (BasicBlock::iterator II = BB->end(); II != BB->begin(); ) {
310    Instruction &I = *--II;
311
312    // Check to see if we can sink this instruction to the exit blocks
313    // of the loop.  We can do this if the all users of the instruction are
314    // outside of the loop.  In this case, it doesn't even matter if the
315    // operands of the instruction are loop invariant.
316    //
317    if (isNotUsedInLoop(I) && canSinkOrHoistInst(I)) {
318      ++II;
319      sink(I);
320    }
321  }
322}
323
324
325/// HoistRegion - Walk the specified region of the CFG (defined by all blocks
326/// dominated by the specified block, and that are in the current loop) in depth
327/// first order w.r.t the DominatorTree.  This allows us to visit definitions
328/// before uses, allowing us to hoist a loop body in one pass without iteration.
329///
330void LICM::HoistRegion(DomTreeNode *N) {
331  assert(N != 0 && "Null dominator tree node?");
332  BasicBlock *BB = N->getBlock();
333
334  // If this subregion is not in the top level loop at all, exit.
335  if (!CurLoop->contains(BB)) return;
336
337  // Only need to process the contents of this block if it is not part of a
338  // subloop (which would already have been processed).
339  if (!inSubLoop(BB))
340    for (BasicBlock::iterator II = BB->begin(), E = BB->end(); II != E; ) {
341      Instruction &I = *II++;
342
343      // Try hoisting the instruction out to the preheader.  We can only do this
344      // if all of the operands of the instruction are loop invariant and if it
345      // is safe to hoist the instruction.
346      //
347      if (isLoopInvariantInst(I) && canSinkOrHoistInst(I) &&
348          isSafeToExecuteUnconditionally(I))
349        hoist(I);
350      }
351
352  const std::vector<DomTreeNode*> &Children = N->getChildren();
353  for (unsigned i = 0, e = Children.size(); i != e; ++i)
354    HoistRegion(Children[i]);
355}
356
357/// canSinkOrHoistInst - Return true if the hoister and sinker can handle this
358/// instruction.
359///
360bool LICM::canSinkOrHoistInst(Instruction &I) {
361  // Loads have extra constraints we have to verify before we can hoist them.
362  if (LoadInst *LI = dyn_cast<LoadInst>(&I)) {
363    if (LI->isVolatile())
364      return false;        // Don't hoist volatile loads!
365
366    // Don't hoist loads which have may-aliased stores in loop.
367    unsigned Size = 0;
368    if (LI->getType()->isSized())
369      Size = AA->getTargetData().getTypeSize(LI->getType());
370    return !pointerInvalidatedByLoop(LI->getOperand(0), Size);
371  } else if (CallInst *CI = dyn_cast<CallInst>(&I)) {
372    // Handle obvious cases efficiently.
373    if (Function *Callee = CI->getCalledFunction()) {
374      AliasAnalysis::ModRefBehavior Behavior =AA->getModRefBehavior(Callee, CI);
375      if (Behavior == AliasAnalysis::DoesNotAccessMemory)
376        return true;
377      else if (Behavior == AliasAnalysis::OnlyReadsMemory) {
378        // If this call only reads from memory and there are no writes to memory
379        // in the loop, we can hoist or sink the call as appropriate.
380        bool FoundMod = false;
381        for (AliasSetTracker::iterator I = CurAST->begin(), E = CurAST->end();
382             I != E; ++I) {
383          AliasSet &AS = *I;
384          if (!AS.isForwardingAliasSet() && AS.isMod()) {
385            FoundMod = true;
386            break;
387          }
388        }
389        if (!FoundMod) return true;
390      }
391    }
392
393    // FIXME: This should use mod/ref information to see if we can hoist or sink
394    // the call.
395
396    return false;
397  }
398
399  // Otherwise these instructions are hoistable/sinkable
400  return isa<BinaryOperator>(I) || isa<CastInst>(I) ||
401         isa<SelectInst>(I) || isa<GetElementPtrInst>(I) || isa<CmpInst>(I) ||
402         isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) ||
403         isa<ShuffleVectorInst>(I);
404}
405
406/// isNotUsedInLoop - Return true if the only users of this instruction are
407/// outside of the loop.  If this is true, we can sink the instruction to the
408/// exit blocks of the loop.
