LICM.cpp revision 1c0af0ed251af3d2ef795903133513656e5c369d
1//===-- LICM.cpp - Loop Invariant Code Motion Pass ------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass performs loop invariant code motion, attempting to remove as much
11// code from the body of a loop as possible.  It does this by either hoisting
12// code into the preheader block, or by sinking code to the exit blocks if it is
13// safe.  This pass also promotes must-aliased memory locations in the loop to
14// live in registers, thus hoisting and sinking "invariant" loads and stores.
15//
16// This pass uses alias analysis for two purposes:
17//
18//  1. Moving loop invariant loads and calls out of loops.  If we can determine
19//     that a load or call inside of a loop never aliases anything stored to,
20//     we can hoist it or sink it like any other instruction.
21//  2. Scalar Promotion of Memory - If there is a store instruction inside of
22//     the loop, we try to move the store to happen AFTER the loop instead of
23//     inside of the loop.  This can only happen if a few conditions are true:
24//       A. The pointer stored through is loop invariant
25//       B. There are no stores or loads in the loop which _may_ alias the
26//          pointer.  There are no calls in the loop which mod/ref the pointer.
27//     If these conditions are true, we can promote the loads and stores in the
28//     loop of the pointer to use a temporary alloca'd variable.  We then use
29//     the SSAUpdater to construct the appropriate SSA form for the value.
30//
31//===----------------------------------------------------------------------===//
32
33#define DEBUG_TYPE "licm"
34#include "llvm/Transforms/Scalar.h"
35#include "llvm/Constants.h"
36#include "llvm/DerivedTypes.h"
37#include "llvm/IntrinsicInst.h"
38#include "llvm/Instructions.h"
39#include "llvm/LLVMContext.h"
40#include "llvm/Analysis/AliasAnalysis.h"
41#include "llvm/Analysis/AliasSetTracker.h"
42#include "llvm/Analysis/ConstantFolding.h"
43#include "llvm/Analysis/LoopInfo.h"
44#include "llvm/Analysis/LoopPass.h"
45#include "llvm/Analysis/Dominators.h"
46#include "llvm/Transforms/Utils/Local.h"
47#include "llvm/Transforms/Utils/SSAUpdater.h"
48#include "llvm/Support/CFG.h"
49#include "llvm/Support/CommandLine.h"
50#include "llvm/Support/raw_ostream.h"
51#include "llvm/Support/Debug.h"
52#include "llvm/ADT/Statistic.h"
53#include <algorithm>
54using namespace llvm;
55
56STATISTIC(NumSunk      , "Number of instructions sunk out of loop");
57STATISTIC(NumHoisted   , "Number of instructions hoisted out of loop");
58STATISTIC(NumMovedLoads, "Number of load insts hoisted or sunk");
59STATISTIC(NumMovedCalls, "Number of call insts hoisted or sunk");
60STATISTIC(NumPromoted  , "Number of memory locations promoted to registers");
61
62static cl::opt<bool>
63DisablePromotion("disable-licm-promotion", cl::Hidden,
64                 cl::desc("Disable memory promotion in LICM pass"));
65
66namespace {
67  struct LICM : public LoopPass {
68    static char ID; // Pass identification, replacement for typeid
69    LICM() : LoopPass(ID) {
70      initializeLICMPass(*PassRegistry::getPassRegistry());
71    }
72
73    virtual bool runOnLoop(Loop *L, LPPassManager &LPM);
74
75    /// This transformation requires natural loop information & requires that
76    /// loop preheaders be inserted into the CFG...
77    ///
78    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
79      AU.setPreservesCFG();
80      AU.addRequired<DominatorTree>();
81      AU.addRequired<LoopInfo>();
82      AU.addRequiredID(LoopSimplifyID);
83      AU.addRequired<AliasAnalysis>();
84      AU.addPreserved<AliasAnalysis>();
85      AU.addPreserved("scalar-evolution");
86      AU.addPreservedID(LoopSimplifyID);
87    }
88
89    bool doFinalization() {
90      assert(LoopToAliasSetMap.empty() && "Didn't free loop alias sets");
91      return false;
92    }
93
94  private:
95    AliasAnalysis *AA;       // Current AliasAnalysis information
96    LoopInfo      *LI;       // Current LoopInfo
97    DominatorTree *DT;       // Dominator Tree for the current Loop.
98
99    // State that is updated as we process loops.
100    bool Changed;            // Set to true when we change anything.
101    BasicBlock *Preheader;   // The preheader block of the current loop...
102    Loop *CurLoop;           // The current loop we are working on...
103    AliasSetTracker *CurAST; // AliasSet information for the current loop...
104    DenseMap<Loop*, AliasSetTracker*> LoopToAliasSetMap;
105
106    /// cloneBasicBlockAnalysis - Simple Analysis hook. Clone alias set info.
