LICM.cpp revision 1bf5ebc7be0d5b05e4175c7adb767b38896adef1
1//===-- LICM.cpp - Loop Invariant Code Motion Pass ------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass performs loop invariant code motion, attempting to remove as much
11// code from the body of a loop as possible.  It does this by either hoisting
12// code into the preheader block, or by sinking code to the exit blocks if it is
13// safe.  This pass also promotes must-aliased memory locations in the loop to
14// live in registers, thus hoisting and sinking "invariant" loads and stores.
15//
16// This pass uses alias analysis for two purposes:
17//
18//  1. Moving loop invariant loads and calls out of loops.  If we can determine
19//     that a load or call inside of a loop never aliases anything stored to,
20//     we can hoist it or sink it like any other instruction.
21//  2. Scalar Promotion of Memory - If there is a store instruction inside of
22//     the loop, we try to move the store to happen AFTER the loop instead of
23//     inside of the loop.  This can only happen if a few conditions are true:
24//       A. The pointer stored through is loop invariant
25//       B. There are no stores or loads in the loop which _may_ alias the
26//          pointer.  There are no calls in the loop which mod/ref the pointer.
27//     If these conditions are true, we can promote the loads and stores in the
28//     loop of the pointer to use a temporary alloca'd variable.  We then use
29//     the mem2reg functionality to construct the appropriate SSA form for the
30//     variable.
31//
32//===----------------------------------------------------------------------===//
33
34#define DEBUG_TYPE "licm"
35#include "llvm/Transforms/Scalar.h"
36#include "llvm/Constants.h"
37#include "llvm/DerivedTypes.h"
38#include "llvm/IntrinsicInst.h"
39#include "llvm/Instructions.h"
40#include "llvm/Target/TargetData.h"
41#include "llvm/Analysis/LoopInfo.h"
42#include "llvm/Analysis/LoopPass.h"
43#include "llvm/Analysis/AliasAnalysis.h"
44#include "llvm/Analysis/AliasSetTracker.h"
45#include "llvm/Analysis/Dominators.h"
46#include "llvm/Analysis/ScalarEvolution.h"
47#include "llvm/Transforms/Utils/PromoteMemToReg.h"
48#include "llvm/Support/CFG.h"
49#include "llvm/Support/CommandLine.h"
50#include "llvm/Support/raw_ostream.h"
51#include "llvm/Support/Debug.h"
52#include "llvm/ADT/Statistic.h"
53#include <algorithm>
54using namespace llvm;
55
56STATISTIC(NumSunk      , "Number of instructions sunk out of loop");
57STATISTIC(NumHoisted   , "Number of instructions hoisted out of loop");
58STATISTIC(NumMovedLoads, "Number of load insts hoisted or sunk");
59STATISTIC(NumMovedCalls, "Number of call insts hoisted or sunk");
60STATISTIC(NumPromoted  , "Number of memory locations promoted to registers");
61
62static cl::opt<bool>
63DisablePromotion("disable-licm-promotion", cl::Hidden,
64                 cl::desc("Disable memory promotion in LICM pass"));
65
66// This feature is currently disabled by default because CodeGen is not yet
67// capable of rematerializing these constants in PIC mode, so it can lead to
68// degraded performance. Compile test/CodeGen/X86/remat-constant.ll with
69// -relocation-model=pic to see an example of this.
70static cl::opt<bool>
71EnableLICMConstantMotion("enable-licm-constant-variables", cl::Hidden,
72                         cl::desc("Enable hoisting/sinking of constant "
73                                  "global variables"));
74
75namespace {
76  struct LICM : public LoopPass {
77    static char ID; // Pass identification, replacement for typeid
78    LICM() : LoopPass(&ID) {}
79
80    virtual bool runOnLoop(Loop *L, LPPassManager &LPM);
81
82    /// This transformation requires natural loop information & requires that
83    /// loop preheaders be inserted into the CFG...
84    ///
85    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
86      AU.setPreservesCFG();
87      AU.addRequiredID(LoopSimplifyID);
88      AU.addRequired<LoopInfo>();
89      AU.addRequired<DominatorTree>();
90      AU.addRequired<DominanceFrontier>();  // For scalar promotion (mem2reg)
91      AU.addRequired<AliasAnalysis>();
92      AU.addPreserved<ScalarEvolution>();
93      AU.addPreserved<DominanceFrontier>();
94      AU.addPreservedID(LoopSimplifyID);
95    }
96
97    bool doFinalization() {
98      // Free the values stored in the map
99      for (std::map<Loop *, AliasSetTracker *>::iterator
100             I = LoopToAliasMap.begin(), E = LoopToAliasMap.end(); I != E; ++I)
101        delete I->second;
102
103      LoopToAliasMap.clear();
104      return false;
105    }
106
107  private:
108    // Various analyses that we use...