409///
410bool LICM::isNotUsedInLoop(Instruction &I) {
411  for (Value::use_iterator UI = I.use_begin(), E = I.use_end(); UI != E; ++UI) {
412    Instruction *User = cast<Instruction>(*UI);
413    if (PHINode *PN = dyn_cast<PHINode>(User)) {
414      // PHI node uses occur in predecessor blocks!
415      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
416        if (PN->getIncomingValue(i) == &I)
417          if (CurLoop->contains(PN->getIncomingBlock(i)))
418            return false;
419    } else if (CurLoop->contains(User->getParent())) {
420      return false;
421    }
422  }
423  return true;
424}
425
426
427/// isLoopInvariantInst - Return true if all operands of this instruction are
428/// loop invariant.  We also filter out non-hoistable instructions here just for
429/// efficiency.
430///
431bool LICM::isLoopInvariantInst(Instruction &I) {
432  // The instruction is loop invariant if all of its operands are loop-invariant
433  for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
434    if (!CurLoop->isLoopInvariant(I.getOperand(i)))
435      return false;
436
437  // If we got this far, the instruction is loop invariant!
438  return true;
439}
440
441/// sink - When an instruction is found to only be used outside of the loop,
442/// this function moves it to the exit blocks and patches up SSA form as needed.
443/// This method is guaranteed to remove the original instruction from its
444/// position, and may either delete it or move it to outside of the loop.
445///
446void LICM::sink(Instruction &I) {
447  DOUT << "LICM sinking instruction: " << I;
448
449  SmallVector<BasicBlock*, 8> ExitBlocks;
450  CurLoop->getExitBlocks(ExitBlocks);
451
452  if (isa<LoadInst>(I)) ++NumMovedLoads;
453  else if (isa<CallInst>(I)) ++NumMovedCalls;
454  ++NumSunk;
455  Changed = true;
456
457  // The case where there is only a single exit node of this loop is common
458  // enough that we handle it as a special (more efficient) case.  It is more
459  // efficient to handle because there are no PHI nodes that need to be placed.
460  if (ExitBlocks.size() == 1) {
461    if (!isExitBlockDominatedByBlockInLoop(ExitBlocks[0], I.getParent())) {
462      // Instruction is not used, just delete it.
463      CurAST->deleteValue(&I);
464      if (!I.use_empty())  // If I has users in unreachable blocks, eliminate.
465        I.replaceAllUsesWith(UndefValue::get(I.getType()));
466      I.eraseFromParent();
467    } else {
468      // Move the instruction to the start of the exit block, after any PHI
469      // nodes in it.
470      I.removeFromParent();
471
472      BasicBlock::iterator InsertPt = ExitBlocks[0]->begin();
473      while (isa<PHINode>(InsertPt)) ++InsertPt;
474      ExitBlocks[0]->getInstList().insert(InsertPt, &I);
475    }
476  } else if (ExitBlocks.size() == 0) {
477    // The instruction is actually dead if there ARE NO exit blocks.
478    CurAST->deleteValue(&I);
479    if (!I.use_empty())  // If I has users in unreachable blocks, eliminate.
480      I.replaceAllUsesWith(UndefValue::get(I.getType()));
481    I.eraseFromParent();
482  } else {
483    // Otherwise, if we have multiple exits, use the PromoteMem2Reg function to
484    // do all of the hard work of inserting PHI nodes as necessary.  We convert
485    // the value into a stack object to get it to do this.
486
487    // Firstly, we create a stack object to hold the value...
488    AllocaInst *AI = 0;
489
490    if (I.getType() != Type::VoidTy) {
491      AI = new AllocaInst(I.getType(), 0, I.getName(),
492                          I.getParent()->getParent()->getEntryBlock().begin());
493      CurAST->add(AI);
494    }
495
496    // Secondly, insert load instructions for each use of the instruction
497    // outside of the loop.