107    void cloneBasicBlockAnalysis(BasicBlock *From, BasicBlock *To, Loop *L);
108
109    /// deleteAnalysisValue - Simple Analysis hook. Delete value V from alias
110    /// set.
111    void deleteAnalysisValue(Value *V, Loop *L);
112
113    /// SinkRegion - Walk the specified region of the CFG (defined by all blocks
114    /// dominated by the specified block, and that are in the current loop) in
115    /// reverse depth first order w.r.t the DominatorTree.  This allows us to
116    /// visit uses before definitions, allowing us to sink a loop body in one
117    /// pass without iteration.
118    ///
119    void SinkRegion(DomTreeNode *N);
120
121    /// HoistRegion - Walk the specified region of the CFG (defined by all
122    /// blocks dominated by the specified block, and that are in the current
123    /// loop) in depth first order w.r.t the DominatorTree.  This allows us to
124    /// visit definitions before uses, allowing us to hoist a loop body in one
125    /// pass without iteration.
126    ///
127    void HoistRegion(DomTreeNode *N);
128
129    /// inSubLoop - Little predicate that returns true if the specified basic
130    /// block is in a subloop of the current one, not the current one itself.
131    ///
132    bool inSubLoop(BasicBlock *BB) {
133      assert(CurLoop->contains(BB) && "Only valid if BB is IN the loop");
134      for (Loop::iterator I = CurLoop->begin(), E = CurLoop->end(); I != E; ++I)
135        if ((*I)->contains(BB))
136          return true;  // A subloop actually contains this block!
137      return false;
138    }
139
140    /// isExitBlockDominatedByBlockInLoop - This method checks to see if the
141    /// specified exit block of the loop is dominated by the specified block
142    /// that is in the body of the loop.  We use these constraints to
143    /// dramatically limit the amount of the dominator tree that needs to be
144    /// searched.
145    bool isExitBlockDominatedByBlockInLoop(BasicBlock *ExitBlock,
146                                           BasicBlock *BlockInLoop) const {
147      // If the block in the loop is the loop header, it must be dominated!
148      BasicBlock *LoopHeader = CurLoop->getHeader();
149      if (BlockInLoop == LoopHeader)
150        return true;
151
152      DomTreeNode *BlockInLoopNode = DT->getNode(BlockInLoop);
153      DomTreeNode *IDom            = DT->getNode(ExitBlock);
154
155      // Because the exit block is not in the loop, we know we have to get _at
156      // least_ its immediate dominator.
157      IDom = IDom->getIDom();
158
159      while (IDom && IDom != BlockInLoopNode) {
160        // If we have got to the header of the loop, then the instructions block
161        // did not dominate the exit node, so we can't hoist it.
162        if (IDom->getBlock() == LoopHeader)
163          return false;
164
165        // Get next Immediate Dominator.
166        IDom = IDom->getIDom();
167      };
168
169      return true;
170    }
171
172    /// sink - When an instruction is found to only be used outside of the loop,
173    /// this function moves it to the exit blocks and patches up SSA form as
174    /// needed.
175    ///
176    void sink(Instruction &I);
177
178    /// hoist - When an instruction is found to only use loop invariant operands
179    /// that is safe to hoist, this instruction is called to do the dirty work.
180    ///
181    void hoist(Instruction &I);
182
183    /// isSafeToExecuteUnconditionally - Only sink or hoist an instruction if it
184    /// is not a trapping instruction or if it is a trapping instruction and is
185    /// guaranteed to execute.
186    ///
187    bool isSafeToExecuteUnconditionally(Instruction &I);
188
189    /// pointerInvalidatedByLoop - Return true if the body of this loop may
190    /// store into the memory location pointed to by V.
191    ///
192    bool pointerInvalidatedByLoop(Value *V, uint64_t Size,
193                                  const MDNode *TBAAInfo) {
194      // Check to see if any of the basic blocks in CurLoop invalidate *V.
195      return CurAST->getAliasSetForPointer(V, Size, TBAAInfo).isMod();
196    }
197
198    bool canSinkOrHoistInst(Instruction &I);
199    bool isNotUsedInLoop(Instruction &I);
200
201    void PromoteAliasSet(AliasSet &AS);
202  };
203}
204
205char LICM::ID = 0;
206INITIALIZE_PASS_BEGIN(LICM, "licm", "Loop Invariant Code Motion", false, false)
207INITIALIZE_PASS_DEPENDENCY(DominatorTree)
208INITIALIZE_PASS_DEPENDENCY(LoopInfo)
209INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
210INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
211INITIALIZE_PASS_END(LICM, "licm", "Loop Invariant Code Motion", false, false)
212
213Pass *llvm::createLICMPass() { return new LICM(); }
214
215/// Hoist expressions out of the specified loop. Note, alias info for inner
216/// loop is not preserved so it is not a good idea to run LICM multiple
217/// times on one loop.
218///
219bool LICM::runOnLoop(Loop *L, LPPassManager &LPM) {
220  Changed = false;
221
222  // Get our Loop and Alias Analysis information...
