LICM.cpp revision 205942a4a55d568e93480fc22d25cc7dac525fb7
1//===-- LICM.cpp - Loop Invariant Code Motion Pass ------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass performs loop invariant code motion, attempting to remove as much
11// code from the body of a loop as possible.  It does this by either hoisting
12// code into the preheader block, or by sinking code to the exit blocks if it is
13// safe.  This pass also promotes must-aliased memory locations in the loop to
14// live in registers, thus hoisting and sinking "invariant" loads and stores.
15//
16// This pass uses alias analysis for two purposes:
17//
18//  1. Moving loop invariant loads and calls out of loops.  If we can determine
19//     that a load or call inside of a loop never aliases anything stored to,
20//     we can hoist it or sink it like any other instruction.
21//  2. Scalar Promotion of Memory - If there is a store instruction inside of
22//     the loop, we try to move the store to happen AFTER the loop instead of
23//     inside of the loop.  This can only happen if a few conditions are true:
24//       A. The pointer stored through is loop invariant
25//       B. There are no stores or loads in the loop which _may_ alias the
26//          pointer.  There are no calls in the loop which mod/ref the pointer.
27//     If these conditions are true, we can promote the loads and stores in the
28//     loop of the pointer to use a temporary alloca'd variable.  We then use
29//     the SSAUpdater to construct the appropriate SSA form for the value.
30//
31//===----------------------------------------------------------------------===//
32
33#define DEBUG_TYPE "licm"
34#include "llvm/Transforms/Scalar.h"
35#include "llvm/Constants.h"
36#include "llvm/DerivedTypes.h"
37#include "llvm/IntrinsicInst.h"
38#include "llvm/Instructions.h"
39#include "llvm/LLVMContext.h"
40#include "llvm/Analysis/AliasAnalysis.h"
41#include "llvm/Analysis/AliasSetTracker.h"
42#include "llvm/Analysis/ConstantFolding.h"
43#include "llvm/Analysis/LoopInfo.h"
44#include "llvm/Analysis/LoopPass.h"
45#include "llvm/Analysis/Dominators.h"
46#include "llvm/Analysis/ScalarEvolution.h"
47#include "llvm/Transforms/Utils/Local.h"
48#include "llvm/Transforms/Utils/SSAUpdater.h"
49#include "llvm/Support/CFG.h"
50#include "llvm/Support/CommandLine.h"
51#include "llvm/Support/raw_ostream.h"
52#include "llvm/Support/Debug.h"
53#include "llvm/ADT/Statistic.h"
54#include <algorithm>
55using namespace llvm;
56
57STATISTIC(NumSunk      , "Number of instructions sunk out of loop");
58STATISTIC(NumHoisted   , "Number of instructions hoisted out of loop");
59STATISTIC(NumMovedLoads, "Number of load insts hoisted or sunk");
60STATISTIC(NumMovedCalls, "Number of call insts hoisted or sunk");
61STATISTIC(NumPromoted  , "Number of memory locations promoted to registers");
62
63static cl::opt<bool>
64DisablePromotion("disable-licm-promotion", cl::Hidden,
65                 cl::desc("Disable memory promotion in LICM pass"));
66
67namespace {
68  struct LICM : public LoopPass {
69    static char ID; // Pass identification, replacement for typeid
70    LICM() : LoopPass(ID) {
71      initializeLICMPass(*PassRegistry::getPassRegistry());
72    }
73
74    virtual bool runOnLoop(Loop *L, LPPassManager &LPM);
75
76    /// This transformation requires natural loop information & requires that
77    /// loop preheaders be inserted into the CFG...
78    ///
79    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
80      AU.setPreservesCFG();
81      AU.addRequired<DominatorTree>();
82      AU.addRequired<LoopInfo>();
83      AU.addRequiredID(LoopSimplifyID);
84      AU.addRequired<AliasAnalysis>();
85      AU.addPreserved<AliasAnalysis>();
86      AU.addPreserved<ScalarEvolution>();
87      AU.addPreservedID(LoopSimplifyID);
88    }
89
90    bool doFinalization() {
91      assert(LoopToAliasSetMap.empty() && "Didn't free loop alias sets");
92      return false;
93    }
94
95  private:
96    AliasAnalysis *AA;       // Current AliasAnalysis information
97    LoopInfo      *LI;       // Current LoopInfo
98    DominatorTree *DT;       // Dominator Tree for the current Loop.
99
100    // State that is updated as we process loops.
101    bool Changed;            // Set to true when we change anything.
102    BasicBlock *Preheader;   // The preheader block of the current loop...
103    Loop *CurLoop;           // The current loop we are working on...
104    AliasSetTracker *CurAST; // AliasSet information for the current loop...
105    DenseMap<Loop*, AliasSetTracker*> LoopToAliasSetMap;
106
107    /// cloneBasicBlockAnalysis - Simple Analysis hook. Clone alias set info.
