LICM.cpp revision 1b9c848d0a680de2aed44f43c85f4594416ff15a
1//===-- LICM.cpp - Loop Invariant Code Motion Pass ------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass performs loop invariant code motion, attempting to remove as much
11// code from the body of a loop as possible.  It does this by either hoisting
12// code into the preheader block, or by sinking code to the exit blocks if it is
13// safe.  This pass also promotes must-aliased memory locations in the loop to
14// live in registers, thus hoisting and sinking "invariant" loads and stores.
15//
16// This pass uses alias analysis for two purposes:
17//
18//  1. Moving loop invariant loads and calls out of loops.  If we can determine
19//     that a load or call inside of a loop never aliases anything stored to,
20//     we can hoist it or sink it like any other instruction.
21//  2. Scalar Promotion of Memory - If there is a store instruction inside of
22//     the loop, we try to move the store to happen AFTER the loop instead of
23//     inside of the loop.  This can only happen if a few conditions are true:
24//       A. The pointer stored through is loop invariant
25//       B. There are no stores or loads in the loop which _may_ alias the
26//          pointer.  There are no calls in the loop which mod/ref the pointer.
27//     If these conditions are true, we can promote the loads and stores in the
28//     loop of the pointer to use a temporary alloca'd variable.  We then use
29//     the SSAUpdater to construct the appropriate SSA form for the value.
30//
31//===----------------------------------------------------------------------===//
32
33#define DEBUG_TYPE "licm"
34#include "llvm/Transforms/Scalar.h"
35#include "llvm/Constants.h"
36#include "llvm/DerivedTypes.h"
37#include "llvm/IntrinsicInst.h"
38#include "llvm/Instructions.h"
39#include "llvm/Target/TargetData.h"
40#include "llvm/Analysis/LoopInfo.h"
41#include "llvm/Analysis/LoopPass.h"
42#include "llvm/Analysis/AliasAnalysis.h"
43#include "llvm/Analysis/AliasSetTracker.h"
44#include "llvm/Analysis/Dominators.h"
45#include "llvm/Analysis/ScalarEvolution.h"
46#include "llvm/Transforms/Utils/SSAUpdater.h"
47#include "llvm/Support/CFG.h"
48#include "llvm/Support/CommandLine.h"
49#include "llvm/Support/raw_ostream.h"
50#include "llvm/Support/Debug.h"
51#include "llvm/ADT/Statistic.h"
52#include <algorithm>
53using namespace llvm;
54
55STATISTIC(NumSunk      , "Number of instructions sunk out of loop");
56STATISTIC(NumHoisted   , "Number of instructions hoisted out of loop");
57STATISTIC(NumMovedLoads, "Number of load insts hoisted or sunk");
58STATISTIC(NumMovedCalls, "Number of call insts hoisted or sunk");
59STATISTIC(NumPromoted  , "Number of memory locations promoted to registers");
60
61static cl::opt<bool>
62DisablePromotion("disable-licm-promotion", cl::Hidden,
63                 cl::desc("Disable memory promotion in LICM pass"));
64
65namespace {
66  struct LICM : public LoopPass {
67    static char ID; // Pass identification, replacement for typeid
68    LICM() : LoopPass(ID) {}
69
70    virtual bool runOnLoop(Loop *L, LPPassManager &LPM);
71
72    /// This transformation requires natural loop information & requires that
73    /// loop preheaders be inserted into the CFG...
74    ///
75    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
76      AU.setPreservesCFG();
77      AU.addRequired<DominatorTree>();
78      AU.addRequired<LoopInfo>();
79      AU.addRequiredID(LoopSimplifyID);
80      AU.addRequired<AliasAnalysis>();
81      AU.addPreserved<AliasAnalysis>();
82      AU.addPreserved<ScalarEvolution>();
83      AU.addPreservedID(LoopSimplifyID);
84    }
85
86    bool doFinalization() {
87      assert(LoopToAliasSetMap.empty() && "Didn't free loop alias sets");
88      return false;
89    }
90
91  private:
92    AliasAnalysis *AA;       // Current AliasAnalysis information
93    LoopInfo      *LI;       // Current LoopInfo
94    DominatorTree *DT;       // Dominator Tree for the current Loop.
95
96    // State that is updated as we process loops.
97    bool Changed;            // Set to true when we change anything.
98    BasicBlock *Preheader;   // The preheader block of the current loop...
99    Loop *CurLoop;           // The current loop we are working on...
100    AliasSetTracker *CurAST; // AliasSet information for the current loop...
101    DenseMap<Loop*, AliasSetTracker*> LoopToAliasSetMap;
102
103    /// cloneBasicBlockAnalysis - Simple Analysis hook. Clone alias set info.