223  LI = &getAnalysis<LoopInfo>();
224  AA = &getAnalysis<AliasAnalysis>();
225  DT = &getAnalysis<DominatorTree>();
226
227  CurAST = new AliasSetTracker(*AA);
228  // Collect Alias info from subloops.
229  for (Loop::iterator LoopItr = L->begin(), LoopItrE = L->end();
230       LoopItr != LoopItrE; ++LoopItr) {
231    Loop *InnerL = *LoopItr;
232    AliasSetTracker *InnerAST = LoopToAliasSetMap[InnerL];
233    assert(InnerAST && "Where is my AST?");
234
235    // What if InnerLoop was modified by other passes ?
236    CurAST->add(*InnerAST);
237
238    // Once we've incorporated the inner loop's AST into ours, we don't need the
239    // subloop's anymore.
240    delete InnerAST;
241    LoopToAliasSetMap.erase(InnerL);
242  }
243
244  CurLoop = L;
245
246  // Get the preheader block to move instructions into...
247  Preheader = L->getLoopPreheader();
248
249  // Loop over the body of this loop, looking for calls, invokes, and stores.
250  // Because subloops have already been incorporated into AST, we skip blocks in
251  // subloops.
252  //
253  for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
254       I != E; ++I) {
255    BasicBlock *BB = *I;
256    if (LI->getLoopFor(BB) == L)        // Ignore blocks in subloops.
257      CurAST->add(*BB);                 // Incorporate the specified basic block
258  }
259
260  // We want to visit all of the instructions in this loop... that are not parts
261  // of our subloops (they have already had their invariants hoisted out of
262  // their loop, into this loop, so there is no need to process the BODIES of
263  // the subloops).
264  //
265  // Traverse the body of the loop in depth first order on the dominator tree so
266  // that we are guaranteed to see definitions before we see uses.  This allows
267  // us to sink instructions in one pass, without iteration.  After sinking
268  // instructions, we perform another pass to hoist them out of the loop.
269  //
270  if (L->hasDedicatedExits())
271    SinkRegion(DT->getNode(L->getHeader()));
272  if (Preheader)
273    HoistRegion(DT->getNode(L->getHeader()));
274
275  // Now that all loop invariants have been removed from the loop, promote any
276  // memory references to scalars that we can.
277  if (!DisablePromotion && Preheader && L->hasDedicatedExits()) {
278    // Loop over all of the alias sets in the tracker object.
279    for (AliasSetTracker::iterator I = CurAST->begin(), E = CurAST->end();
280         I != E; ++I)
281      PromoteAliasSet(*I);
282  }
283
284  // Clear out loops state information for the next iteration
285  CurLoop = 0;
286  Preheader = 0;
287
288  // If this loop is nested inside of another one, save the alias information
289  // for when we process the outer loop.
290  if (L->getParentLoop())
291    LoopToAliasSetMap[L] = CurAST;
292  else
293    delete CurAST;
294  return Changed;
295}
296
297/// SinkRegion - Walk the specified region of the CFG (defined by all blocks
298/// dominated by the specified block, and that are in the current loop) in
299/// reverse depth first order w.r.t the DominatorTree.  This allows us to visit
300/// uses before definitions, allowing us to sink a loop body in one pass without
301/// iteration.
302///
303void LICM::SinkRegion(DomTreeNode *N) {
304  assert(N != 0 && "Null dominator tree node?");
305  BasicBlock *BB = N->getBlock();
306
307  // If this subregion is not in the top level loop at all, exit.
308  if (!CurLoop->contains(BB)) return;
309
310  // We are processing blocks in reverse dfo, so process children first.
311  const std::vector<DomTreeNode*> &Children = N->getChildren();
312  for (unsigned i = 0, e = Children.size(); i != e; ++i)
313    SinkRegion(Children[i]);
314
315  // Only need to process the contents of this block if it is not part of a
316  // subloop (which would already have been processed).
317  if (inSubLoop(BB)) return;
318
319  for (BasicBlock::iterator II = BB->end(); II != BB->begin(); ) {
320    Instruction &I = *--II;
321
322    // If the instruction is dead, we would try to sink it because it isn't used
323    // in the loop, instead, just delete it.
324    if (isInstructionTriviallyDead(&I)) {
325      DEBUG(dbgs() << "LICM deleting dead inst: " << I << '\n');
326      ++II;
327      CurAST->deleteValue(&I);
328      I.eraseFromParent();
329      Changed = true;
330      continue;
331    }
332
333    // Check to see if we can sink this instruction to the exit blocks
334    // of the loop.  We can do this if the all users of the instruction are
335    // outside of the loop.  In this case, it doesn't even matter if the
336    // operands of the instruction are loop invariant.