498    while (!I.use_empty()) {
499      Instruction *U = cast<Instruction>(I.use_back());
500
501      // If the user is a PHI Node, we actually have to insert load instructions
502      // in all predecessor blocks, not in the PHI block itself!
503      if (PHINode *UPN = dyn_cast<PHINode>(U)) {
504        // Only insert into each predecessor once, so that we don't have
505        // different incoming values from the same block!
506        std::map<BasicBlock*, Value*> InsertedBlocks;
507        for (unsigned i = 0, e = UPN->getNumIncomingValues(); i != e; ++i)
508          if (UPN->getIncomingValue(i) == &I) {
509            BasicBlock *Pred = UPN->getIncomingBlock(i);
510            Value *&PredVal = InsertedBlocks[Pred];
511            if (!PredVal) {
512              // Insert a new load instruction right before the terminator in
513              // the predecessor block.
514              PredVal = new LoadInst(AI, "", Pred->getTerminator());
515              CurAST->add(cast<LoadInst>(PredVal));
516            }
517
518            UPN->setIncomingValue(i, PredVal);
519          }
520
521      } else {
522        LoadInst *L = new LoadInst(AI, "", U);
523        U->replaceUsesOfWith(&I, L);
524        CurAST->add(L);
525      }
526    }
527
528    // Thirdly, insert a copy of the instruction in each exit block of the loop
529    // that is dominated by the instruction, storing the result into the memory
530    // location.  Be careful not to insert the instruction into any particular
531    // basic block more than once.
532    std::set<BasicBlock*> InsertedBlocks;
533    BasicBlock *InstOrigBB = I.getParent();
534
535    for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
536      BasicBlock *ExitBlock = ExitBlocks[i];
537
538      if (isExitBlockDominatedByBlockInLoop(ExitBlock, InstOrigBB)) {
539        // If we haven't already processed this exit block, do so now.
540        if (InsertedBlocks.insert(ExitBlock).second) {
541          // Insert the code after the last PHI node...
542          BasicBlock::iterator InsertPt = ExitBlock->begin();
543          while (isa<PHINode>(InsertPt)) ++InsertPt;
544
545          // If this is the first exit block processed, just move the original
546          // instruction, otherwise clone the original instruction and insert
547          // the copy.
548          Instruction *New;
549          if (InsertedBlocks.size() == 1) {
550            I.removeFromParent();
551            ExitBlock->getInstList().insert(InsertPt, &I);
552            New = &I;
553          } else {
554            New = I.clone();
555            CurAST->copyValue(&I, New);
556            if (!I.getName().empty())
557              New->setName(I.getName()+".le");
558            ExitBlock->getInstList().insert(InsertPt, New);
559          }
560
561          // Now that we have inserted the instruction, store it into the alloca
562          if (AI) new StoreInst(New, AI, InsertPt);
563        }
564      }
565    }
566
567    // If the instruction doesn't dominate any exit blocks, it must be dead.
568    if (InsertedBlocks.empty()) {
569      CurAST->deleteValue(&I);
570      I.eraseFromParent();
571    }
572
573    // Finally, promote the fine value to SSA form.
574    if (AI) {
575      std::vector<AllocaInst*> Allocas;
576      Allocas.push_back(AI);
577      PromoteMemToReg(Allocas, *DT, *DF, CurAST);
578    }
579  }
580}
581
582/// hoist - When an instruction is found to only use loop invariant operands
583/// that is safe to hoist, this instruction is called to do the dirty work.
584///
585void LICM::hoist(Instruction &I) {
586  DOUT << "LICM hoisting to " << Preheader->getName() << ": " << I;
587
588  // Remove the instruction from its current basic block... but don't delete the
589  // instruction.
590  I.removeFromParent();
591
592  // Insert the new node in Preheader, before the terminator.
593  Preheader->getInstList().insert(Preheader->getTerminator(), &I);
594
595  if (isa<LoadInst>(I)) ++NumMovedLoads;
596  else if (isa<CallInst>(I)) ++NumMovedCalls;
597  ++NumHoisted;
598  Changed = true;
599}
600
601/// isSafeToExecuteUnconditionally - Only sink or hoist an instruction if it is
602/// not a trapping instruction or if it is a trapping instruction and is
603/// guaranteed to execute.