109    AliasAnalysis *AA;       // Current AliasAnalysis information
110    LoopInfo      *LI;       // Current LoopInfo
111    DominatorTree *DT;       // Dominator Tree for the current Loop...
112    DominanceFrontier *DF;   // Current Dominance Frontier
113
114    // State that is updated as we process loops
115    bool Changed;            // Set to true when we change anything.
116    BasicBlock *Preheader;   // The preheader block of the current loop...
117    Loop *CurLoop;           // The current loop we are working on...
118    AliasSetTracker *CurAST; // AliasSet information for the current loop...
119    std::map<Loop *, AliasSetTracker *> LoopToAliasMap;
120
121    /// cloneBasicBlockAnalysis - Simple Analysis hook. Clone alias set info.
122    void cloneBasicBlockAnalysis(BasicBlock *From, BasicBlock *To, Loop *L);
123
124    /// deleteAnalysisValue - Simple Analysis hook. Delete value V from alias
125    /// set.
126    void deleteAnalysisValue(Value *V, Loop *L);
127
128    /// SinkRegion - Walk the specified region of the CFG (defined by all blocks
129    /// dominated by the specified block, and that are in the current loop) in
130    /// reverse depth first order w.r.t the DominatorTree.  This allows us to
131    /// visit uses before definitions, allowing us to sink a loop body in one
132    /// pass without iteration.
133    ///
134    void SinkRegion(DomTreeNode *N);
135
136    /// HoistRegion - Walk the specified region of the CFG (defined by all
137    /// blocks dominated by the specified block, and that are in the current
138    /// loop) in depth first order w.r.t the DominatorTree.  This allows us to
139    /// visit definitions before uses, allowing us to hoist a loop body in one
140    /// pass without iteration.
141    ///
142    void HoistRegion(DomTreeNode *N);
143
144    /// inSubLoop - Little predicate that returns true if the specified basic
145    /// block is in a subloop of the current one, not the current one itself.
146    ///
147    bool inSubLoop(BasicBlock *BB) {
148      assert(CurLoop->contains(BB) && "Only valid if BB is IN the loop");
149      for (Loop::iterator I = CurLoop->begin(), E = CurLoop->end(); I != E; ++I)
150        if ((*I)->contains(BB))
151          return true;  // A subloop actually contains this block!
152      return false;
153    }
154
155    /// isExitBlockDominatedByBlockInLoop - This method checks to see if the
156    /// specified exit block of the loop is dominated by the specified block
157    /// that is in the body of the loop.  We use these constraints to
158    /// dramatically limit the amount of the dominator tree that needs to be
159    /// searched.
160    bool isExitBlockDominatedByBlockInLoop(BasicBlock *ExitBlock,
161                                           BasicBlock *BlockInLoop) const {
162      // If the block in the loop is the loop header, it must be dominated!
163      BasicBlock *LoopHeader = CurLoop->getHeader();
164      if (BlockInLoop == LoopHeader)
165        return true;
166
167      DomTreeNode *BlockInLoopNode = DT->getNode(BlockInLoop);
168      DomTreeNode *IDom            = DT->getNode(ExitBlock);
169
170      // Because the exit block is not in the loop, we know we have to get _at
171      // least_ its immediate dominator.
172      do {
173        // Get next Immediate Dominator.
174        IDom = IDom->getIDom();
175
176        // If we have got to the header of the loop, then the instructions block
177        // did not dominate the exit node, so we can't hoist it.
178        if (IDom->getBlock() == LoopHeader)
179          return false;
180
181      } while (IDom != BlockInLoopNode);
182
183      return true;
184    }
185
186    /// sink - When an instruction is found to only be used outside of the loop,
187    /// this function moves it to the exit blocks and patches up SSA form as
188    /// needed.
189    ///
190    void sink(Instruction &I);
191
192    /// hoist - When an instruction is found to only use loop invariant operands
193    /// that is safe to hoist, this instruction is called to do the dirty work.
194    ///
195    void hoist(Instruction &I);
196
197    /// isSafeToExecuteUnconditionally - Only sink or hoist an instruction if it
198    /// is not a trapping instruction or if it is a trapping instruction and is
199    /// guaranteed to execute.
200    ///
201    bool isSafeToExecuteUnconditionally(Instruction &I);
202
203    /// pointerInvalidatedByLoop - Return true if the body of this loop may
204    /// store into the memory location pointed to by V.
205    ///
206    bool pointerInvalidatedByLoop(Value *V, unsigned Size) {
207      // Check to see if any of the basic blocks in CurLoop invalidate *V.
208      return CurAST->getAliasSetForPointer(V, Size).isMod();
209    }
210
211    bool canSinkOrHoistInst(Instruction &I);
212    bool isLoopInvariantInst(Instruction &I);
213    bool isNotUsedInLoop(Instruction &I);
214
215    /// PromoteValuesInLoop - Look at the stores in the loop and promote as many
216    /// to scalars as we can.