337    //
338    if (isNotUsedInLoop(I) && canSinkOrHoistInst(I)) {
339      ++II;
340      sink(I);
341    }
342  }
343}
344
345/// HoistRegion - Walk the specified region of the CFG (defined by all blocks
346/// dominated by the specified block, and that are in the current loop) in depth
347/// first order w.r.t the DominatorTree.  This allows us to visit definitions
348/// before uses, allowing us to hoist a loop body in one pass without iteration.
349///
350void LICM::HoistRegion(DomTreeNode *N) {
351  assert(N != 0 && "Null dominator tree node?");
352  BasicBlock *BB = N->getBlock();
353
354  // If this subregion is not in the top level loop at all, exit.
355  if (!CurLoop->contains(BB)) return;
356
357  // Only need to process the contents of this block if it is not part of a
358  // subloop (which would already have been processed).
359  if (!inSubLoop(BB))
360    for (BasicBlock::iterator II = BB->begin(), E = BB->end(); II != E; ) {
361      Instruction &I = *II++;
362
363      // Try constant folding this instruction.  If all the operands are
364      // constants, it is technically hoistable, but it would be better to just
365      // fold it.
366      if (Constant *C = ConstantFoldInstruction(&I)) {
367        DEBUG(dbgs() << "LICM folding inst: " << I << "  --> " << *C << '\n');
368        CurAST->copyValue(&I, C);
369        CurAST->deleteValue(&I);
370        I.replaceAllUsesWith(C);
371        I.eraseFromParent();
372        continue;
373      }
374
375      // Try hoisting the instruction out to the preheader.  We can only do this
376      // if all of the operands of the instruction are loop invariant and if it
377      // is safe to hoist the instruction.
378      //
379      if (CurLoop->hasLoopInvariantOperands(&I) && canSinkOrHoistInst(I) &&
380          isSafeToExecuteUnconditionally(I))
381        hoist(I);
382    }
383
384  const std::vector<DomTreeNode*> &Children = N->getChildren();
385  for (unsigned i = 0, e = Children.size(); i != e; ++i)
386    HoistRegion(Children[i]);
387}
388
389/// canSinkOrHoistInst - Return true if the hoister and sinker can handle this
390/// instruction.
391///
392bool LICM::canSinkOrHoistInst(Instruction &I) {
393  // Loads have extra constraints we have to verify before we can hoist them.
394  if (LoadInst *LI = dyn_cast<LoadInst>(&I)) {
395    if (LI->isVolatile())
396      return false;        // Don't hoist volatile loads!
397
398    // Loads from constant memory are always safe to move, even if they end up
399    // in the same alias set as something that ends up being modified.
400    if (AA->pointsToConstantMemory(LI->getOperand(0)))
401      return true;
402
403    // Don't hoist loads which have may-aliased stores in loop.
404    uint64_t Size = 0;
405    if (LI->getType()->isSized())
406      Size = AA->getTypeStoreSize(LI->getType());
407    return !pointerInvalidatedByLoop(LI->getOperand(0), Size,
408                                     LI->getMetadata(LLVMContext::MD_tbaa));
409  } else if (CallInst *CI = dyn_cast<CallInst>(&I)) {
410    // Handle obvious cases efficiently.
411    AliasAnalysis::ModRefBehavior Behavior = AA->getModRefBehavior(CI);
412    if (Behavior == AliasAnalysis::DoesNotAccessMemory)
413      return true;
414    if (AliasAnalysis::onlyReadsMemory(Behavior)) {
415      // If this call only reads from memory and there are no writes to memory
416      // in the loop, we can hoist or sink the call as appropriate.
417      bool FoundMod = false;
418      for (AliasSetTracker::iterator I = CurAST->begin(), E = CurAST->end();
419           I != E; ++I) {
420        AliasSet &AS = *I;
421        if (!AS.isForwardingAliasSet() && AS.isMod()) {
422          FoundMod = true;
423          break;
424        }
425      }
426      if (!FoundMod) return true;
427    }
428
429    // FIXME: This should use mod/ref information to see if we can hoist or sink
430    // the call.
431
432    return false;
433  }
434
435  // Otherwise these instructions are hoistable/sinkable
436  return isa<BinaryOperator>(I) || isa<CastInst>(I) ||
437         isa<SelectInst>(I) || isa<GetElementPtrInst>(I) || isa<CmpInst>(I) ||
438         isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) ||
439         isa<ShuffleVectorInst>(I);
440}
441
442/// isNotUsedInLoop - Return true if the only users of this instruction are
443/// outside of the loop.  If this is true, we can sink the instruction to the
444/// exit blocks of the loop.
445///
446bool LICM::isNotUsedInLoop(Instruction &I) {
447  for (Value::use_iterator UI = I.use_begin(), E = I.use_end(); UI != E; ++UI) {
448    Instruction *User = cast<Instruction>(*UI);
449    if (PHINode *PN = dyn_cast<PHINode>(User)) {
450      // PHI node uses occur in predecessor blocks!