108    void cloneBasicBlockAnalysis(BasicBlock *From, BasicBlock *To, Loop *L);
109
110    /// deleteAnalysisValue - Simple Analysis hook. Delete value V from alias
111    /// set.
112    void deleteAnalysisValue(Value *V, Loop *L);
113
114    /// SinkRegion - Walk the specified region of the CFG (defined by all blocks
115    /// dominated by the specified block, and that are in the current loop) in
116    /// reverse depth first order w.r.t the DominatorTree.  This allows us to
117    /// visit uses before definitions, allowing us to sink a loop body in one
118    /// pass without iteration.
119    ///
120    void SinkRegion(DomTreeNode *N);
121
122    /// HoistRegion - Walk the specified region of the CFG (defined by all
123    /// blocks dominated by the specified block, and that are in the current
124    /// loop) in depth first order w.r.t the DominatorTree.  This allows us to
125    /// visit definitions before uses, allowing us to hoist a loop body in one
126    /// pass without iteration.
127    ///
128    void HoistRegion(DomTreeNode *N);
129
130    /// inSubLoop - Little predicate that returns true if the specified basic
131    /// block is in a subloop of the current one, not the current one itself.
132    ///
133    bool inSubLoop(BasicBlock *BB) {
134      assert(CurLoop->contains(BB) && "Only valid if BB is IN the loop");
135      for (Loop::iterator I = CurLoop->begin(), E = CurLoop->end(); I != E; ++I)
136        if ((*I)->contains(BB))
137          return true;  // A subloop actually contains this block!
138      return false;
139    }
140
141    /// isExitBlockDominatedByBlockInLoop - This method checks to see if the
142    /// specified exit block of the loop is dominated by the specified block
143    /// that is in the body of the loop.  We use these constraints to
144    /// dramatically limit the amount of the dominator tree that needs to be
145    /// searched.
146    bool isExitBlockDominatedByBlockInLoop(BasicBlock *ExitBlock,
147                                           BasicBlock *BlockInLoop) const {
148      // If the block in the loop is the loop header, it must be dominated!
149      BasicBlock *LoopHeader = CurLoop->getHeader();
150      if (BlockInLoop == LoopHeader)
151        return true;
152
153      DomTreeNode *BlockInLoopNode = DT->getNode(BlockInLoop);
154      DomTreeNode *IDom            = DT->getNode(ExitBlock);
155
156      // Because the exit block is not in the loop, we know we have to get _at
157      // least_ its immediate dominator.
158      IDom = IDom->getIDom();
159
160      while (IDom && IDom != BlockInLoopNode) {
161        // If we have got to the header of the loop, then the instructions block
162        // did not dominate the exit node, so we can't hoist it.
163        if (IDom->getBlock() == LoopHeader)
164          return false;
165
166        // Get next Immediate Dominator.
167        IDom = IDom->getIDom();
168      };
169
170      return true;
171    }
172
173    /// sink - When an instruction is found to only be used outside of the loop,
174    /// this function moves it to the exit blocks and patches up SSA form as
175    /// needed.
176    ///
177    void sink(Instruction &I);
178
179    /// hoist - When an instruction is found to only use loop invariant operands
180    /// that is safe to hoist, this instruction is called to do the dirty work.
181    ///
182    void hoist(Instruction &I);
183
184    /// isSafeToExecuteUnconditionally - Only sink or hoist an instruction if it
185    /// is not a trapping instruction or if it is a trapping instruction and is
186    /// guaranteed to execute.
187    ///
188    bool isSafeToExecuteUnconditionally(Instruction &I);
189
190    /// pointerInvalidatedByLoop - Return true if the body of this loop may
191    /// store into the memory location pointed to by V.
192    ///
193    bool pointerInvalidatedByLoop(Value *V, unsigned Size,
194                                  const MDNode *TBAAInfo) {
195      // Check to see if any of the basic blocks in CurLoop invalidate *V.
196      return CurAST->getAliasSetForPointer(V, Size, TBAAInfo).isMod();
197    }
198
199    bool canSinkOrHoistInst(Instruction &I);
200    bool isNotUsedInLoop(Instruction &I);
201
202    void PromoteAliasSet(AliasSet &AS);
203  };
204}
205
206char LICM::ID = 0;
207INITIALIZE_PASS_BEGIN(LICM, "licm", "Loop Invariant Code Motion", false, false)
208INITIALIZE_PASS_DEPENDENCY(DominatorTree)
209INITIALIZE_PASS_DEPENDENCY(LoopInfo)
210INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
211INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
212INITIALIZE_PASS_END(LICM, "licm", "Loop Invariant Code Motion", false, false)
213
214Pass *llvm::createLICMPass() { return new LICM(); }
215
216/// Hoist expressions out of the specified loop. Note, alias info for inner
217/// loop is not preserved so it is not a good idea to run LICM multiple
218/// times on one loop.
219///
220bool LICM::runOnLoop(Loop *L, LPPassManager &LPM) {
221  Changed = false;
222
223  // Get our Loop and Alias Analysis information...