217    ///
218    void PromoteValuesInLoop();
219
220    /// FindPromotableValuesInLoop - Check the current loop for stores to
221    /// definite pointers, which are not loaded and stored through may aliases.
222    /// If these are found, create an alloca for the value, add it to the
223    /// PromotedValues list, and keep track of the mapping from value to
224    /// alloca...
225    ///
226    void FindPromotableValuesInLoop(
227                   std::vector<std::pair<AllocaInst*, Value*> > &PromotedValues,
228                                    std::map<Value*, AllocaInst*> &Val2AlMap);
229  };
230}
231
232char LICM::ID = 0;
233static RegisterPass<LICM> X("licm", "Loop Invariant Code Motion");
234
235Pass *llvm::createLICMPass() { return new LICM(); }
236
237/// Hoist expressions out of the specified loop. Note, alias info for inner
238/// loop is not preserved so it is not a good idea to run LICM multiple
239/// times on one loop.
240///
241bool LICM::runOnLoop(Loop *L, LPPassManager &LPM) {
242  Changed = false;
243
244  // Get our Loop and Alias Analysis information...
245  LI = &getAnalysis<LoopInfo>();
246  AA = &getAnalysis<AliasAnalysis>();
247  DF = &getAnalysis<DominanceFrontier>();
248  DT = &getAnalysis<DominatorTree>();
249
250  CurAST = new AliasSetTracker(*AA);
251  // Collect Alias info from subloops
252  for (Loop::iterator LoopItr = L->begin(), LoopItrE = L->end();
253       LoopItr != LoopItrE; ++LoopItr) {
254    Loop *InnerL = *LoopItr;
255    AliasSetTracker *InnerAST = LoopToAliasMap[InnerL];
256    assert (InnerAST && "Where is my AST?");
257
258    // What if InnerLoop was modified by other passes ?
259    CurAST->add(*InnerAST);
260  }
261
262  CurLoop = L;
263
264  // Get the preheader block to move instructions into...
265  Preheader = L->getLoopPreheader();
266  assert(Preheader&&"Preheader insertion pass guarantees we have a preheader!");
267
268  // Loop over the body of this loop, looking for calls, invokes, and stores.
269  // Because subloops have already been incorporated into AST, we skip blocks in
270  // subloops.
271  //
272  for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
273       I != E; ++I) {
274    BasicBlock *BB = *I;
275    if (LI->getLoopFor(BB) == L)        // Ignore blocks in subloops...
276      CurAST->add(*BB);                 // Incorporate the specified basic block
277  }
278
279  // We want to visit all of the instructions in this loop... that are not parts
280  // of our subloops (they have already had their invariants hoisted out of
281  // their loop, into this loop, so there is no need to process the BODIES of
282  // the subloops).
283  //
284  // Traverse the body of the loop in depth first order on the dominator tree so
285  // that we are guaranteed to see definitions before we see uses.  This allows
286  // us to sink instructions in one pass, without iteration.  After sinking
287  // instructions, we perform another pass to hoist them out of the loop.
288  //
289  SinkRegion(DT->getNode(L->getHeader()));
290  HoistRegion(DT->getNode(L->getHeader()));
291
292  // Now that all loop invariants have been removed from the loop, promote any
293  // memory references to scalars that we can...
294  if (!DisablePromotion)
295    PromoteValuesInLoop();
296
297  // Clear out loops state information for the next iteration
298  CurLoop = 0;
299  Preheader = 0;
300
301  LoopToAliasMap[L] = CurAST;
302  return Changed;
303}
304
305/// SinkRegion - Walk the specified region of the CFG (defined by all blocks
306/// dominated by the specified block, and that are in the current loop) in
307/// reverse depth first order w.r.t the DominatorTree.  This allows us to visit
308/// uses before definitions, allowing us to sink a loop body in one pass without
309/// iteration.
310///
311void LICM::SinkRegion(DomTreeNode *N) {
312  assert(N != 0 && "Null dominator tree node?");
313  BasicBlock *BB = N->getBlock();
314
315  // If this subregion is not in the top level loop at all, exit.
316  if (!CurLoop->contains(BB)) return;
317
318  // We are processing blocks in reverse dfo, so process children first...
319  const std::vector<DomTreeNode*> &Children = N->getChildren();
320  for (unsigned i = 0, e = Children.size(); i != e; ++i)
321    SinkRegion(Children[i]);
322
323  // Only need to process the contents of this block if it is not part of a
324  // subloop (which would already have been processed).