104    void cloneBasicBlockAnalysis(BasicBlock *From, BasicBlock *To, Loop *L);
105
106    /// deleteAnalysisValue - Simple Analysis hook. Delete value V from alias
107    /// set.
108    void deleteAnalysisValue(Value *V, Loop *L);
109
110    /// SinkRegion - Walk the specified region of the CFG (defined by all blocks
111    /// dominated by the specified block, and that are in the current loop) in
112    /// reverse depth first order w.r.t the DominatorTree.  This allows us to
113    /// visit uses before definitions, allowing us to sink a loop body in one
114    /// pass without iteration.
115    ///
116    void SinkRegion(DomTreeNode *N);
117
118    /// HoistRegion - Walk the specified region of the CFG (defined by all
119    /// blocks dominated by the specified block, and that are in the current
120    /// loop) in depth first order w.r.t the DominatorTree.  This allows us to
121    /// visit definitions before uses, allowing us to hoist a loop body in one
122    /// pass without iteration.
123    ///
124    void HoistRegion(DomTreeNode *N);
125
126    /// inSubLoop - Little predicate that returns true if the specified basic
127    /// block is in a subloop of the current one, not the current one itself.
128    ///
129    bool inSubLoop(BasicBlock *BB) {
130      assert(CurLoop->contains(BB) && "Only valid if BB is IN the loop");
131      for (Loop::iterator I = CurLoop->begin(), E = CurLoop->end(); I != E; ++I)
132        if ((*I)->contains(BB))
133          return true;  // A subloop actually contains this block!
134      return false;
135    }
136
137    /// isExitBlockDominatedByBlockInLoop - This method checks to see if the
138    /// specified exit block of the loop is dominated by the specified block
139    /// that is in the body of the loop.  We use these constraints to
140    /// dramatically limit the amount of the dominator tree that needs to be
141    /// searched.
142    bool isExitBlockDominatedByBlockInLoop(BasicBlock *ExitBlock,
143                                           BasicBlock *BlockInLoop) const {
144      // If the block in the loop is the loop header, it must be dominated!
145      BasicBlock *LoopHeader = CurLoop->getHeader();
146      if (BlockInLoop == LoopHeader)
147        return true;
148
149      DomTreeNode *BlockInLoopNode = DT->getNode(BlockInLoop);
150      DomTreeNode *IDom            = DT->getNode(ExitBlock);
151
152      // Because the exit block is not in the loop, we know we have to get _at
153      // least_ its immediate dominator.
154      IDom = IDom->getIDom();
155
156      while (IDom && IDom != BlockInLoopNode) {
157        // If we have got to the header of the loop, then the instructions block
158        // did not dominate the exit node, so we can't hoist it.
159        if (IDom->getBlock() == LoopHeader)
160          return false;
161
162        // Get next Immediate Dominator.
163        IDom = IDom->getIDom();
164      };
165
166      return true;
167    }
168
169    /// sink - When an instruction is found to only be used outside of the loop,
170    /// this function moves it to the exit blocks and patches up SSA form as
171    /// needed.
172    ///
173    void sink(Instruction &I);
174
175    /// hoist - When an instruction is found to only use loop invariant operands
176    /// that is safe to hoist, this instruction is called to do the dirty work.
177    ///
178    void hoist(Instruction &I);
179
180    /// isSafeToExecuteUnconditionally - Only sink or hoist an instruction if it
181    /// is not a trapping instruction or if it is a trapping instruction and is
182    /// guaranteed to execute.
183    ///
184    bool isSafeToExecuteUnconditionally(Instruction &I);
185
186    /// pointerInvalidatedByLoop - Return true if the body of this loop may
187    /// store into the memory location pointed to by V.
188    ///
189    bool pointerInvalidatedByLoop(Value *V, unsigned Size) {
190      // Check to see if any of the basic blocks in CurLoop invalidate *V.
191      return CurAST->getAliasSetForPointer(V, Size).isMod();
192    }
193
194    bool canSinkOrHoistInst(Instruction &I);
195    bool isLoopInvariantInst(Instruction &I);
196    bool isNotUsedInLoop(Instruction &I);
197
198    void PromoteAliasSet(AliasSet &AS);
199  };
200}
201
202char LICM::ID = 0;
203INITIALIZE_PASS(LICM, "licm", "Loop Invariant Code Motion", false, false);
204
205Pass *llvm::createLICMPass() { return new LICM(); }
206
207/// Hoist expressions out of the specified loop. Note, alias info for inner
208/// loop is not preserved so it is not a good idea to run LICM multiple
209/// times on one loop.
210///
211bool LICM::runOnLoop(Loop *L, LPPassManager &LPM) {
212  Changed = false;
213
214  // Get our Loop and Alias Analysis information...