451      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
452        if (PN->getIncomingValue(i) == &I)
453          if (CurLoop->contains(PN->getIncomingBlock(i)))
454            return false;
455    } else if (CurLoop->contains(User)) {
456      return false;
457    }
458  }
459  return true;
460}
461
462
463/// sink - When an instruction is found to only be used outside of the loop,
464/// this function moves it to the exit blocks and patches up SSA form as needed.
465/// This method is guaranteed to remove the original instruction from its
466/// position, and may either delete it or move it to outside of the loop.
467///
468void LICM::sink(Instruction &I) {
469  DEBUG(dbgs() << "LICM sinking instruction: " << I << "\n");
470
471  SmallVector<BasicBlock*, 8> ExitBlocks;
472  CurLoop->getUniqueExitBlocks(ExitBlocks);
473
474  if (isa<LoadInst>(I)) ++NumMovedLoads;
475  else if (isa<CallInst>(I)) ++NumMovedCalls;
476  ++NumSunk;
477  Changed = true;
478
479  // The case where there is only a single exit node of this loop is common
480  // enough that we handle it as a special (more efficient) case.  It is more
481  // efficient to handle because there are no PHI nodes that need to be placed.
482  if (ExitBlocks.size() == 1) {
483    if (!isExitBlockDominatedByBlockInLoop(ExitBlocks[0], I.getParent())) {
484      // Instruction is not used, just delete it.
485      CurAST->deleteValue(&I);
486      // If I has users in unreachable blocks, eliminate.
487      // If I is not void type then replaceAllUsesWith undef.
488      // This allows ValueHandlers and custom metadata to adjust itself.
489      if (!I.use_empty())
490        I.replaceAllUsesWith(UndefValue::get(I.getType()));
491      I.eraseFromParent();
492    } else {
493      // Move the instruction to the start of the exit block, after any PHI
494      // nodes in it.
495      I.moveBefore(ExitBlocks[0]->getFirstNonPHI());
496
497      // This instruction is no longer in the AST for the current loop, because
498      // we just sunk it out of the loop.  If we just sunk it into an outer
499      // loop, we will rediscover the operation when we process it.
500      CurAST->deleteValue(&I);
501    }
502    return;
503  }
504
505  if (ExitBlocks.empty()) {
506    // The instruction is actually dead if there ARE NO exit blocks.
507    CurAST->deleteValue(&I);
508    // If I has users in unreachable blocks, eliminate.
509    // If I is not void type then replaceAllUsesWith undef.
510    // This allows ValueHandlers and custom metadata to adjust itself.
511    if (!I.use_empty())
512      I.replaceAllUsesWith(UndefValue::get(I.getType()));
513    I.eraseFromParent();
514    return;
515  }
516
517  // Otherwise, if we have multiple exits, use the SSAUpdater to do all of the
518  // hard work of inserting PHI nodes as necessary.
519  SmallVector<PHINode*, 8> NewPHIs;
520  SSAUpdater SSA(&NewPHIs);
521
522  if (!I.use_empty())
523    SSA.Initialize(I.getType(), I.getName());
524
525  // Insert a copy of the instruction in each exit block of the loop that is
526  // dominated by the instruction.  Each exit block is known to only be in the
527  // ExitBlocks list once.
528  BasicBlock *InstOrigBB = I.getParent();
529  unsigned NumInserted = 0;
530
531  for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
532    BasicBlock *ExitBlock = ExitBlocks[i];
533
534    if (!isExitBlockDominatedByBlockInLoop(ExitBlock, InstOrigBB))
535      continue;
536
537    // Insert the code after the last PHI node.
538    BasicBlock::iterator InsertPt = ExitBlock->getFirstNonPHI();
539
540    // If this is the first exit block processed, just move the original
541    // instruction, otherwise clone the original instruction and insert
542    // the copy.
543    Instruction *New;
544    if (NumInserted++ == 0) {
545      I.moveBefore(InsertPt);
546      New = &I;
547    } else {
548      New = I.clone();
549      if (!I.getName().empty())
550        New->setName(I.getName()+".le");
551      ExitBlock->getInstList().insert(InsertPt, New);
552    }
553
554    // Now that we have inserted the instruction, inform SSAUpdater.
555    if (!I.use_empty())
556      SSA.AddAvailableValue(ExitBlock, New);
557  }
558
559  // If the instruction doesn't dominate any exit blocks, it must be dead.
560  if (NumInserted == 0) {
561    CurAST->deleteValue(&I);
562    if (!I.use_empty())
563      I.replaceAllUsesWith(UndefValue::get(I.getType()));
564    I.eraseFromParent();
565    return;
566  }
567
568  // Next, rewrite uses of the instruction, inserting PHI nodes as needed.
569  for (Value::use_iterator UI = I.use_begin(), UE = I.use_end(); UI != UE; ) {
570    // Grab the use before incrementing the iterator.
571    Use &U = UI.getUse();
572    // Increment the iterator before removing the use from the list.
573    ++UI;
574    SSA.RewriteUseAfterInsertions(U);
575  }
576
577  // Update CurAST for NewPHIs if I had pointer type.