325  if (inSubLoop(BB)) return;
326
327  for (BasicBlock::iterator II = BB->end(); II != BB->begin(); ) {
328    Instruction &I = *--II;
329
330    // Check to see if we can sink this instruction to the exit blocks
331    // of the loop.  We can do this if the all users of the instruction are
332    // outside of the loop.  In this case, it doesn't even matter if the
333    // operands of the instruction are loop invariant.
334    //
335    if (isNotUsedInLoop(I) && canSinkOrHoistInst(I)) {
336      ++II;
337      sink(I);
338    }
339  }
340}
341
342/// HoistRegion - Walk the specified region of the CFG (defined by all blocks
343/// dominated by the specified block, and that are in the current loop) in depth
344/// first order w.r.t the DominatorTree.  This allows us to visit definitions
345/// before uses, allowing us to hoist a loop body in one pass without iteration.
346///
347void LICM::HoistRegion(DomTreeNode *N) {
348  assert(N != 0 && "Null dominator tree node?");
349  BasicBlock *BB = N->getBlock();
350
351  // If this subregion is not in the top level loop at all, exit.
352  if (!CurLoop->contains(BB)) return;
353
354  // Only need to process the contents of this block if it is not part of a
355  // subloop (which would already have been processed).
356  if (!inSubLoop(BB))
357    for (BasicBlock::iterator II = BB->begin(), E = BB->end(); II != E; ) {
358      Instruction &I = *II++;
359
360      // Try hoisting the instruction out to the preheader.  We can only do this
361      // if all of the operands of the instruction are loop invariant and if it
362      // is safe to hoist the instruction.
363      //
364      if (isLoopInvariantInst(I) && canSinkOrHoistInst(I) &&
365          isSafeToExecuteUnconditionally(I))
366        hoist(I);
367      }
368
369  const std::vector<DomTreeNode*> &Children = N->getChildren();
370  for (unsigned i = 0, e = Children.size(); i != e; ++i)
371    HoistRegion(Children[i]);
372}
373
374/// canSinkOrHoistInst - Return true if the hoister and sinker can handle this
375/// instruction.
376///
377bool LICM::canSinkOrHoistInst(Instruction &I) {
378  // Loads have extra constraints we have to verify before we can hoist them.
379  if (LoadInst *LI = dyn_cast<LoadInst>(&I)) {
380    if (LI->isVolatile())
381      return false;        // Don't hoist volatile loads!
382
383    // Loads from constant memory are always safe to move, even if they end up
384    // in the same alias set as something that ends up being modified.
385    if (EnableLICMConstantMotion &&
386        AA->pointsToConstantMemory(LI->getOperand(0)))
387      return true;
388
389    // Don't hoist loads which have may-aliased stores in loop.
390    unsigned Size = 0;
391    if (LI->getType()->isSized())
392      Size = AA->getTypeStoreSize(LI->getType());
393    return !pointerInvalidatedByLoop(LI->getOperand(0), Size);
394  } else if (CallInst *CI = dyn_cast<CallInst>(&I)) {
395    if (isa<DbgStopPointInst>(CI)) {
396      // Don't hoist/sink dbgstoppoints, we handle them separately
397      return false;
398    }
399    // Handle obvious cases efficiently.
400    AliasAnalysis::ModRefBehavior Behavior = AA->getModRefBehavior(CI);
401    if (Behavior == AliasAnalysis::DoesNotAccessMemory)
402      return true;
403    else if (Behavior == AliasAnalysis::OnlyReadsMemory) {
404      // If this call only reads from memory and there are no writes to memory
405      // in the loop, we can hoist or sink the call as appropriate.
406      bool FoundMod = false;
407      for (AliasSetTracker::iterator I = CurAST->begin(), E = CurAST->end();
408           I != E; ++I) {
409        AliasSet &AS = *I;
410        if (!AS.isForwardingAliasSet() && AS.isMod()) {
411          FoundMod = true;
412          break;
413        }
414      }
415      if (!FoundMod) return true;
416    }
417
418    // FIXME: This should use mod/ref information to see if we can hoist or sink
419    // the call.
420
421    return false;
422  }
423
424  // Otherwise these instructions are hoistable/sinkable
425  return isa<BinaryOperator>(I) || isa<CastInst>(I) ||
426         isa<SelectInst>(I) || isa<GetElementPtrInst>(I) || isa<CmpInst>(I) ||
427         isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) ||
428         isa<ShuffleVectorInst>(I);
429}
430
431/// isNotUsedInLoop - Return true if the only users of this instruction are
432/// outside of the loop.  If this is true, we can sink the instruction to the
433/// exit blocks of the loop.
434///
435bool LICM::isNotUsedInLoop(Instruction &I) {
436  for (Value::use_iterator UI = I.use_begin(), E = I.use_end(); UI != E; ++UI) {
437    Instruction *User = cast<Instruction>(*UI);
438    if (PHINode *PN = dyn_cast<PHINode>(User)) {
439      // PHI node uses occur in predecessor blocks!