215  LI = &getAnalysis<LoopInfo>();
216  AA = &getAnalysis<AliasAnalysis>();
217  DT = &getAnalysis<DominatorTree>();
218
219  CurAST = new AliasSetTracker(*AA);
220  // Collect Alias info from subloops.
221  for (Loop::iterator LoopItr = L->begin(), LoopItrE = L->end();
222       LoopItr != LoopItrE; ++LoopItr) {
223    Loop *InnerL = *LoopItr;
224    AliasSetTracker *InnerAST = LoopToAliasSetMap[InnerL];
225    assert(InnerAST && "Where is my AST?");
226
227    // What if InnerLoop was modified by other passes ?
228    CurAST->add(*InnerAST);
229
230    // Once we've incorporated the inner loop's AST into ours, we don't need the
231    // subloop's anymore.
232    delete InnerAST;
233    LoopToAliasSetMap.erase(InnerL);
234  }
235
236  CurLoop = L;
237
238  // Get the preheader block to move instructions into...
239  Preheader = L->getLoopPreheader();
240
241  // Loop over the body of this loop, looking for calls, invokes, and stores.
242  // Because subloops have already been incorporated into AST, we skip blocks in
243  // subloops.
244  //
245  for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
246       I != E; ++I) {
247    BasicBlock *BB = *I;
248    if (LI->getLoopFor(BB) == L)        // Ignore blocks in subloops.
249      CurAST->add(*BB);                 // Incorporate the specified basic block
250  }
251
252  // We want to visit all of the instructions in this loop... that are not parts
253  // of our subloops (they have already had their invariants hoisted out of
254  // their loop, into this loop, so there is no need to process the BODIES of
255  // the subloops).
256  //
257  // Traverse the body of the loop in depth first order on the dominator tree so
258  // that we are guaranteed to see definitions before we see uses.  This allows
259  // us to sink instructions in one pass, without iteration.  After sinking
260  // instructions, we perform another pass to hoist them out of the loop.
261  //
262  if (L->hasDedicatedExits())
263    SinkRegion(DT->getNode(L->getHeader()));
264  if (Preheader)
265    HoistRegion(DT->getNode(L->getHeader()));
266
267  // Now that all loop invariants have been removed from the loop, promote any
268  // memory references to scalars that we can.
269  if (!DisablePromotion && Preheader && L->hasDedicatedExits()) {
270    // Loop over all of the alias sets in the tracker object.
271    for (AliasSetTracker::iterator I = CurAST->begin(), E = CurAST->end();
272         I != E; ++I)
273      PromoteAliasSet(*I);
274  }
275
276  // Clear out loops state information for the next iteration
277  CurLoop = 0;
278  Preheader = 0;
279
280  // If this loop is nested inside of another one, save the alias information
281  // for when we process the outer loop.
282  if (L->getParentLoop())
283    LoopToAliasSetMap[L] = CurAST;
284  else
285    delete CurAST;
286  return Changed;
287}
288
289/// SinkRegion - Walk the specified region of the CFG (defined by all blocks
290/// dominated by the specified block, and that are in the current loop) in
291/// reverse depth first order w.r.t the DominatorTree.  This allows us to visit
292/// uses before definitions, allowing us to sink a loop body in one pass without
293/// iteration.
294///
295void LICM::SinkRegion(DomTreeNode *N) {
296  assert(N != 0 && "Null dominator tree node?");
297  BasicBlock *BB = N->getBlock();
298
299  // If this subregion is not in the top level loop at all, exit.
300  if (!CurLoop->contains(BB)) return;
301
302  // We are processing blocks in reverse dfo, so process children first...
303  const std::vector<DomTreeNode*> &Children = N->getChildren();
304  for (unsigned i = 0, e = Children.size(); i != e; ++i)
305    SinkRegion(Children[i]);
306
307  // Only need to process the contents of this block if it is not part of a
308  // subloop (which would already have been processed).
309  if (inSubLoop(BB)) return;
310
311  for (BasicBlock::iterator II = BB->end(); II != BB->begin(); ) {
312    Instruction &I = *--II;
313
314    // Check to see if we can sink this instruction to the exit blocks
315    // of the loop.  We can do this if the all users of the instruction are
316    // outside of the loop.  In this case, it doesn't even matter if the
317    // operands of the instruction are loop invariant.
318    //
319    if (isNotUsedInLoop(I) && canSinkOrHoistInst(I)) {
320      ++II;
321      sink(I);
322    }
323  }
324}
325
326/// HoistRegion - Walk the specified region of the CFG (defined by all blocks
327/// dominated by the specified block, and that are in the current loop) in depth
328/// first order w.r.t the DominatorTree.  This allows us to visit definitions
329/// before uses, allowing us to hoist a loop body in one pass without iteration.