578  if (I.getType()->isPointerTy())
579    for (unsigned i = 0, e = NewPHIs.size(); i != e; ++i)
580      CurAST->copyValue(&I, NewPHIs[i]);
581
582  // Finally, remove the instruction from CurAST.  It is no longer in the loop.
583  CurAST->deleteValue(&I);
584}
585
586/// hoist - When an instruction is found to only use loop invariant operands
587/// that is safe to hoist, this instruction is called to do the dirty work.
588///
589void LICM::hoist(Instruction &I) {
590  DEBUG(dbgs() << "LICM hoisting to " << Preheader->getName() << ": "
591        << I << "\n");
592
593  // Move the new node to the Preheader, before its terminator.
594  I.moveBefore(Preheader->getTerminator());
595
596  if (isa<LoadInst>(I)) ++NumMovedLoads;
597  else if (isa<CallInst>(I)) ++NumMovedCalls;
598  ++NumHoisted;
599  Changed = true;
600}
601
602/// isSafeToExecuteUnconditionally - Only sink or hoist an instruction if it is
603/// not a trapping instruction or if it is a trapping instruction and is
604/// guaranteed to execute.
605///
606bool LICM::isSafeToExecuteUnconditionally(Instruction &Inst) {
607  // If it is not a trapping instruction, it is always safe to hoist.
608  if (Inst.isSafeToSpeculativelyExecute())
609    return true;
610
611  // Otherwise we have to check to make sure that the instruction dominates all
612  // of the exit blocks.  If it doesn't, then there is a path out of the loop
613  // which does not execute this instruction, so we can't hoist it.
614
615  // If the instruction is in the header block for the loop (which is very
616  // common), it is always guaranteed to dominate the exit blocks.  Since this
617  // is a common case, and can save some work, check it now.
618  if (Inst.getParent() == CurLoop->getHeader())
619    return true;
620
621  // Get the exit blocks for the current loop.
622  SmallVector<BasicBlock*, 8> ExitBlocks;
623  CurLoop->getExitBlocks(ExitBlocks);
624
625  // For each exit block, get the DT node and walk up the DT until the
626  // instruction's basic block is found or we exit the loop.
627  for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i)
628    if (!isExitBlockDominatedByBlockInLoop(ExitBlocks[i], Inst.getParent()))
629      return false;
630
631  return true;
632}
633
634/// PromoteAliasSet - Try to promote memory values to scalars by sinking
635/// stores out of the loop and moving loads to before the loop.  We do this by
636/// looping over the stores in the loop, looking for stores to Must pointers
637/// which are loop invariant.
638///
639void LICM::PromoteAliasSet(AliasSet &AS) {
640  // We can promote this alias set if it has a store, if it is a "Must" alias
641  // set, if the pointer is loop invariant, and if we are not eliminating any
642  // volatile loads or stores.
643  if (AS.isForwardingAliasSet() || !AS.isMod() || !AS.isMustAlias() ||
644      AS.isVolatile() || !CurLoop->isLoopInvariant(AS.begin()->getValue()))
645    return;
646
647  assert(!AS.empty() &&
648         "Must alias set should have at least one pointer element in it!");
649  Value *SomePtr = AS.begin()->getValue();
650
651  // It isn't safe to promote a load/store from the loop if the load/store is
652  // conditional.  For example, turning:
653  //
654  //    for () { if (c) *P += 1; }
655  //
656  // into:
657  //
658  //    tmp = *P;  for () { if (c) tmp +=1; } *P = tmp;
659  //
660  // is not safe, because *P may only be valid to access if 'c' is true.
661  //
662  // It is safe to promote P if all uses are direct load/stores and if at
663  // least one is guaranteed to be executed.
664  bool GuaranteedToExecute = false;
665
666  SmallVector<Instruction*, 64> LoopUses;
667  SmallPtrSet<Value*, 4> PointerMustAliases;
668
669  // Check that all of the pointers in the alias set have the same type.  We
670  // cannot (yet) promote a memory location that is loaded and stored in
671  // different sizes.
672  for (AliasSet::iterator ASI = AS.begin(), E = AS.end(); ASI != E; ++ASI) {
673    Value *ASIV = ASI->getValue();
674    PointerMustAliases.insert(ASIV);
675
676    // Check that all of the pointers in the alias set have the same type.  We
677    // cannot (yet) promote a memory location that is loaded and stored in
678    // different sizes.
679    if (SomePtr->getType() != ASIV->getType())
680      return;
681
682    for (Value::use_iterator UI = ASIV->use_begin(), UE = ASIV->use_end();
683         UI != UE; ++UI) {
684      // Ignore instructions that are outside the loop.
685      Instruction *Use = dyn_cast<Instruction>(*UI);
686      if (!Use || !CurLoop->contains(Use))
687        continue;
688
689      // If there is an non-load/store instruction in the loop, we can't promote
690      // it.