440      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
441        if (PN->getIncomingValue(i) == &I)
442          if (CurLoop->contains(PN->getIncomingBlock(i)))
443            return false;
444    } else if (CurLoop->contains(User->getParent())) {
445      return false;
446    }
447  }
448  return true;
449}
450
451
452/// isLoopInvariantInst - Return true if all operands of this instruction are
453/// loop invariant.  We also filter out non-hoistable instructions here just for
454/// efficiency.
455///
456bool LICM::isLoopInvariantInst(Instruction &I) {
457  // The instruction is loop invariant if all of its operands are loop-invariant
458  for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
459    if (!CurLoop->isLoopInvariant(I.getOperand(i)))
460      return false;
461
462  // If we got this far, the instruction is loop invariant!
463  return true;
464}
465
466/// sink - When an instruction is found to only be used outside of the loop,
467/// this function moves it to the exit blocks and patches up SSA form as needed.
468/// This method is guaranteed to remove the original instruction from its
469/// position, and may either delete it or move it to outside of the loop.
470///
471void LICM::sink(Instruction &I) {
472  DEBUG(errs() << "LICM sinking instruction: " << I);
473
474  SmallVector<BasicBlock*, 8> ExitBlocks;
475  CurLoop->getExitBlocks(ExitBlocks);
476
477  if (isa<LoadInst>(I)) ++NumMovedLoads;
478  else if (isa<CallInst>(I)) ++NumMovedCalls;
479  ++NumSunk;
480  Changed = true;
481
482  // The case where there is only a single exit node of this loop is common
483  // enough that we handle it as a special (more efficient) case.  It is more
484  // efficient to handle because there are no PHI nodes that need to be placed.
485  if (ExitBlocks.size() == 1) {
486    if (!isExitBlockDominatedByBlockInLoop(ExitBlocks[0], I.getParent())) {
487      // Instruction is not used, just delete it.
488      CurAST->deleteValue(&I);
489      // If I has users in unreachable blocks, eliminate.
490      I.replaceAllUsesWith(UndefValue::get(I.getType()));
491      I.eraseFromParent();
492    } else {
493      // Move the instruction to the start of the exit block, after any PHI
494      // nodes in it.
495      I.removeFromParent();
496      BasicBlock::iterator InsertPt = ExitBlocks[0]->getFirstNonPHI();
497      ExitBlocks[0]->getInstList().insert(InsertPt, &I);
498    }
499  } else if (ExitBlocks.empty()) {
500    // The instruction is actually dead if there ARE NO exit blocks.
501    CurAST->deleteValue(&I);
502    // If I has users in unreachable blocks, eliminate.
503    I.replaceAllUsesWith(UndefValue::get(I.getType()));
504    I.eraseFromParent();
505  } else {
506    // Otherwise, if we have multiple exits, use the PromoteMem2Reg function to
507    // do all of the hard work of inserting PHI nodes as necessary.  We convert
508    // the value into a stack object to get it to do this.
509
510    // Firstly, we create a stack object to hold the value...
511    AllocaInst *AI = 0;
512
513    if (I.getType() != Type::getVoidTy(I.getContext())) {
514      AI = new AllocaInst(I.getType(), 0, I.getName(),
515                          I.getParent()->getParent()->getEntryBlock().begin());
516      CurAST->add(AI);
517    }
518
519    // Secondly, insert load instructions for each use of the instruction
520    // outside of the loop.
521    while (!I.use_empty()) {
522      Instruction *U = cast<Instruction>(I.use_back());
523
524      // If the user is a PHI Node, we actually have to insert load instructions
525      // in all predecessor blocks, not in the PHI block itself!
526      if (PHINode *UPN = dyn_cast<PHINode>(U)) {
527        // Only insert into each predecessor once, so that we don't have
528        // different incoming values from the same block!
529        std::map<BasicBlock*, Value*> InsertedBlocks;
530        for (unsigned i = 0, e = UPN->getNumIncomingValues(); i != e; ++i)
531          if (UPN->getIncomingValue(i) == &I) {
532            BasicBlock *Pred = UPN->getIncomingBlock(i);
533            Value *&PredVal = InsertedBlocks[Pred];
534            if (!PredVal) {
535              // Insert a new load instruction right before the terminator in
536              // the predecessor block.
537              PredVal = new LoadInst(AI, "", Pred->getTerminator());
538              CurAST->add(cast<LoadInst>(PredVal));
539            }
540
541            UPN->setIncomingValue(i, PredVal);
542          }
543
544      } else {
545        LoadInst *L = new LoadInst(AI, "", U);
546        U->replaceUsesOfWith(&I, L);
547        CurAST->add(L);
548      }
549    }
550
551    // Thirdly, insert a copy of the instruction in each exit block of the loop
552    // that is dominated by the instruction, storing the result into the memory
553    // location.  Be careful not to insert the instruction into any particular
554    // basic block more than once.