330///
331void LICM::HoistRegion(DomTreeNode *N) {
332  assert(N != 0 && "Null dominator tree node?");
333  BasicBlock *BB = N->getBlock();
334
335  // If this subregion is not in the top level loop at all, exit.
336  if (!CurLoop->contains(BB)) return;
337
338  // Only need to process the contents of this block if it is not part of a
339  // subloop (which would already have been processed).
340  if (!inSubLoop(BB))
341    for (BasicBlock::iterator II = BB->begin(), E = BB->end(); II != E; ) {
342      Instruction &I = *II++;
343
344      // Try hoisting the instruction out to the preheader.  We can only do this
345      // if all of the operands of the instruction are loop invariant and if it
346      // is safe to hoist the instruction.
347      //
348      if (isLoopInvariantInst(I) && canSinkOrHoistInst(I) &&
349          isSafeToExecuteUnconditionally(I))
350        hoist(I);
351      }
352
353  const std::vector<DomTreeNode*> &Children = N->getChildren();
354  for (unsigned i = 0, e = Children.size(); i != e; ++i)
355    HoistRegion(Children[i]);
356}
357
358/// canSinkOrHoistInst - Return true if the hoister and sinker can handle this
359/// instruction.
360///
361bool LICM::canSinkOrHoistInst(Instruction &I) {
362  // Loads have extra constraints we have to verify before we can hoist them.
363  if (LoadInst *LI = dyn_cast<LoadInst>(&I)) {
364    if (LI->isVolatile())
365      return false;        // Don't hoist volatile loads!
366
367    // Loads from constant memory are always safe to move, even if they end up
368    // in the same alias set as something that ends up being modified.
369    if (AA->pointsToConstantMemory(LI->getOperand(0)))
370      return true;
371
372    // Don't hoist loads which have may-aliased stores in loop.
373    unsigned Size = 0;
374    if (LI->getType()->isSized())
375      Size = AA->getTypeStoreSize(LI->getType());
376    return !pointerInvalidatedByLoop(LI->getOperand(0), Size);
377  } else if (CallInst *CI = dyn_cast<CallInst>(&I)) {
378    // Handle obvious cases efficiently.
379    AliasAnalysis::ModRefBehavior Behavior = AA->getModRefBehavior(CI);
380    if (Behavior == AliasAnalysis::DoesNotAccessMemory)
381      return true;
382    else if (Behavior == AliasAnalysis::OnlyReadsMemory) {
383      // If this call only reads from memory and there are no writes to memory
384      // in the loop, we can hoist or sink the call as appropriate.
385      bool FoundMod = false;
386      for (AliasSetTracker::iterator I = CurAST->begin(), E = CurAST->end();
387           I != E; ++I) {
388        AliasSet &AS = *I;
389        if (!AS.isForwardingAliasSet() && AS.isMod()) {
390          FoundMod = true;
391          break;
392        }
393      }
394      if (!FoundMod) return true;
395    }
396
397    // FIXME: This should use mod/ref information to see if we can hoist or sink
398    // the call.
399
400    return false;
401  }
402
403  // Otherwise these instructions are hoistable/sinkable
404  return isa<BinaryOperator>(I) || isa<CastInst>(I) ||
405         isa<SelectInst>(I) || isa<GetElementPtrInst>(I) || isa<CmpInst>(I) ||
406         isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) ||
407         isa<ShuffleVectorInst>(I);
408}
409
410/// isNotUsedInLoop - Return true if the only users of this instruction are
411/// outside of the loop.  If this is true, we can sink the instruction to the
412/// exit blocks of the loop.
413///
414bool LICM::isNotUsedInLoop(Instruction &I) {
415  for (Value::use_iterator UI = I.use_begin(), E = I.use_end(); UI != E; ++UI) {
416    Instruction *User = cast<Instruction>(*UI);
417    if (PHINode *PN = dyn_cast<PHINode>(User)) {
418      // PHI node uses occur in predecessor blocks!
419      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
420        if (PN->getIncomingValue(i) == &I)
421          if (CurLoop->contains(PN->getIncomingBlock(i)))
422            return false;
423    } else if (CurLoop->contains(User)) {
424      return false;
425    }
426  }
427  return true;
428}
429
430
431/// isLoopInvariantInst - Return true if all operands of this instruction are
432/// loop invariant.  We also filter out non-hoistable instructions here just for
433/// efficiency.