691      if (isa<LoadInst>(Use))
692        assert(!cast<LoadInst>(Use)->isVolatile() && "AST broken");
693      else if (isa<StoreInst>(Use)) {
694        if (Use->getOperand(0) == ASIV) return;
695        assert(!cast<StoreInst>(Use)->isVolatile() && "AST broken");
696      } else
697        return; // Not a load or store.
698
699      if (!GuaranteedToExecute)
700        GuaranteedToExecute = isSafeToExecuteUnconditionally(*Use);
701
702      LoopUses.push_back(Use);
703    }
704  }
705
706  // If there isn't a guaranteed-to-execute instruction, we can't promote.
707  if (!GuaranteedToExecute)
708    return;
709
710  // Otherwise, this is safe to promote, lets do it!
711  DEBUG(dbgs() << "LICM: Promoting value stored to in loop: " <<*SomePtr<<'\n');
712  Changed = true;
713  ++NumPromoted;
714
715  // We use the SSAUpdater interface to insert phi nodes as required.
716  SmallVector<PHINode*, 16> NewPHIs;
717  SSAUpdater SSA(&NewPHIs);
718
719  // It wants to know some value of the same type as what we'll be inserting.
720  Value *SomeValue;
721  if (isa<LoadInst>(LoopUses[0]))
722    SomeValue = LoopUses[0];
723  else
724    SomeValue = cast<StoreInst>(LoopUses[0])->getOperand(0);
725  SSA.Initialize(SomeValue->getType(), SomeValue->getName());
726
727  // First step: bucket up uses of the pointers by the block they occur in.
728  // This is important because we have to handle multiple defs/uses in a block
729  // ourselves: SSAUpdater is purely for cross-block references.
730  // FIXME: Want a TinyVector<Instruction*> since there is usually 0/1 element.
731  DenseMap<BasicBlock*, std::vector<Instruction*> > UsesByBlock;
732  for (unsigned i = 0, e = LoopUses.size(); i != e; ++i) {
733    Instruction *User = LoopUses[i];
734    UsesByBlock[User->getParent()].push_back(User);
735  }
736
737  // Okay, now we can iterate over all the blocks in the loop with uses,
738  // processing them.  Keep track of which loads are loading a live-in value.
739  SmallVector<LoadInst*, 32> LiveInLoads;
740  DenseMap<Value*, Value*> ReplacedLoads;
741
742  for (unsigned LoopUse = 0, e = LoopUses.size(); LoopUse != e; ++LoopUse) {
743    Instruction *User = LoopUses[LoopUse];
744    std::vector<Instruction*> &BlockUses = UsesByBlock[User->getParent()];
745
746    // If this block has already been processed, ignore this repeat use.
747    if (BlockUses.empty()) continue;
748
749    // Okay, this is the first use in the block.  If this block just has a
750    // single user in it, we can rewrite it trivially.
751    if (BlockUses.size() == 1) {
752      // If it is a store, it is a trivial def of the value in the block.
753      if (isa<StoreInst>(User)) {
754        SSA.AddAvailableValue(User->getParent(),
755                              cast<StoreInst>(User)->getOperand(0));
756      } else {
757        // Otherwise it is a load, queue it to rewrite as a live-in load.
758        LiveInLoads.push_back(cast<LoadInst>(User));
759      }
760      BlockUses.clear();
761      continue;
762    }
763
764    // Otherwise, check to see if this block is all loads.  If so, we can queue
765    // them all as live in loads.
766    bool HasStore = false;
767    for (unsigned i = 0, e = BlockUses.size(); i != e; ++i) {
768      if (isa<StoreInst>(BlockUses[i])) {
769        HasStore = true;
770        break;
771      }
772    }
773
774    if (!HasStore) {
775      for (unsigned i = 0, e = BlockUses.size(); i != e; ++i)
776        LiveInLoads.push_back(cast<LoadInst>(BlockUses[i]));
777      BlockUses.clear();
778      continue;
779    }
780
781    // Otherwise, we have mixed loads and stores (or just a bunch of stores).
782    // Since SSAUpdater is purely for cross-block values, we need to determine
783    // the order of these instructions in the block.  If the first use in the
784    // block is a load, then it uses the live in value.  The last store defines
785    // the live out value.  We handle this by doing a linear scan of the block.
786    BasicBlock *BB = User->getParent();
787    Value *StoredValue = 0;
788    for (BasicBlock::iterator II = BB->begin(), E = BB->end(); II != E; ++II) {
789      if (LoadInst *L = dyn_cast<LoadInst>(II)) {
790        // If this is a load from an unrelated pointer, ignore it.
791        if (!PointerMustAliases.count(L->getOperand(0))) continue;
792
793        // If we haven't seen a store yet, this is a live in use, otherwise
794        // use the stored value.