555    std::set<BasicBlock*> InsertedBlocks;
556    BasicBlock *InstOrigBB = I.getParent();
557
558    for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
559      BasicBlock *ExitBlock = ExitBlocks[i];
560
561      if (isExitBlockDominatedByBlockInLoop(ExitBlock, InstOrigBB)) {
562        // If we haven't already processed this exit block, do so now.
563        if (InsertedBlocks.insert(ExitBlock).second) {
564          // Insert the code after the last PHI node...
565          BasicBlock::iterator InsertPt = ExitBlock->getFirstNonPHI();
566
567          // If this is the first exit block processed, just move the original
568          // instruction, otherwise clone the original instruction and insert
569          // the copy.
570          Instruction *New;
571          if (InsertedBlocks.size() == 1) {
572            I.removeFromParent();
573            ExitBlock->getInstList().insert(InsertPt, &I);
574            New = &I;
575          } else {
576            New = I.clone();
577            CurAST->copyValue(&I, New);
578            if (!I.getName().empty())
579              New->setName(I.getName()+".le");
580            ExitBlock->getInstList().insert(InsertPt, New);
581          }
582
583          // Now that we have inserted the instruction, store it into the alloca
584          if (AI) new StoreInst(New, AI, InsertPt);
585        }
586      }
587    }
588
589    // If the instruction doesn't dominate any exit blocks, it must be dead.
590    if (InsertedBlocks.empty()) {
591      CurAST->deleteValue(&I);
592      I.eraseFromParent();
593    }
594
595    // Finally, promote the fine value to SSA form.
596    if (AI) {
597      std::vector<AllocaInst*> Allocas;
598      Allocas.push_back(AI);
599      PromoteMemToReg(Allocas, *DT, *DF, AI->getContext(), CurAST);
600    }
601  }
602}
603
604/// hoist - When an instruction is found to only use loop invariant operands
605/// that is safe to hoist, this instruction is called to do the dirty work.
606///
607void LICM::hoist(Instruction &I) {
608  DEBUG(errs() << "LICM hoisting to " << Preheader->getName() << ": "
609        << I << "\n");
610
611  // Remove the instruction from its current basic block... but don't delete the
612  // instruction.
613  I.removeFromParent();
614
615  // Insert the new node in Preheader, before the terminator.
616  Preheader->getInstList().insert(Preheader->getTerminator(), &I);
617
618  if (isa<LoadInst>(I)) ++NumMovedLoads;
619  else if (isa<CallInst>(I)) ++NumMovedCalls;
620  ++NumHoisted;
621  Changed = true;
622}
623
624/// isSafeToExecuteUnconditionally - Only sink or hoist an instruction if it is
625/// not a trapping instruction or if it is a trapping instruction and is
626/// guaranteed to execute.
627///
628bool LICM::isSafeToExecuteUnconditionally(Instruction &Inst) {
629  // If it is not a trapping instruction, it is always safe to hoist.
630  if (Inst.isSafeToSpeculativelyExecute())
631    return true;
632
633  // Otherwise we have to check to make sure that the instruction dominates all
634  // of the exit blocks.  If it doesn't, then there is a path out of the loop
635  // which does not execute this instruction, so we can't hoist it.
636
637  // If the instruction is in the header block for the loop (which is very
638  // common), it is always guaranteed to dominate the exit blocks.  Since this
639  // is a common case, and can save some work, check it now.
640  if (Inst.getParent() == CurLoop->getHeader())
641    return true;
642
643  // Get the exit blocks for the current loop.
644  SmallVector<BasicBlock*, 8> ExitBlocks;
645  CurLoop->getExitBlocks(ExitBlocks);
646
647  // For each exit block, get the DT node and walk up the DT until the
648  // instruction's basic block is found or we exit the loop.
649  for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i)
650    if (!isExitBlockDominatedByBlockInLoop(ExitBlocks[i], Inst.getParent()))
651      return false;
652
653  return true;
654}
655
656
657/// PromoteValuesInLoop - Try to promote memory values to scalars by sinking
658/// stores out of the loop and moving loads to before the loop.  We do this by
659/// looping over the stores in the loop, looking for stores to Must pointers
660/// which are loop invariant.  We promote these memory locations to use allocas
661/// instead.  These allocas can easily be raised to register values by the
662/// PromoteMem2Reg functionality.
663///
664void LICM::PromoteValuesInLoop() {
665  // PromotedValues - List of values that are promoted out of the loop.  Each
666  // value has an alloca instruction for it, and a canonical version of the
667  // pointer.
668  std::vector<std::pair<AllocaInst*, Value*> > PromotedValues;
669  std::map<Value*, AllocaInst*> ValueToAllocaMap; // Map of ptr to alloca
670
671  FindPromotableValuesInLoop(PromotedValues, ValueToAllocaMap);
672  if (ValueToAllocaMap.empty()) return;   // If there are values to promote.