434///
435bool LICM::isLoopInvariantInst(Instruction &I) {
436  // The instruction is loop invariant if all of its operands are loop-invariant
437  for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
438    if (!CurLoop->isLoopInvariant(I.getOperand(i)))
439      return false;
440
441  // If we got this far, the instruction is loop invariant!
442  return true;
443}
444
445/// sink - When an instruction is found to only be used outside of the loop,
446/// this function moves it to the exit blocks and patches up SSA form as needed.
447/// This method is guaranteed to remove the original instruction from its
448/// position, and may either delete it or move it to outside of the loop.
449///
450void LICM::sink(Instruction &I) {
451  DEBUG(dbgs() << "LICM sinking instruction: " << I << "\n");
452
453  SmallVector<BasicBlock*, 8> ExitBlocks;
454  CurLoop->getUniqueExitBlocks(ExitBlocks);
455
456  if (isa<LoadInst>(I)) ++NumMovedLoads;
457  else if (isa<CallInst>(I)) ++NumMovedCalls;
458  ++NumSunk;
459  Changed = true;
460
461  // The case where there is only a single exit node of this loop is common
462  // enough that we handle it as a special (more efficient) case.  It is more
463  // efficient to handle because there are no PHI nodes that need to be placed.
464  if (ExitBlocks.size() == 1) {
465    if (!isExitBlockDominatedByBlockInLoop(ExitBlocks[0], I.getParent())) {
466      // Instruction is not used, just delete it.
467      CurAST->deleteValue(&I);
468      // If I has users in unreachable blocks, eliminate.
469      // If I is not void type then replaceAllUsesWith undef.
470      // This allows ValueHandlers and custom metadata to adjust itself.
471      if (!I.use_empty())
472        I.replaceAllUsesWith(UndefValue::get(I.getType()));
473      I.eraseFromParent();
474    } else {
475      // Move the instruction to the start of the exit block, after any PHI
476      // nodes in it.
477      I.removeFromParent();
478      BasicBlock::iterator InsertPt = ExitBlocks[0]->getFirstNonPHI();
479      ExitBlocks[0]->getInstList().insert(InsertPt, &I);
480
481      // This instruction is no longer in the AST for the current loop, because
482      // we just sunk it out of the loop.  If we just sunk it into an outer
483      // loop, we will rediscover the operation when we process it.
484      CurAST->deleteValue(&I);
485    }
486    return;
487  }
488
489  if (ExitBlocks.empty()) {
490    // The instruction is actually dead if there ARE NO exit blocks.
491    CurAST->deleteValue(&I);
492    // If I has users in unreachable blocks, eliminate.
493    // If I is not void type then replaceAllUsesWith undef.
494    // This allows ValueHandlers and custom metadata to adjust itself.
495    if (!I.use_empty())
496      I.replaceAllUsesWith(UndefValue::get(I.getType()));
497    I.eraseFromParent();
498    return;
499  }
500
501  // Otherwise, if we have multiple exits, use the SSAUpdater to do all of the
502  // hard work of inserting PHI nodes as necessary.
503  SmallVector<PHINode*, 8> NewPHIs;
504  SSAUpdater SSA(&NewPHIs);
505
506  if (!I.use_empty())
507    SSA.Initialize(&I);
508
509  // Insert a copy of the instruction in each exit block of the loop that is
510  // dominated by the instruction.  Each exit block is known to only be in the
511  // ExitBlocks list once.
512  BasicBlock *InstOrigBB = I.getParent();
513  unsigned NumInserted = 0;
514
515  for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
516    BasicBlock *ExitBlock = ExitBlocks[i];
517
518    if (!isExitBlockDominatedByBlockInLoop(ExitBlock, InstOrigBB))
519      continue;
520
521    // Insert the code after the last PHI node.
522    BasicBlock::iterator InsertPt = ExitBlock->getFirstNonPHI();
523
524    // If this is the first exit block processed, just move the original
525    // instruction, otherwise clone the original instruction and insert
526    // the copy.
527    Instruction *New;
528    if (NumInserted++ == 0) {
529      I.moveBefore(InsertPt);
530      New = &I;
531    } else {
532      New = I.clone();
533      if (!I.getName().empty())
534        New->setName(I.getName()+".le");
535      ExitBlock->getInstList().insert(InsertPt, New);
536    }
537
538    // Now that we have inserted the instruction, inform SSAUpdater.
539    if (!I.use_empty())
540      SSA.AddAvailableValue(ExitBlock, New);
541  }
542
543  // If the instruction doesn't dominate any exit blocks, it must be dead.
544  if (NumInserted == 0) {
545    CurAST->deleteValue(&I);
546    if (!I.use_empty())
547      I.replaceAllUsesWith(UndefValue::get(I.getType()));
548    I.eraseFromParent();
549    return;
550  }
551
552  // Next, rewrite uses of the instruction, inserting PHI nodes as needed.