604///
605bool LICM::isSafeToExecuteUnconditionally(Instruction &Inst) {
606  // If it is not a trapping instruction, it is always safe to hoist.
607  if (!Inst.isTrapping()) return true;
608
609  // Otherwise we have to check to make sure that the instruction dominates all
610  // of the exit blocks.  If it doesn't, then there is a path out of the loop
611  // which does not execute this instruction, so we can't hoist it.
612
613  // If the instruction is in the header block for the loop (which is very
614  // common), it is always guaranteed to dominate the exit blocks.  Since this
615  // is a common case, and can save some work, check it now.
616  if (Inst.getParent() == CurLoop->getHeader())
617    return true;
618
619  // It's always safe to load from a global or alloca.
620  if (isa<LoadInst>(Inst))
621    if (isa<AllocationInst>(Inst.getOperand(0)) ||
622        isa<GlobalVariable>(Inst.getOperand(0)))
623      return true;
624
625  // Get the exit blocks for the current loop.
626  SmallVector<BasicBlock*, 8> ExitBlocks;
627  CurLoop->getExitBlocks(ExitBlocks);
628
629  // For each exit block, get the DT node and walk up the DT until the
630  // instruction's basic block is found or we exit the loop.
631  for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i)
632    if (!isExitBlockDominatedByBlockInLoop(ExitBlocks[i], Inst.getParent()))
633      return false;
634
635  return true;
636}
637
638
639/// PromoteValuesInLoop - Try to promote memory values to scalars by sinking
640/// stores out of the loop and moving loads to before the loop.  We do this by
641/// looping over the stores in the loop, looking for stores to Must pointers
642/// which are loop invariant.  We promote these memory locations to use allocas
643/// instead.  These allocas can easily be raised to register values by the
644/// PromoteMem2Reg functionality.
645///
646void LICM::PromoteValuesInLoop() {
647  // PromotedValues - List of values that are promoted out of the loop.  Each
648  // value has an alloca instruction for it, and a canonical version of the
649  // pointer.
650  std::vector<std::pair<AllocaInst*, Value*> > PromotedValues;
651  std::map<Value*, AllocaInst*> ValueToAllocaMap; // Map of ptr to alloca
652
653  FindPromotableValuesInLoop(PromotedValues, ValueToAllocaMap);
654  if (ValueToAllocaMap.empty()) return;   // If there are values to promote.
655
656  Changed = true;
657  NumPromoted += PromotedValues.size();
658
659  std::vector<Value*> PointerValueNumbers;
660
661  // Emit a copy from the value into the alloca'd value in the loop preheader
662  TerminatorInst *LoopPredInst = Preheader->getTerminator();
663  for (unsigned i = 0, e = PromotedValues.size(); i != e; ++i) {
664    Value *Ptr = PromotedValues[i].second;
665
666    // If we are promoting a pointer value, update alias information for the
667    // inserted load.
668    Value *LoadValue = 0;
669    if (isa<PointerType>(cast<PointerType>(Ptr->getType())->getElementType())) {
670      // Locate a load or store through the pointer, and assign the same value
671      // to LI as we are loading or storing.  Since we know that the value is
672      // stored in this loop, this will always succeed.
673      for (Value::use_iterator UI = Ptr->use_begin(), E = Ptr->use_end();
674           UI != E; ++UI)
675        if (LoadInst *LI = dyn_cast<LoadInst>(*UI)) {
676          LoadValue = LI;
677          break;
678        } else if (StoreInst *SI = dyn_cast<StoreInst>(*UI)) {
679          if (SI->getOperand(1) == Ptr) {
680            LoadValue = SI->getOperand(0);
681            break;
682          }
683        }
684      assert(LoadValue && "No store through the pointer found!");
685      PointerValueNumbers.push_back(LoadValue);  // Remember this for later.
686    }
687
688    // Load from the memory we are promoting.
689    LoadInst *LI = new LoadInst(Ptr, Ptr->getName()+".promoted", LoopPredInst);
690
691    if (LoadValue) CurAST->copyValue(LoadValue, LI);
692
693    // Store into the temporary alloca.