224  LI = &getAnalysis<LoopInfo>();
225  AA = &getAnalysis<AliasAnalysis>();
226  DT = &getAnalysis<DominatorTree>();
227
228  CurAST = new AliasSetTracker(*AA);
229  // Collect Alias info from subloops.
230  for (Loop::iterator LoopItr = L->begin(), LoopItrE = L->end();
231       LoopItr != LoopItrE; ++LoopItr) {
232    Loop *InnerL = *LoopItr;
233    AliasSetTracker *InnerAST = LoopToAliasSetMap[InnerL];
234    assert(InnerAST && "Where is my AST?");
235
236    // What if InnerLoop was modified by other passes ?
237    CurAST->add(*InnerAST);
238
239    // Once we've incorporated the inner loop's AST into ours, we don't need the
240    // subloop's anymore.
241    delete InnerAST;
242    LoopToAliasSetMap.erase(InnerL);
243  }
244
245  CurLoop = L;
246
247  // Get the preheader block to move instructions into...
248  Preheader = L->getLoopPreheader();
249
250  // Loop over the body of this loop, looking for calls, invokes, and stores.
251  // Because subloops have already been incorporated into AST, we skip blocks in
252  // subloops.
253  //
254  for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
255       I != E; ++I) {
256    BasicBlock *BB = *I;
257    if (LI->getLoopFor(BB) == L)        // Ignore blocks in subloops.
258      CurAST->add(*BB);                 // Incorporate the specified basic block
259  }
260
261  // We want to visit all of the instructions in this loop... that are not parts
262  // of our subloops (they have already had their invariants hoisted out of
263  // their loop, into this loop, so there is no need to process the BODIES of
264  // the subloops).
265  //
266  // Traverse the body of the loop in depth first order on the dominator tree so
267  // that we are guaranteed to see definitions before we see uses.  This allows
268  // us to sink instructions in one pass, without iteration.  After sinking
269  // instructions, we perform another pass to hoist them out of the loop.
270  //
271  if (L->hasDedicatedExits())
272    SinkRegion(DT->getNode(L->getHeader()));
273  if (Preheader)
274    HoistRegion(DT->getNode(L->getHeader()));
275
276  // Now that all loop invariants have been removed from the loop, promote any
277  // memory references to scalars that we can.
278  if (!DisablePromotion && Preheader && L->hasDedicatedExits()) {
279    // Loop over all of the alias sets in the tracker object.
280    for (AliasSetTracker::iterator I = CurAST->begin(), E = CurAST->end();
281         I != E; ++I)
282      PromoteAliasSet(*I);
283  }
284
285  // Clear out loops state information for the next iteration
286  CurLoop = 0;
287  Preheader = 0;
288
289  // If this loop is nested inside of another one, save the alias information
290  // for when we process the outer loop.
291  if (L->getParentLoop())
292    LoopToAliasSetMap[L] = CurAST;
293  else
294    delete CurAST;
295  return Changed;
296}
297
298/// SinkRegion - Walk the specified region of the CFG (defined by all blocks
299/// dominated by the specified block, and that are in the current loop) in
300/// reverse depth first order w.r.t the DominatorTree.  This allows us to visit
301/// uses before definitions, allowing us to sink a loop body in one pass without
302/// iteration.
303///
304void LICM::SinkRegion(DomTreeNode *N) {
305  assert(N != 0 && "Null dominator tree node?");
306  BasicBlock *BB = N->getBlock();
307
308  // If this subregion is not in the top level loop at all, exit.
309  if (!CurLoop->contains(BB)) return;
310
311  // We are processing blocks in reverse dfo, so process children first.
312  const std::vector<DomTreeNode*> &Children = N->getChildren();
313  for (unsigned i = 0, e = Children.size(); i != e; ++i)
314    SinkRegion(Children[i]);
315
316  // Only need to process the contents of this block if it is not part of a
317  // subloop (which would already have been processed).
318  if (inSubLoop(BB)) return;
319
320  for (BasicBlock::iterator II = BB->end(); II != BB->begin(); ) {
321    Instruction &I = *--II;
322
323    // If the instruction is dead, we would try to sink it because it isn't used
324    // in the loop, instead, just delete it.
325    if (isInstructionTriviallyDead(&I)) {
326      DEBUG(dbgs() << "LICM deleting dead inst: " << I << '\n');
327      ++II;
328      CurAST->deleteValue(&I);
329      I.eraseFromParent();
330      Changed = true;
331      continue;
332    }
333
334    // Check to see if we can sink this instruction to the exit blocks
335    // of the loop.  We can do this if the all users of the instruction are
336    // outside of the loop.  In this case, it doesn't even matter if the
337    // operands of the instruction are loop invariant.