553  for (Value::use_iterator UI = I.use_begin(), UE = I.use_end(); UI != UE; ) {
554    // Grab the use before incrementing the iterator.
555    Use &U = UI.getUse();
556    // Increment the iterator before removing the use from the list.
557    ++UI;
558    SSA.RewriteUseAfterInsertions(U);
559  }
560
561  // Update CurAST for NewPHIs if I had pointer type.
562  if (I.getType()->isPointerTy())
563    for (unsigned i = 0, e = NewPHIs.size(); i != e; ++i)
564      CurAST->copyValue(NewPHIs[i], &I);
565
566  // Finally, remove the instruction from CurAST.  It is no longer in the loop.
567  CurAST->deleteValue(&I);
568}
569
570/// hoist - When an instruction is found to only use loop invariant operands
571/// that is safe to hoist, this instruction is called to do the dirty work.
572///
573void LICM::hoist(Instruction &I) {
574  DEBUG(dbgs() << "LICM hoisting to " << Preheader->getName() << ": "
575        << I << "\n");
576
577  // Remove the instruction from its current basic block... but don't delete the
578  // instruction.
579  I.removeFromParent();
580
581  // Insert the new node in Preheader, before the terminator.
582  Preheader->getInstList().insert(Preheader->getTerminator(), &I);
583
584  if (isa<LoadInst>(I)) ++NumMovedLoads;
585  else if (isa<CallInst>(I)) ++NumMovedCalls;
586  ++NumHoisted;
587  Changed = true;
588}
589
590/// isSafeToExecuteUnconditionally - Only sink or hoist an instruction if it is
591/// not a trapping instruction or if it is a trapping instruction and is
592/// guaranteed to execute.
593///
594bool LICM::isSafeToExecuteUnconditionally(Instruction &Inst) {
595  // If it is not a trapping instruction, it is always safe to hoist.
596  if (Inst.isSafeToSpeculativelyExecute())
597    return true;
598
599  // Otherwise we have to check to make sure that the instruction dominates all
600  // of the exit blocks.  If it doesn't, then there is a path out of the loop
601  // which does not execute this instruction, so we can't hoist it.
602
603  // If the instruction is in the header block for the loop (which is very
604  // common), it is always guaranteed to dominate the exit blocks.  Since this
605  // is a common case, and can save some work, check it now.
606  if (Inst.getParent() == CurLoop->getHeader())
607    return true;
608
609  // Get the exit blocks for the current loop.
610  SmallVector<BasicBlock*, 8> ExitBlocks;
611  CurLoop->getExitBlocks(ExitBlocks);
612
613  // For each exit block, get the DT node and walk up the DT until the
614  // instruction's basic block is found or we exit the loop.
615  for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i)
616    if (!isExitBlockDominatedByBlockInLoop(ExitBlocks[i], Inst.getParent()))
617      return false;
618
619  return true;
620}
621
622/// PromoteAliasSet - Try to promote memory values to scalars by sinking
623/// stores out of the loop and moving loads to before the loop.  We do this by
624/// looping over the stores in the loop, looking for stores to Must pointers
625/// which are loop invariant.
626///
627void LICM::PromoteAliasSet(AliasSet &AS) {
628  // We can promote this alias set if it has a store, if it is a "Must" alias
629  // set, if the pointer is loop invariant, and if we are not eliminating any
630  // volatile loads or stores.
631  if (AS.isForwardingAliasSet() || !AS.isMod() || !AS.isMustAlias() ||
632      AS.isVolatile() || !CurLoop->isLoopInvariant(AS.begin()->getValue()))
633    return;
634
635  assert(!AS.empty() &&
636         "Must alias set should have at least one pointer element in it!");
637  Value *SomePtr = AS.begin()->getValue();
638
639  // It isn't safe to promote a load/store from the loop if the load/store is
640  // conditional.  For example, turning:
641  //
642  //    for () { if (c) *P += 1; }
643  //
644  // into:
645  //
646  //    tmp = *P;  for () { if (c) tmp +=1; } *P = tmp;
647  //
648  // is not safe, because *P may only be valid to access if 'c' is true.
649  //
650  // It is safe to promote P if all uses are direct load/stores and if at
651  // least one is guaranteed to be executed.
652  bool GuaranteedToExecute = false;
653
654  SmallVector<Instruction*, 64> LoopUses;
655  SmallPtrSet<Value*, 4> PointerMustAliases;
656
657  // Check that all of the pointers in the alias set have the same type.  We
658  // cannot (yet) promote a memory location that is loaded and stored in
659  // different sizes.