694    new StoreInst(LI, PromotedValues[i].first, LoopPredInst);
695  }
696
697  // Scan the basic blocks in the loop, replacing uses of our pointers with
698  // uses of the allocas in question.
699  //
700  const std::vector<BasicBlock*> &LoopBBs = CurLoop->getBlocks();
701  for (std::vector<BasicBlock*>::const_iterator I = LoopBBs.begin(),
702         E = LoopBBs.end(); I != E; ++I) {
703    // Rewrite all loads and stores in the block of the pointer...
704    for (BasicBlock::iterator II = (*I)->begin(), E = (*I)->end();
705         II != E; ++II) {
706      if (LoadInst *L = dyn_cast<LoadInst>(II)) {
707        std::map<Value*, AllocaInst*>::iterator
708          I = ValueToAllocaMap.find(L->getOperand(0));
709        if (I != ValueToAllocaMap.end())
710          L->setOperand(0, I->second);    // Rewrite load instruction...
711      } else if (StoreInst *S = dyn_cast<StoreInst>(II)) {
712        std::map<Value*, AllocaInst*>::iterator
713          I = ValueToAllocaMap.find(S->getOperand(1));
714        if (I != ValueToAllocaMap.end())
715          S->setOperand(1, I->second);    // Rewrite store instruction...
716      }
717    }
718  }
719
720  // Now that the body of the loop uses the allocas instead of the original
721  // memory locations, insert code to copy the alloca value back into the
722  // original memory location on all exits from the loop.  Note that we only
723  // want to insert one copy of the code in each exit block, though the loop may
724  // exit to the same block more than once.
725  //
726  std::set<BasicBlock*> ProcessedBlocks;
727
728  SmallVector<BasicBlock*, 8> ExitBlocks;
729  CurLoop->getExitBlocks(ExitBlocks);
730  for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i)
731    if (ProcessedBlocks.insert(ExitBlocks[i]).second) {
732      // Copy all of the allocas into their memory locations.
733      BasicBlock::iterator BI = ExitBlocks[i]->begin();
734      while (isa<PHINode>(*BI))
735        ++BI;             // Skip over all of the phi nodes in the block.
736      Instruction *InsertPos = BI;
737      unsigned PVN = 0;
738      for (unsigned i = 0, e = PromotedValues.size(); i != e; ++i) {
739        // Load from the alloca.
740        LoadInst *LI = new LoadInst(PromotedValues[i].first, "", InsertPos);
741
742        // If this is a pointer type, update alias info appropriately.
743        if (isa<PointerType>(LI->getType()))
744          CurAST->copyValue(PointerValueNumbers[PVN++], LI);
745
746        // Store into the memory we promoted.
747        new StoreInst(LI, PromotedValues[i].second, InsertPos);
748      }
749    }
750
751  // Now that we have done the deed, use the mem2reg functionality to promote
752  // all of the new allocas we just created into real SSA registers.
753  //
754  std::vector<AllocaInst*> PromotedAllocas;
755  PromotedAllocas.reserve(PromotedValues.size());
756  for (unsigned i = 0, e = PromotedValues.size(); i != e; ++i)
757    PromotedAllocas.push_back(PromotedValues[i].first);
758  PromoteMemToReg(PromotedAllocas, *DT, *DF, CurAST);
759}
760
761/// FindPromotableValuesInLoop - Check the current loop for stores to definite
762/// pointers, which are not loaded and stored through may aliases and are safe
763/// for promotion.  If these are found, create an alloca for the value, add it
764/// to the PromotedValues list, and keep track of the mapping from value to
765/// alloca.
766void LICM::FindPromotableValuesInLoop(
767                   std::vector<std::pair<AllocaInst*, Value*> > &PromotedValues,
768                             std::map<Value*, AllocaInst*> &ValueToAllocaMap) {
769  Instruction *FnStart = CurLoop->getHeader()->getParent()->begin()->begin();
770
771  SmallVector<Instruction *, 4> LoopExits;
772  SmallVector<BasicBlock *, 4> Blocks;
773  CurLoop->getExitingBlocks(Blocks);
774  for (SmallVector<BasicBlock *, 4>::iterator BI = Blocks.begin(),
775         BE = Blocks.end(); BI != BE; ++BI) {
776    BasicBlock *BB = *BI;
777    LoopExits.push_back(BB->getTerminator());
778  }
779
780  // Loop over all of the alias sets in the tracker object.