673
674  Changed = true;
675  NumPromoted += PromotedValues.size();
676
677  std::vector<Value*> PointerValueNumbers;
678
679  // Emit a copy from the value into the alloca'd value in the loop preheader
680  TerminatorInst *LoopPredInst = Preheader->getTerminator();
681  for (unsigned i = 0, e = PromotedValues.size(); i != e; ++i) {
682    Value *Ptr = PromotedValues[i].second;
683
684    // If we are promoting a pointer value, update alias information for the
685    // inserted load.
686    Value *LoadValue = 0;
687    if (isa<PointerType>(cast<PointerType>(Ptr->getType())->getElementType())) {
688      // Locate a load or store through the pointer, and assign the same value
689      // to LI as we are loading or storing.  Since we know that the value is
690      // stored in this loop, this will always succeed.
691      for (Value::use_iterator UI = Ptr->use_begin(), E = Ptr->use_end();
692           UI != E; ++UI)
693        if (LoadInst *LI = dyn_cast<LoadInst>(*UI)) {
694          LoadValue = LI;
695          break;
696        } else if (StoreInst *SI = dyn_cast<StoreInst>(*UI)) {
697          if (SI->getOperand(1) == Ptr) {
698            LoadValue = SI->getOperand(0);
699            break;
700          }
701        }
702      assert(LoadValue && "No store through the pointer found!");
703      PointerValueNumbers.push_back(LoadValue);  // Remember this for later.
704    }
705
706    // Load from the memory we are promoting.
707    LoadInst *LI = new LoadInst(Ptr, Ptr->getName()+".promoted", LoopPredInst);
708
709    if (LoadValue) CurAST->copyValue(LoadValue, LI);
710
711    // Store into the temporary alloca.
712    new StoreInst(LI, PromotedValues[i].first, LoopPredInst);
713  }
714
715  // Scan the basic blocks in the loop, replacing uses of our pointers with
716  // uses of the allocas in question.
717  //
718  for (Loop::block_iterator I = CurLoop->block_begin(),
719         E = CurLoop->block_end(); I != E; ++I) {
720    BasicBlock *BB = *I;
721    // Rewrite all loads and stores in the block of the pointer...
722    for (BasicBlock::iterator II = BB->begin(), E = BB->end(); II != E; ++II) {
723      if (LoadInst *L = dyn_cast<LoadInst>(II)) {
724        std::map<Value*, AllocaInst*>::iterator
725          I = ValueToAllocaMap.find(L->getOperand(0));
726        if (I != ValueToAllocaMap.end())
727          L->setOperand(0, I->second);    // Rewrite load instruction...
728      } else if (StoreInst *S = dyn_cast<StoreInst>(II)) {
729        std::map<Value*, AllocaInst*>::iterator
730          I = ValueToAllocaMap.find(S->getOperand(1));
731        if (I != ValueToAllocaMap.end())
732          S->setOperand(1, I->second);    // Rewrite store instruction...
733      }
734    }
735  }
736
737  // Now that the body of the loop uses the allocas instead of the original
738  // memory locations, insert code to copy the alloca value back into the
739  // original memory location on all exits from the loop.  Note that we only
740  // want to insert one copy of the code in each exit block, though the loop may
741  // exit to the same block more than once.
742  //
743  SmallPtrSet<BasicBlock*, 16> ProcessedBlocks;
744
745  SmallVector<BasicBlock*, 8> ExitBlocks;
746  CurLoop->getExitBlocks(ExitBlocks);
747  for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
748    if (!ProcessedBlocks.insert(ExitBlocks[i]))
749      continue;
750
751    // Copy all of the allocas into their memory locations.
752    BasicBlock::iterator BI = ExitBlocks[i]->getFirstNonPHI();
753    Instruction *InsertPos = BI;
754    unsigned PVN = 0;
755    for (unsigned i = 0, e = PromotedValues.size(); i != e; ++i) {
756      // Load from the alloca.
757      LoadInst *LI = new LoadInst(PromotedValues[i].first, "", InsertPos);
758
759      // If this is a pointer type, update alias info appropriately.
760      if (isa<PointerType>(LI->getType()))
761        CurAST->copyValue(PointerValueNumbers[PVN++], LI);
762
763      // Store into the memory we promoted.
764      new StoreInst(LI, PromotedValues[i].second, InsertPos);
765    }
766  }
767
768  // Now that we have done the deed, use the mem2reg functionality to promote
769  // all of the new allocas we just created into real SSA registers.