338    //
339    if (isNotUsedInLoop(I) && canSinkOrHoistInst(I)) {
340      ++II;
341      sink(I);
342    }
343  }
344}
345
346/// HoistRegion - Walk the specified region of the CFG (defined by all blocks
347/// dominated by the specified block, and that are in the current loop) in depth
348/// first order w.r.t the DominatorTree.  This allows us to visit definitions
349/// before uses, allowing us to hoist a loop body in one pass without iteration.
350///
351void LICM::HoistRegion(DomTreeNode *N) {
352  assert(N != 0 && "Null dominator tree node?");
353  BasicBlock *BB = N->getBlock();
354
355  // If this subregion is not in the top level loop at all, exit.
356  if (!CurLoop->contains(BB)) return;
357
358  // Only need to process the contents of this block if it is not part of a
359  // subloop (which would already have been processed).
360  if (!inSubLoop(BB))
361    for (BasicBlock::iterator II = BB->begin(), E = BB->end(); II != E; ) {
362      Instruction &I = *II++;
363
364      // Try constant folding this instruction.  If all the operands are
365      // constants, it is technically hoistable, but it would be better to just
366      // fold it.
367      if (Constant *C = ConstantFoldInstruction(&I)) {
368        DEBUG(dbgs() << "LICM folding inst: " << I << "  --> " << *C << '\n');
369        CurAST->copyValue(&I, C);
370        CurAST->deleteValue(&I);
371        I.replaceAllUsesWith(C);
372        I.eraseFromParent();
373        continue;
374      }
375
376      // Try hoisting the instruction out to the preheader.  We can only do this
377      // if all of the operands of the instruction are loop invariant and if it
378      // is safe to hoist the instruction.
379      //
380      if (CurLoop->hasLoopInvariantOperands(&I) && canSinkOrHoistInst(I) &&
381          isSafeToExecuteUnconditionally(I))
382        hoist(I);
383    }
384
385  const std::vector<DomTreeNode*> &Children = N->getChildren();
386  for (unsigned i = 0, e = Children.size(); i != e; ++i)
387    HoistRegion(Children[i]);
388}
389
390/// canSinkOrHoistInst - Return true if the hoister and sinker can handle this
391/// instruction.
392///
393bool LICM::canSinkOrHoistInst(Instruction &I) {
394  // Loads have extra constraints we have to verify before we can hoist them.
395  if (LoadInst *LI = dyn_cast<LoadInst>(&I)) {
396    if (LI->isVolatile())
397      return false;        // Don't hoist volatile loads!
398
399    // Loads from constant memory are always safe to move, even if they end up
400    // in the same alias set as something that ends up being modified.
401    if (AA->pointsToConstantMemory(LI->getOperand(0)))
402      return true;
403
404    // Don't hoist loads which have may-aliased stores in loop.
405    unsigned Size = 0;
406    if (LI->getType()->isSized())
407      Size = AA->getTypeStoreSize(LI->getType());
408    return !pointerInvalidatedByLoop(LI->getOperand(0), Size,
409                                     LI->getMetadata(LLVMContext::MD_tbaa));
410  } else if (CallInst *CI = dyn_cast<CallInst>(&I)) {
411    // Handle obvious cases efficiently.
412    AliasAnalysis::ModRefBehavior Behavior = AA->getModRefBehavior(CI);
413    if (Behavior == AliasAnalysis::DoesNotAccessMemory)
414      return true;
415    else if (Behavior == AliasAnalysis::OnlyReadsMemory) {
416      // If this call only reads from memory and there are no writes to memory
417      // in the loop, we can hoist or sink the call as appropriate.
418      bool FoundMod = false;
419      for (AliasSetTracker::iterator I = CurAST->begin(), E = CurAST->end();
420           I != E; ++I) {
421        AliasSet &AS = *I;
422        if (!AS.isForwardingAliasSet() && AS.isMod()) {
423          FoundMod = true;
424          break;
425        }
426      }
427      if (!FoundMod) return true;
428    }
429
430    // FIXME: This should use mod/ref information to see if we can hoist or sink
431    // the call.
432
433    return false;
434  }
435
436  // Otherwise these instructions are hoistable/sinkable
437  return isa<BinaryOperator>(I) || isa<CastInst>(I) ||
438         isa<SelectInst>(I) || isa<GetElementPtrInst>(I) || isa<CmpInst>(I) ||
439         isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) ||
440         isa<ShuffleVectorInst>(I);
441}
442
443/// isNotUsedInLoop - Return true if the only users of this instruction are
444/// outside of the loop.  If this is true, we can sink the instruction to the
445/// exit blocks of the loop.
446///
447bool LICM::isNotUsedInLoop(Instruction &I) {
448  for (Value::use_iterator UI = I.use_begin(), E = I.use_end(); UI != E; ++UI) {
449    Instruction *User = cast<Instruction>(*UI);
450    if (PHINode *PN = dyn_cast<PHINode>(User)) {
451      // PHI node uses occur in predecessor blocks!