660  for (AliasSet::iterator ASI = AS.begin(), E = AS.end(); ASI != E; ++ASI) {
661    Value *ASIV = ASI->getValue();
662    PointerMustAliases.insert(ASIV);
663
664    // Check that all of the pointers in the alias set have the same type.  We
665    // cannot (yet) promote a memory location that is loaded and stored in
666    // different sizes.
667    if (SomePtr->getType() != ASIV->getType())
668      return;
669
670    for (Value::use_iterator UI = ASIV->use_begin(), UE = ASIV->use_end();
671         UI != UE; ++UI) {
672      // Ignore instructions that are outside the loop.
673      Instruction *Use = dyn_cast<Instruction>(*UI);
674      if (!Use || !CurLoop->contains(Use))
675        continue;
676
677      // If there is an non-load/store instruction in the loop, we can't promote
678      // it.
679      if (isa<LoadInst>(Use))
680        assert(!cast<LoadInst>(Use)->isVolatile() && "AST broken");
681      else if (isa<StoreInst>(Use))
682        assert(!cast<StoreInst>(Use)->isVolatile() &&
683               Use->getOperand(0) != ASIV && "AST broken");
684      else
685        return; // Not a load or store.
686
687      if (!GuaranteedToExecute)
688        GuaranteedToExecute = isSafeToExecuteUnconditionally(*Use);
689
690      LoopUses.push_back(Use);
691    }
692  }
693
694  // If there isn't a guaranteed-to-execute instruction, we can't promote.
695  if (!GuaranteedToExecute)
696    return;
697
698  // Otherwise, this is safe to promote, lets do it!
699  DEBUG(dbgs() << "LICM: Promoting value stored to in loop: " <<*SomePtr<<'\n');
700  Changed = true;
701  ++NumPromoted;
702
703  // We use the SSAUpdater interface to insert phi nodes as required.
704  SmallVector<PHINode*, 16> NewPHIs;
705  SSAUpdater SSA(&NewPHIs);
706
707  // It wants to know some value of the same type as what we'll be inserting.
708  Value *SomeValue;
709  if (isa<LoadInst>(LoopUses[0]))
710    SomeValue = LoopUses[0];
711  else
712    SomeValue = cast<StoreInst>(LoopUses[0])->getOperand(0);
713  SSA.Initialize(SomeValue);
714
715  // First step: bucket up uses of the pointers by the block they occur in.
716  // This is important because we have to handle multiple defs/uses in a block
717  // ourselves: SSAUpdater is purely for cross-block references.
718  // FIXME: Want a TinyVector<Instruction*> since there is usually 0/1 element.
719  DenseMap<BasicBlock*, std::vector<Instruction*> > UsesByBlock;
720  for (unsigned i = 0, e = LoopUses.size(); i != e; ++i) {
721    Instruction *User = LoopUses[i];
722    UsesByBlock[User->getParent()].push_back(User);
723  }
724
725  // Okay, now we can iterate over all the blocks in the loop with uses,
726  // processing them.  Keep track of which loads are loading a live-in value.
727  SmallVector<LoadInst*, 32> LiveInLoads;
728
729  for (unsigned LoopUse = 0, e = LoopUses.size(); LoopUse != e; ++LoopUse) {
730    Instruction *User = LoopUses[LoopUse];
731    std::vector<Instruction*> &BlockUses = UsesByBlock[User->getParent()];
732
733    // If this block has already been processed, ignore this repeat use.
734    if (BlockUses.empty()) continue;
735
736    // Okay, this is the first use in the block.  If this block just has a
737    // single user in it, we can rewrite it trivially.
738    if (BlockUses.size() == 1) {
739      // If it is a store, it is a trivial def of the value in the block.
740      if (isa<StoreInst>(User)) {
741        SSA.AddAvailableValue(User->getParent(),
742                              cast<StoreInst>(User)->getOperand(0));
743      } else {
744        // Otherwise it is a load, queue it to rewrite as a live-in load.
745        LiveInLoads.push_back(cast<LoadInst>(User));
746      }
747      BlockUses.clear();
748      continue;
749    }
750
751    // Otherwise, check to see if this block is all loads.  If so, we can queue
752    // them all as live in loads.
753    bool HasStore = false;
754    for (unsigned i = 0, e = BlockUses.size(); i != e; ++i) {
755      if (isa<StoreInst>(BlockUses[i])) {
756        HasStore = true;
757        break;
758      }
759    }
760
761    if (!HasStore) {
762      for (unsigned i = 0, e = BlockUses.size(); i != e; ++i)
763        LiveInLoads.push_back(cast<LoadInst>(BlockUses[i]));
764      BlockUses.clear();
765      continue;
766    }
767
768    // Otherwise, we have mixed loads and stores (or just a bunch of stores).