795        if (StoredValue) {
796          L->replaceAllUsesWith(StoredValue);
797          ReplacedLoads[L] = StoredValue;
798        } else {
799          LiveInLoads.push_back(L);
800        }
801        continue;
802      }
803
804      if (StoreInst *S = dyn_cast<StoreInst>(II)) {
805        // If this is a store to an unrelated pointer, ignore it.
806        if (!PointerMustAliases.count(S->getOperand(1))) continue;
807
808        // Remember that this is the active value in the block.
809        StoredValue = S->getOperand(0);
810      }
811    }
812
813    // The last stored value that happened is the live-out for the block.
814    assert(StoredValue && "Already checked that there is a store in block");
815    SSA.AddAvailableValue(BB, StoredValue);
816    BlockUses.clear();
817  }
818
819  // Now that all the intra-loop values are classified, set up the preheader.
820  // It gets a load of the pointer we're promoting, and it is the live-out value
821  // from the preheader.
822  LoadInst *PreheaderLoad = new LoadInst(SomePtr,SomePtr->getName()+".promoted",
823                                         Preheader->getTerminator());
824  SSA.AddAvailableValue(Preheader, PreheaderLoad);
825
826  // Now that the preheader is good to go, set up the exit blocks.  Each exit
827  // block gets a store of the live-out values that feed them.  Since we've
828  // already told the SSA updater about the defs in the loop and the preheader
829  // definition, it is all set and we can start using it.
830  SmallVector<BasicBlock*, 8> ExitBlocks;
831  CurLoop->getUniqueExitBlocks(ExitBlocks);
832  for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
833    BasicBlock *ExitBlock = ExitBlocks[i];
834    Value *LiveInValue = SSA.GetValueInMiddleOfBlock(ExitBlock);
835    Instruction *InsertPos = ExitBlock->getFirstNonPHI();
836    new StoreInst(LiveInValue, SomePtr, InsertPos);
837  }
838
839  // Okay, now we rewrite all loads that use live-in values in the loop,
840  // inserting PHI nodes as necessary.
841  for (unsigned i = 0, e = LiveInLoads.size(); i != e; ++i) {
842    LoadInst *ALoad = LiveInLoads[i];
843    Value *NewVal = SSA.GetValueInMiddleOfBlock(ALoad->getParent());
844    ALoad->replaceAllUsesWith(NewVal);
845    CurAST->copyValue(ALoad, NewVal);
846    ReplacedLoads[ALoad] = NewVal;
847  }
848
849  // If the preheader load is itself a pointer, we need to tell alias analysis
850  // about the new pointer we created in the preheader block and about any PHI
851  // nodes that just got inserted.
852  if (PreheaderLoad->getType()->isPointerTy()) {
853    // Copy any value stored to or loaded from a must-alias of the pointer.
854    CurAST->copyValue(SomeValue, PreheaderLoad);
855
856    for (unsigned i = 0, e = NewPHIs.size(); i != e; ++i)
857      CurAST->copyValue(SomeValue, NewPHIs[i]);
858  }
859
860  // Now that everything is rewritten, delete the old instructions from the body
861  // of the loop.  They should all be dead now.
862  for (unsigned i = 0, e = LoopUses.size(); i != e; ++i) {
863    Instruction *User = LoopUses[i];
864
865    // If this is a load that still has uses, then the load must have been added
866    // as a live value in the SSAUpdate data structure for a block (e.g. because
867    // the loaded value was stored later).  In this case, we need to recursively
868    // propagate the updates until we get to the real value.
869    if (!User->use_empty()) {
870      Value *NewVal = ReplacedLoads[User];
871      assert(NewVal && "not a replaced load?");
872
873      // Propagate down to the ultimate replacee.  The intermediately loads
874      // could theoretically already have been deleted, so we don't want to
875      // dereference the Value*'s.
876      DenseMap<Value*, Value*>::iterator RLI = ReplacedLoads.find(NewVal);
877      while (RLI != ReplacedLoads.end()) {
878        NewVal = RLI->second;
879        RLI = ReplacedLoads.find(NewVal);
880      }
881
882      User->replaceAllUsesWith(NewVal);
883      CurAST->copyValue(User, NewVal);
884    }
885
886    CurAST->deleteValue(User);
887    User->eraseFromParent();
888  }
889
890  // fwew, we're done!
891}
892
893
894/// cloneBasicBlockAnalysis - Simple Analysis hook. Clone alias set info.
895void LICM::cloneBasicBlockAnalysis(BasicBlock *From, BasicBlock *To, Loop *L) {
896  AliasSetTracker *AST = LoopToAliasSetMap.lookup(L);
897  if (!AST)
898    return;
899
900  AST->copyValue(From, To);
901}
902
903/// deleteAnalysisValue - Simple Analysis hook. Delete value V from alias
904/// set.
905void LICM::deleteAnalysisValue(Value *V, Loop *L) {
906  AliasSetTracker *AST = LoopToAliasSetMap.lookup(L);
907  if (!AST)
908    return;
909
910  AST->deleteValue(V);
911}
912