452      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
453        if (PN->getIncomingValue(i) == &I)
454          if (CurLoop->contains(PN->getIncomingBlock(i)))
455            return false;
456    } else if (CurLoop->contains(User)) {
457      return false;
458    }
459  }
460  return true;
461}
462
463
464/// sink - When an instruction is found to only be used outside of the loop,
465/// this function moves it to the exit blocks and patches up SSA form as needed.
466/// This method is guaranteed to remove the original instruction from its
467/// position, and may either delete it or move it to outside of the loop.
468///
469void LICM::sink(Instruction &I) {
470  DEBUG(dbgs() << "LICM sinking instruction: " << I << "\n");
471
472  SmallVector<BasicBlock*, 8> ExitBlocks;
473  CurLoop->getUniqueExitBlocks(ExitBlocks);
474
475  if (isa<LoadInst>(I)) ++NumMovedLoads;
476  else if (isa<CallInst>(I)) ++NumMovedCalls;
477  ++NumSunk;
478  Changed = true;
479
480  // The case where there is only a single exit node of this loop is common
481  // enough that we handle it as a special (more efficient) case.  It is more
482  // efficient to handle because there are no PHI nodes that need to be placed.
483  if (ExitBlocks.size() == 1) {
484    if (!isExitBlockDominatedByBlockInLoop(ExitBlocks[0], I.getParent())) {
485      // Instruction is not used, just delete it.
486      CurAST->deleteValue(&I);
487      // If I has users in unreachable blocks, eliminate.
488      // If I is not void type then replaceAllUsesWith undef.
489      // This allows ValueHandlers and custom metadata to adjust itself.
490      if (!I.use_empty())
491        I.replaceAllUsesWith(UndefValue::get(I.getType()));
492      I.eraseFromParent();
493    } else {
494      // Move the instruction to the start of the exit block, after any PHI
495      // nodes in it.
496      I.moveBefore(ExitBlocks[0]->getFirstNonPHI());
497
498      // This instruction is no longer in the AST for the current loop, because
499      // we just sunk it out of the loop.  If we just sunk it into an outer
500      // loop, we will rediscover the operation when we process it.
501      CurAST->deleteValue(&I);
502    }
503    return;
504  }
505
506  if (ExitBlocks.empty()) {
507    // The instruction is actually dead if there ARE NO exit blocks.
508    CurAST->deleteValue(&I);
509    // If I has users in unreachable blocks, eliminate.
510    // If I is not void type then replaceAllUsesWith undef.
511    // This allows ValueHandlers and custom metadata to adjust itself.
512    if (!I.use_empty())
513      I.replaceAllUsesWith(UndefValue::get(I.getType()));
514    I.eraseFromParent();
515    return;
516  }
517
518  // Otherwise, if we have multiple exits, use the SSAUpdater to do all of the
519  // hard work of inserting PHI nodes as necessary.
520  SmallVector<PHINode*, 8> NewPHIs;
521  SSAUpdater SSA(&NewPHIs);
522
523  if (!I.use_empty())
524    SSA.Initialize(I.getType(), I.getName());
525
526  // Insert a copy of the instruction in each exit block of the loop that is
527  // dominated by the instruction.  Each exit block is known to only be in the
528  // ExitBlocks list once.
529  BasicBlock *InstOrigBB = I.getParent();
530  unsigned NumInserted = 0;
531
532  for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
533    BasicBlock *ExitBlock = ExitBlocks[i];
534
535    if (!isExitBlockDominatedByBlockInLoop(ExitBlock, InstOrigBB))
536      continue;
537
538    // Insert the code after the last PHI node.
539    BasicBlock::iterator InsertPt = ExitBlock->getFirstNonPHI();
540
541    // If this is the first exit block processed, just move the original
542    // instruction, otherwise clone the original instruction and insert
543    // the copy.
544    Instruction *New;
545    if (NumInserted++ == 0) {
546      I.moveBefore(InsertPt);
547      New = &I;
548    } else {
549      New = I.clone();
550      if (!I.getName().empty())
551        New->setName(I.getName()+".le");
552      ExitBlock->getInstList().insert(InsertPt, New);
553    }
554
555    // Now that we have inserted the instruction, inform SSAUpdater.
556    if (!I.use_empty())
557      SSA.AddAvailableValue(ExitBlock, New);
558  }
559
560  // If the instruction doesn't dominate any exit blocks, it must be dead.
561  if (NumInserted == 0) {
562    CurAST->deleteValue(&I);
563    if (!I.use_empty())
564      I.replaceAllUsesWith(UndefValue::get(I.getType()));
565    I.eraseFromParent();
566    return;
567  }
568
569  // Next, rewrite uses of the instruction, inserting PHI nodes as needed.
570  for (Value::use_iterator UI = I.use_begin(), UE = I.use_end(); UI != UE; ) {
571    // Grab the use before incrementing the iterator.
572    Use &U = UI.getUse();
573    // Increment the iterator before removing the use from the list.