769    // Since SSAUpdater is purely for cross-block values, we need to determine
770    // the order of these instructions in the block.  If the first use in the
771    // block is a load, then it uses the live in value.  The last store defines
772    // the live out value.  We handle this by doing a linear scan of the block.
773    BasicBlock *BB = User->getParent();
774    Value *StoredValue = 0;
775    for (BasicBlock::iterator II = BB->begin(), E = BB->end(); II != E; ++II) {
776      if (LoadInst *L = dyn_cast<LoadInst>(II)) {
777        // If this is a load to an unrelated pointer, ignore it.
778        if (!PointerMustAliases.count(L->getOperand(0))) continue;
779
780        // If we haven't seen a store yet, this is a live in use, otherwise
781        // use the stored value.
782        if (StoredValue)
783          L->replaceAllUsesWith(StoredValue);
784        else
785          LiveInLoads.push_back(L);
786        continue;
787      }
788
789      if (StoreInst *S = dyn_cast<StoreInst>(II)) {
790        // If this is a load to an unrelated pointer, ignore it.
791        if (!PointerMustAliases.count(S->getOperand(1))) continue;
792
793        // Remember that this is the active value in the block.
794        StoredValue = S->getOperand(0);
795      }
796    }
797
798    // The last stored value that happened is the live-out for the block.
799    assert(StoredValue && "Already checked that there is a store in block");
800    SSA.AddAvailableValue(BB, StoredValue);
801    BlockUses.clear();
802  }
803
804  // Now that all the intra-loop values are classified, set up the preheader.
805  // It gets a load of the pointer we're promoting, and it is the live-out value
806  // from the preheader.
807  LoadInst *PreheaderLoad = new LoadInst(SomePtr,SomePtr->getName()+".promoted",
808                                         Preheader->getTerminator());
809  SSA.AddAvailableValue(Preheader, PreheaderLoad);
810
811  // Now that the preheader is good to go, set up the exit blocks.  Each exit
812  // block gets a store of the live-out values that feed them.  Since we've
813  // already told the SSA updater about the defs in the loop and the preheader
814  // definition, it is all set and we can start using it.
815  SmallVector<BasicBlock*, 8> ExitBlocks;
816  CurLoop->getUniqueExitBlocks(ExitBlocks);
817  for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
818    BasicBlock *ExitBlock = ExitBlocks[i];
819    Value *LiveInValue = SSA.GetValueInMiddleOfBlock(ExitBlock);
820    Instruction *InsertPos = ExitBlock->getFirstNonPHI();
821    new StoreInst(LiveInValue, SomePtr, InsertPos);
822  }
823
824  // Okay, now we rewrite all loads that use live-in values in the loop,
825  // inserting PHI nodes as necessary.
826  for (unsigned i = 0, e = LiveInLoads.size(); i != e; ++i) {
827    LoadInst *ALoad = LiveInLoads[i];
828    ALoad->replaceAllUsesWith(SSA.GetValueInMiddleOfBlock(ALoad->getParent()));
829  }
830
831  // Now that everything is rewritten, delete the old instructions from the body
832  // of the loop.  They should all be dead now.
833  for (unsigned i = 0, e = LoopUses.size(); i != e; ++i) {
834    Instruction *User = LoopUses[i];
835    CurAST->deleteValue(User);
836    User->eraseFromParent();
837  }
838
839  // If the preheader load is itself a pointer, we need to tell alias analysis
840  // about the new pointer we created in the preheader block and about any PHI
841  // nodes that just got inserted.
842  if (PreheaderLoad->getType()->isPointerTy()) {
843    // Copy any value stored to or loaded from a must-alias of the pointer.
844    CurAST->copyValue(SomeValue, PreheaderLoad);
845
846    for (unsigned i = 0, e = NewPHIs.size(); i != e; ++i)
847      CurAST->copyValue(SomeValue, NewPHIs[i]);
848  }
849
850  // fwew, we're done!
851}
852
853
854/// cloneBasicBlockAnalysis - Simple Analysis hook. Clone alias set info.
855void LICM::cloneBasicBlockAnalysis(BasicBlock *From, BasicBlock *To, Loop *L) {
856  AliasSetTracker *AST = LoopToAliasSetMap.lookup(L);
857  if (!AST)
858    return;
859
860  AST->copyValue(From, To);
861}
862
863/// deleteAnalysisValue - Simple Analysis hook. Delete value V from alias
864/// set.
865void LICM::deleteAnalysisValue(Value *V, Loop *L) {
866  AliasSetTracker *AST = LoopToAliasSetMap.lookup(L);
867  if (!AST)
868    return;
869
870  AST->deleteValue(V);
871}
872