781  for (AliasSetTracker::iterator I = CurAST->begin(), E = CurAST->end();
782       I != E; ++I) {
783    AliasSet &AS = *I;
784    // We can promote this alias set if it has a store, if it is a "Must" alias
785    // set, if the pointer is loop invariant, and if we are not eliminating any
786    // volatile loads or stores.
787    if (!AS.isForwardingAliasSet() && AS.isMod() && AS.isMustAlias() &&
788        !AS.isVolatile() && CurLoop->isLoopInvariant(AS.begin()->first)) {
789      assert(AS.begin() != AS.end() &&
790             "Must alias set should have at least one pointer element in it!");
791      Value *V = AS.begin()->first;
792
793      // Check that all of the pointers in the alias set have the same type.  We
794      // cannot (yet) promote a memory location that is loaded and stored in
795      // different sizes.
796      bool PointerOk = true;
797      for (AliasSet::iterator I = AS.begin(), E = AS.end(); I != E; ++I)
798        if (V->getType() != I->first->getType()) {
799          PointerOk = false;
800          break;
801        }
802
803      // Do not promote null values because it may be unsafe to do so.
804      if (isa<ConstantPointerNull>(V))
805        PointerOk = false;
806
807      if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(V)) {
808        // If GEP base is NULL then the calculated address used by Store or
809        // Load instruction is invalid. Do not promote this value because
810        // it may expose load and store instruction that are covered by
811        // condition which may not yet folded.
812        if (isa<ConstantPointerNull>(GEP->getOperand(0)))
813          PointerOk = false;
814
815        // If GEP is use is not dominating loop exit then promoting
816        // GEP may expose unsafe load and store instructions unconditinally.
817        if (PointerOk)
818          for(Value::use_iterator UI = V->use_begin(), UE = V->use_end();
819              UI != UE && PointerOk; ++UI) {
820            Instruction *Use = dyn_cast<Instruction>(*UI);
821            if (!Use)
822              continue;
823            for (SmallVector<Instruction *, 4>::iterator
824                   ExitI = LoopExits.begin(), ExitE = LoopExits.end();
825                 ExitI != ExitE; ++ExitI) {
826              Instruction *Ex = *ExitI;
827              if (!DT->dominates(Use, Ex)){
828                PointerOk = false;
829                break;
830              }
831            }
832
833            if (!PointerOk)
834              break;
835          }
836      }
837
838      if (PointerOk) {
839        const Type *Ty = cast<PointerType>(V->getType())->getElementType();
840        AllocaInst *AI = new AllocaInst(Ty, 0, V->getName()+".tmp", FnStart);
841        PromotedValues.push_back(std::make_pair(AI, V));
842
843        // Update the AST and alias analysis.
844        CurAST->copyValue(V, AI);
845
846        for (AliasSet::iterator I = AS.begin(), E = AS.end(); I != E; ++I)
847          ValueToAllocaMap.insert(std::make_pair(I->first, AI));
848
849        DOUT << "LICM: Promoting value: " << *V << "\n";
850      }
851    }
852  }
853}
854
855/// cloneBasicBlockAnalysis - Simple Analysis hook. Clone alias set info.
856void LICM::cloneBasicBlockAnalysis(BasicBlock *From, BasicBlock *To, Loop *L) {
857  AliasSetTracker *AST = LoopToAliasMap[L];
858  if (!AST)
859    return;
860
861  AST->copyValue(From, To);
862}
863
864/// deleteAnalysisValue - Simple Analysis hook. Delete value V from alias
865/// set.
866void LICM::deleteAnalysisValue(Value *V, Loop *L) {
867  AliasSetTracker *AST = LoopToAliasMap[L];
868  if (!AST)
869    return;
870
871  AST->deleteValue(V);
872}
873