574    ++UI;
575    SSA.RewriteUseAfterInsertions(U);
576  }
577
578  // Update CurAST for NewPHIs if I had pointer type.
579  if (I.getType()->isPointerTy())
580    for (unsigned i = 0, e = NewPHIs.size(); i != e; ++i)
581      CurAST->copyValue(&I, NewPHIs[i]);
582
583  // Finally, remove the instruction from CurAST.  It is no longer in the loop.
584  CurAST->deleteValue(&I);
585}
586
587/// hoist - When an instruction is found to only use loop invariant operands
588/// that is safe to hoist, this instruction is called to do the dirty work.
589///
590void LICM::hoist(Instruction &I) {
591  DEBUG(dbgs() << "LICM hoisting to " << Preheader->getName() << ": "
592        << I << "\n");
593
594  // Move the new node to the Preheader, before its terminator.
595  I.moveBefore(Preheader->getTerminator());
596
597  if (isa<LoadInst>(I)) ++NumMovedLoads;
598  else if (isa<CallInst>(I)) ++NumMovedCalls;
599  ++NumHoisted;
600  Changed = true;
601}
602
603/// isSafeToExecuteUnconditionally - Only sink or hoist an instruction if it is
604/// not a trapping instruction or if it is a trapping instruction and is
605/// guaranteed to execute.
606///
607bool LICM::isSafeToExecuteUnconditionally(Instruction &Inst) {
608  // If it is not a trapping instruction, it is always safe to hoist.
609  if (Inst.isSafeToSpeculativelyExecute())
610    return true;
611
612  // Otherwise we have to check to make sure that the instruction dominates all
613  // of the exit blocks.  If it doesn't, then there is a path out of the loop
614  // which does not execute this instruction, so we can't hoist it.
615
616  // If the instruction is in the header block for the loop (which is very
617  // common), it is always guaranteed to dominate the exit blocks.  Since this
618  // is a common case, and can save some work, check it now.
619  if (Inst.getParent() == CurLoop->getHeader())
620    return true;
621
622  // Get the exit blocks for the current loop.
623  SmallVector<BasicBlock*, 8> ExitBlocks;
624  CurLoop->getExitBlocks(ExitBlocks);
625
626  // For each exit block, get the DT node and walk up the DT until the
627  // instruction's basic block is found or we exit the loop.
628  for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i)
629    if (!isExitBlockDominatedByBlockInLoop(ExitBlocks[i], Inst.getParent()))
630      return false;
631
632  return true;
633}
634
635/// PromoteAliasSet - Try to promote memory values to scalars by sinking
636/// stores out of the loop and moving loads to before the loop.  We do this by
637/// looping over the stores in the loop, looking for stores to Must pointers
638/// which are loop invariant.
639///
640void LICM::PromoteAliasSet(AliasSet &AS) {
641  // We can promote this alias set if it has a store, if it is a "Must" alias
642  // set, if the pointer is loop invariant, and if we are not eliminating any
643  // volatile loads or stores.
644  if (AS.isForwardingAliasSet() || !AS.isMod() || !AS.isMustAlias() ||
645      AS.isVolatile() || !CurLoop->isLoopInvariant(AS.begin()->getValue()))
646    return;
647
648  assert(!AS.empty() &&
649         "Must alias set should have at least one pointer element in it!");
650  Value *SomePtr = AS.begin()->getValue();
651
652  // It isn't safe to promote a load/store from the loop if the load/store is
653  // conditional.  For example, turning:
654  //
655  //    for () { if (c) *P += 1; }
656  //
657  // into:
658  //
659  //    tmp = *P;  for () { if (c) tmp +=1; } *P = tmp;
660  //
661  // is not safe, because *P may only be valid to access if 'c' is true.
662  //
663  // It is safe to promote P if all uses are direct load/stores and if at
664  // least one is guaranteed to be executed.
665  bool GuaranteedToExecute = false;
666
667  SmallVector<Instruction*, 64> LoopUses;
668  SmallPtrSet<Value*, 4> PointerMustAliases;
669
670  // Check that all of the pointers in the alias set have the same type.  We
671  // cannot (yet) promote a memory location that is loaded and stored in
672  // different sizes.
673  for (AliasSet::iterator ASI = AS.begin(), E = AS.end(); ASI != E; ++ASI) {
674    Value *ASIV = ASI->getValue();
675    PointerMustAliases.insert(ASIV);
676
677    // Check that all of the pointers in the alias set have the same type.  We
678    // cannot (yet) promote a memory location that is loaded and stored in
679    // different sizes.
680    if (SomePtr->getType() != ASIV->getType())
681      return;
682
683    for (Value::use_iterator UI = ASIV->use_begin(), UE = ASIV->use_end();
684         UI != UE; ++UI) {
685      // Ignore instructions that are outside the loop.
686      Instruction *Use = dyn_cast<Instruction>(*UI);
687      if (!Use || !CurLoop->contains(Use))
688        continue;
689
690      // If there is an non-load/store instruction in the loop, we can't promote
691      // it.