770  //
771  std::vector<AllocaInst*> PromotedAllocas;
772  PromotedAllocas.reserve(PromotedValues.size());
773  for (unsigned i = 0, e = PromotedValues.size(); i != e; ++i)
774    PromotedAllocas.push_back(PromotedValues[i].first);
775  PromoteMemToReg(PromotedAllocas, *DT, *DF, Preheader->getContext(), CurAST);
776}
777
778/// FindPromotableValuesInLoop - Check the current loop for stores to definite
779/// pointers, which are not loaded and stored through may aliases and are safe
780/// for promotion.  If these are found, create an alloca for the value, add it
781/// to the PromotedValues list, and keep track of the mapping from value to
782/// alloca.
783void LICM::FindPromotableValuesInLoop(
784                   std::vector<std::pair<AllocaInst*, Value*> > &PromotedValues,
785                             std::map<Value*, AllocaInst*> &ValueToAllocaMap) {
786  Instruction *FnStart = CurLoop->getHeader()->getParent()->begin()->begin();
787
788  // Loop over all of the alias sets in the tracker object.
789  for (AliasSetTracker::iterator I = CurAST->begin(), E = CurAST->end();
790       I != E; ++I) {
791    AliasSet &AS = *I;
792    // We can promote this alias set if it has a store, if it is a "Must" alias
793    // set, if the pointer is loop invariant, and if we are not eliminating any
794    // volatile loads or stores.
795    if (AS.isForwardingAliasSet() || !AS.isMod() || !AS.isMustAlias() ||
796        AS.isVolatile() || !CurLoop->isLoopInvariant(AS.begin()->getValue()))
797      continue;
798
799    assert(!AS.empty() &&
800           "Must alias set should have at least one pointer element in it!");
801    Value *V = AS.begin()->getValue();
802
803    // Check that all of the pointers in the alias set have the same type.  We
804    // cannot (yet) promote a memory location that is loaded and stored in
805    // different sizes.
806    {
807      bool PointerOk = true;
808      for (AliasSet::iterator I = AS.begin(), E = AS.end(); I != E; ++I)
809        if (V->getType() != I->getValue()->getType()) {
810          PointerOk = false;
811          break;
812        }
813      if (!PointerOk)
814        continue;
815    }
816
817    // It isn't safe to promote a load/store from the loop if the load/store is
818    // conditional.  For example, turning:
819    //
820    //    for () { if (c) *P += 1; }
821    //
822    // into:
823    //
824    //    tmp = *P;  for () { if (c) tmp +=1; } *P = tmp;
825    //
826    // is not safe, because *P may only be valid to access if 'c' is true.
827    //
828    // It is safe to promote P if all uses are direct load/stores and if at
829    // least one is guaranteed to be executed.
830    bool GuaranteedToExecute = false;
831    bool InvalidInst = false;
832    for (Value::use_iterator UI = V->use_begin(), UE = V->use_end();
833         UI != UE; ++UI) {
834      // Ignore instructions not in this loop.
835      Instruction *Use = dyn_cast<Instruction>(*UI);
836      if (!Use || !CurLoop->contains(Use->getParent()))
837        continue;
838
839      if (!isa<LoadInst>(Use) && !isa<StoreInst>(Use)) {
840        InvalidInst = true;
841        break;
842      }
843
844      if (!GuaranteedToExecute)
845        GuaranteedToExecute = isSafeToExecuteUnconditionally(*Use);
846    }
847
848    // If there is an non-load/store instruction in the loop, we can't promote
849    // it.  If there isn't a guaranteed-to-execute instruction, we can't
850    // promote.
851    if (InvalidInst || !GuaranteedToExecute)
852      continue;
853
854    const Type *Ty = cast<PointerType>(V->getType())->getElementType();
855    AllocaInst *AI = new AllocaInst(Ty, 0, V->getName()+".tmp", FnStart);
856    PromotedValues.push_back(std::make_pair(AI, V));
857
858    // Update the AST and alias analysis.
859    CurAST->copyValue(V, AI);
860
861    for (AliasSet::iterator I = AS.begin(), E = AS.end(); I != E; ++I)
862      ValueToAllocaMap.insert(std::make_pair(I->getValue(), AI));
863
864    DEBUG(errs() << "LICM: Promoting value: " << *V << "\n");
865  }
866}
867
868/// cloneBasicBlockAnalysis - Simple Analysis hook. Clone alias set info.
869void LICM::cloneBasicBlockAnalysis(BasicBlock *From, BasicBlock *To, Loop *L) {
870  AliasSetTracker *AST = LoopToAliasMap[L];
871  if (!AST)
872    return;
873
874  AST->copyValue(From, To);
875}
876
877/// deleteAnalysisValue - Simple Analysis hook. Delete value V from alias
878/// set.
879void LICM::deleteAnalysisValue(Value *V, Loop *L) {
880  AliasSetTracker *AST = LoopToAliasMap[L];
881  if (!AST)
882    return;
883
884  AST->deleteValue(V);
885}
886