692      if (isa<LoadInst>(Use))
693        assert(!cast<LoadInst>(Use)->isVolatile() && "AST broken");
694      else if (isa<StoreInst>(Use)) {
695        assert(!cast<StoreInst>(Use)->isVolatile() && "AST broken");
696        if (Use->getOperand(0) == ASIV) return;
697      } else
698        return; // Not a load or store.
699
700      if (!GuaranteedToExecute)
701        GuaranteedToExecute = isSafeToExecuteUnconditionally(*Use);
702
703      LoopUses.push_back(Use);
704    }
705  }
706
707  // If there isn't a guaranteed-to-execute instruction, we can't promote.
708  if (!GuaranteedToExecute)
709    return;
710
711  // Otherwise, this is safe to promote, lets do it!
712  DEBUG(dbgs() << "LICM: Promoting value stored to in loop: " <<*SomePtr<<'\n');
713  Changed = true;
714  ++NumPromoted;
715
716  // We use the SSAUpdater interface to insert phi nodes as required.
717  SmallVector<PHINode*, 16> NewPHIs;
718  SSAUpdater SSA(&NewPHIs);
719
720  // It wants to know some value of the same type as what we'll be inserting.
721  Value *SomeValue;
722  if (isa<LoadInst>(LoopUses[0]))
723    SomeValue = LoopUses[0];
724  else
725    SomeValue = cast<StoreInst>(LoopUses[0])->getOperand(0);
726  SSA.Initialize(SomeValue->getType(), SomeValue->getName());
727
728  // First step: bucket up uses of the pointers by the block they occur in.
729  // This is important because we have to handle multiple defs/uses in a block
730  // ourselves: SSAUpdater is purely for cross-block references.
731  // FIXME: Want a TinyVector<Instruction*> since there is usually 0/1 element.
732  DenseMap<BasicBlock*, std::vector<Instruction*> > UsesByBlock;
733  for (unsigned i = 0, e = LoopUses.size(); i != e; ++i) {
734    Instruction *User = LoopUses[i];
735    UsesByBlock[User->getParent()].push_back(User);
736  }
737
738  // Okay, now we can iterate over all the blocks in the loop with uses,
739  // processing them.  Keep track of which loads are loading a live-in value.
740  SmallVector<LoadInst*, 32> LiveInLoads;
741  DenseMap<Value*, Value*> ReplacedLoads;
742
743  for (unsigned LoopUse = 0, e = LoopUses.size(); LoopUse != e; ++LoopUse) {
744    Instruction *User = LoopUses[LoopUse];
745    std::vector<Instruction*> &BlockUses = UsesByBlock[User->getParent()];
746
747    // If this block has already been processed, ignore this repeat use.
748    if (BlockUses.empty()) continue;
749
750    // Okay, this is the first use in the block.  If this block just has a
751    // single user in it, we can rewrite it trivially.
752    if (BlockUses.size() == 1) {
753      // If it is a store, it is a trivial def of the value in the block.
754      if (isa<StoreInst>(User)) {
755        SSA.AddAvailableValue(User->getParent(),
756                              cast<StoreInst>(User)->getOperand(0));
757      } else {
758        // Otherwise it is a load, queue it to rewrite as a live-in load.
759        LiveInLoads.push_back(cast<LoadInst>(User));
760      }
761      BlockUses.clear();
762      continue;
763    }
764
765    // Otherwise, check to see if this block is all loads.  If so, we can queue
766    // them all as live in loads.
767    bool HasStore = false;
768    for (unsigned i = 0, e = BlockUses.size(); i != e; ++i) {
769      if (isa<StoreInst>(BlockUses[i])) {
770        HasStore = true;
771        break;
772      }
773    }
774
775    if (!HasStore) {
776      for (unsigned i = 0, e = BlockUses.size(); i != e; ++i)
777        LiveInLoads.push_back(cast<LoadInst>(BlockUses[i]));
778      BlockUses.clear();
779      continue;
780    }
781
782    // Otherwise, we have mixed loads and stores (or just a bunch of stores).
783    // Since SSAUpdater is purely for cross-block values, we need to determine
784    // the order of these instructions in the block.  If the first use in the
785    // block is a load, then it uses the live in value.  The last store defines
786    // the live out value.  We handle this by doing a linear scan of the block.
787    BasicBlock *BB = User->getParent();
788    Value *StoredValue = 0;
789    for (BasicBlock::iterator II = BB->begin(), E = BB->end(); II != E; ++II) {
790      if (LoadInst *L = dyn_cast<LoadInst>(II)) {
791        // If this is a load from an unrelated pointer, ignore it.
792        if (!PointerMustAliases.count(L->getOperand(0))) continue;
793
794        // If we haven't seen a store yet, this is a live in use, otherwise
795        // use the stored value.
796        if (StoredValue) {
797          L->replaceAllUsesWith(StoredValue);
798          ReplacedLoads[L] = StoredValue;
799        } else {
800          LiveInLoads.push_back(L);
801        }
802        continue;
803      }
804
805      if (StoreInst *S = dyn_cast<StoreInst>(II)) {
806        // If this is a store to an unrelated pointer, ignore it.
807        if (!PointerMustAliases.count(S->getOperand(1))) continue;
808
809        // Remember that this is the active value in the block.
810        StoredValue = S->getOperand(0);
811      }
812    }
813
814    // The last stored value that happened is the live-out for the block.
815    assert(StoredValue && "Already checked that there is a store in block");
816    SSA.AddAvailableValue(BB, StoredValue);
817    BlockUses.clear();
818  }
819
820  // Now that all the intra-loop values are classified, set up the preheader.
821  // It gets a load of the pointer we're promoting, and it is the live-out value
822  // from the preheader.
823  LoadInst *PreheaderLoad = new LoadInst(SomePtr,SomePtr->getName()+".promoted",
824                                         Preheader->getTerminator());
825  SSA.AddAvailableValue(Preheader, PreheaderLoad);
826
827  // Now that the preheader is good to go, set up the exit blocks.  Each exit
828  // block gets a store of the live-out values that feed them.  Since we've
829  // already told the SSA updater about the defs in the loop and the preheader
830  // definition, it is all set and we can start using it.
831  SmallVector<BasicBlock*, 8> ExitBlocks;
832  CurLoop->getUniqueExitBlocks(ExitBlocks);
833  for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
834    BasicBlock *ExitBlock = ExitBlocks[i];
835    Value *LiveInValue = SSA.GetValueInMiddleOfBlock(ExitBlock);
836    Instruction *InsertPos = ExitBlock->getFirstNonPHI();
837    new StoreInst(LiveInValue, SomePtr, InsertPos);
838  }
839
840  // Okay, now we rewrite all loads that use live-in values in the loop,
841  // inserting PHI nodes as necessary.
842  for (unsigned i = 0, e = LiveInLoads.size(); i != e; ++i) {
843    LoadInst *ALoad = LiveInLoads[i];
844    Value *NewVal = SSA.GetValueInMiddleOfBlock(ALoad->getParent());
845    ALoad->replaceAllUsesWith(NewVal);
846    CurAST->copyValue(ALoad, NewVal);
847    ReplacedLoads[ALoad] = NewVal;
848  }
849
850  // If the preheader load is itself a pointer, we need to tell alias analysis
851  // about the new pointer we created in the preheader block and about any PHI
852  // nodes that just got inserted.
853  if (PreheaderLoad->getType()->isPointerTy()) {
854    // Copy any value stored to or loaded from a must-alias of the pointer.
855    CurAST->copyValue(SomeValue, PreheaderLoad);
856
857    for (unsigned i = 0, e = NewPHIs.size(); i != e; ++i)
858      CurAST->copyValue(SomeValue, NewPHIs[i]);
859  }
860
861  // Now that everything is rewritten, delete the old instructions from the body
862  // of the loop.  They should all be dead now.
863  for (unsigned i = 0, e = LoopUses.size(); i != e; ++i) {
864    Instruction *User = LoopUses[i];
865
866    // If this is a load that still has uses, then the load must have been added
867    // as a live value in the SSAUpdate data structure for a block (e.g. because
868    // the loaded value was stored later).  In this case, we need to recursively
869    // propagate the updates until we get to the real value.
870    if (!User->use_empty()) {
871      Value *NewVal = ReplacedLoads[User];
872      assert(NewVal && "not a replaced load?");
873
874      // Propagate down to the ultimate replacee.  The intermediately loads
875      // could theoretically already have been deleted, so we don't want to
876      // dereference the Value*'s.
877      DenseMap<Value*, Value*>::iterator RLI = ReplacedLoads.find(NewVal);
878      while (RLI != ReplacedLoads.end()) {
879        NewVal = RLI->second;
880        RLI = ReplacedLoads.find(NewVal);
881      }
882
883      User->replaceAllUsesWith(NewVal);
884      CurAST->copyValue(User, NewVal);
885    }
886
887    CurAST->deleteValue(User);
888    User->eraseFromParent();
889  }
890
891  // fwew, we're done!
892}
893
894
895/// cloneBasicBlockAnalysis - Simple Analysis hook. Clone alias set info.
896void LICM::cloneBasicBlockAnalysis(BasicBlock *From, BasicBlock *To, Loop *L) {
897  AliasSetTracker *AST = LoopToAliasSetMap.lookup(L);
898  if (!AST)
899    return;
900
901  AST->copyValue(From, To);
902}
903
904/// deleteAnalysisValue - Simple Analysis hook. Delete value V from alias
905/// set.
906void LICM::deleteAnalysisValue(Value *V, Loop *L) {
907  AliasSetTracker *AST = LoopToAliasSetMap.lookup(L);
908  if (!AST)
909    return;
910
911  AST->deleteValue(V);
912}
913